gphys 1.1.1 → 1.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,2018 +0,0 @@
|
|
1
|
-
% TITLE NumRu::GPhys::EP_Flux
|
2
|
-
%
|
3
|
-
% HISTORY 2004/08/09 ������
|
4
|
-
% 2004/11/12 ������ ( �ǿ����� )
|
5
|
-
% 2005/02/13 ��������
|
6
|
-
%
|
7
|
-
|
8
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
9
|
-
%%%%%%%% Style Setting %%%%%%%%
|
10
|
-
\documentclass[a4j,12pt,openbib]{jreport}
|
11
|
-
|
12
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
13
|
-
%%%%%%%% Package Include %%%%%%%%
|
14
|
-
\usepackage{ascmac}
|
15
|
-
\usepackage{tabularx}
|
16
|
-
\usepackage{graphicx}
|
17
|
-
\usepackage{amssymb}
|
18
|
-
\usepackage{amsmath}
|
19
|
-
\usepackage{Dennou6}
|
20
|
-
%%%%%%%% PageStyle Setting %%%%%%%%
|
21
|
-
\pagestyle{Dmyheadings}
|
22
|
-
|
23
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
24
|
-
%%%%%%%% Title Setting %%%%%%%%
|
25
|
-
\Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
|
26
|
-
\Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
|
27
|
-
\Dfile{}
|
28
|
-
|
29
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
30
|
-
%%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
|
31
|
-
%\setcounter{chapter}{1}
|
32
|
-
\setcounter{section}{0}
|
33
|
-
\setcounter{equation}{0}
|
34
|
-
\setcounter{page}{1}
|
35
|
-
\setcounter{figure}{0}
|
36
|
-
\setcounter{footnote}{0}
|
37
|
-
|
38
|
-
|
39
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
40
|
-
%%%%%%%% Counter Output Format %%%%%%%%
|
41
|
-
|
42
|
-
\def\thesection{\arabic{chapter}.\arabic{section}}
|
43
|
-
%\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
|
44
|
-
%\def\thepage{\arabic{page}}
|
45
|
-
%\def\thefigure{\arabic{section}.\arabic{figure}}
|
46
|
-
%\def\thetable{\arabic{section}.\arabic{table}}
|
47
|
-
%\def\thefootnote{\arabic{footnote}}
|
48
|
-
%\def\thesection{\arabic{section}}
|
49
|
-
%\def\theequation{\arabic{section}.\arabic{equation}}
|
50
|
-
\def\thepage{\arabic{page}}
|
51
|
-
\def\thefigure{\arabic{section}.\arabic{figure}}
|
52
|
-
\def\thetable{\arabic{section}.\arabic{table}}
|
53
|
-
\def\thefootnote{\arabic{footnote}}
|
54
|
-
|
55
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
56
|
-
%%%%%%%% Dennou-Style Definition %%%%%%%%
|
57
|
-
\Dparskip
|
58
|
-
%\Dnoparskip
|
59
|
-
%\Dparindent
|
60
|
-
\Dnoparindent
|
61
|
-
|
62
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
63
|
-
%%%%%%%% Local Definition %%%%%%%%
|
64
|
-
\def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
|
65
|
-
\def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
70
|
-
%%%%%%%% Text Start %%%%%%%%
|
71
|
-
\begin{document}
|
72
|
-
|
73
|
-
%%% �����ȥ�ڡ�������
|
74
|
-
\maketitle
|
75
|
-
|
76
|
-
%%% �ܼ��ڡ�������
|
77
|
-
\tableofcontents
|
78
|
-
|
79
|
-
\chapter{�Ϥ����}
|
80
|
-
|
81
|
-
NumRu::GPhys::EP\_Flux �� Eliassen-Palm �ե�å���(EP �ե�å���)
|
82
|
-
����ӻĺ��۴Ĥ�������åɤ�⥸�塼��Ǥ���.
|
83
|
-
�����Ǥ�, ��ľ��ɸ�Ȥ����п����Ϻ�ɸ���Ѥ���
|
84
|
-
���ɸ�Ϥˤ�����ץ�ߥƥ���������(���Ϲ�������ʤ�)
|
85
|
-
EP �ե�å����Τ���Υ�åɤ������Ѱդ���Ƥ���.
|
86
|
-
����Ū�ˤ� Plumb �ե�å����� Takaya-Nakamura �ե�å����������
|
87
|
-
��åɤ⥵�ݡ��Ȥ���ͽ��Ǥ���.
|
88
|
-
�ܥɥ�����ȤǤ� NumRu::GPhys::EP\_Flux �ǻ��Ѥ����
|
89
|
-
�����β���ȳƥ�åɤγ����Ԥ�.
|
90
|
-
�ʤ�, NumRu::GPhys::EP\_Flux �Ǥ�, ��ʬ�黻�Τ����,
|
91
|
-
�̥⥸�塼�� NumRu::Derivative ����� NumRu::GPhys::Derivative ��
|
92
|
-
���������åɤ���Ѥ��Ƥ���.
|
93
|
-
��ʬ�黻��åɤ˴ؤ���ܺ٤Ϥ��줾��Υ⥸�塼��Υɥ�����Ȥ�
|
94
|
-
���Ȥ��줿��.
|
95
|
-
|
96
|
-
|
97
|
-
\chapter{NumRu::GPhys::EP\_Flux �Ƿ���������}
|
98
|
-
|
99
|
-
�ܾϤǤ� NumRu::GPhys::EP\_Flux ������������̤β����Ԥ�.
|
100
|
-
������ǥ�� Andrews {\it et al}.(1987) ���� 3 �Ϥ˴�Ť�.
|
101
|
-
|
102
|
-
\section{�Ϥ�����}
|
103
|
-
\Dseclab{����}
|
104
|
-
|
105
|
-
���̾���絤��ͤ���.
|
106
|
-
�絤�θ����Ͽ�ʿ�����ι�������������,
|
107
|
-
��ľ�������ſ尵ʿ�դ�����Ω�Ĥ�ΤȤ���.
|
108
|
-
���ٷ��ٺ�ɸ�Ϥ��Ѥ�, ���� $\lambda$ ���������,
|
109
|
-
���� $\phi$ �����̸���������Ȥ�.
|
110
|
-
��ľ��ɸ�ˤ��п����Ϻ�ɸ$z^*$
|
111
|
-
\begin{eqnarray}\Deqlab{logp}
|
112
|
-
z^* &=& -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}
|
113
|
-
\end{eqnarray}
|
114
|
-
���Ѥ���.
|
115
|
-
������ $H$ �ϥ�������ϥ���,
|
116
|
-
$R_{d}$ �ϴ�������ε������
|
117
|
-
(����������� $R$, ���������ʬ���̤� $w$ �Ȥ����
|
118
|
-
$R_{d} = R/w$),
|
119
|
-
$T_s$ ��ɸ��Ȳ���(���),
|
120
|
-
$g_0$����ɽ�̤ˤ�������ϲ�®��(���),
|
121
|
-
$p$�ϰ���, $p_s$ �ϻ��Ȱ��ϤǤ���.
|
122
|
-
$p_s$ �Ȥ�����ɽ�̰��Ϥ���ɽ��(���)���Ѥ���.
|
123
|
-
|
124
|
-
\section{EP �ե�å���}
|
125
|
-
\Dseclab{EP �ե�å���}
|
126
|
-
|
127
|
-
�ܥ⥸�塼��Ǥ�����Ⱦ�¤ȸ�Ҥ� $\rho_s$ �ǵ��ʲ����� EP �ե�å���
|
128
|
-
(�ʹ�, ���ʲ����� EP �ե�å���)���, ���Ϥ���.
|
129
|
-
���ʲ����� EP �ե�å�����
|
130
|
-
\begin{subequations}\Deqlab{normalized_F}
|
131
|
-
\begin{align}
|
132
|
-
\Deqlab{normalized_epflx_phi}
|
133
|
-
\hat{F}_\phi &\equiv \sigma
|
134
|
-
\cos \phi \left(
|
135
|
-
\DP{\overline{u}}{z^*}
|
136
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
|
137
|
-
\right), \\
|
138
|
-
\Deqlab{normalized_epflx_z^*}
|
139
|
-
\hat{F}_{z^*} &\equiv \sigma
|
140
|
-
\cos \phi \left(
|
141
|
-
\left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
|
142
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
|
143
|
-
\right)
|
144
|
-
\end{align}
|
145
|
-
\end{subequations}
|
146
|
-
����������.
|
147
|
-
������$\hat{F}_\phi$, $\hat{F}_{z^*}$ �Ϥ��줾��
|
148
|
-
���ʲ����줿 EP �ե�å����� $\phi$ ��ʬ, $z^*$ ��ʬ�Ǥ���.
|
149
|
-
$\overline{\bullet}$ �����������顼ʿ����,
|
150
|
-
$\bullet'$ �����������顼ʿ���̤���Τ����ɽ��.
|
151
|
-
$u, v, w$ �Ϥ��줾��������®, ������®, �п�����®�٤�
|
152
|
-
\begin{eqnarray*}
|
153
|
-
(u, v, w) &\equiv& \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)
|
154
|
-
\end{eqnarray*}
|
155
|
-
����������.
|
156
|
-
$\theta$ �ϲ���, $a$ ������Ⱦ��(���)�Ǥ���.
|
157
|
-
$\sigma$ ��
|
158
|
-
\begin{align}
|
159
|
-
\sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),
|
160
|
-
\end{align}
|
161
|
-
�Ǥ���.
|
162
|
-
������, $\rho_0$ �ϴ��ܾ��̩�٤�
|
163
|
-
\begin{eqnarray*} \Deqlab{basic_density}
|
164
|
-
\rho_0(z^*) &\equiv& \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s
|
165
|
-
\end{eqnarray*}
|
166
|
-
�Ǥ���.
|
167
|
-
$f$�ϥ��ꥪ��ѥ�����
|
168
|
-
\begin{eqnarray} \Deqlab{colioli}
|
169
|
-
f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi
|
170
|
-
\end{eqnarray}
|
171
|
-
����������.
|
172
|
-
$\Omega$ �ϼ�ž��®��, $T_{rot}$�ϼ�ž�����Ǥ���.
|
173
|
-
�ܥ⥸�塼��Ǥ�, ��ž��®�٤��ѹ����뤿��ˤ�
|
174
|
-
$T_{rot}$ ���ͤ�Ϳ������ͤˤʤäƤ���.
|
175
|
-
|
176
|
-
|
177
|
-
����, Andrews {\it et al}. (1987) �Ǽ�����Ƥ���
|
178
|
-
EP �ե�å����ϼ��Τ褦����������
|
179
|
-
%%%%%%%%%%%%%%%%%%%%%%
|
180
|
-
% \item EP �ե�å���
|
181
|
-
%%%%%%%%%%%%%%%%%%%%%%
|
182
|
-
\begin{subequations}
|
183
|
-
\begin{align}
|
184
|
-
\Deqlab{epflx_phi}
|
185
|
-
{F_\phi} =& \rho_0 a
|
186
|
-
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
187
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
|
188
|
-
\Deqlab{epflx_z^*}
|
189
|
-
{F_z^*} =& \rho_0 a
|
190
|
-
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
191
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
|
192
|
-
\end{align}
|
193
|
-
\end{subequations}
|
194
|
-
������$F_\phi$, $F_{z^*}$�Ϥ��줾�� EP �ե�å�����$\phi$��ʬ, $z^*$��ʬ�Ǥ���.
|
195
|
-
$F_y, F_z^*$ �� $\hat{F_y}, \hat{F_z^*}$ �ϰʲ��Τ褦�˴ط��դ�����.
|
196
|
-
\begin{align}
|
197
|
-
\Deqlab{relation_F_vs_F^}
|
198
|
-
(F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})
|
199
|
-
\end{align}
|
200
|
-
|
201
|
-
\section{�ĺ��۴�}
|
202
|
-
|
203
|
-
�ĺ��۴�$(0, \overline{v}^*, \overline{w}^*)$�ϰʲ��η�����������.
|
204
|
-
\begin{subequations}\Deqlab{residual}
|
205
|
-
\begin{align}
|
206
|
-
\Deqlab{residual_v}
|
207
|
-
\overline{v}^* &\equiv \overline{v}
|
208
|
-
- \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
|
209
|
-
{\DP{\overline{\theta}}{z^*}}\right)\notag\\
|
210
|
-
&= \overline{v}
|
211
|
-
- \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
|
212
|
-
{\DP{\overline{\theta}}{z^*}}\right)\\
|
213
|
-
\Deqlab{residual_w}
|
214
|
-
\overline{w}^* &\equiv \overline{w}
|
215
|
-
+ \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
|
216
|
-
{\DP{\overline{\theta}}{z^*}}\right)
|
217
|
-
\end{align}
|
218
|
-
\end{subequations}
|
219
|
-
|
220
|
-
\section{ʿ������ή�μ�}
|
221
|
-
|
222
|
-
���ʲ����� EP �ե�å������Ѥ����, TEM �Ϥˤ����� $u$ �μ���
|
223
|
-
�ʲ��Τ褦�ˤʤ�.
|
224
|
-
\begin{eqnarray}
|
225
|
-
\Deqlab{transformed_euler_mean_pe_momentum_x_with_F^}& &
|
226
|
-
\DP{\overline{u}}{t}
|
227
|
-
+ \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
|
228
|
-
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
229
|
-
- \overline{X} =
|
230
|
-
\Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.
|
231
|
-
\end{eqnarray}
|
232
|
-
|
233
|
-
|
234
|
-
\section{�Ҹ��̾��ȯ���黻��}
|
235
|
-
|
236
|
-
�Ҹ��̤ˤ�����ȯ���黻�Ҥ�, $\Dvect{F}$ ��Ǥ�դΥ٥��ȥ뤷������
|
237
|
-
�ʲ��η�����������.
|
238
|
-
\begin{align}
|
239
|
-
\Deqlab{div}
|
240
|
-
\Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
|
241
|
-
+ \DP{F_{z^{*}}}{z^*}
|
242
|
-
\end{align}
|
243
|
-
|
244
|
-
|
245
|
-
\section{����ή���ؿ�}
|
246
|
-
|
247
|
-
�ĺ��۴Ĥμ���ή���ؿ� $\Psi^*$ ��
|
248
|
-
\begin{subequations}
|
249
|
-
\begin{align}
|
250
|
-
\sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
|
251
|
-
\sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
|
252
|
-
\end{align}
|
253
|
-
\end{subequations}
|
254
|
-
���������.
|
255
|
-
�弰����ʬ���� $\Psi^*$ ����뤿���,
|
256
|
-
�ܥ⥸�塼��Ǥ� \Deqref{logp} ����Ѥ���
|
257
|
-
�п����Ϻ�ɸ ($z^*$) �Ϥ��鰵�Ϻ�ɸ($p$)�Ϥ�
|
258
|
-
\begin{align}
|
259
|
-
\DP{}{z^*}\Psi^* &= -\frac{p}{H}\DP{}{p}\Psi^*
|
260
|
-
\end{align}
|
261
|
-
���Ѵ���, �絤��ü($p=0$)�ˤ����� $\Psi^* = 0$ �Ȥ�����ʬ��
|
262
|
-
\begin{align}
|
263
|
-
\Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p
|
264
|
-
\end{align}
|
265
|
-
�ȼ���ή���ؿ���Ƴ���Ƥ���.
|
266
|
-
%\footnote{ (2005/1/27 ����) ���ɤ�����ä�?\\
|
267
|
-
% (2005/1/27 ��) �ɤ���Ǥ�}
|
268
|
-
|
269
|
-
|
270
|
-
\section{�ѿ��Ѵ�}
|
271
|
-
|
272
|
-
EP\_Flux �⥸�塼��Ǥ�Ϳ����줿�ǡ����˱�����
|
273
|
-
�ѿ��Ѵ���ܤ���礬����. �����Ѵ��ϰʲ��Τ褦�˹Ԥ�.
|
274
|
-
|
275
|
-
\vspace{5mm}
|
276
|
-
|
277
|
-
���Ϥ����ǡ����α�ľ�����������Ǥ��ä����,
|
278
|
-
�ʲ��δط������Ѥ��ƹ��ټ����Ѵ���, ����Ԥ�.
|
279
|
-
\begin{subequations}
|
280
|
-
\begin{align}
|
281
|
-
z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
|
282
|
-
p &= p_{00} \exp \left( -\frac{z^*}{H} \right) \Deqlab{p-henkan}
|
283
|
-
\end{align}
|
284
|
-
\end{subequations}
|
285
|
-
������$p$�ϰ���, $p_{00}$����ɽ�̻��͵���(���)�Ǥ���.
|
286
|
-
|
287
|
-
\vspace{5mm}
|
288
|
-
|
289
|
-
���Ϥ�$\theta$��$w$ �Ǥʤ�, ����$T$, ���ϡ�®�١�$\omega \equiv Dp/Dt$
|
290
|
-
�ξ��Ϥ��줾���$w$, $\theta$�����ɬ�פ�����. �ܥ⥸�塼��Ǥϰʲ��μ�
|
291
|
-
���Ѥ���$w, \theta$�����.
|
292
|
-
\begin{align}
|
293
|
-
w &= -\omega H / p\\
|
294
|
-
\theta &= T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p
|
295
|
-
\end{align}
|
296
|
-
������$R$, $C_p$�Ϥ��줾�촥������ε������������갵��Ǯ�Ǥ���.
|
297
|
-
%$\theta$ �� \Deqref{p-henkan} ���Ѥ����
|
298
|
-
%\begin{align}
|
299
|
-
% \theta = T\exp \left( \frac{\kappa z^*}{H} \right )
|
300
|
-
%\end{align}
|
301
|
-
%�Ƚ��Ȥ�Ǥ���
|
302
|
-
%\footnotemark.
|
303
|
-
%\footnotetext{ (2005/2/13 ����) ���μ���ɬ�פʤΤǤ��礦��?
|
304
|
-
% (2005/2/17 ����) ���μ���ȤäƤ��Ǥ���. �����ư��
|
305
|
-
%��
|
306
|
-
%}
|
307
|
-
|
308
|
-
|
309
|
-
%\chapter{��åɤΥ�ե���ޥ˥奢��}
|
310
|
-
% ���: ����Ū�ˤϥ�åɥ�ե����(���ܸ�)�������???
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
\appendix
|
315
|
-
|
316
|
-
\chapter{�ץ�ߥƥ����������Ϥ��ѷ������顼ʿ�Ѥ�����}
|
317
|
-
\Dchaplab{Ƴ��}
|
318
|
-
|
319
|
-
�ܾϤǤ��ѷ������顼ʿ���������Ϥ�EP �ե�å��� ����ӻĺ��۴Ĥδط����
|
320
|
-
ǧ����. �ޤ��п����Ϻ�ɸ�Ϥ��Ѥ������̾�Σ������ץ�ߥƥ�������������
|
321
|
-
����. �����Ǥ��Υ����顼ʿ�Ѥ�����ѷ������顼ʿ���������Ϥ�Ƴ�Ф���. ��
|
322
|
-
����ѷ������顼ʿ���������˴�Ť� EP �ե�å�������ӻĺ��۴Ĥ��������.
|
323
|
-
|
324
|
-
|
325
|
-
\section{���̾���п����Ϻ�ɸ�Ϥˤ�����ץ�ߥƥ���������}
|
326
|
-
|
327
|
-
���̾���п����Ϻ�ɸ�Ϥˤ�����ץ�ߥƥ����������ϰʲ����̤�Ǥ���.
|
328
|
-
�����Ǥ� Andrews {\it et al.} (1987) �� (3.1.3) ���ͤˤ���.
|
329
|
-
\begin{subequations}\Deqlab{pe}
|
330
|
-
\begin{align}
|
331
|
-
\Deqlab{pe_momentum_x}
|
332
|
-
\DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
|
333
|
-
+ \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
|
334
|
-
\Deqlab{pe_momentum_y}
|
335
|
-
\DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
|
336
|
-
+ \Dinv{a}\DP{\Phi}{\phi} = Y,
|
337
|
-
\end{align}
|
338
|
-
|
339
|
-
\begin{align}
|
340
|
-
\Deqlab{pe_momentum_z^*}
|
341
|
-
\DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
|
342
|
-
\end{align}
|
343
|
-
|
344
|
-
\begin{align}
|
345
|
-
\Deqlab{pe_continuity}
|
346
|
-
\Dinv{a\cos\phi} &
|
347
|
-
\left[
|
348
|
-
\DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
|
349
|
-
\right]
|
350
|
-
+ \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
|
351
|
-
= 0,
|
352
|
-
\end{align}
|
353
|
-
|
354
|
-
\begin{align}
|
355
|
-
\Deqlab{pe_thermal}
|
356
|
-
\DD{\theta}{t} &= Q,
|
357
|
-
\end{align}
|
358
|
-
\end{subequations}
|
359
|
-
������ $\Phi$ �ϥ����ݥƥ��ϥ���,
|
360
|
-
$X, Y$ �Ϥ��줾�쳰�Ϥ� $\lambda$��ʬ �� $\phi$��ʬ,
|
361
|
-
$\kappa=R_{d}/c_p$ ($c_p$ ��������Ǯ)�Ǥ���.
|
362
|
-
$Q$������Ǯ��Ǯ���,
|
363
|
-
\begin{eqnarray*} \Deqlab{adiabatic_heating_term}
|
364
|
-
Q &=& \frac{J}{C_p}e^{\kappa z^*/H}
|
365
|
-
\end{eqnarray*}
|
366
|
-
�Ǥ���.
|
367
|
-
$J$ ��ñ�̼��̤����������Ǯ��ǮΨ�Ǥ���.
|
368
|
-
���������������ʳ����ѿ�������ˤĤ��Ƥ�
|
369
|
-
\Dsecref{����}, \Dsecref{EP �ե�å���} ��
|
370
|
-
�ȤΤ���.
|
371
|
-
|
372
|
-
|
373
|
-
\section{�����顼ʿ����������}
|
374
|
-
|
375
|
-
����ʪ���� $A$ �ˤĤ���, $\phi, z^*, t$ ����ꤷ��
|
376
|
-
���������ˤȤä�ʿ��
|
377
|
-
\begin{eqnarray} \Deqlab{euler_mean}
|
378
|
-
\overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda
|
379
|
-
\end{eqnarray}
|
380
|
-
���顼ʿ�ѤȸƤ�.
|
381
|
-
�����顼ʿ�Ѥ���Τ���� $A'$ �Ȥ����
|
382
|
-
\begin{eqnarray} \Deqlab{euler_eddy}
|
383
|
-
A' = A - \overline{A}
|
384
|
-
\end{eqnarray}
|
385
|
-
�Ǥ���.
|
386
|
-
����ˤ��,
|
387
|
-
$\overline{A'}=0$, $\partial \overline{A}/\partial\lambda = 0$
|
388
|
-
�Ȥʤ�.
|
389
|
-
|
390
|
-
\Deqref{pe} ��γ��̤��顼ʿ�ѤȤ�������Τ����ʬ���ƽ�
|
391
|
-
\begin{subequations}\Deqlab{exp_pe}
|
392
|
-
% \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
|
393
|
-
\begin{align}
|
394
|
-
\Deqlab{exp_pe_momentum_x}
|
395
|
-
& \DP{}{t}(\overline{u} + u')
|
396
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
|
397
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
|
398
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \notag\\
|
399
|
-
& \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
|
400
|
-
+ \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
|
401
|
-
\Deqlab{exp_pe_momentum_y}
|
402
|
-
& \DP{}{t}(\overline{v} + v')
|
403
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
|
404
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
|
405
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
|
406
|
-
& \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
|
407
|
-
+ \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
|
408
|
-
Y',
|
409
|
-
\\
|
410
|
-
\Deqlab{exp_pe_momentum_z^*}
|
411
|
-
& \DP{}{z^*}(\overline{\Phi} + \Phi')
|
412
|
-
= \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
|
413
|
-
\Deqlab{exp_pe_continuity}
|
414
|
-
& \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
|
415
|
-
+ \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
|
416
|
-
+ \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
|
417
|
-
\Deqlab{exp_pe_thermal}
|
418
|
-
& \DP{}{t}(\overline{\theta} + \theta')
|
419
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
|
420
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
|
421
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
|
422
|
-
& \qquad = \overline{Q} + Q'
|
423
|
-
\end{align}
|
424
|
-
\end{subequations}
|
425
|
-
�Ȥʤ�.
|
426
|
-
�嵭���ѷ�����, ���դ�ʿ���̤�ʿ����Ʊ�Τ��Ѥι��,
|
427
|
-
���դˤ���ʳ��ι��ޤȤ���
|
428
|
-
\begin{subequations}\Deqlab{exp2_pe}
|
429
|
-
% \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
|
430
|
-
\begin{align}
|
431
|
-
\Deqlab{exp2_pe_momentum_x}
|
432
|
-
& \DP{\overline{u}}{t}
|
433
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
434
|
-
+ \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
|
435
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
436
|
-
- f\overline{v}
|
437
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
438
|
-
+ \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
|
439
|
-
- \overline{X}
|
440
|
-
\notag\\
|
441
|
-
& \qquad
|
442
|
-
= - \DP{u'}{t}
|
443
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
|
444
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
445
|
-
- \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
|
446
|
-
& \qquad \qquad
|
447
|
-
- \frac{\overline{v}}{a}\DP{u'}{\phi}
|
448
|
-
- \frac{v'}{a}\DP{\overline{u}}{\phi}
|
449
|
-
- \frac{v'}{a}\DP{u'}{\phi}
|
450
|
-
- \overline{w}\DP{u'}{z^*}
|
451
|
-
- w'\DP{\overline{u}}{z^*}
|
452
|
-
- w'\DP{u'}{z^*}
|
453
|
-
+ fv'\notag\\
|
454
|
-
& \qquad \qquad
|
455
|
-
+ \frac{\tan\phi}{a} \overline{u} v'
|
456
|
-
+ \frac{\tan\phi}{a} u' \overline{v}
|
457
|
-
+ \frac{\tan\phi}{a} u'v'
|
458
|
-
%\notag\\
|
459
|
-
% & \qquad
|
460
|
-
- \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
|
461
|
-
+ X',\\
|
462
|
-
%
|
463
|
-
\Deqlab{exp2_pe_momentum_y}
|
464
|
-
& \DP{\overline{v}}{t}
|
465
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
466
|
-
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
467
|
-
+ \overline{w}\DP{\overline{v}}{z^*}
|
468
|
-
+ f\overline{u}
|
469
|
-
+ \frac{\tan\phi}{a}(\overline{u})^2
|
470
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
471
|
-
- \overline{Y}
|
472
|
-
\notag\\
|
473
|
-
& \qquad
|
474
|
-
= - \DP{v'}{t}
|
475
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
|
476
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
477
|
-
- \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
|
478
|
-
& \qquad \qquad
|
479
|
-
- \frac{\overline{v}}{a}\DP{v'}{\phi}
|
480
|
-
- \frac{v'}{a}\DP{\overline{v}}{\phi}
|
481
|
-
- \frac{v'}{a}\DP{v'}{\phi}
|
482
|
-
%\notag\\
|
483
|
-
% & \qquad \qquad
|
484
|
-
- \overline{w}\DP{v'}{z^*}
|
485
|
-
- w'\DP{\overline{v}}{z^*}
|
486
|
-
- w'\DP{v'}{z^*}
|
487
|
-
%\notag\\
|
488
|
-
% & \qquad
|
489
|
-
- fu'\notag\\
|
490
|
-
& \qquad \qquad
|
491
|
-
- 2\frac{\tan\phi}{a}\overline{u}u'
|
492
|
-
- \frac{\tan\phi}{a}(u')^2
|
493
|
-
%\notag\\
|
494
|
-
% & \qquad
|
495
|
-
- \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
|
496
|
-
+ Y',\\
|
497
|
-
%
|
498
|
-
\Deqlab{exp2_pe_momentum_z^*}
|
499
|
-
& \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
500
|
-
= - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
|
501
|
-
\Deqlab{exp2_pe_continuity}
|
502
|
-
& \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
|
503
|
-
+ \DP{}{\phi}(\overline{v}\cos\phi)\right]
|
504
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
505
|
-
\notag\\
|
506
|
-
& \qquad
|
507
|
-
= - \Dinv{a\cos\phi}\left[
|
508
|
-
\DP{u'}{\lambda}
|
509
|
-
+ \DP{}{\phi}(v'\cos\phi)
|
510
|
-
\right]
|
511
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
|
512
|
-
\Deqlab{exp2_pe_thermal}
|
513
|
-
& \DP{\overline{\theta}}{t}
|
514
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
515
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
516
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
517
|
-
- \overline{Q}
|
518
|
-
\notag\\
|
519
|
-
& \qquad
|
520
|
-
= - \DP{\theta'}{t}
|
521
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
|
522
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
523
|
-
- \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
|
524
|
-
\notag \\
|
525
|
-
& \qquad \qquad
|
526
|
-
- \frac{\overline{v}}{a}\DP{\theta'}{\phi}
|
527
|
-
- \frac{v'}{a}\DP{\overline{\theta}}{\phi}
|
528
|
-
- \frac{v'}{a}\DP{\theta'}{\phi}
|
529
|
-
- \overline{w}\DP{\theta'}{z^*}
|
530
|
-
- w'\DP{\overline{\theta}}{z^*}
|
531
|
-
- w'\DP{\theta'}{z^*}
|
532
|
-
+ Q'
|
533
|
-
\end{align}
|
534
|
-
\end{subequations}
|
535
|
-
�Ƚ�.
|
536
|
-
\Deqref{exp2_pe} ���顼ʿ�Ѥ����,
|
537
|
-
\begin{subequations}\Deqlab{euler_mean_pe}
|
538
|
-
% \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
|
539
|
-
\begin{align}
|
540
|
-
\Deqlab{euler_mean_pe_momentum_x}
|
541
|
-
& \DP{\overline{u}}{t}
|
542
|
-
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
543
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
544
|
-
- f\overline{v}
|
545
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
546
|
-
- \overline{X}
|
547
|
-
\notag\\
|
548
|
-
& \qquad
|
549
|
-
= - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
|
550
|
-
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
551
|
-
- \overline{w'\DP{u'}{z^*}}
|
552
|
-
+ \frac{\tan\phi}{a}\overline{u'v'},\\
|
553
|
-
%
|
554
|
-
\Deqlab{euler_mean_pe_momentum_y}
|
555
|
-
& \DP{\overline{v}}{t}
|
556
|
-
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
557
|
-
+ \overline{w} \DP{\overline{v}}{z^*}
|
558
|
-
+ f \overline{u}
|
559
|
-
+ \frac{\tan \phi}{a} (\overline{u})^2
|
560
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
561
|
-
- \overline{Y}
|
562
|
-
\notag\\
|
563
|
-
& \qquad
|
564
|
-
= - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
|
565
|
-
- \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
|
566
|
-
- \overline{w'\DP{v'}{z^*}}
|
567
|
-
- \frac{\tan \phi}{a} \overline{u'^2},\\
|
568
|
-
%
|
569
|
-
\Deqlab{euler_mean_pe_momentum_z^*}
|
570
|
-
& \DP{\overline{\Phi}}{z^*}
|
571
|
-
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
|
572
|
-
\Deqlab{euler_mean_pe_continuity}
|
573
|
-
& \Dinv{a\cos\phi}
|
574
|
-
\left[
|
575
|
-
\DP{}{\phi}(\overline{v}\cos\phi)
|
576
|
-
\right]
|
577
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
578
|
-
= 0,\\
|
579
|
-
%
|
580
|
-
\Deqlab{euler_mean_pe_thermal}
|
581
|
-
& \DP{\overline{\theta}}{t}
|
582
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
583
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
584
|
-
- \overline{Q} =
|
585
|
-
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
586
|
-
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
587
|
-
- \overline{w'\DP{\theta'}{z^*}}
|
588
|
-
\end{align}
|
589
|
-
\end{subequations}
|
590
|
-
�Ȥʤ�.
|
591
|
-
������ \Deqref{exp2_pe_continuity}, \Deqref{euler_mean_pe_continuity}
|
592
|
-
��������ʿ�Ѥ���Τ���˴ؤ���Ϣ³�μ�
|
593
|
-
\begin{eqnarray} \Deqlab{euler_eddy_pe_continuity}
|
594
|
-
\Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
|
595
|
-
+ \DP{}{\phi}(v'\cos\phi)\right]
|
596
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
|
597
|
-
= 0
|
598
|
-
\end{eqnarray}
|
599
|
-
��������.
|
600
|
-
|
601
|
-
\vspace{5mm}
|
602
|
-
|
603
|
-
\Deqref{euler_eddy_pe_continuity} ��Ȥä�
|
604
|
-
\Deqref{euler_mean_pe_momentum_x} ���ѷ�����.
|
605
|
-
\Deqref{euler_eddy_pe_continuity} �� $u'$ ����
|
606
|
-
�����顼ʿ�Ѥ�Ȥ��
|
607
|
-
\begin{eqnarray}
|
608
|
-
\Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
|
609
|
-
+ \Dinv{a} \overline{ u' \DP{v'}{\phi} }
|
610
|
-
- \frac{\tan \phi}{a} \overline{ u' v' }
|
611
|
-
+ \overline{ u' \DP{w'}{z^*} }
|
612
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
|
613
|
-
= 0
|
614
|
-
\end{eqnarray}
|
615
|
-
����� \Deqref{euler_mean_pe_momentum_x} �˲ä����
|
616
|
-
\begin{align*}
|
617
|
-
\DP{\overline{u}}{t}&
|
618
|
-
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
619
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
620
|
-
- f\overline{v}
|
621
|
-
- \frac{\tan\phi}{a}\overline{u}\overline{v}
|
622
|
-
- \overline{X} \notag\\
|
623
|
-
& = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
|
624
|
-
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
625
|
-
- \overline{w'\DP{u'}{z^*}}
|
626
|
-
%\notag\\
|
627
|
-
% &
|
628
|
-
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
629
|
-
+ \frac{2\tan\phi}{a}\overline{u'v'}
|
630
|
-
- \overline{u'\DP{w'}{z^*}}
|
631
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}
|
632
|
-
\end{align*}
|
633
|
-
������
|
634
|
-
\begin{align*}
|
635
|
-
- \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }
|
636
|
-
& = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
|
637
|
-
= 0,\\
|
638
|
-
%
|
639
|
-
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
640
|
-
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
641
|
-
+ \frac{2\tan\phi}{a}\overline{u'v'}
|
642
|
-
& = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi), \\
|
643
|
-
%
|
644
|
-
- \overline{w'\DP{u'}{z^*}}
|
645
|
-
- \overline{u'\DP{w'}{z^*}}
|
646
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}
|
647
|
-
& = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})
|
648
|
-
\end{align*}
|
649
|
-
���Ѥ����,
|
650
|
-
\begin{align*}
|
651
|
-
& \DP{\overline{u}}{t}
|
652
|
-
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
653
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
654
|
-
- f\overline{v}
|
655
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
656
|
-
- \overline{X}
|
657
|
-
\notag \\
|
658
|
-
& \qquad
|
659
|
-
= - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
|
660
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})
|
661
|
-
\end{align*}
|
662
|
-
�Ƚ��Ȥ��Ǥ���.
|
663
|
-
\Deqref{euler_mean_pe_momentum_y} �˴ؤ��Ƥ�Ʊ�ͤ�,
|
664
|
-
\Deqref{euler_eddy_pe_continuity} �� $v'$ ����
|
665
|
-
�����顼ʿ�Ѥ�Ȥä���
|
666
|
-
\begin{eqnarray}
|
667
|
-
\Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
|
668
|
-
+ \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
669
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
670
|
-
+ \overline{ v' \DP{w'}{z^*} }
|
671
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
672
|
-
= 0
|
673
|
-
\end{eqnarray}
|
674
|
-
�� \Deqref{euler_mean_pe_momentum_y} �˲ä����
|
675
|
-
\begin{align*}
|
676
|
-
& \DP{\overline{v}}{t}
|
677
|
-
+ \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
678
|
-
+ \overline{w} \DP{\overline{v}}{z^*}
|
679
|
-
+ f \overline{u}
|
680
|
-
+ \frac{\tan\phi}{a} (\overline{u})^2
|
681
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
682
|
-
- \overline{Y}
|
683
|
-
\notag\\
|
684
|
-
& \qquad
|
685
|
-
= - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
686
|
-
- \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
|
687
|
-
- \overline{w'\DP{v'}{z^*}}
|
688
|
-
- \frac{\tan\phi}{a} \overline{u'^2}
|
689
|
-
\notag\\
|
690
|
-
& \qquad \qquad
|
691
|
-
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
|
692
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
693
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
694
|
-
- \overline{ v' \DP{w'}{z^*} }
|
695
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
696
|
-
\end{align*}
|
697
|
-
��������.
|
698
|
-
������
|
699
|
-
\begin{eqnarray}
|
700
|
-
- \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
701
|
-
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
|
702
|
-
& = & - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
|
703
|
-
= 0, \nonumber \\
|
704
|
-
%
|
705
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
706
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
707
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
708
|
-
& = &
|
709
|
-
- \Dinv{a \cos \phi}
|
710
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
|
711
|
-
\nonumber \\
|
712
|
-
%
|
713
|
-
- \overline{w'\DP{v'}{z^*}}
|
714
|
-
- \overline{ v' \DP{w'}{z^*} }
|
715
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
716
|
-
& = &
|
717
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
|
718
|
-
\end{eqnarray}
|
719
|
-
���Ѥ����
|
720
|
-
\begin{align*}
|
721
|
-
& \DP{\overline{v}}{t}
|
722
|
-
+ \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
723
|
-
+ \overline{w}\ DP{\overline{v}}{z^*}
|
724
|
-
+ f \overline{u}
|
725
|
-
+ \frac{\tan\phi}{a}(\overline{u})^2
|
726
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
727
|
-
- \overline{Y}
|
728
|
-
\notag\\
|
729
|
-
& \qquad
|
730
|
-
= - \Dinv{a \cos \phi}
|
731
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
|
732
|
-
- \frac{\tan\phi}{a} \overline{u'^2}
|
733
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
|
734
|
-
\end{align*}
|
735
|
-
�Ƚ��Ȥ��Ǥ���.
|
736
|
-
\Deqref{euler_mean_pe_thermal} �ˤĤ��Ƥ�Ʊ�ͤ�,
|
737
|
-
\Deqref{euler_eddy_pe_continuity} �� $\theta'$ ����
|
738
|
-
�����顼ʿ�Ѥ�Ȥä���
|
739
|
-
\begin{eqnarray}
|
740
|
-
\Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
741
|
-
+ \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
742
|
-
- \frac{\tan \phi}{a} \overline{ \theta' v' }
|
743
|
-
+ \overline{ \theta' \DP{w'}{z^*} }
|
744
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
745
|
-
= 0
|
746
|
-
\end{eqnarray}
|
747
|
-
�� \Deqref{euler_mean_pe_thermal} �˲ä����
|
748
|
-
\begin{align*}
|
749
|
-
& \DP{\overline{\theta}}{t}
|
750
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
751
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
752
|
-
- \overline{Q}
|
753
|
-
\notag\\
|
754
|
-
& \qquad =
|
755
|
-
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
756
|
-
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
757
|
-
- \overline{w'\DP{\theta'}{z^*}}
|
758
|
-
\notag\\
|
759
|
-
& \qquad \qquad
|
760
|
-
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
761
|
-
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
762
|
-
+ \frac{\tan \phi}{a} \overline{ \theta' v' }
|
763
|
-
- \overline{ \theta' \DP{w'}{z^*} }
|
764
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
765
|
-
\end{align*}
|
766
|
-
��������.
|
767
|
-
������
|
768
|
-
\begin{eqnarray}
|
769
|
-
- \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
|
770
|
-
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
771
|
-
& = & - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
|
772
|
-
= 0, \nonumber \\
|
773
|
-
%
|
774
|
-
- \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
|
775
|
-
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
776
|
-
+ \frac{\tan \phi}{a} \overline{ \theta' v' }
|
777
|
-
& = &
|
778
|
-
- \Dinv{a \cos \phi}
|
779
|
-
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
|
780
|
-
\nonumber \\
|
781
|
-
%
|
782
|
-
- \overline{w'\DP{\theta'}{z^*}}
|
783
|
-
- \overline{ \theta' \DP{w'}{z^*} }
|
784
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
785
|
-
& = &
|
786
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
|
787
|
-
\nonumber
|
788
|
-
\end{eqnarray}
|
789
|
-
���Ѥ����
|
790
|
-
\begin{align*}
|
791
|
-
& \DP{\overline{\theta}}{t}
|
792
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
793
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
794
|
-
- \overline{Q}
|
795
|
-
= - \Dinv{a \cos \phi}
|
796
|
-
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
|
797
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
|
798
|
-
\end{align*}
|
799
|
-
�Ȥʤ�.
|
800
|
-
|
801
|
-
\vspace{5mm}
|
802
|
-
|
803
|
-
�ʾ��ޤȤ���, �ʲ���{\bfseries �����顼ʿ��������}��������.
|
804
|
-
\begin{screen}
|
805
|
-
\begin{subequations}
|
806
|
-
\Deqlab{new_euler_mean_pe}
|
807
|
-
%\setcounter{equation}{0}
|
808
|
-
%\begin{itemize}
|
809
|
-
%%%%%%%%%%%%%%%%
|
810
|
-
%\item ��ư������
|
811
|
-
%%%%%%%%%%%%%%%%
|
812
|
-
\begin{align}
|
813
|
-
\Deqlab{new_euler_mean_pe_momentum_x}
|
814
|
-
\DP{\overline{u}}{t}
|
815
|
-
& + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
|
816
|
-
+ \overline{w} \DP{\overline{u}}{z^*}
|
817
|
-
- f\overline{v}
|
818
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
819
|
-
- \overline{X}
|
820
|
-
\notag\\
|
821
|
-
& \qquad
|
822
|
-
= - \Dinv{a\cos^2\phi}
|
823
|
-
\DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
824
|
-
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
|
825
|
-
%
|
826
|
-
\Deqlab{new_euler_mean_pe_momentum_y}
|
827
|
-
\DP{\overline{v}}{t}
|
828
|
-
& + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
829
|
-
+ \overline{w} \DP{\overline{v}}{z^*}
|
830
|
-
+ f \overline{u}
|
831
|
-
+ \frac{\tan\phi}{a} (\overline{u})^2
|
832
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
833
|
-
- \overline{Y}
|
834
|
-
\notag\\
|
835
|
-
& \qquad
|
836
|
-
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
837
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
838
|
-
- \overline{u'^2}\frac{\tan\phi}{a},
|
839
|
-
\end{align}
|
840
|
-
%%%%%%%%%%%%%%%%
|
841
|
-
%\item �ſ尵ʿ�դμ�
|
842
|
-
%%%%%%%%%%%%%%%%
|
843
|
-
\begin{align}
|
844
|
-
\Deqlab{new_euler_mean_pe_momentum_z^*}
|
845
|
-
\DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
|
846
|
-
\end{align}
|
847
|
-
%%%%%%%%%%%%%%%%
|
848
|
-
%\item Ϣ³�μ�
|
849
|
-
%%%%%%%%%%%%%%%%
|
850
|
-
\begin{align}
|
851
|
-
\Deqlab{new_euler_mean_pe_continuity}
|
852
|
-
\Dinv{a\cos\phi}&
|
853
|
-
\DP{}{\phi}(\overline{v}\cos\phi)
|
854
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
855
|
-
= 0,
|
856
|
-
\end{align}
|
857
|
-
%%%%%%%%%%%%%%%%
|
858
|
-
%\item Ǯ�ϳؤμ�
|
859
|
-
%%%%%%%%%%%%%%%%
|
860
|
-
\begin{align}
|
861
|
-
\Deqlab{new_euler_mean_pe_thermal}
|
862
|
-
\DP{\overline{\theta}}{t}
|
863
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
864
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
865
|
-
- \overline{Q} =
|
866
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
867
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
|
868
|
-
\end{align}
|
869
|
-
%\end{itemize}
|
870
|
-
\end{subequations}
|
871
|
-
\end{screen}
|
872
|
-
|
873
|
-
|
874
|
-
\section{�ѷ������顼ʿ����������}
|
875
|
-
|
876
|
-
\Deqref{new_euler_mean_pe} �� EP �ե�å���, �ĺ��۴Ĥ��Ѥ��ƽ�ľ��.
|
877
|
-
EP �ե�å���, �ĺ��۴Ĥϰʲ��Τ褦���������.
|
878
|
-
\begin{subequations}
|
879
|
-
% \begin{itemize}
|
880
|
-
%%%%%%%%%%%%%%%%
|
881
|
-
% \item �ĺ��۴�
|
882
|
-
%%%%%%%%%%%%%%%%
|
883
|
-
\begin{align}
|
884
|
-
\Deqlab{residual_v_app}
|
885
|
-
\overline{v}^*
|
886
|
-
& =
|
887
|
-
\overline{v}
|
888
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
889
|
-
\left( \rho_0
|
890
|
-
\frac{\overline{v'\theta'}}
|
891
|
-
{\overline{\DP{\theta}{z^*}}}
|
892
|
-
\right)
|
893
|
-
\\
|
894
|
-
\Deqlab{residual_w_app}
|
895
|
-
\overline{w}^*
|
896
|
-
& = \overline{w}
|
897
|
-
+ \Dinv{a \cos\phi}
|
898
|
-
\DP{}{\phi}
|
899
|
-
\left( \cos \phi
|
900
|
-
\frac{\overline{v'\theta'}}
|
901
|
-
{\overline{\DP{\theta}{z^*}}}
|
902
|
-
\right)
|
903
|
-
\end{align}
|
904
|
-
\end{subequations}
|
905
|
-
%%%%%%%%%%%%%%%%
|
906
|
-
% \item EP �ե�å���
|
907
|
-
%%%%%%%%%%%%%%%%
|
908
|
-
\begin{eqnarray*}
|
909
|
-
{F_\phi} &=& \rho_0 a
|
910
|
-
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
911
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
912
|
-
\overline{u'v'}\right) \\
|
913
|
-
{F_z^*} &=& \rho_0 a
|
914
|
-
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
915
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
916
|
-
\overline{u'w'}\right)
|
917
|
-
\end{eqnarray*}
|
918
|
-
% \end{itemize}
|
919
|
-
|
920
|
-
|
921
|
-
\vspace{5mm}
|
922
|
-
|
923
|
-
�ޤ�Ϣ³�μ��������.
|
924
|
-
\Deqref{new_euler_mean_pe_continuity} ��
|
925
|
-
\Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
|
926
|
-
\begin{align*}
|
927
|
-
& \Dinv{a \cos \phi}
|
928
|
-
\DP{}{\phi}\left[
|
929
|
-
\left\{
|
930
|
-
\overline{v}^*
|
931
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
932
|
-
\left( \rho_0
|
933
|
-
\frac{\overline{v'\theta'}}
|
934
|
-
{\overline{\DP{\theta}{z^*}}}
|
935
|
-
\right)
|
936
|
-
\right\}
|
937
|
-
\cos\phi \right] \\
|
938
|
-
& \qquad
|
939
|
-
+ \Dinv{\rho_0}
|
940
|
-
\DP{}{z^*}
|
941
|
-
\left[ \rho_0
|
942
|
-
\left\{
|
943
|
-
\overline{w}^*
|
944
|
-
- \Dinv{a \cos\phi}
|
945
|
-
\DP{}{\phi}
|
946
|
-
\left( \cos \phi
|
947
|
-
\frac{\overline{v'\theta'}}
|
948
|
-
{\overline{\DP{\theta}{z^*}}}
|
949
|
-
\right)
|
950
|
-
\right\}
|
951
|
-
\right]
|
952
|
-
= 0, \\
|
953
|
-
%
|
954
|
-
&
|
955
|
-
\Dinv{a \cos \phi}
|
956
|
-
\DP{}{\phi}
|
957
|
-
\left(
|
958
|
-
\overline{v}^* \cos\phi
|
959
|
-
\right)
|
960
|
-
+ \Dinv{\rho_0}
|
961
|
-
\DP{}{z^*}
|
962
|
-
\left( \rho_0 \overline{w}^* \right)
|
963
|
-
\\
|
964
|
-
& \qquad
|
965
|
-
+ \Dinv{a \cos \phi}
|
966
|
-
\DP{}{\phi}
|
967
|
-
\left\{
|
968
|
-
\Dinv{\rho_0} \DP{}{z^*}
|
969
|
-
\left( \rho_0
|
970
|
-
\frac{\overline{v'\theta'}}
|
971
|
-
{\overline{\DP{\theta}{z^*}}}
|
972
|
-
\right) \cos\phi
|
973
|
-
\right\}
|
974
|
-
- \Dinv{\rho_0}
|
975
|
-
\DP{}{z^*}
|
976
|
-
\left\{
|
977
|
-
\rho_0 \Dinv{a \cos\phi}
|
978
|
-
\DP{}{\phi}
|
979
|
-
\left( \cos \phi
|
980
|
-
\frac{\overline{v'\theta'}}
|
981
|
-
{\overline{\DP{\theta}{z^*}}}
|
982
|
-
\right)
|
983
|
-
\right\}
|
984
|
-
= 0.
|
985
|
-
\end{align*}
|
986
|
-
�����軰�������������Ф���
|
987
|
-
\begin{align*}
|
988
|
-
& \qquad
|
989
|
-
\Dinv{a \cos \phi}
|
990
|
-
\DP{}{\phi}
|
991
|
-
\left\{
|
992
|
-
\Dinv{\rho_0} \DP{}{z^*}
|
993
|
-
\left( \rho_0
|
994
|
-
\frac{\overline{v'\theta'}}
|
995
|
-
{\overline{\DP{\theta}{z^*}}}
|
996
|
-
\right) \cos\phi
|
997
|
-
\right\}
|
998
|
-
- \Dinv{\rho_0}
|
999
|
-
\DP{}{z^*}
|
1000
|
-
\left\{
|
1001
|
-
\rho_0 \Dinv{a \cos\phi}
|
1002
|
-
\DP{}{\phi}
|
1003
|
-
\left( \cos \phi
|
1004
|
-
\frac{\overline{v'\theta'}}
|
1005
|
-
{\overline{\DP{\theta}{z^*}}}
|
1006
|
-
\right)
|
1007
|
-
\right\} \\
|
1008
|
-
& =
|
1009
|
-
\Dinv{a \cos \phi}
|
1010
|
-
\left[
|
1011
|
-
\DP{}{\phi}
|
1012
|
-
\left\{
|
1013
|
-
\Dinv{\rho_0} \DP{}{z^*}
|
1014
|
-
\left( \rho_0
|
1015
|
-
\frac{\overline{v'\theta'}}
|
1016
|
-
{\overline{\DP{\theta}{z^*}}}
|
1017
|
-
\right) \cos\phi
|
1018
|
-
\right\}
|
1019
|
-
- \Dinv{\rho_0}
|
1020
|
-
\DP{}{z^*}
|
1021
|
-
\left\{
|
1022
|
-
\rho_0
|
1023
|
-
\DP{}{\phi}
|
1024
|
-
\left( \cos \phi
|
1025
|
-
\frac{\overline{v'\theta'}}
|
1026
|
-
{\overline{\DP{\theta}{z^*}}}
|
1027
|
-
\right)
|
1028
|
-
\right\}
|
1029
|
-
\right]
|
1030
|
-
\\
|
1031
|
-
& =
|
1032
|
-
\Dinv{a \cos \phi}
|
1033
|
-
\left[
|
1034
|
-
\Dinv{\rho_0}
|
1035
|
-
\DP{}{\phi}
|
1036
|
-
\left\{
|
1037
|
-
\DP{}{z^*}
|
1038
|
-
\left( \rho_0
|
1039
|
-
\frac{\overline{v'\theta'}}
|
1040
|
-
{\overline{\DP{\theta}{z^*}}}
|
1041
|
-
\cos\phi
|
1042
|
-
\right)
|
1043
|
-
\right\}
|
1044
|
-
- \Dinv{\rho_0}
|
1045
|
-
\DP{}{z^*}
|
1046
|
-
\left\{
|
1047
|
-
\DP{}{\phi}
|
1048
|
-
\left(\rho_0 \cos \phi
|
1049
|
-
\frac{\overline{v'\theta'}}
|
1050
|
-
{\overline{\DP{\theta}{z^*}}}
|
1051
|
-
\right)
|
1052
|
-
\right\}
|
1053
|
-
\right]
|
1054
|
-
\\
|
1055
|
-
& = 0.
|
1056
|
-
\end{align*}
|
1057
|
-
�������ä�, Ϣ³�μ��ϰʲ��Τ褦�ˤʤ�.
|
1058
|
-
\begin{eqnarray}
|
1059
|
-
\Dinv{a \cos \phi}
|
1060
|
-
\DP{}{\phi}
|
1061
|
-
\left(
|
1062
|
-
\overline{v}^* \cos\phi
|
1063
|
-
\right)
|
1064
|
-
+ \Dinv{\rho_0}
|
1065
|
-
\DP{}{z^*}
|
1066
|
-
\left( \rho_0 \overline{w}^* \right) = 0.
|
1067
|
-
\end{eqnarray}
|
1068
|
-
|
1069
|
-
|
1070
|
-
\vspace{5mm}
|
1071
|
-
|
1072
|
-
|
1073
|
-
���� $u$ ��������.
|
1074
|
-
\Deqref{new_euler_mean_pe_momentum_x} ��
|
1075
|
-
\Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
|
1076
|
-
\begin{align}
|
1077
|
-
\DP{\overline{u}}{t}&
|
1078
|
-
+ \Dinv{a}
|
1079
|
-
\left[
|
1080
|
-
\overline{v}^*
|
1081
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1082
|
-
\left( \rho_0
|
1083
|
-
\frac{\overline{v'\theta'}}
|
1084
|
-
{\overline{\DP{\theta}{z^*}}}
|
1085
|
-
\right)
|
1086
|
-
\right]
|
1087
|
-
\DP{\overline{u}}{\phi}
|
1088
|
-
+ \left[
|
1089
|
-
\overline{w}^*
|
1090
|
-
- \Dinv{a \cos\phi}
|
1091
|
-
\DP{}{\phi}
|
1092
|
-
\left( \cos \phi
|
1093
|
-
\frac{\overline{v'\theta'}}
|
1094
|
-
{\overline{\DP{\theta}{z^*}}}
|
1095
|
-
\right)
|
1096
|
-
\right]
|
1097
|
-
\DP{\overline{u}}{z^*} \nonumber \\
|
1098
|
-
& \qquad \qquad
|
1099
|
-
- f
|
1100
|
-
\left[
|
1101
|
-
\overline{v}^*
|
1102
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1103
|
-
\left( \rho_0
|
1104
|
-
\frac{\overline{v'\theta'}}
|
1105
|
-
{\overline{\DP{\theta}{z^*}}}
|
1106
|
-
\right)
|
1107
|
-
\right]
|
1108
|
-
- \frac{\tan \phi}{a} \overline{u}
|
1109
|
-
\left[
|
1110
|
-
\overline{v}^*
|
1111
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1112
|
-
\left( \rho_0
|
1113
|
-
\frac{\overline{v'\theta'}}
|
1114
|
-
{\overline{\DP{\theta}{z^*}}}
|
1115
|
-
\right)
|
1116
|
-
\right]
|
1117
|
-
- \overline{X}
|
1118
|
-
\nonumber \\ & \qquad
|
1119
|
-
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
1120
|
-
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),\nonumber \\
|
1121
|
-
%
|
1122
|
-
\DP{\overline{u}}{t}&
|
1123
|
-
+ \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
|
1124
|
-
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1125
|
-
- f \overline{v}^*
|
1126
|
-
- \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
|
1127
|
-
- \overline{X} \nonumber \\
|
1128
|
-
& \qquad
|
1129
|
-
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
1130
|
-
+ \Dinv{a \cos\phi}
|
1131
|
-
\DP{}{\phi}
|
1132
|
-
\left( \cos \phi
|
1133
|
-
\frac{\overline{v'\theta'}}
|
1134
|
-
{\overline{\DP{\theta}{z^*}}}
|
1135
|
-
\right) \DP{\overline{u}}{z^*} \nonumber \\
|
1136
|
-
& \qquad \qquad
|
1137
|
-
+ f \Dinv{\rho_0} \DP{}{z^*}
|
1138
|
-
\left( \rho_0
|
1139
|
-
\frac{\overline{v'\theta'}}
|
1140
|
-
{\overline{\DP{\theta}{z^*}}}
|
1141
|
-
\right)
|
1142
|
-
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})
|
1143
|
-
\nonumber \\
|
1144
|
-
& \qquad \qquad
|
1145
|
-
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1146
|
-
\left( \rho_0
|
1147
|
-
\frac{\overline{v'\theta'}}
|
1148
|
-
{\overline{\DP{\theta}{z^*}}}
|
1149
|
-
\right)
|
1150
|
-
\DP{\overline{u}}{\phi}
|
1151
|
-
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
1152
|
-
\left( \rho_0
|
1153
|
-
\frac{\overline{v'\theta'}}
|
1154
|
-
{\overline{\DP{\theta}{z^*}}}
|
1155
|
-
\right), \nonumber \\
|
1156
|
-
%
|
1157
|
-
\DP{\overline{u}}{t}&
|
1158
|
-
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
1159
|
-
\left( \overline{u} \cos \phi \right)
|
1160
|
-
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1161
|
-
- f \overline{v}^*
|
1162
|
-
- \overline{X}
|
1163
|
-
\nonumber \\ & \qquad
|
1164
|
-
= - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1165
|
-
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1166
|
-
+ \Dinv{a \cos\phi}
|
1167
|
-
\DP{}{\phi}
|
1168
|
-
\left( \cos \phi
|
1169
|
-
\frac{\overline{v'\theta'}}
|
1170
|
-
{\overline{\DP{\theta}{z^*}}}
|
1171
|
-
\right) \DP{\overline{u}}{z^*}
|
1172
|
-
\nonumber \\
|
1173
|
-
& \qquad \qquad
|
1174
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1175
|
-
\DP{}{z^*}
|
1176
|
-
\left( f \rho_0 a \cos \phi
|
1177
|
-
\frac{\overline{v'\theta'}}
|
1178
|
-
{\overline{\DP{\theta}{z^*}}}
|
1179
|
-
\right)
|
1180
|
-
- \frac{1}{\rho_0 a \cos \phi}
|
1181
|
-
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})
|
1182
|
-
\nonumber \\
|
1183
|
-
& \qquad \qquad
|
1184
|
-
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1185
|
-
\left( \rho_0
|
1186
|
-
\frac{\overline{v'\theta'}}
|
1187
|
-
{\overline{\DP{\theta}{z^*}}}
|
1188
|
-
\right)
|
1189
|
-
\DP{\overline{u}}{\phi}
|
1190
|
-
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
1191
|
-
\left( \rho_0
|
1192
|
-
\frac{\overline{v'\theta'}}
|
1193
|
-
{\overline{\DP{\theta}{z^*}}}
|
1194
|
-
\right) \Deqlab{tem-u-tochuu}
|
1195
|
-
\end{align}
|
1196
|
-
\Deqref{tem-u-tochuu} �α��դ�ʲ��Τ褦���ѷ�����.
|
1197
|
-
\begin{align}
|
1198
|
-
& - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1199
|
-
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1200
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1201
|
-
\rho_0 a \cos \phi
|
1202
|
-
\DP{\overline{u}}{z^*}
|
1203
|
-
\DP{}{\phi}
|
1204
|
-
\left( \cos \phi
|
1205
|
-
\frac{\overline{v'\theta'}}
|
1206
|
-
{\overline{\DP{\theta}{z^*}}}
|
1207
|
-
\right)
|
1208
|
-
\nonumber \\
|
1209
|
-
& \qquad \qquad
|
1210
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1211
|
-
\DP{}{z^*}
|
1212
|
-
\left( f \rho_0 a \cos \phi
|
1213
|
-
\frac{\overline{v'\theta'}}
|
1214
|
-
{\overline{\DP{\theta}{z^*}}}
|
1215
|
-
\right)
|
1216
|
-
- \frac{1}{\rho_0 a \cos \phi}
|
1217
|
-
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})
|
1218
|
-
\nonumber \\
|
1219
|
-
& \qquad \qquad
|
1220
|
-
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1221
|
-
\left( \rho_0
|
1222
|
-
\frac{\overline{v'\theta'}}
|
1223
|
-
{\overline{\DP{\theta}{z^*}}}
|
1224
|
-
\DP{\overline{u}}{\phi}
|
1225
|
-
\right)
|
1226
|
-
+ \Dinv{\rho_0 a}
|
1227
|
-
\rho_0
|
1228
|
-
\frac{\overline{v'\theta'}}
|
1229
|
-
{\overline{\DP{\theta}{z^*}}}
|
1230
|
-
\DP{}{z^*}
|
1231
|
-
\left(
|
1232
|
-
\DP{\overline{u}}{\phi}
|
1233
|
-
\right) \nonumber \\
|
1234
|
-
& \qquad \qquad
|
1235
|
-
+ \frac{\tan \phi}{\rho_0 a}
|
1236
|
-
\DP{}{z^*}
|
1237
|
-
\left( \overline{u} \rho_0
|
1238
|
-
\frac{\overline{v'\theta'}}
|
1239
|
-
{\overline{\DP{\theta}{z^*}}}
|
1240
|
-
\right)
|
1241
|
-
- \frac{\tan \phi}{\rho_0 a}
|
1242
|
-
\rho_0
|
1243
|
-
\frac{\overline{v'\theta'}}
|
1244
|
-
{\overline{\DP{\theta}{z^*}}}
|
1245
|
-
\DP{}{z^*}
|
1246
|
-
\left( \overline{u}
|
1247
|
-
\right) \nonumber \\
|
1248
|
-
%
|
1249
|
-
& =
|
1250
|
-
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1251
|
-
\left[
|
1252
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1253
|
-
+ \rho_0 a \cos \phi
|
1254
|
-
\DP{\overline{u}}{z^*}
|
1255
|
-
\DP{}{\phi}
|
1256
|
-
\left( \cos \phi
|
1257
|
-
\frac{\overline{v'\theta'}}
|
1258
|
-
{\overline{\DP{\theta}{z^*}}}
|
1259
|
-
\right)
|
1260
|
-
\right] \nonumber \\
|
1261
|
-
& \qquad
|
1262
|
-
+ \Dinv{\rho_0 a}
|
1263
|
-
\rho_0
|
1264
|
-
\frac{\overline{v'\theta'}}
|
1265
|
-
{\overline{\DP{\theta}{z^*}}}
|
1266
|
-
\DP{}{z^*}
|
1267
|
-
\left(
|
1268
|
-
\DP{\overline{u}}{\phi}
|
1269
|
-
\right)
|
1270
|
-
- \frac{\tan \phi}{\rho_0 a}
|
1271
|
-
\rho_0
|
1272
|
-
\frac{\overline{v'\theta'}}
|
1273
|
-
{\overline{\DP{\theta}{z^*}}}
|
1274
|
-
\DP{\overline{u}}{z^*} \nonumber \\
|
1275
|
-
& \qquad
|
1276
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1277
|
-
\DP{}{z^*}
|
1278
|
-
\left[
|
1279
|
-
\left( f \rho_0 a \cos \phi
|
1280
|
-
\frac{\overline{v'\theta'}}
|
1281
|
-
{\overline{\DP{\theta}{z^*}}}
|
1282
|
-
\right)
|
1283
|
-
- \rho_0 a \cos \phi \overline{w'u'}
|
1284
|
-
\right] \nonumber \\
|
1285
|
-
& \qquad
|
1286
|
-
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1287
|
-
\left( \rho_0
|
1288
|
-
\frac{\overline{v'\theta'}}
|
1289
|
-
{\overline{\DP{\theta}{z^*}}}
|
1290
|
-
\DP{\overline{u}}{\phi}
|
1291
|
-
\right)
|
1292
|
-
+ \frac{\tan \phi}{\rho_0 a}
|
1293
|
-
\DP{}{z^*}
|
1294
|
-
\left( \overline{u} \rho_0
|
1295
|
-
\frac{\overline{v'\theta'}}
|
1296
|
-
{\overline{\DP{\theta}{z^*}}}
|
1297
|
-
\right) \nonumber \\
|
1298
|
-
%
|
1299
|
-
& =
|
1300
|
-
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1301
|
-
\left[
|
1302
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1303
|
-
+ \rho_0 a \cos \phi
|
1304
|
-
\DP{\overline{u}}{z^*}
|
1305
|
-
\DP{}{\phi}
|
1306
|
-
\left( \cos \phi
|
1307
|
-
\frac{\overline{v'\theta'}}
|
1308
|
-
{\overline{\DP{\theta}{z^*}}}
|
1309
|
-
\right)
|
1310
|
-
\right] \nonumber \\
|
1311
|
-
& \qquad
|
1312
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1313
|
-
\left[
|
1314
|
-
\rho_0 a \cos^2 \phi
|
1315
|
-
\frac{\overline{v'\theta'}}
|
1316
|
-
{\overline{\DP{\theta}{z^*}}}
|
1317
|
-
\DP{}{z^*}
|
1318
|
-
\left(
|
1319
|
-
\DP{\overline{u}}{\phi}
|
1320
|
-
\right)
|
1321
|
-
- \rho_0 a \cos^2 \phi \tan \phi
|
1322
|
-
\frac{\overline{v'\theta'}}
|
1323
|
-
{\overline{\DP{\theta}{z^*}}}
|
1324
|
-
\DP{\overline{u}}{z^*}
|
1325
|
-
\right] \nonumber \\
|
1326
|
-
& \qquad
|
1327
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1328
|
-
\DP{}{z^*}
|
1329
|
-
\left[
|
1330
|
-
\left( f \rho_0 a \cos \phi
|
1331
|
-
\frac{\overline{v'\theta'}}
|
1332
|
-
{\overline{\DP{\theta}{z^*}}}
|
1333
|
-
\right)
|
1334
|
-
- \rho_0 a \cos \phi \overline{w'u'}
|
1335
|
-
\right] \nonumber \\
|
1336
|
-
& \qquad
|
1337
|
-
+ \Dinv{\rho_0 a \cos \phi}
|
1338
|
-
\left[
|
1339
|
-
- \cos \phi
|
1340
|
-
\DP{}{z^*}
|
1341
|
-
\left( \rho_0
|
1342
|
-
\frac{\overline{v'\theta'}}
|
1343
|
-
{\overline{\DP{\theta}{z^*}}}
|
1344
|
-
\DP{\overline{u}}{\phi}
|
1345
|
-
\right)
|
1346
|
-
+ \cos \phi \tan \phi
|
1347
|
-
\DP{}{z^*}
|
1348
|
-
\left( \overline{u} \rho_0
|
1349
|
-
\frac{\overline{v'\theta'}}
|
1350
|
-
{\overline{\DP{\theta}{z^*}}}
|
1351
|
-
\right)
|
1352
|
-
\right] \nonumber \\
|
1353
|
-
%
|
1354
|
-
& = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1355
|
-
\left[
|
1356
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1357
|
-
+ \rho_0 a \cos \phi
|
1358
|
-
\DP{\overline{u}}{z^*}
|
1359
|
-
\DP{}{\phi}
|
1360
|
-
\left( \cos \phi
|
1361
|
-
\frac{\overline{v'\theta'}}
|
1362
|
-
{\overline{\DP{\theta}{z^*}}}
|
1363
|
-
\right)
|
1364
|
-
\right] \nonumber \\
|
1365
|
-
& \qquad
|
1366
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1367
|
-
\left[
|
1368
|
-
\rho_0 a \cos^2 \phi
|
1369
|
-
\frac{\overline{v'\theta'}}
|
1370
|
-
{\overline{\DP{\theta}{z^*}}}
|
1371
|
-
\DP{}{\phi}
|
1372
|
-
\left(
|
1373
|
-
\DP{\overline{u}}{z^*}
|
1374
|
-
\right)
|
1375
|
-
+ \cos \phi \DP{}{\phi} \left( \rho_0 a \cos \phi \right)
|
1376
|
-
\frac{\overline{v'\theta'}}
|
1377
|
-
{\overline{\DP{\theta}{z^*}}}
|
1378
|
-
\DP{\overline{u}}{z^*}
|
1379
|
-
\right] \nonumber \\
|
1380
|
-
& \qquad
|
1381
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1382
|
-
\DP{}{z^*}
|
1383
|
-
\left[
|
1384
|
-
f \rho_0 a \cos \phi
|
1385
|
-
\frac{\overline{v'\theta'}}
|
1386
|
-
{\overline{\DP{\theta}{z^*}}}
|
1387
|
-
- \rho_0 a \cos \phi \overline{w'u'}
|
1388
|
-
\right] \nonumber \\
|
1389
|
-
& \qquad
|
1390
|
-
+ \Dinv{\rho_0 a \cos \phi}
|
1391
|
-
\DP{}{z^*}
|
1392
|
-
\left[
|
1393
|
-
- \rho_0 \cos \phi
|
1394
|
-
\frac{\overline{v'\theta'}}
|
1395
|
-
{\overline{\DP{\theta}{z^*}}}
|
1396
|
-
\DP{\overline{u}}{\phi}
|
1397
|
-
+ \sin \phi \overline{u} \rho_0
|
1398
|
-
\frac{\overline{v'\theta'}}
|
1399
|
-
{\overline{\DP{\theta}{z^*}}}
|
1400
|
-
\right]
|
1401
|
-
\Deqlab{tem-u-uhen}
|
1402
|
-
\end{align}
|
1403
|
-
\Deqref{tem-u-uhen} ���������������������
|
1404
|
-
\begin{align*}
|
1405
|
-
%
|
1406
|
-
& \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1407
|
-
\left[
|
1408
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1409
|
-
+ \rho_0 a \cos \phi
|
1410
|
-
\DP{\overline{u}}{z^*}
|
1411
|
-
\DP{}{\phi}
|
1412
|
-
\left( \cos \phi
|
1413
|
-
\frac{\overline{v'\theta'}}
|
1414
|
-
{\overline{\DP{\theta}{z^*}}}
|
1415
|
-
\right)
|
1416
|
-
\right]
|
1417
|
-
\\
|
1418
|
-
& \qquad
|
1419
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1420
|
-
\left[
|
1421
|
-
\rho_0 a \cos^2 \phi
|
1422
|
-
\frac{\overline{v'\theta'}}
|
1423
|
-
{\overline{\DP{\theta}{z^*}}}
|
1424
|
-
\DP{}{\phi}
|
1425
|
-
\left(
|
1426
|
-
\DP{\overline{u}}{z^*}
|
1427
|
-
\right)
|
1428
|
-
+ \cos \phi \DP{}{\phi} \left( \rho_0 a \cos \phi \right)
|
1429
|
-
\frac{\overline{v'\theta'}}
|
1430
|
-
{\overline{\DP{\theta}{z^*}}}
|
1431
|
-
\DP{\overline{u}}{z^*}
|
1432
|
-
\right]
|
1433
|
-
\\
|
1434
|
-
%
|
1435
|
-
& =
|
1436
|
-
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1437
|
-
\left[
|
1438
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1439
|
-
\right]
|
1440
|
-
\\
|
1441
|
-
& \qquad
|
1442
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1443
|
-
\left[
|
1444
|
-
\rho_0 a \cos^2 \phi
|
1445
|
-
\frac{\overline{v'\theta'}}
|
1446
|
-
{\overline{\DP{\theta}{z^*}}}
|
1447
|
-
\DP{}{\phi}
|
1448
|
-
\left(
|
1449
|
-
\DP{\overline{u}}{z^*}
|
1450
|
-
\right)
|
1451
|
-
+ \DP{\overline{u}}{z^*}
|
1452
|
-
\DP{}{\phi}
|
1453
|
-
\left(\rho_0 a \cos^2 \phi
|
1454
|
-
\frac{\overline{v'\theta'}}
|
1455
|
-
{\overline{\DP{\theta}{z^*}}}
|
1456
|
-
\right)
|
1457
|
-
\right]
|
1458
|
-
\\
|
1459
|
-
%
|
1460
|
-
& =
|
1461
|
-
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1462
|
-
\left[
|
1463
|
-
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1464
|
-
\right]
|
1465
|
-
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1466
|
-
\left[
|
1467
|
-
\DP{}{\phi}
|
1468
|
-
\left(\rho_0 a \cos^2 \phi
|
1469
|
-
\frac{\overline{v'\theta'}}
|
1470
|
-
{\overline{\DP{\theta}{z^*}}}
|
1471
|
-
\DP{\overline{u}}{z^*}
|
1472
|
-
\right)
|
1473
|
-
\right]
|
1474
|
-
\\
|
1475
|
-
%
|
1476
|
-
& = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1477
|
-
\DP{}{\phi}
|
1478
|
-
\left[
|
1479
|
-
- \rho_0 a \overline{v'u'} \cos^2 \phi
|
1480
|
-
+ \rho_0 a \cos^2 \phi
|
1481
|
-
\frac{\overline{v'\theta'}}
|
1482
|
-
{\overline{\DP{\theta}{z^*}}}
|
1483
|
-
\DP{\overline{u}}{z^*}
|
1484
|
-
\right]
|
1485
|
-
\\
|
1486
|
-
%
|
1487
|
-
& = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1488
|
-
\DP{}{\phi}
|
1489
|
-
\left[
|
1490
|
-
\rho_0 a \cos^2 \phi
|
1491
|
-
\left\{
|
1492
|
-
\DP{\overline{u}}{z^*}
|
1493
|
-
\frac{\overline{v'\theta'}}
|
1494
|
-
{\overline{\DP{\theta}{z^*}}}
|
1495
|
-
- \overline{v'u'}
|
1496
|
-
\right\}
|
1497
|
-
\right]
|
1498
|
-
\\
|
1499
|
-
%
|
1500
|
-
& = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1501
|
-
\DP{}{\phi}
|
1502
|
-
\left(
|
1503
|
-
\cos \phi F^{*}_{\phi}
|
1504
|
-
\right)
|
1505
|
-
\end{align*}
|
1506
|
-
\Deqref{tem-u-uhen} ���軰������������Ф���
|
1507
|
-
\begin{align*}
|
1508
|
-
&
|
1509
|
-
\frac{1}{\rho_0 a \cos \phi}
|
1510
|
-
\DP{}{z^*}
|
1511
|
-
\left[
|
1512
|
-
f \rho_0 a \cos \phi
|
1513
|
-
\frac{\overline{v'\theta'}}
|
1514
|
-
{\overline{\DP{\theta}{z^*}}}
|
1515
|
-
- \rho_0 a \cos \phi \overline{w'u'}
|
1516
|
-
\right]
|
1517
|
-
% \\
|
1518
|
-
% & \qquad
|
1519
|
-
+ \Dinv{\rho_0 a \cos \phi}
|
1520
|
-
\DP{}{z^*}
|
1521
|
-
\left[
|
1522
|
-
- \rho_0 \cos \phi
|
1523
|
-
\frac{\overline{v'\theta'}}
|
1524
|
-
{\overline{\DP{\theta}{z^*}}}
|
1525
|
-
\DP{\overline{u}}{\phi}
|
1526
|
-
+ \sin \phi \overline{u} \rho_0
|
1527
|
-
\frac{\overline{v'\theta'}}
|
1528
|
-
{\overline{\DP{\theta}{z^*}}}
|
1529
|
-
\right]
|
1530
|
-
\\
|
1531
|
-
& =
|
1532
|
-
\frac{1}{\rho_0 a \cos \phi}
|
1533
|
-
\DP{}{z^*}
|
1534
|
-
\left[
|
1535
|
-
\rho_0 a \cos \phi
|
1536
|
-
\left\{
|
1537
|
-
f \frac{\overline{v'\theta'}}
|
1538
|
-
{\overline{\DP{\theta}{z^*}}}
|
1539
|
-
- \overline{w'u'}
|
1540
|
-
- \frac{\overline{v'\theta'}}
|
1541
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1542
|
-
\DP{\overline{u}}{\phi}
|
1543
|
-
+ \sin \phi \overline{u}
|
1544
|
-
\frac{\overline{v'\theta'}}
|
1545
|
-
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
1546
|
-
\right\}
|
1547
|
-
\right]
|
1548
|
-
\\
|
1549
|
-
& =
|
1550
|
-
\frac{1}{\rho_0 a \cos \phi}
|
1551
|
-
\DP{}{z^*}
|
1552
|
-
\left[
|
1553
|
-
\rho_0 a \cos \phi
|
1554
|
-
\left\{
|
1555
|
-
f \frac{\overline{v'\theta'}}
|
1556
|
-
{\overline{\DP{\theta}{z^*}}}
|
1557
|
-
- \left(
|
1558
|
-
\cos \phi
|
1559
|
-
\DP{\overline{u}}{\phi}
|
1560
|
-
- \sin \phi \overline{u}
|
1561
|
-
\right)
|
1562
|
-
\frac{\overline{v'\theta'}}
|
1563
|
-
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
1564
|
-
- \overline{w'u'}
|
1565
|
-
\right\}
|
1566
|
-
\right]
|
1567
|
-
\\
|
1568
|
-
& =
|
1569
|
-
\frac{1}{\rho_0 a \cos \phi}
|
1570
|
-
\DP{}{z^*}
|
1571
|
-
\left[
|
1572
|
-
\rho_0 a \cos \phi
|
1573
|
-
\left\{
|
1574
|
-
f \frac{\overline{v'\theta'}}
|
1575
|
-
{\overline{\DP{\theta}{z^*}}}
|
1576
|
-
- \DP{(\overline{u} \cos \phi)}{\phi}
|
1577
|
-
\frac{\overline{v'\theta'}}
|
1578
|
-
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
1579
|
-
- \overline{w'u'}
|
1580
|
-
\right\}
|
1581
|
-
\right]
|
1582
|
-
\\
|
1583
|
-
& =
|
1584
|
-
\frac{1}{\rho_0 a \cos \phi}
|
1585
|
-
\DP{}{z^*}
|
1586
|
-
\left[
|
1587
|
-
\rho_0 a \cos \phi
|
1588
|
-
\left\{
|
1589
|
-
\left( f
|
1590
|
-
- \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
|
1591
|
-
{a \cos \phi}
|
1592
|
-
\right)
|
1593
|
-
\frac{\overline{v'\theta'}}
|
1594
|
-
{\overline{\DP{\theta}{z^*}}}
|
1595
|
-
- \overline{w'u'}
|
1596
|
-
\right\}
|
1597
|
-
\right]
|
1598
|
-
\\
|
1599
|
-
& = \frac{1}{\rho_0 a \cos \phi}
|
1600
|
-
\DP{F^{*}_{z}}{z^*}
|
1601
|
-
\end{align*}
|
1602
|
-
�ʾ���, \Deqref{tem-u-tochuu} �ϼ��Τ褦�ˤʤ�.
|
1603
|
-
\begin{align*}
|
1604
|
-
& \DP{\overline{u}}{t}
|
1605
|
-
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
1606
|
-
\left( \overline{u} \cos \phi \right)
|
1607
|
-
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1608
|
-
- f \overline{v}^*
|
1609
|
-
- \overline{X}
|
1610
|
-
= \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1611
|
-
\DP{}{\phi}
|
1612
|
-
\left(
|
1613
|
-
\cos \phi F^{*}_{\phi}
|
1614
|
-
\right)
|
1615
|
-
+ \frac{1}{\rho_0 a \cos \phi}
|
1616
|
-
\DP{F^{*}_{z}}{z^*},
|
1617
|
-
\nonumber \\
|
1618
|
-
%
|
1619
|
-
& \DP{\overline{u}}{t}
|
1620
|
-
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
1621
|
-
\left( \overline{u} \cos \phi \right)
|
1622
|
-
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1623
|
-
- f \overline{v}^*
|
1624
|
-
- \overline{X}
|
1625
|
-
= \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.
|
1626
|
-
\end{align*}
|
1627
|
-
������, �Ҹ������ȯ����ʲ��Τ褦��ɽ����.
|
1628
|
-
\begin{align}
|
1629
|
-
\Ddiv{\Dvect{F}}
|
1630
|
-
= \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}
|
1631
|
-
\end{align}
|
1632
|
-
|
1633
|
-
\vspace{5mm}
|
1634
|
-
|
1635
|
-
����Ǯ�ϳؤμ��������.
|
1636
|
-
\Deqref{new_euler_mean_pe_thermal} ��
|
1637
|
-
\Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
|
1638
|
-
\begin{align*}
|
1639
|
-
& \DP{\overline{\theta}}{t}
|
1640
|
-
+ \frac{1}{a}
|
1641
|
-
\left[
|
1642
|
-
\overline{v}^*
|
1643
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1644
|
-
\left( \rho_0
|
1645
|
-
\frac{\overline{v'\theta'}}
|
1646
|
-
{\overline{\DP{\theta}{z^*}}}
|
1647
|
-
\right)
|
1648
|
-
\right]
|
1649
|
-
\DP{\overline{\theta}}{\phi}
|
1650
|
-
+ \left[
|
1651
|
-
\overline{w}^*
|
1652
|
-
- \Dinv{a \cos\phi}
|
1653
|
-
\DP{}{\phi}
|
1654
|
-
\left( \cos \phi
|
1655
|
-
\frac{\overline{v'\theta'}}
|
1656
|
-
{\overline{\DP{\theta}{z^*}}}
|
1657
|
-
\right)
|
1658
|
-
\right]
|
1659
|
-
\DP{\overline{\theta}}{z^*}
|
1660
|
-
- \overline{Q} \\
|
1661
|
-
& \qquad
|
1662
|
-
=
|
1663
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1664
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}), \\
|
1665
|
-
%
|
1666
|
-
& \DP{\overline{\theta}}{t}
|
1667
|
-
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
1668
|
-
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
1669
|
-
- \overline{Q} \\
|
1670
|
-
& \qquad
|
1671
|
-
= - \Dinv{\rho_0 a} \DP{}{z^*}
|
1672
|
-
\left( \rho_0
|
1673
|
-
\frac{\overline{v'\theta'}}
|
1674
|
-
{\overline{\DP{\theta}{z^*}}}
|
1675
|
-
\right) \DP{\overline{\theta}}{\phi}
|
1676
|
-
+ \Dinv{a \cos\phi}
|
1677
|
-
\DP{}{\phi}
|
1678
|
-
\left( \cos \phi
|
1679
|
-
\frac{\overline{v'\theta'}}
|
1680
|
-
{\overline{\DP{\theta}{z^*}}}
|
1681
|
-
\right) \DP{\overline{\theta}}{z^*} \\
|
1682
|
-
& \qquad \qquad
|
1683
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1684
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
|
1685
|
-
\end{align*}
|
1686
|
-
�Ȥʤ�.
|
1687
|
-
���α��դ��ѷ������
|
1688
|
-
\begin{align*}
|
1689
|
-
& - \Dinv{\rho_0} \DP{}{z^*}
|
1690
|
-
\left( \rho_0
|
1691
|
-
\frac{\overline{v'\theta'}}
|
1692
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1693
|
-
\right) \DP{\overline{\theta}}{\phi}
|
1694
|
-
+ \Dinv{a \cos\phi}
|
1695
|
-
\DP{}{\phi}
|
1696
|
-
\left( \cos \phi
|
1697
|
-
\frac{\overline{v'\theta'}}
|
1698
|
-
{\overline{\DP{\theta}{z^*}}}
|
1699
|
-
\right) \DP{\overline{\theta}}{z^*} \\
|
1700
|
-
& \qquad
|
1701
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1702
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
|
1703
|
-
%
|
1704
|
-
= &
|
1705
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1706
|
-
\left( \rho_0
|
1707
|
-
\frac{\overline{v'\theta'}}
|
1708
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1709
|
-
\DP{\overline{\theta}}{\phi}
|
1710
|
-
\right)
|
1711
|
-
+ \frac{\overline{v'\theta'}}
|
1712
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1713
|
-
\DP{}{z^*}\DP{\overline{\theta}}{\phi} \\
|
1714
|
-
& \qquad
|
1715
|
-
+ \Dinv{a \cos\phi}
|
1716
|
-
\left[
|
1717
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
|
1718
|
-
\frac{1}{\overline{\DP{\theta}{z^*}}}
|
1719
|
-
+ \cos \phi \overline{v'\theta'}
|
1720
|
-
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
1721
|
-
\right] \DP{\overline{\theta}}{z^*} \\
|
1722
|
-
& \qquad
|
1723
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1724
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
|
1725
|
-
%
|
1726
|
-
= &
|
1727
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1728
|
-
\left( \rho_0
|
1729
|
-
\frac{\overline{v'\theta'}}
|
1730
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1731
|
-
\DP{\overline{\theta}}{\phi}
|
1732
|
-
\right)
|
1733
|
-
+ \frac{\overline{v'\theta'}}
|
1734
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1735
|
-
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
1736
|
-
+ \Dinv{a}
|
1737
|
-
\overline{v'\theta'}
|
1738
|
-
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
1739
|
-
\DP{\overline{\theta}}{z^*}
|
1740
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
|
1741
|
-
%
|
1742
|
-
= &
|
1743
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1744
|
-
\left[ \rho_0
|
1745
|
-
\frac{\overline{v'\theta'}}
|
1746
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1747
|
-
\DP{\overline{\theta}}{\phi}
|
1748
|
-
+ \rho_0\overline{w'\theta'}
|
1749
|
-
\right]
|
1750
|
-
+ \frac{\overline{v'\theta'}}{a}
|
1751
|
-
\left[
|
1752
|
-
\frac{1}
|
1753
|
-
{\overline{\DP{\theta}{z^*}}}
|
1754
|
-
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
1755
|
-
+ \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
1756
|
-
\DP{\overline{\theta}}{z^*}
|
1757
|
-
\right] \\
|
1758
|
-
%
|
1759
|
-
= &
|
1760
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1761
|
-
\left[ \rho_0
|
1762
|
-
\left(
|
1763
|
-
\frac{\overline{v'\theta'}}
|
1764
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1765
|
-
\DP{\overline{\theta}}{\phi}
|
1766
|
-
+ \overline{w'\theta'}
|
1767
|
-
\right)
|
1768
|
-
\right]
|
1769
|
-
+ \frac{\overline{v'\theta'}}{a}
|
1770
|
-
\DP{}{\phi}
|
1771
|
-
\left(
|
1772
|
-
\frac{ \DP{\overline{\theta}}{z^*} }
|
1773
|
-
{ \overline{\DP{\theta}{z^*}} }
|
1774
|
-
\right) \\
|
1775
|
-
%
|
1776
|
-
= &
|
1777
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1778
|
-
\left[ \rho_0
|
1779
|
-
\left(
|
1780
|
-
\frac{\overline{v'\theta'}}
|
1781
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1782
|
-
\DP{\overline{\theta}}{\phi}
|
1783
|
-
+ \overline{w'\theta'}
|
1784
|
-
\right)
|
1785
|
-
\right].
|
1786
|
-
\end{align*}
|
1787
|
-
������, Ǯ�ϳؤμ��ϰʲ��Τ褦�ˤʤ�.
|
1788
|
-
\begin{align*}
|
1789
|
-
\DP{\overline{\theta}}{t}
|
1790
|
-
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
1791
|
-
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
1792
|
-
- \overline{Q}
|
1793
|
-
=
|
1794
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
1795
|
-
\left[ \rho_0
|
1796
|
-
\left(
|
1797
|
-
\frac{\overline{v'\theta'}}
|
1798
|
-
{a \overline{\DP{\theta}{z^*}}}
|
1799
|
-
\DP{\overline{\theta}}{\phi}
|
1800
|
-
+ \overline{w'\theta'}
|
1801
|
-
\right)
|
1802
|
-
\right].
|
1803
|
-
\end{align*}
|
1804
|
-
|
1805
|
-
\vspace{5mm}
|
1806
|
-
|
1807
|
-
�Ǹ�� $v$ �μ��ˤĤ��ƹͤ���.
|
1808
|
-
\Deqref{new_euler_mean_pe_momentum_y} ��
|
1809
|
-
\Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
|
1810
|
-
\begin{align*}
|
1811
|
-
& \DP{}{t}
|
1812
|
-
\left[
|
1813
|
-
\overline{v}^*
|
1814
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1815
|
-
\left( \rho_0
|
1816
|
-
\frac{\overline{v'\theta'}}
|
1817
|
-
{\overline{\DP{\theta}{z^*}}}
|
1818
|
-
\right)
|
1819
|
-
\right]
|
1820
|
-
+ \frac{1}{a}
|
1821
|
-
\left[
|
1822
|
-
\overline{v}^*
|
1823
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1824
|
-
\left( \rho_0
|
1825
|
-
\frac{\overline{v'\theta'}}
|
1826
|
-
{\overline{\DP{\theta}{z^*}}}
|
1827
|
-
\right)
|
1828
|
-
\right]
|
1829
|
-
\DP{}{\phi}
|
1830
|
-
\left[
|
1831
|
-
\overline{v}^*
|
1832
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1833
|
-
\left( \rho_0
|
1834
|
-
\frac{\overline{v'\theta'}}
|
1835
|
-
{\overline{\DP{\theta}{z^*}}}
|
1836
|
-
\right)
|
1837
|
-
\right]
|
1838
|
-
\\
|
1839
|
-
& \qquad \qquad
|
1840
|
-
+ \left[
|
1841
|
-
\overline{w}^*
|
1842
|
-
- \Dinv{a \cos\phi}
|
1843
|
-
\DP{}{\phi}
|
1844
|
-
\left( \cos \phi
|
1845
|
-
\frac{\overline{v'\theta'}}
|
1846
|
-
{\overline{\DP{\theta}{z^*}}}
|
1847
|
-
\right)
|
1848
|
-
\right]
|
1849
|
-
\DP{}{z^*}
|
1850
|
-
\left[
|
1851
|
-
\overline{v}^*
|
1852
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1853
|
-
\left( \rho_0
|
1854
|
-
\frac{\overline{v'\theta'}}
|
1855
|
-
{\overline{\DP{\theta}{z^*}}}
|
1856
|
-
\right)
|
1857
|
-
\right]
|
1858
|
-
\\
|
1859
|
-
& \qquad \qquad
|
1860
|
-
+ f \overline{u}
|
1861
|
-
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1862
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1863
|
-
- \overline{Y} \\
|
1864
|
-
& \qquad
|
1865
|
-
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
1866
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
1867
|
-
- \overline{u'^2}\frac{\tan\phi}{a}, \\
|
1868
|
-
%
|
1869
|
-
& f \overline{u}
|
1870
|
-
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1871
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1872
|
-
\\
|
1873
|
-
& \qquad
|
1874
|
-
= - \DP{}{t}
|
1875
|
-
\left[
|
1876
|
-
\overline{v}^*
|
1877
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1878
|
-
\left( \rho_0
|
1879
|
-
\frac{\overline{v'\theta'}}
|
1880
|
-
{\overline{\DP{\theta}{z^*}}}
|
1881
|
-
\right)
|
1882
|
-
\right]
|
1883
|
-
- \frac{1}{a}
|
1884
|
-
\left[
|
1885
|
-
\overline{v}^*
|
1886
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1887
|
-
\left( \rho_0
|
1888
|
-
\frac{\overline{v'\theta'}}
|
1889
|
-
{\overline{\DP{\theta}{z^*}}}
|
1890
|
-
\right)
|
1891
|
-
\right]
|
1892
|
-
\DP{}{\phi}
|
1893
|
-
\left[
|
1894
|
-
\overline{v}^*
|
1895
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1896
|
-
\left( \rho_0
|
1897
|
-
\frac{\overline{v'\theta'}}
|
1898
|
-
{\overline{\DP{\theta}{z^*}}}
|
1899
|
-
\right)
|
1900
|
-
\right]
|
1901
|
-
\\
|
1902
|
-
& \qquad \qquad
|
1903
|
-
- \left[
|
1904
|
-
\overline{w}^*
|
1905
|
-
- \Dinv{a \cos\phi}
|
1906
|
-
\DP{}{\phi}
|
1907
|
-
\left( \cos \phi
|
1908
|
-
\frac{\overline{v'\theta'}}
|
1909
|
-
{\overline{\DP{\theta}{z^*}}}
|
1910
|
-
\right)
|
1911
|
-
\right]
|
1912
|
-
\DP{}{z^*}
|
1913
|
-
\left[
|
1914
|
-
\overline{v}^*
|
1915
|
-
+ \Dinv{\rho_0} \DP{}{z^*}
|
1916
|
-
\left( \rho_0
|
1917
|
-
\frac{\overline{v'\theta'}}
|
1918
|
-
{\overline{\DP{\theta}{z^*}}}
|
1919
|
-
\right)
|
1920
|
-
\right]
|
1921
|
-
\\
|
1922
|
-
& \qquad \qquad
|
1923
|
-
- \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
|
1924
|
-
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
|
1925
|
-
- \overline{u'^2} \frac{\tan\phi}{a}
|
1926
|
-
+ \overline{Y}
|
1927
|
-
\end{align*}
|
1928
|
-
Andrews {\it et al.} (1987) �ˤ���, ���μ��α��դ��̤�
|
1929
|
-
���դ���٤�о�����. ���դι�����ƤޤȤ�� $G$ �Ƚ�
|
1930
|
-
$v$ �μ��ϼ��Τ褦�ˤʤ�.
|
1931
|
-
\begin{align*}
|
1932
|
-
\overline{u}
|
1933
|
-
\left( f + \frac{\tan\phi}{a} \overline{u} \right)
|
1934
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1935
|
-
= G.
|
1936
|
-
\end{align*}
|
1937
|
-
|
1938
|
-
\vspace{5mm}
|
1939
|
-
|
1940
|
-
�ʾ��ޤȤ���, �ʲ���{\bfseries �ѷ������顼ʿ��������}��������.
|
1941
|
-
\begin{screen}
|
1942
|
-
\begin{subequations}\Deqlab{transformed_euler_mean_pe}
|
1943
|
-
%\def\theequation{\arabic{section}.\arabic{parentequation}\alph{equation}}
|
1944
|
-
%\begin{itemize}
|
1945
|
-
%%%%%%%%%%%%%%%%
|
1946
|
-
%\item ��ư������
|
1947
|
-
%%%%%%%%%%%%%%%%
|
1948
|
-
\begin{align}
|
1949
|
-
\Deqlab{transformed_euler_mean_pe_momentum_x}&
|
1950
|
-
\DP{\overline{u}}{t}
|
1951
|
-
+ \overline{v}^*
|
1952
|
-
\left[
|
1953
|
-
\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
|
1954
|
-
\right]
|
1955
|
-
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
1956
|
-
- \overline{X}
|
1957
|
-
= \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\
|
1958
|
-
\Deqlab{transformed_euler_mean_pe_momentum_y}&
|
1959
|
-
\overline{u}
|
1960
|
-
\left( f + \overline{u}\frac{\tan\phi}{a} \right)
|
1961
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
1962
|
-
= G.
|
1963
|
-
\end{align}
|
1964
|
-
%%%%%%%%%%%%%%%%
|
1965
|
-
%\item �ſ尵ʿ�դμ�
|
1966
|
-
%%%%%%%%%%%%%%%%
|
1967
|
-
\begin{align}
|
1968
|
-
\Deqlab{transformed_euler_mean_pe_momentum_z^*}
|
1969
|
-
\DP{\overline{\Phi}}{z^*}
|
1970
|
-
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
1971
|
-
= 0.
|
1972
|
-
\end{align}
|
1973
|
-
%%%%%%%%%%%%%%%%
|
1974
|
-
%\item Ϣ³�μ�
|
1975
|
-
%%%%%%%%%%%%%%%%
|
1976
|
-
\begin{align}
|
1977
|
-
\Deqlab{transformed_euler_mean_pe_continuity}
|
1978
|
-
\Dinv{a\cos\phi}&\left[
|
1979
|
-
\DP{}{\phi}(\overline{v}^*\cos\phi)\right]
|
1980
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
|
1981
|
-
= 0.
|
1982
|
-
\end{align}
|
1983
|
-
%%%%%%%%%%%%%%%%
|
1984
|
-
%\item Ǯ�ϳؤμ�
|
1985
|
-
%%%%%%%%%%%%%%%%
|
1986
|
-
\begin{align}
|
1987
|
-
\Deqlab{transformed_euler_mean_pe_thermal}
|
1988
|
-
\DP{\overline{\theta}}{t}
|
1989
|
-
+ \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
|
1990
|
-
+ \overline{w}^*\DP{\overline{\theta}}{z^*}
|
1991
|
-
- \overline{Q} =
|
1992
|
-
- \Dinv{\rho_0}\DP{}{z^*}
|
1993
|
-
\left[\rho_0
|
1994
|
-
\left(
|
1995
|
-
\overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
|
1996
|
-
{a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
|
1997
|
-
\right)
|
1998
|
-
\right].
|
1999
|
-
\end{align}
|
2000
|
-
%\end{itemize}
|
2001
|
-
\end{subequations}
|
2002
|
-
\end{screen}
|
2003
|
-
|
2004
|
-
|
2005
|
-
|
2006
|
-
\clearpage
|
2007
|
-
|
2008
|
-
\begin{thebibliography}{1}
|
2009
|
-
\bibitem{AHL1987} D.G. Andrews, J.R. Holton, and C.B. Leovy.
|
2010
|
-
Middle atmosphere dynamics, International Geophysics Series.
|
2011
|
-
Academic Press, 1987
|
2012
|
-
\bibitem{H1975} J.R. Holton.
|
2013
|
-
The Dynamic Meteorology of the Stratosphere and Mesosphere,
|
2014
|
-
American Meteorological Society, 1975
|
2015
|
-
\end{thebibliography}
|
2016
|
-
|
2017
|
-
|
2018
|
-
\end{document}
|