gphys 1.1.1 → 1.2.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,2018 +0,0 @@
1
- % TITLE NumRu::GPhys::EP_Flux
2
- %
3
- % HISTORY 2004/08/09 �͸�����
4
- % 2004/11/12 �͸����� ( �ǿ����� )
5
- % 2005/02/13 ��������
6
- %
7
-
8
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9
- %%%%%%%% Style Setting %%%%%%%%
10
- \documentclass[a4j,12pt,openbib]{jreport}
11
-
12
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13
- %%%%%%%% Package Include %%%%%%%%
14
- \usepackage{ascmac}
15
- \usepackage{tabularx}
16
- \usepackage{graphicx}
17
- \usepackage{amssymb}
18
- \usepackage{amsmath}
19
- \usepackage{Dennou6}
20
- %%%%%%%% PageStyle Setting %%%%%%%%
21
- \pagestyle{Dmyheadings}
22
-
23
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24
- %%%%%%%% Title Setting %%%%%%%%
25
- \Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
26
- \Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
27
- \Dfile{}
28
-
29
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30
- %%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
31
- %\setcounter{chapter}{1}
32
- \setcounter{section}{0}
33
- \setcounter{equation}{0}
34
- \setcounter{page}{1}
35
- \setcounter{figure}{0}
36
- \setcounter{footnote}{0}
37
-
38
-
39
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40
- %%%%%%%% Counter Output Format %%%%%%%%
41
-
42
- \def\thesection{\arabic{chapter}.\arabic{section}}
43
- %\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
44
- %\def\thepage{\arabic{page}}
45
- %\def\thefigure{\arabic{section}.\arabic{figure}}
46
- %\def\thetable{\arabic{section}.\arabic{table}}
47
- %\def\thefootnote{\arabic{footnote}}
48
- %\def\thesection{\arabic{section}}
49
- %\def\theequation{\arabic{section}.\arabic{equation}}
50
- \def\thepage{\arabic{page}}
51
- \def\thefigure{\arabic{section}.\arabic{figure}}
52
- \def\thetable{\arabic{section}.\arabic{table}}
53
- \def\thefootnote{\arabic{footnote}}
54
-
55
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56
- %%%%%%%% Dennou-Style Definition %%%%%%%%
57
- \Dparskip
58
- %\Dnoparskip
59
- %\Dparindent
60
- \Dnoparindent
61
-
62
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63
- %%%%%%%% Local Definition %%%%%%%%
64
- \def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
65
- \def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
66
-
67
-
68
-
69
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70
- %%%%%%%% Text Start %%%%%%%%
71
- \begin{document}
72
-
73
- %%% �����ȥ�ڡ�������
74
- \maketitle
75
-
76
- %%% �ܼ��ڡ�������
77
- \tableofcontents
78
-
79
- \chapter{�Ϥ����}
80
-
81
- NumRu::GPhys::EP\_Flux �� Eliassen-Palm �ե�å���(EP �ե�å���)
82
- ����ӻĺ��۴Ĥ�׻�����᥽�åɤ򽸤᤿�⥸�塼��Ǥ���.
83
- �����Ǥ�, ��ľ��ɸ�Ȥ����п����Ϻ�ɸ���Ѥ���
84
- ���ɸ�Ϥˤ�����ץ�ߥƥ���������(���Ϲ�������򤷤ʤ�)
85
- EP �ե�å����Τ���Υ᥽�åɤ������Ѱդ���Ƥ���.
86
- ����Ū�ˤ� Plumb �ե�å����� Takaya-Nakamura �ե�å�����׻�����
87
- �᥽�åɤ⥵�ݡ��Ȥ���ͽ��Ǥ���.
88
- �ܥɥ�����ȤǤ� NumRu::GPhys::EP\_Flux �ǻ��Ѥ����
89
- �����β���ȳƥ᥽�åɤγ����Ԥ�.
90
- �ʤ�, NumRu::GPhys::EP\_Flux �Ǥ�, ��ʬ�黻�Τ����,
91
- �̥⥸�塼�� NumRu::Derivative ����� NumRu::GPhys::Derivative ��
92
- ��������᥽�åɤ���Ѥ��Ƥ���.
93
- ��ʬ�黻�᥽�åɤ˴ؤ���ܺ٤Ϥ��줾��Υ⥸�塼��Υɥ�����Ȥ�
94
- ���Ȥ��줿��.
95
-
96
-
97
- \chapter{NumRu::GPhys::EP\_Flux �Ƿ׻���������}
98
-
99
- �ܾϤǤ� NumRu::GPhys::EP\_Flux ������������̤β����Ԥ�.
100
- ������ǥ�� Andrews {\it et al}.(1987) ���� 3 �Ϥ˴�Ť�.
101
-
102
- \section{�Ϥ�����}
103
- \Dseclab{����}
104
-
105
- ���̾���絤��ͤ���.
106
- �絤�θ����Ͽ�ʿ�����ι�������������,
107
- ��ľ�������ſ尵ʿ�դ�����Ω�Ĥ�ΤȤ���.
108
- ���ٷ��ٺ�ɸ�Ϥ��Ѥ�, ���� $\lambda$ ���������,
109
- ���� $\phi$ �����̸���������Ȥ�.
110
- ��ľ��ɸ�ˤ��п����Ϻ�ɸ$z^*$
111
- \begin{eqnarray}\Deqlab{logp}
112
- z^* &=& -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}
113
- \end{eqnarray}
114
- ���Ѥ���.
115
- ������ $H$ �ϥ�������ϥ���,
116
- $R_{d}$ �ϴ�������ε������
117
- (���׵�������� $R$, ���������ʬ���̤� $w$ �Ȥ����
118
- $R_{d} = R/w$),
119
- $T_s$ ��ɸ�໲�Ȳ���(���),
120
- $g_0$����ɽ�̤ˤ�������ϲ�®��(���),
121
- $p$�ϰ���, $p_s$ �ϻ��Ȱ��ϤǤ���.
122
- $p_s$ �Ȥ�����ɽ�̰��Ϥ���ɽ��(���)���Ѥ���.
123
-
124
- \section{EP �ե�å���}
125
- \Dseclab{EP �ե�å���}
126
-
127
- �ܥ⥸�塼��Ǥ�����Ⱦ�¤ȸ�Ҥ� $\rho_s$ �ǵ��ʲ����� EP �ե�å���
128
- (�ʹ�, ���ʲ����� EP �ե�å���)��׻�, ���Ϥ���.
129
- ���ʲ����� EP �ե�å�����
130
- \begin{subequations}\Deqlab{normalized_F}
131
- \begin{align}
132
- \Deqlab{normalized_epflx_phi}
133
- \hat{F}_\phi &\equiv \sigma
134
- \cos \phi \left(
135
- \DP{\overline{u}}{z^*}
136
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
137
- \right), \\
138
- \Deqlab{normalized_epflx_z^*}
139
- \hat{F}_{z^*} &\equiv \sigma
140
- \cos \phi \left(
141
- \left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
142
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
143
- \right)
144
- \end{align}
145
- \end{subequations}
146
- ����������.
147
- ������$\hat{F}_\phi$, $\hat{F}_{z^*}$ �Ϥ��줾��
148
- ���ʲ����줿 EP �ե�å����� $\phi$ ��ʬ, $z^*$ ��ʬ�Ǥ���.
149
- $\overline{\bullet}$ �����������顼ʿ����,
150
- $\bullet'$ �����������顼ʿ���̤���Τ����ɽ��.
151
- $u, v, w$ �Ϥ��줾��������®, ������®, �п�����®�٤�
152
- \begin{eqnarray*}
153
- (u, v, w) &\equiv& \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)
154
- \end{eqnarray*}
155
- ����������.
156
- $\theta$ �ϲ���, $a$ ������Ⱦ��(���)�Ǥ���.
157
- $\sigma$ ��
158
- \begin{align}
159
- \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),
160
- \end{align}
161
- �Ǥ���.
162
- ������, $\rho_0$ �ϴ��ܾ��̩�٤�
163
- \begin{eqnarray*} \Deqlab{basic_density}
164
- \rho_0(z^*) &\equiv& \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s
165
- \end{eqnarray*}
166
- �Ǥ���.
167
- $f$�ϥ��ꥪ��ѥ�᡼����
168
- \begin{eqnarray} \Deqlab{colioli}
169
- f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi
170
- \end{eqnarray}
171
- ����������.
172
- $\Omega$ �ϼ�ž��®��, $T_{rot}$�ϼ�ž�����Ǥ���.
173
- �ܥ⥸�塼��Ǥ�, ��ž��®�٤��ѹ����뤿��ˤ�
174
- $T_{rot}$ ���ͤ�Ϳ������ͤˤʤäƤ���.
175
-
176
-
177
- ����, Andrews {\it et al}. (1987) �Ǽ�����Ƥ���
178
- EP �ե�å����ϼ��Τ褦����������
179
- %%%%%%%%%%%%%%%%%%%%%%
180
- % \item EP �ե�å���
181
- %%%%%%%%%%%%%%%%%%%%%%
182
- \begin{subequations}
183
- \begin{align}
184
- \Deqlab{epflx_phi}
185
- {F_\phi} =& \rho_0 a
186
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
187
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
188
- \Deqlab{epflx_z^*}
189
- {F_z^*} =& \rho_0 a
190
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
191
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
192
- \end{align}
193
- \end{subequations}
194
- ������$F_\phi$, $F_{z^*}$�Ϥ��줾�� EP �ե�å�����$\phi$��ʬ, $z^*$��ʬ�Ǥ���.
195
- $F_y, F_z^*$ �� $\hat{F_y}, \hat{F_z^*}$ �ϰʲ��Τ褦�˴ط��դ�����.
196
- \begin{align}
197
- \Deqlab{relation_F_vs_F^}
198
- (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})
199
- \end{align}
200
-
201
- \section{�ĺ��۴�}
202
-
203
- �ĺ��۴�$(0, \overline{v}^*, \overline{w}^*)$�ϰʲ��η�����������.
204
- \begin{subequations}\Deqlab{residual}
205
- \begin{align}
206
- \Deqlab{residual_v}
207
- \overline{v}^* &\equiv \overline{v}
208
- - \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
209
- {\DP{\overline{\theta}}{z^*}}\right)\notag\\
210
- &= \overline{v}
211
- - \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
212
- {\DP{\overline{\theta}}{z^*}}\right)\\
213
- \Deqlab{residual_w}
214
- \overline{w}^* &\equiv \overline{w}
215
- + \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
216
- {\DP{\overline{\theta}}{z^*}}\right)
217
- \end{align}
218
- \end{subequations}
219
-
220
- \section{ʿ������ή�μ�}
221
-
222
- ���ʲ����� EP �ե�å������Ѥ����, TEM �Ϥˤ����� $u$ �μ���
223
- �ʲ��Τ褦�ˤʤ�.
224
- \begin{eqnarray}
225
- \Deqlab{transformed_euler_mean_pe_momentum_x_with_F^}& &
226
- \DP{\overline{u}}{t}
227
- + \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
228
- + \overline{w}^*\DP{\overline{u}}{z^*}
229
- - \overline{X} =
230
- \Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.
231
- \end{eqnarray}
232
-
233
-
234
- \section{�Ҹ��̾��ȯ���黻��}
235
-
236
- �Ҹ��̤ˤ�����ȯ���黻�Ҥ�, $\Dvect{F}$ ��Ǥ�դΥ٥��ȥ뤷������
237
- �ʲ��η�����������.
238
- \begin{align}
239
- \Deqlab{div}
240
- \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
241
- + \DP{F_{z^{*}}}{z^*}
242
- \end{align}
243
-
244
-
245
- \section{����ή���ؿ�}
246
-
247
- �ĺ��۴Ĥμ���ή���ؿ� $\Psi^*$ ��
248
- \begin{subequations}
249
- \begin{align}
250
- \sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
251
- \sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
252
- \end{align}
253
- \end{subequations}
254
- ���������.
255
- �弰����ʬ���� $\Psi^*$ ����뤿���,
256
- �ܥ⥸�塼��Ǥ� \Deqref{logp} ����Ѥ���
257
- �п����Ϻ�ɸ ($z^*$) �Ϥ��鰵�Ϻ�ɸ($p$)�Ϥ�
258
- \begin{align}
259
- \DP{}{z^*}\Psi^* &= -\frac{p}{H}\DP{}{p}\Psi^*
260
- \end{align}
261
- ���Ѵ���, �絤��ü($p=0$)�ˤ����� $\Psi^* = 0$ �Ȥ�����ʬ��
262
- \begin{align}
263
- \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p
264
- \end{align}
265
- �ȼ���ή���ؿ���Ƴ���Ƥ���.
266
- %\footnote{ (2005/1/27 ����) ���ɤ�����ä�?\\
267
- % (2005/1/27 �͸�) �ɤ���Ǥ�}
268
-
269
-
270
- \section{�ѿ��Ѵ�}
271
-
272
- EP\_Flux �⥸�塼��Ǥ�Ϳ����줿�ǡ����˱�����
273
- �ѿ��Ѵ���ܤ���礬����. �����Ѵ��ϰʲ��Τ褦�˹Ԥ�.
274
-
275
- \vspace{5mm}
276
-
277
- ���Ϥ����ǡ����α�ľ�����������Ǥ��ä����,
278
- �ʲ��δط������Ѥ��ƹ��ټ����Ѵ���, �׻���Ԥ�.
279
- \begin{subequations}
280
- \begin{align}
281
- z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
282
- p &= p_{00} \exp \left( -\frac{z^*}{H} \right) \Deqlab{p-henkan}
283
- \end{align}
284
- \end{subequations}
285
- ������$p$�ϰ���, $p_{00}$����ɽ�̻��͵���(���)�Ǥ���.
286
-
287
- \vspace{5mm}
288
-
289
- ���Ϥ�$\theta$��$w$ �Ǥʤ�, ����$T$, ���ϡ�®�١�$\omega \equiv Dp/Dt$
290
- �ξ��Ϥ��줾��򸵤�$w$, $\theta$�����ɬ�פ�����. �ܥ⥸�塼��Ǥϰʲ��μ�
291
- ���Ѥ���$w, \theta$�����.
292
- \begin{align}
293
- w &= -\omega H / p\\
294
- \theta &= T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p
295
- \end{align}
296
- ������$R$, $C_p$�Ϥ��줾�촥������ε������������갵��Ǯ�Ǥ���.
297
- %$\theta$ �� \Deqref{p-henkan} ���Ѥ����
298
- %\begin{align}
299
- % \theta = T\exp \left( \frac{\kappa z^*}{H} \right )
300
- %\end{align}
301
- %�Ƚ񤯤��Ȥ�Ǥ���
302
- %\footnotemark.
303
- %\footnotetext{ (2005/2/13 ����) ���μ���ɬ�פʤΤǤ��礦��?
304
- % (2005/2/17 ����) ���μ���ȤäƤ��Ǥ���. �����ư��
305
- %��
306
- %}
307
-
308
-
309
- %\chapter{�᥽�åɤΥ�ե���󥹥ޥ˥奢��}
310
- % ���: ����Ū�ˤϥ᥽�åɥ�ե����(���ܸ�)�������???
311
-
312
-
313
-
314
- \appendix
315
-
316
- \chapter{�ץ�ߥƥ����������Ϥ��ѷ������顼ʿ�Ѥ�����}
317
- \Dchaplab{Ƴ��}
318
-
319
- �ܾϤǤ��ѷ������顼ʿ���������Ϥ�EP �ե�å��� ����ӻĺ��۴Ĥδط����
320
- ǧ����. �ޤ��п����Ϻ�ɸ�Ϥ��Ѥ������̾�Σ������ץ�ߥƥ�������������
321
- ����. �����Ǥ��Υ����顼ʿ�Ѥ�����ѷ������顼ʿ���������Ϥ�Ƴ�Ф���. ��
322
- ����ѷ������顼ʿ���������˴�Ť� EP �ե�å�������ӻĺ��۴Ĥ��������.
323
-
324
-
325
- \section{���̾���п����Ϻ�ɸ�Ϥˤ�����ץ�ߥƥ���������}
326
-
327
- ���̾���п����Ϻ�ɸ�Ϥˤ�����ץ�ߥƥ����������ϰʲ����̤�Ǥ���.
328
- �����Ǥ� Andrews {\it et al.} (1987) �� (3.1.3) ���򻲹ͤˤ���.
329
- \begin{subequations}\Deqlab{pe}
330
- \begin{align}
331
- \Deqlab{pe_momentum_x}
332
- \DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
333
- + \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
334
- \Deqlab{pe_momentum_y}
335
- \DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
336
- + \Dinv{a}\DP{\Phi}{\phi} = Y,
337
- \end{align}
338
-
339
- \begin{align}
340
- \Deqlab{pe_momentum_z^*}
341
- \DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
342
- \end{align}
343
-
344
- \begin{align}
345
- \Deqlab{pe_continuity}
346
- \Dinv{a\cos\phi} &
347
- \left[
348
- \DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
349
- \right]
350
- + \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
351
- = 0,
352
- \end{align}
353
-
354
- \begin{align}
355
- \Deqlab{pe_thermal}
356
- \DD{\theta}{t} &= Q,
357
- \end{align}
358
- \end{subequations}
359
- ������ $\Phi$ �ϥ����ݥƥ󥷥��ϥ���,
360
- $X, Y$ �Ϥ��줾�쳰�Ϥ� $\lambda$��ʬ �� $\phi$��ʬ,
361
- $\kappa=R_{d}/c_p$ ($c_p$ ��������Ǯ)�Ǥ���.
362
- $Q$������Ǯ��Ǯ���,
363
- \begin{eqnarray*} \Deqlab{adiabatic_heating_term}
364
- Q &=& \frac{J}{C_p}e^{\kappa z^*/H}
365
- \end{eqnarray*}
366
- �Ǥ���.
367
- $J$ ��ñ�̼��̤����������Ǯ��ǮΨ�Ǥ���.
368
- ���������������ʳ����ѿ�������ˤĤ��Ƥ�
369
- \Dsecref{����}, \Dsecref{EP �ե�å���} ��
370
- �򻲾ȤΤ���.
371
-
372
-
373
- \section{�����顼ʿ����������}
374
-
375
- ����ʪ���� $A$ �ˤĤ���, $\phi, z^*, t$ ����ꤷ��
376
- ���������ˤȤä�ʿ��
377
- \begin{eqnarray} \Deqlab{euler_mean}
378
- \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda
379
- \end{eqnarray}
380
- �򥪥��顼ʿ�ѤȸƤ�.
381
- �����顼ʿ�Ѥ���Τ���� $A'$ �Ȥ����
382
- \begin{eqnarray} \Deqlab{euler_eddy}
383
- A' = A - \overline{A}
384
- \end{eqnarray}
385
- �Ǥ���.
386
- ����ˤ��,
387
- $\overline{A'}=0$, $\partial \overline{A}/\partial\lambda = 0$
388
- �Ȥʤ�.
389
-
390
- \Deqref{pe} ��γ��̤򥪥��顼ʿ�ѤȤ�������Τ����ʬ���ƽ񤯤�
391
- \begin{subequations}\Deqlab{exp_pe}
392
- % \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
393
- \begin{align}
394
- \Deqlab{exp_pe_momentum_x}
395
- & \DP{}{t}(\overline{u} + u')
396
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
397
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
398
- + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \notag\\
399
- & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
400
- + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
401
- \Deqlab{exp_pe_momentum_y}
402
- & \DP{}{t}(\overline{v} + v')
403
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
404
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
405
- + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
406
- & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
407
- + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
408
- Y',
409
- \\
410
- \Deqlab{exp_pe_momentum_z^*}
411
- & \DP{}{z^*}(\overline{\Phi} + \Phi')
412
- = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
413
- \Deqlab{exp_pe_continuity}
414
- & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
415
- + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
416
- + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
417
- \Deqlab{exp_pe_thermal}
418
- & \DP{}{t}(\overline{\theta} + \theta')
419
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
420
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
421
- + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
422
- & \qquad = \overline{Q} + Q'
423
- \end{align}
424
- \end{subequations}
425
- �Ȥʤ�.
426
- �嵭���ѷ�����, ���դ�ʿ���̤�ʿ����Ʊ�Τ��Ѥι��,
427
- ���դˤ���ʳ��ι��ޤȤ���
428
- \begin{subequations}\Deqlab{exp2_pe}
429
- % \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
430
- \begin{align}
431
- \Deqlab{exp2_pe_momentum_x}
432
- & \DP{\overline{u}}{t}
433
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
434
- + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
435
- + \overline{w}\DP{\overline{u}}{z^*}
436
- - f\overline{v}
437
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
438
- + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
439
- - \overline{X}
440
- \notag\\
441
- & \qquad
442
- = - \DP{u'}{t}
443
- - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
444
- - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
445
- - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
446
- & \qquad \qquad
447
- - \frac{\overline{v}}{a}\DP{u'}{\phi}
448
- - \frac{v'}{a}\DP{\overline{u}}{\phi}
449
- - \frac{v'}{a}\DP{u'}{\phi}
450
- - \overline{w}\DP{u'}{z^*}
451
- - w'\DP{\overline{u}}{z^*}
452
- - w'\DP{u'}{z^*}
453
- + fv'\notag\\
454
- & \qquad \qquad
455
- + \frac{\tan\phi}{a} \overline{u} v'
456
- + \frac{\tan\phi}{a} u' \overline{v}
457
- + \frac{\tan\phi}{a} u'v'
458
- %\notag\\
459
- % & \qquad
460
- - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
461
- + X',\\
462
- %
463
- \Deqlab{exp2_pe_momentum_y}
464
- & \DP{\overline{v}}{t}
465
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
466
- + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
467
- + \overline{w}\DP{\overline{v}}{z^*}
468
- + f\overline{u}
469
- + \frac{\tan\phi}{a}(\overline{u})^2
470
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
471
- - \overline{Y}
472
- \notag\\
473
- & \qquad
474
- = - \DP{v'}{t}
475
- - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
476
- - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
477
- - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
478
- & \qquad \qquad
479
- - \frac{\overline{v}}{a}\DP{v'}{\phi}
480
- - \frac{v'}{a}\DP{\overline{v}}{\phi}
481
- - \frac{v'}{a}\DP{v'}{\phi}
482
- %\notag\\
483
- % & \qquad \qquad
484
- - \overline{w}\DP{v'}{z^*}
485
- - w'\DP{\overline{v}}{z^*}
486
- - w'\DP{v'}{z^*}
487
- %\notag\\
488
- % & \qquad
489
- - fu'\notag\\
490
- & \qquad \qquad
491
- - 2\frac{\tan\phi}{a}\overline{u}u'
492
- - \frac{\tan\phi}{a}(u')^2
493
- %\notag\\
494
- % & \qquad
495
- - \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
496
- + Y',\\
497
- %
498
- \Deqlab{exp2_pe_momentum_z^*}
499
- & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
500
- = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
501
- \Deqlab{exp2_pe_continuity}
502
- & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
503
- + \DP{}{\phi}(\overline{v}\cos\phi)\right]
504
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
505
- \notag\\
506
- & \qquad
507
- = - \Dinv{a\cos\phi}\left[
508
- \DP{u'}{\lambda}
509
- + \DP{}{\phi}(v'\cos\phi)
510
- \right]
511
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
512
- \Deqlab{exp2_pe_thermal}
513
- & \DP{\overline{\theta}}{t}
514
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
515
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
516
- + \overline{w}\DP{\overline{\theta}}{z^*}
517
- - \overline{Q}
518
- \notag\\
519
- & \qquad
520
- = - \DP{\theta'}{t}
521
- - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
522
- - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
523
- - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
524
- \notag \\
525
- & \qquad \qquad
526
- - \frac{\overline{v}}{a}\DP{\theta'}{\phi}
527
- - \frac{v'}{a}\DP{\overline{\theta}}{\phi}
528
- - \frac{v'}{a}\DP{\theta'}{\phi}
529
- - \overline{w}\DP{\theta'}{z^*}
530
- - w'\DP{\overline{\theta}}{z^*}
531
- - w'\DP{\theta'}{z^*}
532
- + Q'
533
- \end{align}
534
- \end{subequations}
535
- �Ƚ񤱤�.
536
- \Deqref{exp2_pe} �򥪥��顼ʿ�Ѥ����,
537
- \begin{subequations}\Deqlab{euler_mean_pe}
538
- % \def\theequation{\arabic{section}.\arabic{parentequation}.\arabic{equation}}
539
- \begin{align}
540
- \Deqlab{euler_mean_pe_momentum_x}
541
- & \DP{\overline{u}}{t}
542
- + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
543
- + \overline{w}\DP{\overline{u}}{z^*}
544
- - f\overline{v}
545
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
546
- - \overline{X}
547
- \notag\\
548
- & \qquad
549
- = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
550
- - \Dinv{a}\overline{v'\DP{u'}{\phi}}
551
- - \overline{w'\DP{u'}{z^*}}
552
- + \frac{\tan\phi}{a}\overline{u'v'},\\
553
- %
554
- \Deqlab{euler_mean_pe_momentum_y}
555
- & \DP{\overline{v}}{t}
556
- + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
557
- + \overline{w} \DP{\overline{v}}{z^*}
558
- + f \overline{u}
559
- + \frac{\tan \phi}{a} (\overline{u})^2
560
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
561
- - \overline{Y}
562
- \notag\\
563
- & \qquad
564
- = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
565
- - \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
566
- - \overline{w'\DP{v'}{z^*}}
567
- - \frac{\tan \phi}{a} \overline{u'^2},\\
568
- %
569
- \Deqlab{euler_mean_pe_momentum_z^*}
570
- & \DP{\overline{\Phi}}{z^*}
571
- - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
572
- \Deqlab{euler_mean_pe_continuity}
573
- & \Dinv{a\cos\phi}
574
- \left[
575
- \DP{}{\phi}(\overline{v}\cos\phi)
576
- \right]
577
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
578
- = 0,\\
579
- %
580
- \Deqlab{euler_mean_pe_thermal}
581
- & \DP{\overline{\theta}}{t}
582
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
583
- + \overline{w}\DP{\overline{\theta}}{z^*}
584
- - \overline{Q} =
585
- - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
586
- - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
587
- - \overline{w'\DP{\theta'}{z^*}}
588
- \end{align}
589
- \end{subequations}
590
- �Ȥʤ�.
591
- ������ \Deqref{exp2_pe_continuity}, \Deqref{euler_mean_pe_continuity}
592
- ��������ʿ�Ѥ���Τ���˴ؤ���Ϣ³�μ�
593
- \begin{eqnarray} \Deqlab{euler_eddy_pe_continuity}
594
- \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
595
- + \DP{}{\phi}(v'\cos\phi)\right]
596
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
597
- = 0
598
- \end{eqnarray}
599
- ��������.
600
-
601
- \vspace{5mm}
602
-
603
- \Deqref{euler_eddy_pe_continuity} ��Ȥä�
604
- \Deqref{euler_mean_pe_momentum_x} ���ѷ�����.
605
- \Deqref{euler_eddy_pe_continuity} �� $u'$ �򤫤���
606
- �����顼ʿ�Ѥ�Ȥ��
607
- \begin{eqnarray}
608
- \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
609
- + \Dinv{a} \overline{ u' \DP{v'}{\phi} }
610
- - \frac{\tan \phi}{a} \overline{ u' v' }
611
- + \overline{ u' \DP{w'}{z^*} }
612
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
613
- = 0
614
- \end{eqnarray}
615
- ����� \Deqref{euler_mean_pe_momentum_x} �˲ä����
616
- \begin{align*}
617
- \DP{\overline{u}}{t}&
618
- + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
619
- + \overline{w}\DP{\overline{u}}{z^*}
620
- - f\overline{v}
621
- - \frac{\tan\phi}{a}\overline{u}\overline{v}
622
- - \overline{X} \notag\\
623
- & = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
624
- - \Dinv{a}\overline{v'\DP{u'}{\phi}}
625
- - \overline{w'\DP{u'}{z^*}}
626
- %\notag\\
627
- % &
628
- - \Dinv{a}\overline{u'\DP{v'}{\phi}}
629
- + \frac{2\tan\phi}{a}\overline{u'v'}
630
- - \overline{u'\DP{w'}{z^*}}
631
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}
632
- \end{align*}
633
- ������
634
- \begin{align*}
635
- - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }
636
- & = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
637
- = 0,\\
638
- %
639
- - \Dinv{a}\overline{v'\DP{u'}{\phi}}
640
- - \Dinv{a}\overline{u'\DP{v'}{\phi}}
641
- + \frac{2\tan\phi}{a}\overline{u'v'}
642
- & = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi), \\
643
- %
644
- - \overline{w'\DP{u'}{z^*}}
645
- - \overline{u'\DP{w'}{z^*}}
646
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}
647
- & = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})
648
- \end{align*}
649
- ���Ѥ����,
650
- \begin{align*}
651
- & \DP{\overline{u}}{t}
652
- + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
653
- + \overline{w}\DP{\overline{u}}{z^*}
654
- - f\overline{v}
655
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
656
- - \overline{X}
657
- \notag \\
658
- & \qquad
659
- = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
660
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})
661
- \end{align*}
662
- �Ƚ񤯤��Ȥ��Ǥ���.
663
- \Deqref{euler_mean_pe_momentum_y} �˴ؤ��Ƥ�Ʊ�ͤ�,
664
- \Deqref{euler_eddy_pe_continuity} �� $v'$ �򤫤���
665
- �����顼ʿ�Ѥ�Ȥä���
666
- \begin{eqnarray}
667
- \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
668
- + \Dinv{a} \overline{ v' \DP{v'}{\phi} }
669
- + \frac{\tan \phi}{a} \overline{ v'^2 }
670
- + \overline{ v' \DP{w'}{z^*} }
671
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
672
- = 0
673
- \end{eqnarray}
674
- �� \Deqref{euler_mean_pe_momentum_y} �˲ä����
675
- \begin{align*}
676
- & \DP{\overline{v}}{t}
677
- + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
678
- + \overline{w} \DP{\overline{v}}{z^*}
679
- + f \overline{u}
680
- + \frac{\tan\phi}{a} (\overline{u})^2
681
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
682
- - \overline{Y}
683
- \notag\\
684
- & \qquad
685
- = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
686
- - \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
687
- - \overline{w'\DP{v'}{z^*}}
688
- - \frac{\tan\phi}{a} \overline{u'^2}
689
- \notag\\
690
- & \qquad \qquad
691
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
692
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
693
- + \frac{\tan \phi}{a} \overline{ v'^2 }
694
- - \overline{ v' \DP{w'}{z^*} }
695
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
696
- \end{align*}
697
- ��������.
698
- ������
699
- \begin{eqnarray}
700
- - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
701
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
702
- & = & - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
703
- = 0, \nonumber \\
704
- %
705
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
706
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
707
- + \frac{\tan \phi}{a} \overline{ v'^2 }
708
- & = &
709
- - \Dinv{a \cos \phi}
710
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
711
- \nonumber \\
712
- %
713
- - \overline{w'\DP{v'}{z^*}}
714
- - \overline{ v' \DP{w'}{z^*} }
715
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
716
- & = &
717
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
718
- \end{eqnarray}
719
- ���Ѥ����
720
- \begin{align*}
721
- & \DP{\overline{v}}{t}
722
- + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
723
- + \overline{w}\ DP{\overline{v}}{z^*}
724
- + f \overline{u}
725
- + \frac{\tan\phi}{a}(\overline{u})^2
726
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
727
- - \overline{Y}
728
- \notag\\
729
- & \qquad
730
- = - \Dinv{a \cos \phi}
731
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
732
- - \frac{\tan\phi}{a} \overline{u'^2}
733
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
734
- \end{align*}
735
- �Ƚ񤯤��Ȥ��Ǥ���.
736
- \Deqref{euler_mean_pe_thermal} �ˤĤ��Ƥ�Ʊ�ͤ�,
737
- \Deqref{euler_eddy_pe_continuity} �� $\theta'$ �򤫤���
738
- �����顼ʿ�Ѥ�Ȥä���
739
- \begin{eqnarray}
740
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
741
- + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
742
- - \frac{\tan \phi}{a} \overline{ \theta' v' }
743
- + \overline{ \theta' \DP{w'}{z^*} }
744
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
745
- = 0
746
- \end{eqnarray}
747
- �� \Deqref{euler_mean_pe_thermal} �˲ä����
748
- \begin{align*}
749
- & \DP{\overline{\theta}}{t}
750
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
751
- + \overline{w}\DP{\overline{\theta}}{z^*}
752
- - \overline{Q}
753
- \notag\\
754
- & \qquad =
755
- - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
756
- - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
757
- - \overline{w'\DP{\theta'}{z^*}}
758
- \notag\\
759
- & \qquad \qquad
760
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
761
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
762
- + \frac{\tan \phi}{a} \overline{ \theta' v' }
763
- - \overline{ \theta' \DP{w'}{z^*} }
764
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
765
- \end{align*}
766
- ��������.
767
- ������
768
- \begin{eqnarray}
769
- - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
770
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
771
- & = & - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
772
- = 0, \nonumber \\
773
- %
774
- - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
775
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
776
- + \frac{\tan \phi}{a} \overline{ \theta' v' }
777
- & = &
778
- - \Dinv{a \cos \phi}
779
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
780
- \nonumber \\
781
- %
782
- - \overline{w'\DP{\theta'}{z^*}}
783
- - \overline{ \theta' \DP{w'}{z^*} }
784
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
785
- & = &
786
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
787
- \nonumber
788
- \end{eqnarray}
789
- ���Ѥ����
790
- \begin{align*}
791
- & \DP{\overline{\theta}}{t}
792
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
793
- + \overline{w}\DP{\overline{\theta}}{z^*}
794
- - \overline{Q}
795
- = - \Dinv{a \cos \phi}
796
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
797
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
798
- \end{align*}
799
- �Ȥʤ�.
800
-
801
- \vspace{5mm}
802
-
803
- �ʾ��ޤȤ���, �ʲ���{\bfseries �����顼ʿ��������}��������.
804
- \begin{screen}
805
- \begin{subequations}
806
- \Deqlab{new_euler_mean_pe}
807
- %\setcounter{equation}{0}
808
- %\begin{itemize}
809
- %%%%%%%%%%%%%%%%
810
- %\item ��ư������
811
- %%%%%%%%%%%%%%%%
812
- \begin{align}
813
- \Deqlab{new_euler_mean_pe_momentum_x}
814
- \DP{\overline{u}}{t}
815
- & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
816
- + \overline{w} \DP{\overline{u}}{z^*}
817
- - f\overline{v}
818
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
819
- - \overline{X}
820
- \notag\\
821
- & \qquad
822
- = - \Dinv{a\cos^2\phi}
823
- \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
824
- - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
825
- %
826
- \Deqlab{new_euler_mean_pe_momentum_y}
827
- \DP{\overline{v}}{t}
828
- & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
829
- + \overline{w} \DP{\overline{v}}{z^*}
830
- + f \overline{u}
831
- + \frac{\tan\phi}{a} (\overline{u})^2
832
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
833
- - \overline{Y}
834
- \notag\\
835
- & \qquad
836
- = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
837
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
838
- - \overline{u'^2}\frac{\tan\phi}{a},
839
- \end{align}
840
- %%%%%%%%%%%%%%%%
841
- %\item �ſ尵ʿ�դμ�
842
- %%%%%%%%%%%%%%%%
843
- \begin{align}
844
- \Deqlab{new_euler_mean_pe_momentum_z^*}
845
- \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
846
- \end{align}
847
- %%%%%%%%%%%%%%%%
848
- %\item Ϣ³�μ�
849
- %%%%%%%%%%%%%%%%
850
- \begin{align}
851
- \Deqlab{new_euler_mean_pe_continuity}
852
- \Dinv{a\cos\phi}&
853
- \DP{}{\phi}(\overline{v}\cos\phi)
854
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
855
- = 0,
856
- \end{align}
857
- %%%%%%%%%%%%%%%%
858
- %\item Ǯ�ϳؤμ�
859
- %%%%%%%%%%%%%%%%
860
- \begin{align}
861
- \Deqlab{new_euler_mean_pe_thermal}
862
- \DP{\overline{\theta}}{t}
863
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
864
- + \overline{w}\DP{\overline{\theta}}{z^*}
865
- - \overline{Q} =
866
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
867
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
868
- \end{align}
869
- %\end{itemize}
870
- \end{subequations}
871
- \end{screen}
872
-
873
-
874
- \section{�ѷ������顼ʿ����������}
875
-
876
- \Deqref{new_euler_mean_pe} �� EP �ե�å���, �ĺ��۴Ĥ��Ѥ��ƽ�ľ��.
877
- EP �ե�å���, �ĺ��۴Ĥϰʲ��Τ褦���������.
878
- \begin{subequations}
879
- % \begin{itemize}
880
- %%%%%%%%%%%%%%%%
881
- % \item �ĺ��۴�
882
- %%%%%%%%%%%%%%%%
883
- \begin{align}
884
- \Deqlab{residual_v_app}
885
- \overline{v}^*
886
- & =
887
- \overline{v}
888
- - \Dinv{\rho_0} \DP{}{z^*}
889
- \left( \rho_0
890
- \frac{\overline{v'\theta'}}
891
- {\overline{\DP{\theta}{z^*}}}
892
- \right)
893
- \\
894
- \Deqlab{residual_w_app}
895
- \overline{w}^*
896
- & = \overline{w}
897
- + \Dinv{a \cos\phi}
898
- \DP{}{\phi}
899
- \left( \cos \phi
900
- \frac{\overline{v'\theta'}}
901
- {\overline{\DP{\theta}{z^*}}}
902
- \right)
903
- \end{align}
904
- \end{subequations}
905
- %%%%%%%%%%%%%%%%
906
- % \item EP �ե�å���
907
- %%%%%%%%%%%%%%%%
908
- \begin{eqnarray*}
909
- {F_\phi} &=& \rho_0 a
910
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
911
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
912
- \overline{u'v'}\right) \\
913
- {F_z^*} &=& \rho_0 a
914
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
915
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
916
- \overline{u'w'}\right)
917
- \end{eqnarray*}
918
- % \end{itemize}
919
-
920
-
921
- \vspace{5mm}
922
-
923
- �ޤ�Ϣ³�μ���񤭴�����.
924
- \Deqref{new_euler_mean_pe_continuity} ��
925
- \Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
926
- \begin{align*}
927
- & \Dinv{a \cos \phi}
928
- \DP{}{\phi}\left[
929
- \left\{
930
- \overline{v}^*
931
- + \Dinv{\rho_0} \DP{}{z^*}
932
- \left( \rho_0
933
- \frac{\overline{v'\theta'}}
934
- {\overline{\DP{\theta}{z^*}}}
935
- \right)
936
- \right\}
937
- \cos\phi \right] \\
938
- & \qquad
939
- + \Dinv{\rho_0}
940
- \DP{}{z^*}
941
- \left[ \rho_0
942
- \left\{
943
- \overline{w}^*
944
- - \Dinv{a \cos\phi}
945
- \DP{}{\phi}
946
- \left( \cos \phi
947
- \frac{\overline{v'\theta'}}
948
- {\overline{\DP{\theta}{z^*}}}
949
- \right)
950
- \right\}
951
- \right]
952
- = 0, \\
953
- %
954
- &
955
- \Dinv{a \cos \phi}
956
- \DP{}{\phi}
957
- \left(
958
- \overline{v}^* \cos\phi
959
- \right)
960
- + \Dinv{\rho_0}
961
- \DP{}{z^*}
962
- \left( \rho_0 \overline{w}^* \right)
963
- \\
964
- & \qquad
965
- + \Dinv{a \cos \phi}
966
- \DP{}{\phi}
967
- \left\{
968
- \Dinv{\rho_0} \DP{}{z^*}
969
- \left( \rho_0
970
- \frac{\overline{v'\theta'}}
971
- {\overline{\DP{\theta}{z^*}}}
972
- \right) \cos\phi
973
- \right\}
974
- - \Dinv{\rho_0}
975
- \DP{}{z^*}
976
- \left\{
977
- \rho_0 \Dinv{a \cos\phi}
978
- \DP{}{\phi}
979
- \left( \cos \phi
980
- \frac{\overline{v'\theta'}}
981
- {\overline{\DP{\theta}{z^*}}}
982
- \right)
983
- \right\}
984
- = 0.
985
- \end{align*}
986
- �����軰�����͹��������Ф���
987
- \begin{align*}
988
- & \qquad
989
- \Dinv{a \cos \phi}
990
- \DP{}{\phi}
991
- \left\{
992
- \Dinv{\rho_0} \DP{}{z^*}
993
- \left( \rho_0
994
- \frac{\overline{v'\theta'}}
995
- {\overline{\DP{\theta}{z^*}}}
996
- \right) \cos\phi
997
- \right\}
998
- - \Dinv{\rho_0}
999
- \DP{}{z^*}
1000
- \left\{
1001
- \rho_0 \Dinv{a \cos\phi}
1002
- \DP{}{\phi}
1003
- \left( \cos \phi
1004
- \frac{\overline{v'\theta'}}
1005
- {\overline{\DP{\theta}{z^*}}}
1006
- \right)
1007
- \right\} \\
1008
- & =
1009
- \Dinv{a \cos \phi}
1010
- \left[
1011
- \DP{}{\phi}
1012
- \left\{
1013
- \Dinv{\rho_0} \DP{}{z^*}
1014
- \left( \rho_0
1015
- \frac{\overline{v'\theta'}}
1016
- {\overline{\DP{\theta}{z^*}}}
1017
- \right) \cos\phi
1018
- \right\}
1019
- - \Dinv{\rho_0}
1020
- \DP{}{z^*}
1021
- \left\{
1022
- \rho_0
1023
- \DP{}{\phi}
1024
- \left( \cos \phi
1025
- \frac{\overline{v'\theta'}}
1026
- {\overline{\DP{\theta}{z^*}}}
1027
- \right)
1028
- \right\}
1029
- \right]
1030
- \\
1031
- & =
1032
- \Dinv{a \cos \phi}
1033
- \left[
1034
- \Dinv{\rho_0}
1035
- \DP{}{\phi}
1036
- \left\{
1037
- \DP{}{z^*}
1038
- \left( \rho_0
1039
- \frac{\overline{v'\theta'}}
1040
- {\overline{\DP{\theta}{z^*}}}
1041
- \cos\phi
1042
- \right)
1043
- \right\}
1044
- - \Dinv{\rho_0}
1045
- \DP{}{z^*}
1046
- \left\{
1047
- \DP{}{\phi}
1048
- \left(\rho_0 \cos \phi
1049
- \frac{\overline{v'\theta'}}
1050
- {\overline{\DP{\theta}{z^*}}}
1051
- \right)
1052
- \right\}
1053
- \right]
1054
- \\
1055
- & = 0.
1056
- \end{align*}
1057
- �������ä�, Ϣ³�μ��ϰʲ��Τ褦�ˤʤ�.
1058
- \begin{eqnarray}
1059
- \Dinv{a \cos \phi}
1060
- \DP{}{\phi}
1061
- \left(
1062
- \overline{v}^* \cos\phi
1063
- \right)
1064
- + \Dinv{\rho_0}
1065
- \DP{}{z^*}
1066
- \left( \rho_0 \overline{w}^* \right) = 0.
1067
- \end{eqnarray}
1068
-
1069
-
1070
- \vspace{5mm}
1071
-
1072
-
1073
- ���� $u$ �μ���񤭴�����.
1074
- \Deqref{new_euler_mean_pe_momentum_x} ��
1075
- \Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
1076
- \begin{align}
1077
- \DP{\overline{u}}{t}&
1078
- + \Dinv{a}
1079
- \left[
1080
- \overline{v}^*
1081
- + \Dinv{\rho_0} \DP{}{z^*}
1082
- \left( \rho_0
1083
- \frac{\overline{v'\theta'}}
1084
- {\overline{\DP{\theta}{z^*}}}
1085
- \right)
1086
- \right]
1087
- \DP{\overline{u}}{\phi}
1088
- + \left[
1089
- \overline{w}^*
1090
- - \Dinv{a \cos\phi}
1091
- \DP{}{\phi}
1092
- \left( \cos \phi
1093
- \frac{\overline{v'\theta'}}
1094
- {\overline{\DP{\theta}{z^*}}}
1095
- \right)
1096
- \right]
1097
- \DP{\overline{u}}{z^*} \nonumber \\
1098
- & \qquad \qquad
1099
- - f
1100
- \left[
1101
- \overline{v}^*
1102
- + \Dinv{\rho_0} \DP{}{z^*}
1103
- \left( \rho_0
1104
- \frac{\overline{v'\theta'}}
1105
- {\overline{\DP{\theta}{z^*}}}
1106
- \right)
1107
- \right]
1108
- - \frac{\tan \phi}{a} \overline{u}
1109
- \left[
1110
- \overline{v}^*
1111
- + \Dinv{\rho_0} \DP{}{z^*}
1112
- \left( \rho_0
1113
- \frac{\overline{v'\theta'}}
1114
- {\overline{\DP{\theta}{z^*}}}
1115
- \right)
1116
- \right]
1117
- - \overline{X}
1118
- \nonumber \\ & \qquad
1119
- = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1120
- - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),\nonumber \\
1121
- %
1122
- \DP{\overline{u}}{t}&
1123
- + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
1124
- + \overline{w}^* \DP{\overline{u}}{z^*}
1125
- - f \overline{v}^*
1126
- - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
1127
- - \overline{X} \nonumber \\
1128
- & \qquad
1129
- = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1130
- + \Dinv{a \cos\phi}
1131
- \DP{}{\phi}
1132
- \left( \cos \phi
1133
- \frac{\overline{v'\theta'}}
1134
- {\overline{\DP{\theta}{z^*}}}
1135
- \right) \DP{\overline{u}}{z^*} \nonumber \\
1136
- & \qquad \qquad
1137
- + f \Dinv{\rho_0} \DP{}{z^*}
1138
- \left( \rho_0
1139
- \frac{\overline{v'\theta'}}
1140
- {\overline{\DP{\theta}{z^*}}}
1141
- \right)
1142
- - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})
1143
- \nonumber \\
1144
- & \qquad \qquad
1145
- - \Dinv{\rho_0 a} \DP{}{z^*}
1146
- \left( \rho_0
1147
- \frac{\overline{v'\theta'}}
1148
- {\overline{\DP{\theta}{z^*}}}
1149
- \right)
1150
- \DP{\overline{u}}{\phi}
1151
- + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1152
- \left( \rho_0
1153
- \frac{\overline{v'\theta'}}
1154
- {\overline{\DP{\theta}{z^*}}}
1155
- \right), \nonumber \\
1156
- %
1157
- \DP{\overline{u}}{t}&
1158
- + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
1159
- \left( \overline{u} \cos \phi \right)
1160
- + \overline{w}^* \DP{\overline{u}}{z^*}
1161
- - f \overline{v}^*
1162
- - \overline{X}
1163
- \nonumber \\ & \qquad
1164
- = - \Dinv{\rho_0 a^2 \cos^2 \phi}
1165
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1166
- + \Dinv{a \cos\phi}
1167
- \DP{}{\phi}
1168
- \left( \cos \phi
1169
- \frac{\overline{v'\theta'}}
1170
- {\overline{\DP{\theta}{z^*}}}
1171
- \right) \DP{\overline{u}}{z^*}
1172
- \nonumber \\
1173
- & \qquad \qquad
1174
- + \frac{1}{\rho_0 a \cos \phi}
1175
- \DP{}{z^*}
1176
- \left( f \rho_0 a \cos \phi
1177
- \frac{\overline{v'\theta'}}
1178
- {\overline{\DP{\theta}{z^*}}}
1179
- \right)
1180
- - \frac{1}{\rho_0 a \cos \phi}
1181
- \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})
1182
- \nonumber \\
1183
- & \qquad \qquad
1184
- - \Dinv{\rho_0 a} \DP{}{z^*}
1185
- \left( \rho_0
1186
- \frac{\overline{v'\theta'}}
1187
- {\overline{\DP{\theta}{z^*}}}
1188
- \right)
1189
- \DP{\overline{u}}{\phi}
1190
- + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1191
- \left( \rho_0
1192
- \frac{\overline{v'\theta'}}
1193
- {\overline{\DP{\theta}{z^*}}}
1194
- \right) \Deqlab{tem-u-tochuu}
1195
- \end{align}
1196
- \Deqref{tem-u-tochuu} �α��դ�ʲ��Τ褦���ѷ�����.
1197
- \begin{align}
1198
- & - \Dinv{\rho_0 a^2 \cos^2 \phi}
1199
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1200
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1201
- \rho_0 a \cos \phi
1202
- \DP{\overline{u}}{z^*}
1203
- \DP{}{\phi}
1204
- \left( \cos \phi
1205
- \frac{\overline{v'\theta'}}
1206
- {\overline{\DP{\theta}{z^*}}}
1207
- \right)
1208
- \nonumber \\
1209
- & \qquad \qquad
1210
- + \frac{1}{\rho_0 a \cos \phi}
1211
- \DP{}{z^*}
1212
- \left( f \rho_0 a \cos \phi
1213
- \frac{\overline{v'\theta'}}
1214
- {\overline{\DP{\theta}{z^*}}}
1215
- \right)
1216
- - \frac{1}{\rho_0 a \cos \phi}
1217
- \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})
1218
- \nonumber \\
1219
- & \qquad \qquad
1220
- - \Dinv{\rho_0 a} \DP{}{z^*}
1221
- \left( \rho_0
1222
- \frac{\overline{v'\theta'}}
1223
- {\overline{\DP{\theta}{z^*}}}
1224
- \DP{\overline{u}}{\phi}
1225
- \right)
1226
- + \Dinv{\rho_0 a}
1227
- \rho_0
1228
- \frac{\overline{v'\theta'}}
1229
- {\overline{\DP{\theta}{z^*}}}
1230
- \DP{}{z^*}
1231
- \left(
1232
- \DP{\overline{u}}{\phi}
1233
- \right) \nonumber \\
1234
- & \qquad \qquad
1235
- + \frac{\tan \phi}{\rho_0 a}
1236
- \DP{}{z^*}
1237
- \left( \overline{u} \rho_0
1238
- \frac{\overline{v'\theta'}}
1239
- {\overline{\DP{\theta}{z^*}}}
1240
- \right)
1241
- - \frac{\tan \phi}{\rho_0 a}
1242
- \rho_0
1243
- \frac{\overline{v'\theta'}}
1244
- {\overline{\DP{\theta}{z^*}}}
1245
- \DP{}{z^*}
1246
- \left( \overline{u}
1247
- \right) \nonumber \\
1248
- %
1249
- & =
1250
- \Dinv{\rho_0 a^2 \cos^2 \phi}
1251
- \left[
1252
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1253
- + \rho_0 a \cos \phi
1254
- \DP{\overline{u}}{z^*}
1255
- \DP{}{\phi}
1256
- \left( \cos \phi
1257
- \frac{\overline{v'\theta'}}
1258
- {\overline{\DP{\theta}{z^*}}}
1259
- \right)
1260
- \right] \nonumber \\
1261
- & \qquad
1262
- + \Dinv{\rho_0 a}
1263
- \rho_0
1264
- \frac{\overline{v'\theta'}}
1265
- {\overline{\DP{\theta}{z^*}}}
1266
- \DP{}{z^*}
1267
- \left(
1268
- \DP{\overline{u}}{\phi}
1269
- \right)
1270
- - \frac{\tan \phi}{\rho_0 a}
1271
- \rho_0
1272
- \frac{\overline{v'\theta'}}
1273
- {\overline{\DP{\theta}{z^*}}}
1274
- \DP{\overline{u}}{z^*} \nonumber \\
1275
- & \qquad
1276
- + \frac{1}{\rho_0 a \cos \phi}
1277
- \DP{}{z^*}
1278
- \left[
1279
- \left( f \rho_0 a \cos \phi
1280
- \frac{\overline{v'\theta'}}
1281
- {\overline{\DP{\theta}{z^*}}}
1282
- \right)
1283
- - \rho_0 a \cos \phi \overline{w'u'}
1284
- \right] \nonumber \\
1285
- & \qquad
1286
- - \Dinv{\rho_0 a} \DP{}{z^*}
1287
- \left( \rho_0
1288
- \frac{\overline{v'\theta'}}
1289
- {\overline{\DP{\theta}{z^*}}}
1290
- \DP{\overline{u}}{\phi}
1291
- \right)
1292
- + \frac{\tan \phi}{\rho_0 a}
1293
- \DP{}{z^*}
1294
- \left( \overline{u} \rho_0
1295
- \frac{\overline{v'\theta'}}
1296
- {\overline{\DP{\theta}{z^*}}}
1297
- \right) \nonumber \\
1298
- %
1299
- & =
1300
- \Dinv{\rho_0 a^2 \cos^2 \phi}
1301
- \left[
1302
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1303
- + \rho_0 a \cos \phi
1304
- \DP{\overline{u}}{z^*}
1305
- \DP{}{\phi}
1306
- \left( \cos \phi
1307
- \frac{\overline{v'\theta'}}
1308
- {\overline{\DP{\theta}{z^*}}}
1309
- \right)
1310
- \right] \nonumber \\
1311
- & \qquad
1312
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1313
- \left[
1314
- \rho_0 a \cos^2 \phi
1315
- \frac{\overline{v'\theta'}}
1316
- {\overline{\DP{\theta}{z^*}}}
1317
- \DP{}{z^*}
1318
- \left(
1319
- \DP{\overline{u}}{\phi}
1320
- \right)
1321
- - \rho_0 a \cos^2 \phi \tan \phi
1322
- \frac{\overline{v'\theta'}}
1323
- {\overline{\DP{\theta}{z^*}}}
1324
- \DP{\overline{u}}{z^*}
1325
- \right] \nonumber \\
1326
- & \qquad
1327
- + \frac{1}{\rho_0 a \cos \phi}
1328
- \DP{}{z^*}
1329
- \left[
1330
- \left( f \rho_0 a \cos \phi
1331
- \frac{\overline{v'\theta'}}
1332
- {\overline{\DP{\theta}{z^*}}}
1333
- \right)
1334
- - \rho_0 a \cos \phi \overline{w'u'}
1335
- \right] \nonumber \\
1336
- & \qquad
1337
- + \Dinv{\rho_0 a \cos \phi}
1338
- \left[
1339
- - \cos \phi
1340
- \DP{}{z^*}
1341
- \left( \rho_0
1342
- \frac{\overline{v'\theta'}}
1343
- {\overline{\DP{\theta}{z^*}}}
1344
- \DP{\overline{u}}{\phi}
1345
- \right)
1346
- + \cos \phi \tan \phi
1347
- \DP{}{z^*}
1348
- \left( \overline{u} \rho_0
1349
- \frac{\overline{v'\theta'}}
1350
- {\overline{\DP{\theta}{z^*}}}
1351
- \right)
1352
- \right] \nonumber \\
1353
- %
1354
- & = \Dinv{\rho_0 a^2 \cos^2 \phi}
1355
- \left[
1356
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1357
- + \rho_0 a \cos \phi
1358
- \DP{\overline{u}}{z^*}
1359
- \DP{}{\phi}
1360
- \left( \cos \phi
1361
- \frac{\overline{v'\theta'}}
1362
- {\overline{\DP{\theta}{z^*}}}
1363
- \right)
1364
- \right] \nonumber \\
1365
- & \qquad
1366
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1367
- \left[
1368
- \rho_0 a \cos^2 \phi
1369
- \frac{\overline{v'\theta'}}
1370
- {\overline{\DP{\theta}{z^*}}}
1371
- \DP{}{\phi}
1372
- \left(
1373
- \DP{\overline{u}}{z^*}
1374
- \right)
1375
- + \cos \phi \DP{}{\phi} \left( \rho_0 a \cos \phi \right)
1376
- \frac{\overline{v'\theta'}}
1377
- {\overline{\DP{\theta}{z^*}}}
1378
- \DP{\overline{u}}{z^*}
1379
- \right] \nonumber \\
1380
- & \qquad
1381
- + \frac{1}{\rho_0 a \cos \phi}
1382
- \DP{}{z^*}
1383
- \left[
1384
- f \rho_0 a \cos \phi
1385
- \frac{\overline{v'\theta'}}
1386
- {\overline{\DP{\theta}{z^*}}}
1387
- - \rho_0 a \cos \phi \overline{w'u'}
1388
- \right] \nonumber \\
1389
- & \qquad
1390
- + \Dinv{\rho_0 a \cos \phi}
1391
- \DP{}{z^*}
1392
- \left[
1393
- - \rho_0 \cos \phi
1394
- \frac{\overline{v'\theta'}}
1395
- {\overline{\DP{\theta}{z^*}}}
1396
- \DP{\overline{u}}{\phi}
1397
- + \sin \phi \overline{u} \rho_0
1398
- \frac{\overline{v'\theta'}}
1399
- {\overline{\DP{\theta}{z^*}}}
1400
- \right]
1401
- \Deqlab{tem-u-uhen}
1402
- \end{align}
1403
- \Deqref{tem-u-uhen} ���������������������
1404
- \begin{align*}
1405
- %
1406
- & \Dinv{\rho_0 a^2 \cos^2 \phi}
1407
- \left[
1408
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1409
- + \rho_0 a \cos \phi
1410
- \DP{\overline{u}}{z^*}
1411
- \DP{}{\phi}
1412
- \left( \cos \phi
1413
- \frac{\overline{v'\theta'}}
1414
- {\overline{\DP{\theta}{z^*}}}
1415
- \right)
1416
- \right]
1417
- \\
1418
- & \qquad
1419
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1420
- \left[
1421
- \rho_0 a \cos^2 \phi
1422
- \frac{\overline{v'\theta'}}
1423
- {\overline{\DP{\theta}{z^*}}}
1424
- \DP{}{\phi}
1425
- \left(
1426
- \DP{\overline{u}}{z^*}
1427
- \right)
1428
- + \cos \phi \DP{}{\phi} \left( \rho_0 a \cos \phi \right)
1429
- \frac{\overline{v'\theta'}}
1430
- {\overline{\DP{\theta}{z^*}}}
1431
- \DP{\overline{u}}{z^*}
1432
- \right]
1433
- \\
1434
- %
1435
- & =
1436
- \Dinv{\rho_0 a^2 \cos^2 \phi}
1437
- \left[
1438
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1439
- \right]
1440
- \\
1441
- & \qquad
1442
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1443
- \left[
1444
- \rho_0 a \cos^2 \phi
1445
- \frac{\overline{v'\theta'}}
1446
- {\overline{\DP{\theta}{z^*}}}
1447
- \DP{}{\phi}
1448
- \left(
1449
- \DP{\overline{u}}{z^*}
1450
- \right)
1451
- + \DP{\overline{u}}{z^*}
1452
- \DP{}{\phi}
1453
- \left(\rho_0 a \cos^2 \phi
1454
- \frac{\overline{v'\theta'}}
1455
- {\overline{\DP{\theta}{z^*}}}
1456
- \right)
1457
- \right]
1458
- \\
1459
- %
1460
- & =
1461
- \Dinv{\rho_0 a^2 \cos^2 \phi}
1462
- \left[
1463
- - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1464
- \right]
1465
- + \Dinv{\rho_0 a^2 \cos^2 \phi}
1466
- \left[
1467
- \DP{}{\phi}
1468
- \left(\rho_0 a \cos^2 \phi
1469
- \frac{\overline{v'\theta'}}
1470
- {\overline{\DP{\theta}{z^*}}}
1471
- \DP{\overline{u}}{z^*}
1472
- \right)
1473
- \right]
1474
- \\
1475
- %
1476
- & = \Dinv{\rho_0 a^2 \cos^2 \phi}
1477
- \DP{}{\phi}
1478
- \left[
1479
- - \rho_0 a \overline{v'u'} \cos^2 \phi
1480
- + \rho_0 a \cos^2 \phi
1481
- \frac{\overline{v'\theta'}}
1482
- {\overline{\DP{\theta}{z^*}}}
1483
- \DP{\overline{u}}{z^*}
1484
- \right]
1485
- \\
1486
- %
1487
- & = \Dinv{\rho_0 a^2 \cos^2 \phi}
1488
- \DP{}{\phi}
1489
- \left[
1490
- \rho_0 a \cos^2 \phi
1491
- \left\{
1492
- \DP{\overline{u}}{z^*}
1493
- \frac{\overline{v'\theta'}}
1494
- {\overline{\DP{\theta}{z^*}}}
1495
- - \overline{v'u'}
1496
- \right\}
1497
- \right]
1498
- \\
1499
- %
1500
- & = \Dinv{\rho_0 a^2 \cos^2 \phi}
1501
- \DP{}{\phi}
1502
- \left(
1503
- \cos \phi F^{*}_{\phi}
1504
- \right)
1505
- \end{align*}
1506
- \Deqref{tem-u-uhen} ���軰�����͹�������Ф���
1507
- \begin{align*}
1508
- &
1509
- \frac{1}{\rho_0 a \cos \phi}
1510
- \DP{}{z^*}
1511
- \left[
1512
- f \rho_0 a \cos \phi
1513
- \frac{\overline{v'\theta'}}
1514
- {\overline{\DP{\theta}{z^*}}}
1515
- - \rho_0 a \cos \phi \overline{w'u'}
1516
- \right]
1517
- % \\
1518
- % & \qquad
1519
- + \Dinv{\rho_0 a \cos \phi}
1520
- \DP{}{z^*}
1521
- \left[
1522
- - \rho_0 \cos \phi
1523
- \frac{\overline{v'\theta'}}
1524
- {\overline{\DP{\theta}{z^*}}}
1525
- \DP{\overline{u}}{\phi}
1526
- + \sin \phi \overline{u} \rho_0
1527
- \frac{\overline{v'\theta'}}
1528
- {\overline{\DP{\theta}{z^*}}}
1529
- \right]
1530
- \\
1531
- & =
1532
- \frac{1}{\rho_0 a \cos \phi}
1533
- \DP{}{z^*}
1534
- \left[
1535
- \rho_0 a \cos \phi
1536
- \left\{
1537
- f \frac{\overline{v'\theta'}}
1538
- {\overline{\DP{\theta}{z^*}}}
1539
- - \overline{w'u'}
1540
- - \frac{\overline{v'\theta'}}
1541
- {a \overline{\DP{\theta}{z^*}}}
1542
- \DP{\overline{u}}{\phi}
1543
- + \sin \phi \overline{u}
1544
- \frac{\overline{v'\theta'}}
1545
- {a \cos \phi \overline{\DP{\theta}{z^*}}}
1546
- \right\}
1547
- \right]
1548
- \\
1549
- & =
1550
- \frac{1}{\rho_0 a \cos \phi}
1551
- \DP{}{z^*}
1552
- \left[
1553
- \rho_0 a \cos \phi
1554
- \left\{
1555
- f \frac{\overline{v'\theta'}}
1556
- {\overline{\DP{\theta}{z^*}}}
1557
- - \left(
1558
- \cos \phi
1559
- \DP{\overline{u}}{\phi}
1560
- - \sin \phi \overline{u}
1561
- \right)
1562
- \frac{\overline{v'\theta'}}
1563
- {a \cos \phi \overline{\DP{\theta}{z^*}}}
1564
- - \overline{w'u'}
1565
- \right\}
1566
- \right]
1567
- \\
1568
- & =
1569
- \frac{1}{\rho_0 a \cos \phi}
1570
- \DP{}{z^*}
1571
- \left[
1572
- \rho_0 a \cos \phi
1573
- \left\{
1574
- f \frac{\overline{v'\theta'}}
1575
- {\overline{\DP{\theta}{z^*}}}
1576
- - \DP{(\overline{u} \cos \phi)}{\phi}
1577
- \frac{\overline{v'\theta'}}
1578
- {a \cos \phi \overline{\DP{\theta}{z^*}}}
1579
- - \overline{w'u'}
1580
- \right\}
1581
- \right]
1582
- \\
1583
- & =
1584
- \frac{1}{\rho_0 a \cos \phi}
1585
- \DP{}{z^*}
1586
- \left[
1587
- \rho_0 a \cos \phi
1588
- \left\{
1589
- \left( f
1590
- - \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
1591
- {a \cos \phi}
1592
- \right)
1593
- \frac{\overline{v'\theta'}}
1594
- {\overline{\DP{\theta}{z^*}}}
1595
- - \overline{w'u'}
1596
- \right\}
1597
- \right]
1598
- \\
1599
- & = \frac{1}{\rho_0 a \cos \phi}
1600
- \DP{F^{*}_{z}}{z^*}
1601
- \end{align*}
1602
- �ʾ���, \Deqref{tem-u-tochuu} �ϼ��Τ褦�ˤʤ�.
1603
- \begin{align*}
1604
- & \DP{\overline{u}}{t}
1605
- + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
1606
- \left( \overline{u} \cos \phi \right)
1607
- + \overline{w}^* \DP{\overline{u}}{z^*}
1608
- - f \overline{v}^*
1609
- - \overline{X}
1610
- = \Dinv{\rho_0 a^2 \cos^2 \phi}
1611
- \DP{}{\phi}
1612
- \left(
1613
- \cos \phi F^{*}_{\phi}
1614
- \right)
1615
- + \frac{1}{\rho_0 a \cos \phi}
1616
- \DP{F^{*}_{z}}{z^*},
1617
- \nonumber \\
1618
- %
1619
- & \DP{\overline{u}}{t}
1620
- + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
1621
- \left( \overline{u} \cos \phi \right)
1622
- + \overline{w}^* \DP{\overline{u}}{z^*}
1623
- - f \overline{v}^*
1624
- - \overline{X}
1625
- = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.
1626
- \end{align*}
1627
- ������, �Ҹ������ȯ����ʲ��Τ褦��ɽ����.
1628
- \begin{align}
1629
- \Ddiv{\Dvect{F}}
1630
- = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}
1631
- \end{align}
1632
-
1633
- \vspace{5mm}
1634
-
1635
- ����Ǯ�ϳؤμ���񤭴�����.
1636
- \Deqref{new_euler_mean_pe_thermal} ��
1637
- \Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
1638
- \begin{align*}
1639
- & \DP{\overline{\theta}}{t}
1640
- + \frac{1}{a}
1641
- \left[
1642
- \overline{v}^*
1643
- + \Dinv{\rho_0} \DP{}{z^*}
1644
- \left( \rho_0
1645
- \frac{\overline{v'\theta'}}
1646
- {\overline{\DP{\theta}{z^*}}}
1647
- \right)
1648
- \right]
1649
- \DP{\overline{\theta}}{\phi}
1650
- + \left[
1651
- \overline{w}^*
1652
- - \Dinv{a \cos\phi}
1653
- \DP{}{\phi}
1654
- \left( \cos \phi
1655
- \frac{\overline{v'\theta'}}
1656
- {\overline{\DP{\theta}{z^*}}}
1657
- \right)
1658
- \right]
1659
- \DP{\overline{\theta}}{z^*}
1660
- - \overline{Q} \\
1661
- & \qquad
1662
- =
1663
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1664
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}), \\
1665
- %
1666
- & \DP{\overline{\theta}}{t}
1667
- + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
1668
- + \overline{w}^* \DP{\overline{\theta}}{z^*}
1669
- - \overline{Q} \\
1670
- & \qquad
1671
- = - \Dinv{\rho_0 a} \DP{}{z^*}
1672
- \left( \rho_0
1673
- \frac{\overline{v'\theta'}}
1674
- {\overline{\DP{\theta}{z^*}}}
1675
- \right) \DP{\overline{\theta}}{\phi}
1676
- + \Dinv{a \cos\phi}
1677
- \DP{}{\phi}
1678
- \left( \cos \phi
1679
- \frac{\overline{v'\theta'}}
1680
- {\overline{\DP{\theta}{z^*}}}
1681
- \right) \DP{\overline{\theta}}{z^*} \\
1682
- & \qquad \qquad
1683
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1684
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
1685
- \end{align*}
1686
- �Ȥʤ�.
1687
- ���α��դ򹹤��ѷ������
1688
- \begin{align*}
1689
- & - \Dinv{\rho_0} \DP{}{z^*}
1690
- \left( \rho_0
1691
- \frac{\overline{v'\theta'}}
1692
- {a \overline{\DP{\theta}{z^*}}}
1693
- \right) \DP{\overline{\theta}}{\phi}
1694
- + \Dinv{a \cos\phi}
1695
- \DP{}{\phi}
1696
- \left( \cos \phi
1697
- \frac{\overline{v'\theta'}}
1698
- {\overline{\DP{\theta}{z^*}}}
1699
- \right) \DP{\overline{\theta}}{z^*} \\
1700
- & \qquad
1701
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1702
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
1703
- %
1704
- = &
1705
- - \Dinv{\rho_0} \DP{}{z^*}
1706
- \left( \rho_0
1707
- \frac{\overline{v'\theta'}}
1708
- {a \overline{\DP{\theta}{z^*}}}
1709
- \DP{\overline{\theta}}{\phi}
1710
- \right)
1711
- + \frac{\overline{v'\theta'}}
1712
- {a \overline{\DP{\theta}{z^*}}}
1713
- \DP{}{z^*}\DP{\overline{\theta}}{\phi} \\
1714
- & \qquad
1715
- + \Dinv{a \cos\phi}
1716
- \left[
1717
- \DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
1718
- \frac{1}{\overline{\DP{\theta}{z^*}}}
1719
- + \cos \phi \overline{v'\theta'}
1720
- \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
1721
- \right] \DP{\overline{\theta}}{z^*} \\
1722
- & \qquad
1723
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1724
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
1725
- %
1726
- = &
1727
- - \Dinv{\rho_0} \DP{}{z^*}
1728
- \left( \rho_0
1729
- \frac{\overline{v'\theta'}}
1730
- {a \overline{\DP{\theta}{z^*}}}
1731
- \DP{\overline{\theta}}{\phi}
1732
- \right)
1733
- + \frac{\overline{v'\theta'}}
1734
- {a \overline{\DP{\theta}{z^*}}}
1735
- \DP{}{z^*}\DP{\overline{\theta}}{\phi}
1736
- + \Dinv{a}
1737
- \overline{v'\theta'}
1738
- \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
1739
- \DP{\overline{\theta}}{z^*}
1740
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}) \\
1741
- %
1742
- = &
1743
- - \Dinv{\rho_0} \DP{}{z^*}
1744
- \left[ \rho_0
1745
- \frac{\overline{v'\theta'}}
1746
- {a \overline{\DP{\theta}{z^*}}}
1747
- \DP{\overline{\theta}}{\phi}
1748
- + \rho_0\overline{w'\theta'}
1749
- \right]
1750
- + \frac{\overline{v'\theta'}}{a}
1751
- \left[
1752
- \frac{1}
1753
- {\overline{\DP{\theta}{z^*}}}
1754
- \DP{}{z^*}\DP{\overline{\theta}}{\phi}
1755
- + \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
1756
- \DP{\overline{\theta}}{z^*}
1757
- \right] \\
1758
- %
1759
- = &
1760
- - \Dinv{\rho_0} \DP{}{z^*}
1761
- \left[ \rho_0
1762
- \left(
1763
- \frac{\overline{v'\theta'}}
1764
- {a \overline{\DP{\theta}{z^*}}}
1765
- \DP{\overline{\theta}}{\phi}
1766
- + \overline{w'\theta'}
1767
- \right)
1768
- \right]
1769
- + \frac{\overline{v'\theta'}}{a}
1770
- \DP{}{\phi}
1771
- \left(
1772
- \frac{ \DP{\overline{\theta}}{z^*} }
1773
- { \overline{\DP{\theta}{z^*}} }
1774
- \right) \\
1775
- %
1776
- = &
1777
- - \Dinv{\rho_0} \DP{}{z^*}
1778
- \left[ \rho_0
1779
- \left(
1780
- \frac{\overline{v'\theta'}}
1781
- {a \overline{\DP{\theta}{z^*}}}
1782
- \DP{\overline{\theta}}{\phi}
1783
- + \overline{w'\theta'}
1784
- \right)
1785
- \right].
1786
- \end{align*}
1787
- ������, Ǯ�ϳؤμ��ϰʲ��Τ褦�ˤʤ�.
1788
- \begin{align*}
1789
- \DP{\overline{\theta}}{t}
1790
- + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
1791
- + \overline{w}^* \DP{\overline{\theta}}{z^*}
1792
- - \overline{Q}
1793
- =
1794
- - \Dinv{\rho_0} \DP{}{z^*}
1795
- \left[ \rho_0
1796
- \left(
1797
- \frac{\overline{v'\theta'}}
1798
- {a \overline{\DP{\theta}{z^*}}}
1799
- \DP{\overline{\theta}}{\phi}
1800
- + \overline{w'\theta'}
1801
- \right)
1802
- \right].
1803
- \end{align*}
1804
-
1805
- \vspace{5mm}
1806
-
1807
- �Ǹ�� $v$ �μ��ˤĤ��ƹͤ���.
1808
- \Deqref{new_euler_mean_pe_momentum_y} ��
1809
- \Deqref{residual_v_app}, \Deqref{residual_w_app} �����������
1810
- \begin{align*}
1811
- & \DP{}{t}
1812
- \left[
1813
- \overline{v}^*
1814
- + \Dinv{\rho_0} \DP{}{z^*}
1815
- \left( \rho_0
1816
- \frac{\overline{v'\theta'}}
1817
- {\overline{\DP{\theta}{z^*}}}
1818
- \right)
1819
- \right]
1820
- + \frac{1}{a}
1821
- \left[
1822
- \overline{v}^*
1823
- + \Dinv{\rho_0} \DP{}{z^*}
1824
- \left( \rho_0
1825
- \frac{\overline{v'\theta'}}
1826
- {\overline{\DP{\theta}{z^*}}}
1827
- \right)
1828
- \right]
1829
- \DP{}{\phi}
1830
- \left[
1831
- \overline{v}^*
1832
- + \Dinv{\rho_0} \DP{}{z^*}
1833
- \left( \rho_0
1834
- \frac{\overline{v'\theta'}}
1835
- {\overline{\DP{\theta}{z^*}}}
1836
- \right)
1837
- \right]
1838
- \\
1839
- & \qquad \qquad
1840
- + \left[
1841
- \overline{w}^*
1842
- - \Dinv{a \cos\phi}
1843
- \DP{}{\phi}
1844
- \left( \cos \phi
1845
- \frac{\overline{v'\theta'}}
1846
- {\overline{\DP{\theta}{z^*}}}
1847
- \right)
1848
- \right]
1849
- \DP{}{z^*}
1850
- \left[
1851
- \overline{v}^*
1852
- + \Dinv{\rho_0} \DP{}{z^*}
1853
- \left( \rho_0
1854
- \frac{\overline{v'\theta'}}
1855
- {\overline{\DP{\theta}{z^*}}}
1856
- \right)
1857
- \right]
1858
- \\
1859
- & \qquad \qquad
1860
- + f \overline{u}
1861
- + \frac{\tan\phi}{a} (\overline{u})^2
1862
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1863
- - \overline{Y} \\
1864
- & \qquad
1865
- = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
1866
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1867
- - \overline{u'^2}\frac{\tan\phi}{a}, \\
1868
- %
1869
- & f \overline{u}
1870
- + \frac{\tan\phi}{a} (\overline{u})^2
1871
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1872
- \\
1873
- & \qquad
1874
- = - \DP{}{t}
1875
- \left[
1876
- \overline{v}^*
1877
- + \Dinv{\rho_0} \DP{}{z^*}
1878
- \left( \rho_0
1879
- \frac{\overline{v'\theta'}}
1880
- {\overline{\DP{\theta}{z^*}}}
1881
- \right)
1882
- \right]
1883
- - \frac{1}{a}
1884
- \left[
1885
- \overline{v}^*
1886
- + \Dinv{\rho_0} \DP{}{z^*}
1887
- \left( \rho_0
1888
- \frac{\overline{v'\theta'}}
1889
- {\overline{\DP{\theta}{z^*}}}
1890
- \right)
1891
- \right]
1892
- \DP{}{\phi}
1893
- \left[
1894
- \overline{v}^*
1895
- + \Dinv{\rho_0} \DP{}{z^*}
1896
- \left( \rho_0
1897
- \frac{\overline{v'\theta'}}
1898
- {\overline{\DP{\theta}{z^*}}}
1899
- \right)
1900
- \right]
1901
- \\
1902
- & \qquad \qquad
1903
- - \left[
1904
- \overline{w}^*
1905
- - \Dinv{a \cos\phi}
1906
- \DP{}{\phi}
1907
- \left( \cos \phi
1908
- \frac{\overline{v'\theta'}}
1909
- {\overline{\DP{\theta}{z^*}}}
1910
- \right)
1911
- \right]
1912
- \DP{}{z^*}
1913
- \left[
1914
- \overline{v}^*
1915
- + \Dinv{\rho_0} \DP{}{z^*}
1916
- \left( \rho_0
1917
- \frac{\overline{v'\theta'}}
1918
- {\overline{\DP{\theta}{z^*}}}
1919
- \right)
1920
- \right]
1921
- \\
1922
- & \qquad \qquad
1923
- - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
1924
- - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
1925
- - \overline{u'^2} \frac{\tan\phi}{a}
1926
- + \overline{Y}
1927
- \end{align*}
1928
- Andrews {\it et al.} (1987) �ˤ���, ���μ��α��դ��̤�
1929
- ���դ���٤�о�����. ���դι�����ƤޤȤ�� $G$ �Ƚ񤯤�
1930
- $v$ �μ��ϼ��Τ褦�ˤʤ�.
1931
- \begin{align*}
1932
- \overline{u}
1933
- \left( f + \frac{\tan\phi}{a} \overline{u} \right)
1934
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1935
- = G.
1936
- \end{align*}
1937
-
1938
- \vspace{5mm}
1939
-
1940
- �ʾ��ޤȤ���, �ʲ���{\bfseries �ѷ������顼ʿ��������}��������.
1941
- \begin{screen}
1942
- \begin{subequations}\Deqlab{transformed_euler_mean_pe}
1943
- %\def\theequation{\arabic{section}.\arabic{parentequation}\alph{equation}}
1944
- %\begin{itemize}
1945
- %%%%%%%%%%%%%%%%
1946
- %\item ��ư������
1947
- %%%%%%%%%%%%%%%%
1948
- \begin{align}
1949
- \Deqlab{transformed_euler_mean_pe_momentum_x}&
1950
- \DP{\overline{u}}{t}
1951
- + \overline{v}^*
1952
- \left[
1953
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
1954
- \right]
1955
- + \overline{w}^*\DP{\overline{u}}{z^*}
1956
- - \overline{X}
1957
- = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\
1958
- \Deqlab{transformed_euler_mean_pe_momentum_y}&
1959
- \overline{u}
1960
- \left( f + \overline{u}\frac{\tan\phi}{a} \right)
1961
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
1962
- = G.
1963
- \end{align}
1964
- %%%%%%%%%%%%%%%%
1965
- %\item �ſ尵ʿ�դμ�
1966
- %%%%%%%%%%%%%%%%
1967
- \begin{align}
1968
- \Deqlab{transformed_euler_mean_pe_momentum_z^*}
1969
- \DP{\overline{\Phi}}{z^*}
1970
- - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
1971
- = 0.
1972
- \end{align}
1973
- %%%%%%%%%%%%%%%%
1974
- %\item Ϣ³�μ�
1975
- %%%%%%%%%%%%%%%%
1976
- \begin{align}
1977
- \Deqlab{transformed_euler_mean_pe_continuity}
1978
- \Dinv{a\cos\phi}&\left[
1979
- \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
1980
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
1981
- = 0.
1982
- \end{align}
1983
- %%%%%%%%%%%%%%%%
1984
- %\item Ǯ�ϳؤμ�
1985
- %%%%%%%%%%%%%%%%
1986
- \begin{align}
1987
- \Deqlab{transformed_euler_mean_pe_thermal}
1988
- \DP{\overline{\theta}}{t}
1989
- + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
1990
- + \overline{w}^*\DP{\overline{\theta}}{z^*}
1991
- - \overline{Q} =
1992
- - \Dinv{\rho_0}\DP{}{z^*}
1993
- \left[\rho_0
1994
- \left(
1995
- \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
1996
- {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
1997
- \right)
1998
- \right].
1999
- \end{align}
2000
- %\end{itemize}
2001
- \end{subequations}
2002
- \end{screen}
2003
-
2004
-
2005
-
2006
- \clearpage
2007
-
2008
- \begin{thebibliography}{1}
2009
- \bibitem{AHL1987} D.G. Andrews, J.R. Holton, and C.B. Leovy.
2010
- Middle atmosphere dynamics, International Geophysics Series.
2011
- Academic Press, 1987
2012
- \bibitem{H1975} J.R. Holton.
2013
- The Dynamic Meteorology of the Stratosphere and Mesosphere,
2014
- American Meteorological Society, 1975
2015
- \end{thebibliography}
2016
-
2017
-
2018
- \end{document}