gphys 1.1.1 → 1.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,238 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</TITLE>
13
- <META NAME="description" CONTENT="$BITEy4V3V3J;R$NFs<!@:EY:9J,(B">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="next" HREF="node2.html">
25
- <LINK REL="previous" HREF="document.html">
26
- <LINK REL="up" HREF="document.html">
27
- <LINK REL="next" HREF="node2.html">
28
- </HEAD>
29
-
30
- <BODY >
31
- <!--Navigation Panel-->
32
- <A NAME="tex2html13"
33
- HREF="node2.html">
34
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
35
- <A NAME="tex2html11"
36
- HREF="document.html">
37
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
38
- <A NAME="tex2html5"
39
- HREF="document.html">
40
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
41
- <BR>
42
- <B> :</B> <A NAME="tex2html14"
43
- HREF="node2.html">$B$3$NJ8=q$K$D$$$F(B...</A>
44
- <B> :</B> <A NAME="tex2html12"
45
- HREF="document.html">NumRu::Derivative</A>
46
- <B> :</B> <A NAME="tex2html6"
47
- HREF="document.html">NumRu::Derivative</A>
48
- <BR>
49
- <BR>
50
- <!--End of Navigation Panel-->
51
-
52
- <H1><A NAME="SECTION000100000000000000000">
53
- $BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
54
- </H1>
55
- $BK\%I%-%e%a%s%H$G$O(B, NumRu::Derivative $B$GDj5A$5$l$k(B threepoints_O2nd_deriv $B$GMQ$$$k(B
56
- $BITEy4V3V3J;R$NFs<!@:EY:9J,$K$D$$$F$^$H$a$k(B. $B$3$N:9J,$O6KC<$KITEy4V3V$G$O$J$$%G!<%?$K(B
57
- $BBP$7$FFs<!@:EY$N:9J,$rM?$($k$b$N$G$"$k(B.
58
-
59
- $B:#(B, $B4X?t(B<IMG
60
- WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
61
- SRC="img1.png"
62
- ALT="$ f(x)$">$B$r(B, $B?tNs(B <!-- MATH
63
- $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$
64
- -->
65
- <IMG
66
- WIDTH="184" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
67
- SRC="img2.png"
68
- ALT="$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$"> $B>e$KN%;62=$9$k(B.
69
- <P></P>
70
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
71
- <TR VALIGN="MIDDLE">
72
- <TD NOWRAP ALIGN="RIGHT"><IMG
73
- WIDTH="19" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
74
- SRC="img3.png"
75
- ALT="$\displaystyle f_i$"></TD>
76
- <TD NOWRAP ALIGN="LEFT"><IMG
77
- WIDTH="67" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
78
- SRC="img4.png"
79
- ALT="$\displaystyle \equiv f(x_i)$"></TD>
80
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
81
- (1.1)</TD></TR>
82
- <TR VALIGN="MIDDLE">
83
- <TD NOWRAP ALIGN="RIGHT"><IMG
84
- WIDTH="12" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
85
- SRC="img5.png"
86
- ALT="$\displaystyle t$"></TD>
87
- <TD NOWRAP ALIGN="LEFT"><IMG
88
- WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
89
- SRC="img6.png"
90
- ALT="$\displaystyle \equiv (x_{i+1} - x_{i})$"></TD>
91
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
92
- (1.2)</TD></TR>
93
- <TR VALIGN="MIDDLE">
94
- <TD NOWRAP ALIGN="RIGHT"><IMG
95
- WIDTH="14" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
96
- SRC="img7.png"
97
- ALT="$\displaystyle s$"></TD>
98
- <TD NOWRAP ALIGN="LEFT"><IMG
99
- WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
100
- SRC="img8.png"
101
- ALT="$\displaystyle \equiv (x_{i} - x_{i-1})$"></TD>
102
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
103
- (1.3)</TD></TR>
104
- </TABLE></DIV>
105
- <BR CLEAR="ALL"><P></P>
106
- $B$3$3$G(B, <IMG
107
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
108
- SRC="img9.png"
109
- ALT="$ s$">$B$H(B<IMG
110
- WIDTH="12" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
111
- SRC="img10.png"
112
- ALT="$ t$">$B$O$[$\F1$8%*!<%@!<$NCM$G$"$k>l9g$rA[Dj$7$F5DO@$r?J$a$k(B.
113
-
114
- $B$3$3$G(B, <IMG
115
- WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
116
- SRC="img1.png"
117
- ALT="$ f(x)$">$B$r3F3J;RE@6aK5$K$F%F%$%i!<E83+$9$k(B.
118
- <P></P>
119
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
120
- <TR VALIGN="MIDDLE">
121
- <TD NOWRAP ALIGN="RIGHT"><IMG
122
- WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
123
- SRC="img11.png"
124
- ALT="$\displaystyle f(x_{i+1}) - f(x_{i})$"></TD>
125
- <TD NOWRAP ALIGN="LEFT"><IMG
126
- WIDTH="235" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
127
- SRC="img12.png"
128
- ALT="$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$"></TD>
129
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
130
- (1.4)</TD></TR>
131
- <TR VALIGN="MIDDLE">
132
- <TD NOWRAP ALIGN="RIGHT"><IMG
133
- WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
134
- SRC="img13.png"
135
- ALT="$\displaystyle f(x_{i-1}) - f(x_{i})$"></TD>
136
- <TD NOWRAP ALIGN="LEFT"><IMG
137
- WIDTH="256" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
138
- SRC="img14.png"
139
- ALT="$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$"></TD>
140
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
141
- (1.5)</TD></TR>
142
- </TABLE></DIV>
143
- <BR CLEAR="ALL"><P></P>
144
- $B$3$3$G(B, <!-- MATH
145
- $f'(x_i), f''(x_i)$
146
- -->
147
- <IMG
148
- WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
149
- SRC="img15.png"
150
- ALT="$ f'(x_i), f''(x_i)$">$B$O$=$l$>$l(B<IMG
151
- WIDTH="21" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
152
- SRC="img16.png"
153
- ALT="$ x_i$">$B$K$*$1$k(B<IMG
154
- WIDTH="16" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
155
- SRC="img17.png"
156
- ALT="$ f$">$B$N(B<IMG
157
- WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
158
- SRC="img18.png"
159
- ALT="$ x$">$B$K4X$9$k0l3,$*$h$SFs3,$NHyJ,9`(B, <IMG
160
- WIDTH="48" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
161
- SRC="img19.png"
162
- ALT="$ O(t^3)$">$B$O(B<IMG
163
- WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
164
- SRC="img20.png"
165
- ALT="$ t^3$">$B$N%*!<%@!<$NCM$rI=$9(B. $BN><0$+$i(B<IMG
166
- WIDTH="24" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
167
- SRC="img21.png"
168
- ALT="$ f''$">$B$N9`$r>C5n$9$k$?$a$K(B, <IMG
169
- WIDTH="36" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
170
- SRC="img22.png"
171
- ALT="$ s^2\times$">(1.4) - <IMG
172
- WIDTH="34" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
173
- SRC="img23.png"
174
- ALT="$ t^2\times$">(1.5) $B$r7W;;$9$k$H(B,
175
- <P></P>
176
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
177
- <TR VALIGN="MIDDLE">
178
- <TD NOWRAP ALIGN="RIGHT"><IMG
179
- WIDTH="229" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
180
- SRC="img24.png"
181
- ALT="$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$"></TD>
182
- <TD NOWRAP ALIGN="LEFT"><IMG
183
- WIDTH="314" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
184
- SRC="img25.png"
185
- ALT="$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$"></TD>
186
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
187
- (1.6)</TD></TR>
188
- </TABLE></DIV>
189
- <BR CLEAR="ALL"><P></P>
190
- $B$H$J$k(B. $B>e<0$rJQ7A$7$F(B
191
- <P></P>
192
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
193
- <TR VALIGN="MIDDLE">
194
- <TD NOWRAP ALIGN="RIGHT"><IMG
195
- WIDTH="233" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
196
- SRC="img26.png"
197
- ALT="$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
198
- <TD NOWRAP ALIGN="LEFT"><IMG
199
- WIDTH="241" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
200
- SRC="img27.png"
201
- ALT="$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$"></TD>
202
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
203
- (1.7)</TD></TR>
204
- <TR VALIGN="MIDDLE">
205
- <TD>&nbsp;</TD>
206
- <TD NOWRAP ALIGN="LEFT"><IMG
207
- WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
208
- SRC="img28.png"
209
- ALT="$\displaystyle = O(t^2).$"></TD>
210
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
211
- (1.8)</TD></TR>
212
- </TABLE></DIV>
213
- <BR CLEAR="ALL"><P></P>
214
- $B$3$l$h$j(B, 2$B<!@:EY:9J,$N8x<0$O(B
215
- <P></P>
216
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
217
- <TR VALIGN="MIDDLE">
218
- <TD NOWRAP ALIGN="RIGHT"><IMG
219
- WIDTH="51" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
220
- SRC="img29.png"
221
- ALT="$\displaystyle f'(x_i)$"></TD>
222
- <TD NOWRAP ALIGN="LEFT"><IMG
223
- WIDTH="252" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
224
- SRC="img30.png"
225
- ALT="$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
226
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
227
- (1.9)</TD></TR>
228
- </TABLE></DIV>
229
- <BR CLEAR="ALL"><P></P>
230
- $B$H=q$/$3$H$,$G$-$k(B.
231
-
232
- <BR><HR>
233
- <ADDRESS>
234
- Tsukahara Daisuke
235
- $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
236
- </ADDRESS>
237
- </BODY>
238
- </HTML>
@@ -1,75 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$B$3$NJ8=q$K$D$$$F(B...</TITLE>
13
- <META NAME="description" CONTENT="$B$3$NJ8=q$K$D$$$F(B...">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="previous" HREF="node1.html">
25
- <LINK REL="up" HREF="document.html">
26
- </HEAD>
27
-
28
- <BODY >
29
- <!--Navigation Panel-->
30
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_g.png">
31
- <A NAME="tex2html19"
32
- HREF="document.html">
33
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
34
- <A NAME="tex2html15"
35
- HREF="node1.html">
36
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
37
- <BR>
38
- <B> :</B> <A NAME="tex2html20"
39
- HREF="document.html">NumRu::Derivative</A>
40
- <B> :</B> <A NAME="tex2html16"
41
- HREF="node1.html">$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
42
- <BR>
43
- <BR>
44
- <!--End of Navigation Panel-->
45
-
46
- <H1><A NAME="SECTION000200000000000000000">
47
- $B$3$NJ8=q$K$D$$$F(B...</A>
48
- </H1>
49
- <STRONG>NumRu::Derivative</STRONG><P>
50
- $B$3$NJ8=q$O(B<A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> $BK]Lu%W%m%0%i%`(B Version 2K.1beta (1.48)
51
- <P>
52
- Copyright &#169; 1993, 1994, 1995, 1996,
53
- <A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,
54
- Computer Based Learning Unit, University of Leeds,
55
- <BR>
56
- Copyright &#169; 1997, 1998, 1999,
57
- <A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,
58
- Mathematics Department, Macquarie University, Sydney.
59
- <P>$B$r(B<A HREF="http://www.topstudio.co.jp/~kmuto/software/latex2html/">$BF|K\8l2=$7$?$b$N(B</A>(
60
- 2K.1beta (1.48) JA patch-1.4 $BHG(B)
61
- <P>
62
- Copyright &#169; 1998, 1999,
63
- <A HREF="http://www.topstudio.co.jp/~kmuto/">Kenshi Muto</A>,
64
- Debian Project.
65
- <P>$B$rMQ$$$F@8@.$5$l$^$7$?!#(B
66
- <P>$B%3%^%s%I9T$O0J2<$NDL$j$G$7$?!#(B: <BR>
67
- <STRONG>latex2html</STRONG> <tt>-local_icons document.tex</tt>.
68
- <P>$BK]Lu$O(B Tsukahara Daisuke $B$K$h$C$F(B $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B $B$K<B9T$5$l$^$7$?!#(B
69
- <BR><HR>
70
- <ADDRESS>
71
- Tsukahara Daisuke
72
- $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
73
- </ADDRESS>
74
- </BODY>
75
- </HTML>
Binary file
@@ -1,158 +0,0 @@
1
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
- %%%%%%%% Style Setting %%%%%%%%
3
- \documentclass[a4j,12pt,openbib]{jarticle}
4
-
5
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
- %%%%%%%% Package Include %%%%%%%%
7
- \usepackage{ascmac}
8
- \usepackage{tabularx}
9
- \usepackage{graphicx}
10
- \usepackage{amssymb}
11
- \usepackage{amsmath}
12
- \usepackage{Dennou6}
13
- %%%%%%%% PageStyle Setting %%%%%%%%
14
- \pagestyle{Dmyheadings}
15
-
16
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
- %%%%%%%% Title Setting %%%%%%%%
18
- \Dtitle{NumRu::Derivative}
19
-
20
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21
- %%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
22
- %\setcounter{chapter}{1}
23
- \setcounter{section}{0}
24
- \setcounter{equation}{0}
25
- \setcounter{page}{1}
26
- \setcounter{figure}{0}
27
- \setcounter{footnote}{0}
28
-
29
-
30
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
- %%%%%%%% Counter Output Format %%%%%%%%
32
-
33
- %\def\thesection{\arabic{chapter}.\arabic{section}}
34
- %\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
35
- %\def\thepage{\arabic{page}}
36
- %\def\thefigure{\arabic{section}.\arabic{figure}}
37
- %\def\thetable{\arabic{section}.\arabic{table}}
38
- %\def\thefootnote{\arabic{footnote}}
39
- \def\thesection{\arabic{section}}
40
- \def\theequation{\arabic{section}.\arabic{equation}}
41
- \def\thepage{\arabic{page}}
42
- \def\thefigure{\arabic{section}.\arabic{figure}}
43
- \def\thetable{\arabic{section}.\arabic{table}}
44
- \def\thefootnote{\arabic{footnote}}
45
-
46
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47
- %%%%%%%% Dennou-Style Definition %%%%%%%%
48
- \Dparskip
49
- %\Dnoparskip
50
- \Dparindent
51
- %\Dnoparindent
52
-
53
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54
- %%%%%%%% Local Definition %%%%%%%%
55
- \def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
56
- \def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
57
-
58
-
59
-
60
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61
- %%%%%%%% Text Start %%%%%%%%
62
- \begin{document}
63
- \section{�����ֳֳʻҤ������ٺ�ʬ}
64
- �ܥɥ�����ȤǤ�, NumRu::Derivative ���������� threepoints\_O2nd\_deriv ���Ѥ���
65
- �����ֳֳʻҤ������ٺ�ʬ�ˤĤ��ƤޤȤ��. ���κ�ʬ�϶�ü�������ֳ֤ǤϤʤ��ǡ�����
66
- �Ф��������٤κ�ʬ��Ϳ�����ΤǤ���.
67
-
68
- ��, �ؿ�$f(x)$��, ���� $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$ ���Υ��������.
69
- %
70
- \begin{align}
71
- f_i &\equiv f(x_i)\\
72
- t &\equiv (x_{i+1} - x_{i})\\
73
- s &\equiv (x_{i} - x_{i-1})
74
- \end{align}
75
- %
76
- ������, $s$��$t$�Ϥۤ�Ʊ�������������ͤǤ���������ꤷ�Ƶ�����ʤ��.
77
-
78
- ������, $f(x)$��Ƴʻ�����˵�ˤƥƥ��顼Ÿ������.
79
- %
80
- \begin{align}
81
- f(x_{i+1}) - f(x_{i}) &= tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)\\
82
- f(x_{i-1}) - f(x_{i}) &= -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)
83
- \end{align}
84
- %
85
- ������, $f'(x_i), f''(x_i)$�Ϥ��줾��$x_i$�ˤ�����$f$��$x$�˴ؤ���쳬������󳬤���ʬ��, $O(t^3)$��$t^3$�Υ����������ͤ�ɽ��. ξ������$f''$�ι��õ�뤿���, $s^2\times$(1.4) - $t^2\times$(1.5) ��׻������,
86
- %
87
- \begin{align}
88
- s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1} &= (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)
89
- \end{align}
90
- %
91
- �Ȥʤ�. �弰���ѷ�����
92
- %
93
- \begin{align}
94
- \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
95
- &= f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}\\
96
- &= O(t^2).
97
- \end{align}
98
- %
99
- ������, 2�����ٺ�ʬ�θ�����
100
- \begin{align}
101
- f'(x_i) &= \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
102
- \end{align}
103
- %
104
- �Ƚ񤯤��Ȥ��Ǥ���.
105
-
106
- \end{document}
107
- %%%%%%%% Text End %%%%%%%%
108
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109
-
110
-
111
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112
- %%%%%%%% Sample %%%%%%%%
113
-
114
- %%%%%%%% ���� (��٥��դ�) %%%%%%%%
115
- %
116
- %\begin{eqnarray}
117
- % \Deqlab{1.1} % ���ʽ�Ǥμ��ֹ�������.
118
- % \DP{\rho}{t} + \Ddiv (\rho \Dvect{V}) = 0.
119
- %\end{eqnarray}
120
- %
121
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
122
-
123
-
124
- %%%%%%%% ���� (���ֹ����Ω���ƽ񤭤������) %%%%%%%%
125
- %
126
- %$$
127
- % \DP{p}{z} = \rho g.
128
- % \eqno \textrm{(1.11)}
129
- %$$
130
- %
131
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132
-
133
-
134
- %%%%%%%% ����ʸ�� (��ʸ�˽񤯾��) %%%%%%%%
135
- %
136
- %{\bfseries ����ʸ��}
137
- %\vspace{-7mm}
138
- %\begin{description}
139
- % \item ����̾, 2000:
140
- % ����̾, (��, ��).
141
- % ���Ǽ�, 319pp.
142
- %\end{description}
143
- %
144
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
145
-
146
- %%%%%%%% �ޤ�Ž���� %%%%%%%%
147
- %
148
- %\begin{figure}[hbtp]
149
- % \begin{center}
150
- % \Depsf[][]{./SEC01/images/fig0101.eps}
151
- % \end{center}
152
- % \caption{
153
- % ����
154
- % }
155
- % \Dfiglab{fig0101} % ���ʽ�οޤ��ֹ�������,
156
- % % table �οޤξ��� tab0101
157
- %\end{figure}
158
- %
@@ -1,129 +0,0 @@
1
- <?xml version="1.0" ?>
2
- <!DOCTYPE html
3
- PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
4
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
5
- <html xmlns="http://www.w3.org/1999/xhtml">
6
- <head>
7
- <title>../../lib/numru/derivative.rb</title>
8
- </head>
9
- <body>
10
- <h1><a name="label:0" id="label:0">module NumRu::Derivative in derivative.rb</a></h1><!-- RDLabel: "module NumRu::Derivative in derivative.rb" -->
11
- <h2><a name="label:1" id="label:1">todo</a></h2><!-- RDLabel: "todo" -->
12
- <ul>
13
- <li>decide argument of b_expand_linear_ext is Symbol or Numeric.
14
- <ul>
15
- <li>now is Numeric.</li>
16
- <li>it denpends the treatment of dRuby.</li>
17
- </ul></li>
18
- <li>support other boundary conditions.</li>
19
- </ul>
20
- <h2><a name="label:2" id="label:2">Index</a></h2><!-- RDLabel: "Index" -->
21
- <ul>
22
- <li><a href="#label:3">module NumRu::Derivative</a>
23
- <ul>
24
- <li><a href="#label:4">threepoint_O2nd_deriv</a>
25
- <ul>
26
- <li>First derivative (2nd Order difference use three point.)</li>
27
- </ul></li>
28
- <li><a href="#label:5">cderiv</a>
29
- <ul>
30
- <li>First derivative (center difference use two point.)</li>
31
- </ul></li>
32
- <li><a href="#label:6">b_expand_linear_ext</a>
33
- <ul>
34
- <li>return array extended boundaries with linear extention.</li>
35
- </ul></li>
36
- <li><a href="#label:7">cdiff</a>
37
- <ul>
38
- <li>return difference. (center difference)</li>
39
- </ul></li>
40
- </ul></li>
41
- </ul>
42
- <h1><a name="label:3" id="label:3">module NumRu::Derivative</a></h1><!-- RDLabel: "module NumRu::Derivative" -->
43
- <p>Module functions of Derivative Operater for NArray.</p>
44
- <dl>
45
- <dt><a name="label:4" id="label:4"><code>threepoint_O2nd_deriv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "threepoint_O2nd_deriv" -->
46
- <dd>
47
- <p>Derivate <code>z</code> respect to <code>dim</code> th dimension with 2nd Order difference.
48
- return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
49
- <code>x</code> (in other wards, </p>
50
- <pre>(s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)):
51
- now s represents (x_{i} - x_{i-1}) ,t represents (x_{i+1} - x_{i})
52
- and _{i} represents the suffix of {i} th element in the ((&lt;dim&gt;)) th
53
- dimension of array. ).</pre>
54
- <p>ARGUMENTS</p>
55
- <ul>
56
- <li>z (NArray): a NArray which you want to derivative.</li>
57
- <li>x (NArray): a NArray represents the dimension which derivative respect to.
58
- z.rank must be 1.</li>
59
- <li>dim (Numeric): a Numeric represents the dimention which derivative respect to.
60
- you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
61
- <li>bc (Numeric) : a Numeric which represent boundary condition.
62
- now only LINEAR_EXT(=1) supported. LINEAR_EXT load <a href="#label:6">b_expand_linear_ext</a> which
63
- extend boundary with lenear value.</li>
64
- </ul>
65
- <p>RETURN VALUE</p>
66
- <ul>
67
- <li>O2nd_deriv_data (NArray): (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t))</li>
68
- </ul></dd>
69
- <dt><a name="label:5" id="label:5"><code>cderiv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "cderiv" -->
70
- <dd>
71
- <p>Derivate <code>z</code> respect to <code>dim</code> th dimension with center difference.
72
- return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
73
- <code>x</code> ( in other wards, (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}):
74
- now _{i} represents the suffix of {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th
75
- dimension of array. ).</p>
76
- <p>ARGUMENTS</p>
77
- <ul>
78
- <li>z (NArray): a NArray which you want to derivative.</li>
79
- <li>x (NArray): a NArray represents the dimension which derivative respect
80
- to. z.rank must be 1.</li>
81
- <li>dim (Numeric): a Numeric represents the dimention which derivative
82
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
83
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
84
- <li>bc (Numeric) : a Numeric which represent boundary condition.
85
- now only LINEAR_EXT(=1) supported. LINEAR_EXT load
86
- <a href="#label:6">b_expand_linear_ext</a> which extend boundary with lenear value.</li>
87
- </ul>
88
- <p>RETURN VALUE</p>
89
- <ul>
90
- <li>cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1})</li>
91
- </ul></dd>
92
- <dt><a name="label:6" id="label:6"><code>b_expand_linear_ext(<var>z</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "b_expand_linear_ext" -->
93
- <dd>
94
- <p>expand boundary with linear value. extend array with 1 grid at each
95
- boundary with <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension, and assign th value which diffrential
96
- value between a grid short of boundary and boundary grid in original array.
97
- (on other wards, 2*z_{0}-z_{1} or 2*z_{n-1}-z_{n-2}: now _{i} represents the </p>
98
- <pre>suffix of {i} th element in the ((&lt;dim&gt;)) th dimension of array. ).</pre>
99
- <p>ARGUMENTS</p>
100
- <ul>
101
- <li>z (NArray): a NArray which you want to expand boundary.</li>
102
- <li>dim (Numeric): a Numeric represents the dimention which derivative
103
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
104
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
105
- </ul>
106
- <p>RETURN VALUE</p>
107
- <ul>
108
- <li>expand_data (NArray): </li>
109
- </ul></dd>
110
- <dt><a name="label:7" id="label:7"><code>cdiff(<var>x</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "cdiff" -->
111
- <dd>
112
- <p>Diffrence operater. return an NArray which a difference <!-- Reference, RDLabel "x" doesn't exist --><em class="label-not-found">x</em><!-- Reference end -->
113
- ( in other wards, (x_{i+1} - x_{i-1}): now _{i} represents the suffix of
114
- {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension of array. ).</p>
115
- <p>ARGUMENTS</p>
116
- <ul>
117
- <li>x (NArray): a NArray which you want to get difference.</li>
118
- <li>dim (Numeric): a Numeric representing the dimention which derivative
119
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
120
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
121
- </ul>
122
- <p>RETURN VALUE</p>
123
- <ul>
124
- <li>cdiff_data (NArray): (x_{i+1} - x_{i-1})</li>
125
- </ul></dd>
126
- </dl>
127
-
128
- </body>
129
- </html>