gphys 1.1.1 → 1.2.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,238 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$BITEy4V3V3J;R$NFs<!@:EY:9J,(B">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="next" HREF="node2.html">
|
25
|
-
<LINK REL="previous" HREF="document.html">
|
26
|
-
<LINK REL="up" HREF="document.html">
|
27
|
-
<LINK REL="next" HREF="node2.html">
|
28
|
-
</HEAD>
|
29
|
-
|
30
|
-
<BODY >
|
31
|
-
<!--Navigation Panel-->
|
32
|
-
<A NAME="tex2html13"
|
33
|
-
HREF="node2.html">
|
34
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
35
|
-
<A NAME="tex2html11"
|
36
|
-
HREF="document.html">
|
37
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
38
|
-
<A NAME="tex2html5"
|
39
|
-
HREF="document.html">
|
40
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
41
|
-
<BR>
|
42
|
-
<B> :</B> <A NAME="tex2html14"
|
43
|
-
HREF="node2.html">$B$3$NJ8=q$K$D$$$F(B...</A>
|
44
|
-
<B> :</B> <A NAME="tex2html12"
|
45
|
-
HREF="document.html">NumRu::Derivative</A>
|
46
|
-
<B> :</B> <A NAME="tex2html6"
|
47
|
-
HREF="document.html">NumRu::Derivative</A>
|
48
|
-
<BR>
|
49
|
-
<BR>
|
50
|
-
<!--End of Navigation Panel-->
|
51
|
-
|
52
|
-
<H1><A NAME="SECTION000100000000000000000">
|
53
|
-
$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
|
54
|
-
</H1>
|
55
|
-
$BK\%I%-%e%a%s%H$G$O(B, NumRu::Derivative $B$GDj5A$5$l$k(B threepoints_O2nd_deriv $B$GMQ$$$k(B
|
56
|
-
$BITEy4V3V3J;R$NFs<!@:EY:9J,$K$D$$$F$^$H$a$k(B. $B$3$N:9J,$O6KC<$KITEy4V3V$G$O$J$$%G!<%?$K(B
|
57
|
-
$BBP$7$FFs<!@:EY$N:9J,$rM?$($k$b$N$G$"$k(B.
|
58
|
-
|
59
|
-
$B:#(B, $B4X?t(B<IMG
|
60
|
-
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
61
|
-
SRC="img1.png"
|
62
|
-
ALT="$ f(x)$">$B$r(B, $B?tNs(B <!-- MATH
|
63
|
-
$x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$
|
64
|
-
-->
|
65
|
-
<IMG
|
66
|
-
WIDTH="184" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
67
|
-
SRC="img2.png"
|
68
|
-
ALT="$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$"> $B>e$KN%;62=$9$k(B.
|
69
|
-
<P></P>
|
70
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
71
|
-
<TR VALIGN="MIDDLE">
|
72
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
73
|
-
WIDTH="19" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
74
|
-
SRC="img3.png"
|
75
|
-
ALT="$\displaystyle f_i$"></TD>
|
76
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
77
|
-
WIDTH="67" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
78
|
-
SRC="img4.png"
|
79
|
-
ALT="$\displaystyle \equiv f(x_i)$"></TD>
|
80
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
81
|
-
(1.1)</TD></TR>
|
82
|
-
<TR VALIGN="MIDDLE">
|
83
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
84
|
-
WIDTH="12" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
85
|
-
SRC="img5.png"
|
86
|
-
ALT="$\displaystyle t$"></TD>
|
87
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
88
|
-
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
89
|
-
SRC="img6.png"
|
90
|
-
ALT="$\displaystyle \equiv (x_{i+1} - x_{i})$"></TD>
|
91
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
92
|
-
(1.2)</TD></TR>
|
93
|
-
<TR VALIGN="MIDDLE">
|
94
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
95
|
-
WIDTH="14" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
96
|
-
SRC="img7.png"
|
97
|
-
ALT="$\displaystyle s$"></TD>
|
98
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
99
|
-
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
100
|
-
SRC="img8.png"
|
101
|
-
ALT="$\displaystyle \equiv (x_{i} - x_{i-1})$"></TD>
|
102
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
103
|
-
(1.3)</TD></TR>
|
104
|
-
</TABLE></DIV>
|
105
|
-
<BR CLEAR="ALL"><P></P>
|
106
|
-
$B$3$3$G(B, <IMG
|
107
|
-
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
108
|
-
SRC="img9.png"
|
109
|
-
ALT="$ s$">$B$H(B<IMG
|
110
|
-
WIDTH="12" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
111
|
-
SRC="img10.png"
|
112
|
-
ALT="$ t$">$B$O$[$\F1$8%*!<%@!<$NCM$G$"$k>l9g$rA[Dj$7$F5DO@$r?J$a$k(B.
|
113
|
-
|
114
|
-
$B$3$3$G(B, <IMG
|
115
|
-
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
116
|
-
SRC="img1.png"
|
117
|
-
ALT="$ f(x)$">$B$r3F3J;RE@6aK5$K$F%F%$%i!<E83+$9$k(B.
|
118
|
-
<P></P>
|
119
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
120
|
-
<TR VALIGN="MIDDLE">
|
121
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
122
|
-
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
123
|
-
SRC="img11.png"
|
124
|
-
ALT="$\displaystyle f(x_{i+1}) - f(x_{i})$"></TD>
|
125
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
126
|
-
WIDTH="235" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
127
|
-
SRC="img12.png"
|
128
|
-
ALT="$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$"></TD>
|
129
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
130
|
-
(1.4)</TD></TR>
|
131
|
-
<TR VALIGN="MIDDLE">
|
132
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
133
|
-
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
134
|
-
SRC="img13.png"
|
135
|
-
ALT="$\displaystyle f(x_{i-1}) - f(x_{i})$"></TD>
|
136
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
137
|
-
WIDTH="256" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
138
|
-
SRC="img14.png"
|
139
|
-
ALT="$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$"></TD>
|
140
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
141
|
-
(1.5)</TD></TR>
|
142
|
-
</TABLE></DIV>
|
143
|
-
<BR CLEAR="ALL"><P></P>
|
144
|
-
$B$3$3$G(B, <!-- MATH
|
145
|
-
$f'(x_i), f''(x_i)$
|
146
|
-
-->
|
147
|
-
<IMG
|
148
|
-
WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
149
|
-
SRC="img15.png"
|
150
|
-
ALT="$ f'(x_i), f''(x_i)$">$B$O$=$l$>$l(B<IMG
|
151
|
-
WIDTH="21" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
152
|
-
SRC="img16.png"
|
153
|
-
ALT="$ x_i$">$B$K$*$1$k(B<IMG
|
154
|
-
WIDTH="16" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
155
|
-
SRC="img17.png"
|
156
|
-
ALT="$ f$">$B$N(B<IMG
|
157
|
-
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
158
|
-
SRC="img18.png"
|
159
|
-
ALT="$ x$">$B$K4X$9$k0l3,$*$h$SFs3,$NHyJ,9`(B, <IMG
|
160
|
-
WIDTH="48" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
161
|
-
SRC="img19.png"
|
162
|
-
ALT="$ O(t^3)$">$B$O(B<IMG
|
163
|
-
WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
|
164
|
-
SRC="img20.png"
|
165
|
-
ALT="$ t^3$">$B$N%*!<%@!<$NCM$rI=$9(B. $BN><0$+$i(B<IMG
|
166
|
-
WIDTH="24" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
|
167
|
-
SRC="img21.png"
|
168
|
-
ALT="$ f''$">$B$N9`$r>C5n$9$k$?$a$K(B, <IMG
|
169
|
-
WIDTH="36" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
170
|
-
SRC="img22.png"
|
171
|
-
ALT="$ s^2\times$">(1.4) - <IMG
|
172
|
-
WIDTH="34" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
173
|
-
SRC="img23.png"
|
174
|
-
ALT="$ t^2\times$">(1.5) $B$r7W;;$9$k$H(B,
|
175
|
-
<P></P>
|
176
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
177
|
-
<TR VALIGN="MIDDLE">
|
178
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
179
|
-
WIDTH="229" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
180
|
-
SRC="img24.png"
|
181
|
-
ALT="$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$"></TD>
|
182
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
183
|
-
WIDTH="314" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
184
|
-
SRC="img25.png"
|
185
|
-
ALT="$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$"></TD>
|
186
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
187
|
-
(1.6)</TD></TR>
|
188
|
-
</TABLE></DIV>
|
189
|
-
<BR CLEAR="ALL"><P></P>
|
190
|
-
$B$H$J$k(B. $B>e<0$rJQ7A$7$F(B
|
191
|
-
<P></P>
|
192
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
193
|
-
<TR VALIGN="MIDDLE">
|
194
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
195
|
-
WIDTH="233" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
196
|
-
SRC="img26.png"
|
197
|
-
ALT="$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
|
198
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
199
|
-
WIDTH="241" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
200
|
-
SRC="img27.png"
|
201
|
-
ALT="$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$"></TD>
|
202
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
203
|
-
(1.7)</TD></TR>
|
204
|
-
<TR VALIGN="MIDDLE">
|
205
|
-
<TD> </TD>
|
206
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
207
|
-
WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
208
|
-
SRC="img28.png"
|
209
|
-
ALT="$\displaystyle = O(t^2).$"></TD>
|
210
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
211
|
-
(1.8)</TD></TR>
|
212
|
-
</TABLE></DIV>
|
213
|
-
<BR CLEAR="ALL"><P></P>
|
214
|
-
$B$3$l$h$j(B, 2$B<!@:EY:9J,$N8x<0$O(B
|
215
|
-
<P></P>
|
216
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
217
|
-
<TR VALIGN="MIDDLE">
|
218
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
219
|
-
WIDTH="51" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
220
|
-
SRC="img29.png"
|
221
|
-
ALT="$\displaystyle f'(x_i)$"></TD>
|
222
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
223
|
-
WIDTH="252" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
224
|
-
SRC="img30.png"
|
225
|
-
ALT="$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
|
226
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
227
|
-
(1.9)</TD></TR>
|
228
|
-
</TABLE></DIV>
|
229
|
-
<BR CLEAR="ALL"><P></P>
|
230
|
-
$B$H=q$/$3$H$,$G$-$k(B.
|
231
|
-
|
232
|
-
<BR><HR>
|
233
|
-
<ADDRESS>
|
234
|
-
Tsukahara Daisuke
|
235
|
-
$BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
|
236
|
-
</ADDRESS>
|
237
|
-
</BODY>
|
238
|
-
</HTML>
|
@@ -1,75 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$B$3$NJ8=q$K$D$$$F(B...</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$B$3$NJ8=q$K$D$$$F(B...">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="previous" HREF="node1.html">
|
25
|
-
<LINK REL="up" HREF="document.html">
|
26
|
-
</HEAD>
|
27
|
-
|
28
|
-
<BODY >
|
29
|
-
<!--Navigation Panel-->
|
30
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_g.png">
|
31
|
-
<A NAME="tex2html19"
|
32
|
-
HREF="document.html">
|
33
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
34
|
-
<A NAME="tex2html15"
|
35
|
-
HREF="node1.html">
|
36
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
37
|
-
<BR>
|
38
|
-
<B> :</B> <A NAME="tex2html20"
|
39
|
-
HREF="document.html">NumRu::Derivative</A>
|
40
|
-
<B> :</B> <A NAME="tex2html16"
|
41
|
-
HREF="node1.html">$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
|
42
|
-
<BR>
|
43
|
-
<BR>
|
44
|
-
<!--End of Navigation Panel-->
|
45
|
-
|
46
|
-
<H1><A NAME="SECTION000200000000000000000">
|
47
|
-
$B$3$NJ8=q$K$D$$$F(B...</A>
|
48
|
-
</H1>
|
49
|
-
<STRONG>NumRu::Derivative</STRONG><P>
|
50
|
-
$B$3$NJ8=q$O(B<A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> $BK]Lu%W%m%0%i%`(B Version 2K.1beta (1.48)
|
51
|
-
<P>
|
52
|
-
Copyright © 1993, 1994, 1995, 1996,
|
53
|
-
<A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,
|
54
|
-
Computer Based Learning Unit, University of Leeds,
|
55
|
-
<BR>
|
56
|
-
Copyright © 1997, 1998, 1999,
|
57
|
-
<A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,
|
58
|
-
Mathematics Department, Macquarie University, Sydney.
|
59
|
-
<P>$B$r(B<A HREF="http://www.topstudio.co.jp/~kmuto/software/latex2html/">$BF|K\8l2=$7$?$b$N(B</A>(
|
60
|
-
2K.1beta (1.48) JA patch-1.4 $BHG(B)
|
61
|
-
<P>
|
62
|
-
Copyright © 1998, 1999,
|
63
|
-
<A HREF="http://www.topstudio.co.jp/~kmuto/">Kenshi Muto</A>,
|
64
|
-
Debian Project.
|
65
|
-
<P>$B$rMQ$$$F@8@.$5$l$^$7$?!#(B
|
66
|
-
<P>$B%3%^%s%I9T$O0J2<$NDL$j$G$7$?!#(B: <BR>
|
67
|
-
<STRONG>latex2html</STRONG> <tt>-local_icons document.tex</tt>.
|
68
|
-
<P>$BK]Lu$O(B Tsukahara Daisuke $B$K$h$C$F(B $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B $B$K<B9T$5$l$^$7$?!#(B
|
69
|
-
<BR><HR>
|
70
|
-
<ADDRESS>
|
71
|
-
Tsukahara Daisuke
|
72
|
-
$BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
|
73
|
-
</ADDRESS>
|
74
|
-
</BODY>
|
75
|
-
</HTML>
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -1,158 +0,0 @@
|
|
1
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2
|
-
%%%%%%%% Style Setting %%%%%%%%
|
3
|
-
\documentclass[a4j,12pt,openbib]{jarticle}
|
4
|
-
|
5
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
6
|
-
%%%%%%%% Package Include %%%%%%%%
|
7
|
-
\usepackage{ascmac}
|
8
|
-
\usepackage{tabularx}
|
9
|
-
\usepackage{graphicx}
|
10
|
-
\usepackage{amssymb}
|
11
|
-
\usepackage{amsmath}
|
12
|
-
\usepackage{Dennou6}
|
13
|
-
%%%%%%%% PageStyle Setting %%%%%%%%
|
14
|
-
\pagestyle{Dmyheadings}
|
15
|
-
|
16
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
17
|
-
%%%%%%%% Title Setting %%%%%%%%
|
18
|
-
\Dtitle{NumRu::Derivative}
|
19
|
-
|
20
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
21
|
-
%%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
|
22
|
-
%\setcounter{chapter}{1}
|
23
|
-
\setcounter{section}{0}
|
24
|
-
\setcounter{equation}{0}
|
25
|
-
\setcounter{page}{1}
|
26
|
-
\setcounter{figure}{0}
|
27
|
-
\setcounter{footnote}{0}
|
28
|
-
|
29
|
-
|
30
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
31
|
-
%%%%%%%% Counter Output Format %%%%%%%%
|
32
|
-
|
33
|
-
%\def\thesection{\arabic{chapter}.\arabic{section}}
|
34
|
-
%\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
|
35
|
-
%\def\thepage{\arabic{page}}
|
36
|
-
%\def\thefigure{\arabic{section}.\arabic{figure}}
|
37
|
-
%\def\thetable{\arabic{section}.\arabic{table}}
|
38
|
-
%\def\thefootnote{\arabic{footnote}}
|
39
|
-
\def\thesection{\arabic{section}}
|
40
|
-
\def\theequation{\arabic{section}.\arabic{equation}}
|
41
|
-
\def\thepage{\arabic{page}}
|
42
|
-
\def\thefigure{\arabic{section}.\arabic{figure}}
|
43
|
-
\def\thetable{\arabic{section}.\arabic{table}}
|
44
|
-
\def\thefootnote{\arabic{footnote}}
|
45
|
-
|
46
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
47
|
-
%%%%%%%% Dennou-Style Definition %%%%%%%%
|
48
|
-
\Dparskip
|
49
|
-
%\Dnoparskip
|
50
|
-
\Dparindent
|
51
|
-
%\Dnoparindent
|
52
|
-
|
53
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
54
|
-
%%%%%%%% Local Definition %%%%%%%%
|
55
|
-
\def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
|
56
|
-
\def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
61
|
-
%%%%%%%% Text Start %%%%%%%%
|
62
|
-
\begin{document}
|
63
|
-
\section{�����ֳֳʻҤ������ٺ�ʬ}
|
64
|
-
�ܥɥ�����ȤǤ�, NumRu::Derivative ���������� threepoints\_O2nd\_deriv ���Ѥ���
|
65
|
-
�����ֳֳʻҤ������ٺ�ʬ�ˤĤ��ƤޤȤ��. ���κ�ʬ�϶�ü�������ֳ֤ǤϤʤ��ǡ�����
|
66
|
-
�Ф��������٤κ�ʬ��Ϳ�����ΤǤ���.
|
67
|
-
|
68
|
-
��, �ؿ�$f(x)$��, ���� $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$ ���Υ��������.
|
69
|
-
%
|
70
|
-
\begin{align}
|
71
|
-
f_i &\equiv f(x_i)\\
|
72
|
-
t &\equiv (x_{i+1} - x_{i})\\
|
73
|
-
s &\equiv (x_{i} - x_{i-1})
|
74
|
-
\end{align}
|
75
|
-
%
|
76
|
-
������, $s$��$t$�Ϥۤ�Ʊ�������������ͤǤ���������ꤷ�Ƶ�����ʤ��.
|
77
|
-
|
78
|
-
������, $f(x)$��Ƴʻ�����˵�ˤƥƥ��顼Ÿ������.
|
79
|
-
%
|
80
|
-
\begin{align}
|
81
|
-
f(x_{i+1}) - f(x_{i}) &= tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)\\
|
82
|
-
f(x_{i-1}) - f(x_{i}) &= -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)
|
83
|
-
\end{align}
|
84
|
-
%
|
85
|
-
������, $f'(x_i), f''(x_i)$�Ϥ��줾��$x_i$�ˤ�����$f$��$x$�˴ؤ���쳬���������ʬ��, $O(t^3)$��$t^3$�Υ����������ͤ�ɽ��. ξ������$f''$�ι��õ�뤿���, $s^2\times$(1.4) - $t^2\times$(1.5) ��������,
|
86
|
-
%
|
87
|
-
\begin{align}
|
88
|
-
s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1} &= (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)
|
89
|
-
\end{align}
|
90
|
-
%
|
91
|
-
�Ȥʤ�. �弰���ѷ�����
|
92
|
-
%
|
93
|
-
\begin{align}
|
94
|
-
\frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
|
95
|
-
&= f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}\\
|
96
|
-
&= O(t^2).
|
97
|
-
\end{align}
|
98
|
-
%
|
99
|
-
������, 2�����ٺ�ʬ�θ�����
|
100
|
-
\begin{align}
|
101
|
-
f'(x_i) &= \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
|
102
|
-
\end{align}
|
103
|
-
%
|
104
|
-
�Ƚ��Ȥ��Ǥ���.
|
105
|
-
|
106
|
-
\end{document}
|
107
|
-
%%%%%%%% Text End %%%%%%%%
|
108
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
109
|
-
|
110
|
-
|
111
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
112
|
-
%%%%%%%% Sample %%%%%%%%
|
113
|
-
|
114
|
-
%%%%%%%% ���� (��٥��դ�) %%%%%%%%
|
115
|
-
%
|
116
|
-
%\begin{eqnarray}
|
117
|
-
% \Deqlab{1.1} % ���ʽ�Ǥμ��ֹ�������.
|
118
|
-
% \DP{\rho}{t} + \Ddiv (\rho \Dvect{V}) = 0.
|
119
|
-
%\end{eqnarray}
|
120
|
-
%
|
121
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
122
|
-
|
123
|
-
|
124
|
-
%%%%%%%% ���� (���ֹ����Ω���ƽ������) %%%%%%%%
|
125
|
-
%
|
126
|
-
%$$
|
127
|
-
% \DP{p}{z} = \rho g.
|
128
|
-
% \eqno \textrm{(1.11)}
|
129
|
-
%$$
|
130
|
-
%
|
131
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
132
|
-
|
133
|
-
|
134
|
-
%%%%%%%% ����ʸ�� (��ʸ�˽��) %%%%%%%%
|
135
|
-
%
|
136
|
-
%{\bfseries ����ʸ��}
|
137
|
-
%\vspace{-7mm}
|
138
|
-
%\begin{description}
|
139
|
-
% \item ����̾, 2000:
|
140
|
-
% ����̾, (��, ��).
|
141
|
-
% ���Ǽ�, 319pp.
|
142
|
-
%\end{description}
|
143
|
-
%
|
144
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
145
|
-
|
146
|
-
%%%%%%%% �ޤ�Ž���� %%%%%%%%
|
147
|
-
%
|
148
|
-
%\begin{figure}[hbtp]
|
149
|
-
% \begin{center}
|
150
|
-
% \Depsf[][]{./SEC01/images/fig0101.eps}
|
151
|
-
% \end{center}
|
152
|
-
% \caption{
|
153
|
-
% ����
|
154
|
-
% }
|
155
|
-
% \Dfiglab{fig0101} % ���ʽ�οޤ��ֹ�������,
|
156
|
-
% % table �οޤξ��� tab0101
|
157
|
-
%\end{figure}
|
158
|
-
%
|
@@ -1,129 +0,0 @@
|
|
1
|
-
<?xml version="1.0" ?>
|
2
|
-
<!DOCTYPE html
|
3
|
-
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
4
|
-
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
5
|
-
<html xmlns="http://www.w3.org/1999/xhtml">
|
6
|
-
<head>
|
7
|
-
<title>../../lib/numru/derivative.rb</title>
|
8
|
-
</head>
|
9
|
-
<body>
|
10
|
-
<h1><a name="label:0" id="label:0">module NumRu::Derivative in derivative.rb</a></h1><!-- RDLabel: "module NumRu::Derivative in derivative.rb" -->
|
11
|
-
<h2><a name="label:1" id="label:1">todo</a></h2><!-- RDLabel: "todo" -->
|
12
|
-
<ul>
|
13
|
-
<li>decide argument of b_expand_linear_ext is Symbol or Numeric.
|
14
|
-
<ul>
|
15
|
-
<li>now is Numeric.</li>
|
16
|
-
<li>it denpends the treatment of dRuby.</li>
|
17
|
-
</ul></li>
|
18
|
-
<li>support other boundary conditions.</li>
|
19
|
-
</ul>
|
20
|
-
<h2><a name="label:2" id="label:2">Index</a></h2><!-- RDLabel: "Index" -->
|
21
|
-
<ul>
|
22
|
-
<li><a href="#label:3">module NumRu::Derivative</a>
|
23
|
-
<ul>
|
24
|
-
<li><a href="#label:4">threepoint_O2nd_deriv</a>
|
25
|
-
<ul>
|
26
|
-
<li>First derivative (2nd Order difference use three point.)</li>
|
27
|
-
</ul></li>
|
28
|
-
<li><a href="#label:5">cderiv</a>
|
29
|
-
<ul>
|
30
|
-
<li>First derivative (center difference use two point.)</li>
|
31
|
-
</ul></li>
|
32
|
-
<li><a href="#label:6">b_expand_linear_ext</a>
|
33
|
-
<ul>
|
34
|
-
<li>return array extended boundaries with linear extention.</li>
|
35
|
-
</ul></li>
|
36
|
-
<li><a href="#label:7">cdiff</a>
|
37
|
-
<ul>
|
38
|
-
<li>return difference. (center difference)</li>
|
39
|
-
</ul></li>
|
40
|
-
</ul></li>
|
41
|
-
</ul>
|
42
|
-
<h1><a name="label:3" id="label:3">module NumRu::Derivative</a></h1><!-- RDLabel: "module NumRu::Derivative" -->
|
43
|
-
<p>Module functions of Derivative Operater for NArray.</p>
|
44
|
-
<dl>
|
45
|
-
<dt><a name="label:4" id="label:4"><code>threepoint_O2nd_deriv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "threepoint_O2nd_deriv" -->
|
46
|
-
<dd>
|
47
|
-
<p>Derivate <code>z</code> respect to <code>dim</code> th dimension with 2nd Order difference.
|
48
|
-
return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
|
49
|
-
<code>x</code> (in other wards, </p>
|
50
|
-
<pre>(s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)):
|
51
|
-
now s represents (x_{i} - x_{i-1}) ,t represents (x_{i+1} - x_{i})
|
52
|
-
and _{i} represents the suffix of {i} th element in the ((<dim>)) th
|
53
|
-
dimension of array. ).</pre>
|
54
|
-
<p>ARGUMENTS</p>
|
55
|
-
<ul>
|
56
|
-
<li>z (NArray): a NArray which you want to derivative.</li>
|
57
|
-
<li>x (NArray): a NArray represents the dimension which derivative respect to.
|
58
|
-
z.rank must be 1.</li>
|
59
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative respect to.
|
60
|
-
you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
61
|
-
<li>bc (Numeric) : a Numeric which represent boundary condition.
|
62
|
-
now only LINEAR_EXT(=1) supported. LINEAR_EXT load <a href="#label:6">b_expand_linear_ext</a> which
|
63
|
-
extend boundary with lenear value.</li>
|
64
|
-
</ul>
|
65
|
-
<p>RETURN VALUE</p>
|
66
|
-
<ul>
|
67
|
-
<li>O2nd_deriv_data (NArray): (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t))</li>
|
68
|
-
</ul></dd>
|
69
|
-
<dt><a name="label:5" id="label:5"><code>cderiv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "cderiv" -->
|
70
|
-
<dd>
|
71
|
-
<p>Derivate <code>z</code> respect to <code>dim</code> th dimension with center difference.
|
72
|
-
return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
|
73
|
-
<code>x</code> ( in other wards, (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}):
|
74
|
-
now _{i} represents the suffix of {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th
|
75
|
-
dimension of array. ).</p>
|
76
|
-
<p>ARGUMENTS</p>
|
77
|
-
<ul>
|
78
|
-
<li>z (NArray): a NArray which you want to derivative.</li>
|
79
|
-
<li>x (NArray): a NArray represents the dimension which derivative respect
|
80
|
-
to. z.rank must be 1.</li>
|
81
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative
|
82
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
83
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
84
|
-
<li>bc (Numeric) : a Numeric which represent boundary condition.
|
85
|
-
now only LINEAR_EXT(=1) supported. LINEAR_EXT load
|
86
|
-
<a href="#label:6">b_expand_linear_ext</a> which extend boundary with lenear value.</li>
|
87
|
-
</ul>
|
88
|
-
<p>RETURN VALUE</p>
|
89
|
-
<ul>
|
90
|
-
<li>cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1})</li>
|
91
|
-
</ul></dd>
|
92
|
-
<dt><a name="label:6" id="label:6"><code>b_expand_linear_ext(<var>z</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "b_expand_linear_ext" -->
|
93
|
-
<dd>
|
94
|
-
<p>expand boundary with linear value. extend array with 1 grid at each
|
95
|
-
boundary with <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension, and assign th value which diffrential
|
96
|
-
value between a grid short of boundary and boundary grid in original array.
|
97
|
-
(on other wards, 2*z_{0}-z_{1} or 2*z_{n-1}-z_{n-2}: now _{i} represents the </p>
|
98
|
-
<pre>suffix of {i} th element in the ((<dim>)) th dimension of array. ).</pre>
|
99
|
-
<p>ARGUMENTS</p>
|
100
|
-
<ul>
|
101
|
-
<li>z (NArray): a NArray which you want to expand boundary.</li>
|
102
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative
|
103
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
104
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
105
|
-
</ul>
|
106
|
-
<p>RETURN VALUE</p>
|
107
|
-
<ul>
|
108
|
-
<li>expand_data (NArray): </li>
|
109
|
-
</ul></dd>
|
110
|
-
<dt><a name="label:7" id="label:7"><code>cdiff(<var>x</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "cdiff" -->
|
111
|
-
<dd>
|
112
|
-
<p>Diffrence operater. return an NArray which a difference <!-- Reference, RDLabel "x" doesn't exist --><em class="label-not-found">x</em><!-- Reference end -->
|
113
|
-
( in other wards, (x_{i+1} - x_{i-1}): now _{i} represents the suffix of
|
114
|
-
{i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension of array. ).</p>
|
115
|
-
<p>ARGUMENTS</p>
|
116
|
-
<ul>
|
117
|
-
<li>x (NArray): a NArray which you want to get difference.</li>
|
118
|
-
<li>dim (Numeric): a Numeric representing the dimention which derivative
|
119
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
120
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
121
|
-
</ul>
|
122
|
-
<p>RETURN VALUE</p>
|
123
|
-
<ul>
|
124
|
-
<li>cdiff_data (NArray): (x_{i+1} - x_{i-1})</li>
|
125
|
-
</ul></dd>
|
126
|
-
</dl>
|
127
|
-
|
128
|
-
</body>
|
129
|
-
</html>
|