gphys 1.1.1 → 1.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,238 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$BITEy4V3V3J;R$NFs<!@:EY:9J,(B">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="next" HREF="node2.html">
|
25
|
-
<LINK REL="previous" HREF="document.html">
|
26
|
-
<LINK REL="up" HREF="document.html">
|
27
|
-
<LINK REL="next" HREF="node2.html">
|
28
|
-
</HEAD>
|
29
|
-
|
30
|
-
<BODY >
|
31
|
-
<!--Navigation Panel-->
|
32
|
-
<A NAME="tex2html13"
|
33
|
-
HREF="node2.html">
|
34
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
35
|
-
<A NAME="tex2html11"
|
36
|
-
HREF="document.html">
|
37
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
38
|
-
<A NAME="tex2html5"
|
39
|
-
HREF="document.html">
|
40
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
41
|
-
<BR>
|
42
|
-
<B> :</B> <A NAME="tex2html14"
|
43
|
-
HREF="node2.html">$B$3$NJ8=q$K$D$$$F(B...</A>
|
44
|
-
<B> :</B> <A NAME="tex2html12"
|
45
|
-
HREF="document.html">NumRu::Derivative</A>
|
46
|
-
<B> :</B> <A NAME="tex2html6"
|
47
|
-
HREF="document.html">NumRu::Derivative</A>
|
48
|
-
<BR>
|
49
|
-
<BR>
|
50
|
-
<!--End of Navigation Panel-->
|
51
|
-
|
52
|
-
<H1><A NAME="SECTION000100000000000000000">
|
53
|
-
$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
|
54
|
-
</H1>
|
55
|
-
$BK\%I%-%e%a%s%H$G$O(B, NumRu::Derivative $B$GDj5A$5$l$k(B threepoints_O2nd_deriv $B$GMQ$$$k(B
|
56
|
-
$BITEy4V3V3J;R$NFs<!@:EY:9J,$K$D$$$F$^$H$a$k(B. $B$3$N:9J,$O6KC<$KITEy4V3V$G$O$J$$%G!<%?$K(B
|
57
|
-
$BBP$7$FFs<!@:EY$N:9J,$rM?$($k$b$N$G$"$k(B.
|
58
|
-
|
59
|
-
$B:#(B, $B4X?t(B<IMG
|
60
|
-
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
61
|
-
SRC="img1.png"
|
62
|
-
ALT="$ f(x)$">$B$r(B, $B?tNs(B <!-- MATH
|
63
|
-
$x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$
|
64
|
-
-->
|
65
|
-
<IMG
|
66
|
-
WIDTH="184" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
67
|
-
SRC="img2.png"
|
68
|
-
ALT="$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$"> $B>e$KN%;62=$9$k(B.
|
69
|
-
<P></P>
|
70
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
71
|
-
<TR VALIGN="MIDDLE">
|
72
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
73
|
-
WIDTH="19" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
74
|
-
SRC="img3.png"
|
75
|
-
ALT="$\displaystyle f_i$"></TD>
|
76
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
77
|
-
WIDTH="67" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
78
|
-
SRC="img4.png"
|
79
|
-
ALT="$\displaystyle \equiv f(x_i)$"></TD>
|
80
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
81
|
-
(1.1)</TD></TR>
|
82
|
-
<TR VALIGN="MIDDLE">
|
83
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
84
|
-
WIDTH="12" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
85
|
-
SRC="img5.png"
|
86
|
-
ALT="$\displaystyle t$"></TD>
|
87
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
88
|
-
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
89
|
-
SRC="img6.png"
|
90
|
-
ALT="$\displaystyle \equiv (x_{i+1} - x_{i})$"></TD>
|
91
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
92
|
-
(1.2)</TD></TR>
|
93
|
-
<TR VALIGN="MIDDLE">
|
94
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
95
|
-
WIDTH="14" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
96
|
-
SRC="img7.png"
|
97
|
-
ALT="$\displaystyle s$"></TD>
|
98
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
99
|
-
WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
100
|
-
SRC="img8.png"
|
101
|
-
ALT="$\displaystyle \equiv (x_{i} - x_{i-1})$"></TD>
|
102
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
103
|
-
(1.3)</TD></TR>
|
104
|
-
</TABLE></DIV>
|
105
|
-
<BR CLEAR="ALL"><P></P>
|
106
|
-
$B$3$3$G(B, <IMG
|
107
|
-
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
108
|
-
SRC="img9.png"
|
109
|
-
ALT="$ s$">$B$H(B<IMG
|
110
|
-
WIDTH="12" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
111
|
-
SRC="img10.png"
|
112
|
-
ALT="$ t$">$B$O$[$\F1$8%*!<%@!<$NCM$G$"$k>l9g$rA[Dj$7$F5DO@$r?J$a$k(B.
|
113
|
-
|
114
|
-
$B$3$3$G(B, <IMG
|
115
|
-
WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
116
|
-
SRC="img1.png"
|
117
|
-
ALT="$ f(x)$">$B$r3F3J;RE@6aK5$K$F%F%$%i!<E83+$9$k(B.
|
118
|
-
<P></P>
|
119
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
120
|
-
<TR VALIGN="MIDDLE">
|
121
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
122
|
-
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
123
|
-
SRC="img11.png"
|
124
|
-
ALT="$\displaystyle f(x_{i+1}) - f(x_{i})$"></TD>
|
125
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
126
|
-
WIDTH="235" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
127
|
-
SRC="img12.png"
|
128
|
-
ALT="$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$"></TD>
|
129
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
130
|
-
(1.4)</TD></TR>
|
131
|
-
<TR VALIGN="MIDDLE">
|
132
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
133
|
-
WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
134
|
-
SRC="img13.png"
|
135
|
-
ALT="$\displaystyle f(x_{i-1}) - f(x_{i})$"></TD>
|
136
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
137
|
-
WIDTH="256" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
138
|
-
SRC="img14.png"
|
139
|
-
ALT="$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$"></TD>
|
140
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
141
|
-
(1.5)</TD></TR>
|
142
|
-
</TABLE></DIV>
|
143
|
-
<BR CLEAR="ALL"><P></P>
|
144
|
-
$B$3$3$G(B, <!-- MATH
|
145
|
-
$f'(x_i), f''(x_i)$
|
146
|
-
-->
|
147
|
-
<IMG
|
148
|
-
WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
149
|
-
SRC="img15.png"
|
150
|
-
ALT="$ f'(x_i), f''(x_i)$">$B$O$=$l$>$l(B<IMG
|
151
|
-
WIDTH="21" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
152
|
-
SRC="img16.png"
|
153
|
-
ALT="$ x_i$">$B$K$*$1$k(B<IMG
|
154
|
-
WIDTH="16" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
155
|
-
SRC="img17.png"
|
156
|
-
ALT="$ f$">$B$N(B<IMG
|
157
|
-
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
158
|
-
SRC="img18.png"
|
159
|
-
ALT="$ x$">$B$K4X$9$k0l3,$*$h$SFs3,$NHyJ,9`(B, <IMG
|
160
|
-
WIDTH="48" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
161
|
-
SRC="img19.png"
|
162
|
-
ALT="$ O(t^3)$">$B$O(B<IMG
|
163
|
-
WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
|
164
|
-
SRC="img20.png"
|
165
|
-
ALT="$ t^3$">$B$N%*!<%@!<$NCM$rI=$9(B. $BN><0$+$i(B<IMG
|
166
|
-
WIDTH="24" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
|
167
|
-
SRC="img21.png"
|
168
|
-
ALT="$ f''$">$B$N9`$r>C5n$9$k$?$a$K(B, <IMG
|
169
|
-
WIDTH="36" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
170
|
-
SRC="img22.png"
|
171
|
-
ALT="$ s^2\times$">(1.4) - <IMG
|
172
|
-
WIDTH="34" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
173
|
-
SRC="img23.png"
|
174
|
-
ALT="$ t^2\times$">(1.5) $B$r7W;;$9$k$H(B,
|
175
|
-
<P></P>
|
176
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
177
|
-
<TR VALIGN="MIDDLE">
|
178
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
179
|
-
WIDTH="229" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
180
|
-
SRC="img24.png"
|
181
|
-
ALT="$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$"></TD>
|
182
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
183
|
-
WIDTH="314" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
184
|
-
SRC="img25.png"
|
185
|
-
ALT="$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$"></TD>
|
186
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
187
|
-
(1.6)</TD></TR>
|
188
|
-
</TABLE></DIV>
|
189
|
-
<BR CLEAR="ALL"><P></P>
|
190
|
-
$B$H$J$k(B. $B>e<0$rJQ7A$7$F(B
|
191
|
-
<P></P>
|
192
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
193
|
-
<TR VALIGN="MIDDLE">
|
194
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
195
|
-
WIDTH="233" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
196
|
-
SRC="img26.png"
|
197
|
-
ALT="$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
|
198
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
199
|
-
WIDTH="241" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
200
|
-
SRC="img27.png"
|
201
|
-
ALT="$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$"></TD>
|
202
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
203
|
-
(1.7)</TD></TR>
|
204
|
-
<TR VALIGN="MIDDLE">
|
205
|
-
<TD> </TD>
|
206
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
207
|
-
WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
|
208
|
-
SRC="img28.png"
|
209
|
-
ALT="$\displaystyle = O(t^2).$"></TD>
|
210
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
211
|
-
(1.8)</TD></TR>
|
212
|
-
</TABLE></DIV>
|
213
|
-
<BR CLEAR="ALL"><P></P>
|
214
|
-
$B$3$l$h$j(B, 2$B<!@:EY:9J,$N8x<0$O(B
|
215
|
-
<P></P>
|
216
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
217
|
-
<TR VALIGN="MIDDLE">
|
218
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
219
|
-
WIDTH="51" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
|
220
|
-
SRC="img29.png"
|
221
|
-
ALT="$\displaystyle f'(x_i)$"></TD>
|
222
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
223
|
-
WIDTH="252" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
|
224
|
-
SRC="img30.png"
|
225
|
-
ALT="$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
|
226
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
227
|
-
(1.9)</TD></TR>
|
228
|
-
</TABLE></DIV>
|
229
|
-
<BR CLEAR="ALL"><P></P>
|
230
|
-
$B$H=q$/$3$H$,$G$-$k(B.
|
231
|
-
|
232
|
-
<BR><HR>
|
233
|
-
<ADDRESS>
|
234
|
-
Tsukahara Daisuke
|
235
|
-
$BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
|
236
|
-
</ADDRESS>
|
237
|
-
</BODY>
|
238
|
-
</HTML>
|
@@ -1,75 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$B$3$NJ8=q$K$D$$$F(B...</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$B$3$NJ8=q$K$D$$$F(B...">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="previous" HREF="node1.html">
|
25
|
-
<LINK REL="up" HREF="document.html">
|
26
|
-
</HEAD>
|
27
|
-
|
28
|
-
<BODY >
|
29
|
-
<!--Navigation Panel-->
|
30
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_g.png">
|
31
|
-
<A NAME="tex2html19"
|
32
|
-
HREF="document.html">
|
33
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
34
|
-
<A NAME="tex2html15"
|
35
|
-
HREF="node1.html">
|
36
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
37
|
-
<BR>
|
38
|
-
<B> :</B> <A NAME="tex2html20"
|
39
|
-
HREF="document.html">NumRu::Derivative</A>
|
40
|
-
<B> :</B> <A NAME="tex2html16"
|
41
|
-
HREF="node1.html">$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
|
42
|
-
<BR>
|
43
|
-
<BR>
|
44
|
-
<!--End of Navigation Panel-->
|
45
|
-
|
46
|
-
<H1><A NAME="SECTION000200000000000000000">
|
47
|
-
$B$3$NJ8=q$K$D$$$F(B...</A>
|
48
|
-
</H1>
|
49
|
-
<STRONG>NumRu::Derivative</STRONG><P>
|
50
|
-
$B$3$NJ8=q$O(B<A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> $BK]Lu%W%m%0%i%`(B Version 2K.1beta (1.48)
|
51
|
-
<P>
|
52
|
-
Copyright © 1993, 1994, 1995, 1996,
|
53
|
-
<A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,
|
54
|
-
Computer Based Learning Unit, University of Leeds,
|
55
|
-
<BR>
|
56
|
-
Copyright © 1997, 1998, 1999,
|
57
|
-
<A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,
|
58
|
-
Mathematics Department, Macquarie University, Sydney.
|
59
|
-
<P>$B$r(B<A HREF="http://www.topstudio.co.jp/~kmuto/software/latex2html/">$BF|K\8l2=$7$?$b$N(B</A>(
|
60
|
-
2K.1beta (1.48) JA patch-1.4 $BHG(B)
|
61
|
-
<P>
|
62
|
-
Copyright © 1998, 1999,
|
63
|
-
<A HREF="http://www.topstudio.co.jp/~kmuto/">Kenshi Muto</A>,
|
64
|
-
Debian Project.
|
65
|
-
<P>$B$rMQ$$$F@8@.$5$l$^$7$?!#(B
|
66
|
-
<P>$B%3%^%s%I9T$O0J2<$NDL$j$G$7$?!#(B: <BR>
|
67
|
-
<STRONG>latex2html</STRONG> <tt>-local_icons document.tex</tt>.
|
68
|
-
<P>$BK]Lu$O(B Tsukahara Daisuke $B$K$h$C$F(B $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B $B$K<B9T$5$l$^$7$?!#(B
|
69
|
-
<BR><HR>
|
70
|
-
<ADDRESS>
|
71
|
-
Tsukahara Daisuke
|
72
|
-
$BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
|
73
|
-
</ADDRESS>
|
74
|
-
</BODY>
|
75
|
-
</HTML>
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -1,158 +0,0 @@
|
|
1
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2
|
-
%%%%%%%% Style Setting %%%%%%%%
|
3
|
-
\documentclass[a4j,12pt,openbib]{jarticle}
|
4
|
-
|
5
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
6
|
-
%%%%%%%% Package Include %%%%%%%%
|
7
|
-
\usepackage{ascmac}
|
8
|
-
\usepackage{tabularx}
|
9
|
-
\usepackage{graphicx}
|
10
|
-
\usepackage{amssymb}
|
11
|
-
\usepackage{amsmath}
|
12
|
-
\usepackage{Dennou6}
|
13
|
-
%%%%%%%% PageStyle Setting %%%%%%%%
|
14
|
-
\pagestyle{Dmyheadings}
|
15
|
-
|
16
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
17
|
-
%%%%%%%% Title Setting %%%%%%%%
|
18
|
-
\Dtitle{NumRu::Derivative}
|
19
|
-
|
20
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
21
|
-
%%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
|
22
|
-
%\setcounter{chapter}{1}
|
23
|
-
\setcounter{section}{0}
|
24
|
-
\setcounter{equation}{0}
|
25
|
-
\setcounter{page}{1}
|
26
|
-
\setcounter{figure}{0}
|
27
|
-
\setcounter{footnote}{0}
|
28
|
-
|
29
|
-
|
30
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
31
|
-
%%%%%%%% Counter Output Format %%%%%%%%
|
32
|
-
|
33
|
-
%\def\thesection{\arabic{chapter}.\arabic{section}}
|
34
|
-
%\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
|
35
|
-
%\def\thepage{\arabic{page}}
|
36
|
-
%\def\thefigure{\arabic{section}.\arabic{figure}}
|
37
|
-
%\def\thetable{\arabic{section}.\arabic{table}}
|
38
|
-
%\def\thefootnote{\arabic{footnote}}
|
39
|
-
\def\thesection{\arabic{section}}
|
40
|
-
\def\theequation{\arabic{section}.\arabic{equation}}
|
41
|
-
\def\thepage{\arabic{page}}
|
42
|
-
\def\thefigure{\arabic{section}.\arabic{figure}}
|
43
|
-
\def\thetable{\arabic{section}.\arabic{table}}
|
44
|
-
\def\thefootnote{\arabic{footnote}}
|
45
|
-
|
46
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
47
|
-
%%%%%%%% Dennou-Style Definition %%%%%%%%
|
48
|
-
\Dparskip
|
49
|
-
%\Dnoparskip
|
50
|
-
\Dparindent
|
51
|
-
%\Dnoparindent
|
52
|
-
|
53
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
54
|
-
%%%%%%%% Local Definition %%%%%%%%
|
55
|
-
\def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
|
56
|
-
\def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
61
|
-
%%%%%%%% Text Start %%%%%%%%
|
62
|
-
\begin{document}
|
63
|
-
\section{�����ֳֳʻҤ������ٺ�ʬ}
|
64
|
-
�ܥɥ�����ȤǤ�, NumRu::Derivative ���������� threepoints\_O2nd\_deriv ���Ѥ���
|
65
|
-
�����ֳֳʻҤ������ٺ�ʬ�ˤĤ��ƤޤȤ��. ���κ�ʬ�϶�ü�������ֳ֤ǤϤʤ��ǡ�����
|
66
|
-
�Ф��������٤κ�ʬ��Ϳ�����ΤǤ���.
|
67
|
-
|
68
|
-
��, �ؿ�$f(x)$��, ���� $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$ ���Υ��������.
|
69
|
-
%
|
70
|
-
\begin{align}
|
71
|
-
f_i &\equiv f(x_i)\\
|
72
|
-
t &\equiv (x_{i+1} - x_{i})\\
|
73
|
-
s &\equiv (x_{i} - x_{i-1})
|
74
|
-
\end{align}
|
75
|
-
%
|
76
|
-
������, $s$��$t$�Ϥۤ�Ʊ�������������ͤǤ���������ꤷ�Ƶ�����ʤ��.
|
77
|
-
|
78
|
-
������, $f(x)$��Ƴʻ�����˵�ˤƥƥ��顼Ÿ������.
|
79
|
-
%
|
80
|
-
\begin{align}
|
81
|
-
f(x_{i+1}) - f(x_{i}) &= tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)\\
|
82
|
-
f(x_{i-1}) - f(x_{i}) &= -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)
|
83
|
-
\end{align}
|
84
|
-
%
|
85
|
-
������, $f'(x_i), f''(x_i)$�Ϥ��줾��$x_i$�ˤ�����$f$��$x$�˴ؤ���쳬���������ʬ��, $O(t^3)$��$t^3$�Υ����������ͤ�ɽ��. ξ������$f''$�ι��õ�뤿���, $s^2\times$(1.4) - $t^2\times$(1.5) ��������,
|
86
|
-
%
|
87
|
-
\begin{align}
|
88
|
-
s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1} &= (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)
|
89
|
-
\end{align}
|
90
|
-
%
|
91
|
-
�Ȥʤ�. �弰���ѷ�����
|
92
|
-
%
|
93
|
-
\begin{align}
|
94
|
-
\frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
|
95
|
-
&= f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}\\
|
96
|
-
&= O(t^2).
|
97
|
-
\end{align}
|
98
|
-
%
|
99
|
-
������, 2�����ٺ�ʬ�θ�����
|
100
|
-
\begin{align}
|
101
|
-
f'(x_i) &= \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
|
102
|
-
\end{align}
|
103
|
-
%
|
104
|
-
�Ƚ��Ȥ��Ǥ���.
|
105
|
-
|
106
|
-
\end{document}
|
107
|
-
%%%%%%%% Text End %%%%%%%%
|
108
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
109
|
-
|
110
|
-
|
111
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
112
|
-
%%%%%%%% Sample %%%%%%%%
|
113
|
-
|
114
|
-
%%%%%%%% ���� (��٥��դ�) %%%%%%%%
|
115
|
-
%
|
116
|
-
%\begin{eqnarray}
|
117
|
-
% \Deqlab{1.1} % ���ʽ�Ǥμ��ֹ�������.
|
118
|
-
% \DP{\rho}{t} + \Ddiv (\rho \Dvect{V}) = 0.
|
119
|
-
%\end{eqnarray}
|
120
|
-
%
|
121
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
122
|
-
|
123
|
-
|
124
|
-
%%%%%%%% ���� (���ֹ����Ω���ƽ������) %%%%%%%%
|
125
|
-
%
|
126
|
-
%$$
|
127
|
-
% \DP{p}{z} = \rho g.
|
128
|
-
% \eqno \textrm{(1.11)}
|
129
|
-
%$$
|
130
|
-
%
|
131
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
132
|
-
|
133
|
-
|
134
|
-
%%%%%%%% ����ʸ�� (��ʸ�˽��) %%%%%%%%
|
135
|
-
%
|
136
|
-
%{\bfseries ����ʸ��}
|
137
|
-
%\vspace{-7mm}
|
138
|
-
%\begin{description}
|
139
|
-
% \item ����̾, 2000:
|
140
|
-
% ����̾, (��, ��).
|
141
|
-
% ���Ǽ�, 319pp.
|
142
|
-
%\end{description}
|
143
|
-
%
|
144
|
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
145
|
-
|
146
|
-
%%%%%%%% �ޤ�Ž���� %%%%%%%%
|
147
|
-
%
|
148
|
-
%\begin{figure}[hbtp]
|
149
|
-
% \begin{center}
|
150
|
-
% \Depsf[][]{./SEC01/images/fig0101.eps}
|
151
|
-
% \end{center}
|
152
|
-
% \caption{
|
153
|
-
% ����
|
154
|
-
% }
|
155
|
-
% \Dfiglab{fig0101} % ���ʽ�οޤ��ֹ�������,
|
156
|
-
% % table �οޤξ��� tab0101
|
157
|
-
%\end{figure}
|
158
|
-
%
|
@@ -1,129 +0,0 @@
|
|
1
|
-
<?xml version="1.0" ?>
|
2
|
-
<!DOCTYPE html
|
3
|
-
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
4
|
-
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
5
|
-
<html xmlns="http://www.w3.org/1999/xhtml">
|
6
|
-
<head>
|
7
|
-
<title>../../lib/numru/derivative.rb</title>
|
8
|
-
</head>
|
9
|
-
<body>
|
10
|
-
<h1><a name="label:0" id="label:0">module NumRu::Derivative in derivative.rb</a></h1><!-- RDLabel: "module NumRu::Derivative in derivative.rb" -->
|
11
|
-
<h2><a name="label:1" id="label:1">todo</a></h2><!-- RDLabel: "todo" -->
|
12
|
-
<ul>
|
13
|
-
<li>decide argument of b_expand_linear_ext is Symbol or Numeric.
|
14
|
-
<ul>
|
15
|
-
<li>now is Numeric.</li>
|
16
|
-
<li>it denpends the treatment of dRuby.</li>
|
17
|
-
</ul></li>
|
18
|
-
<li>support other boundary conditions.</li>
|
19
|
-
</ul>
|
20
|
-
<h2><a name="label:2" id="label:2">Index</a></h2><!-- RDLabel: "Index" -->
|
21
|
-
<ul>
|
22
|
-
<li><a href="#label:3">module NumRu::Derivative</a>
|
23
|
-
<ul>
|
24
|
-
<li><a href="#label:4">threepoint_O2nd_deriv</a>
|
25
|
-
<ul>
|
26
|
-
<li>First derivative (2nd Order difference use three point.)</li>
|
27
|
-
</ul></li>
|
28
|
-
<li><a href="#label:5">cderiv</a>
|
29
|
-
<ul>
|
30
|
-
<li>First derivative (center difference use two point.)</li>
|
31
|
-
</ul></li>
|
32
|
-
<li><a href="#label:6">b_expand_linear_ext</a>
|
33
|
-
<ul>
|
34
|
-
<li>return array extended boundaries with linear extention.</li>
|
35
|
-
</ul></li>
|
36
|
-
<li><a href="#label:7">cdiff</a>
|
37
|
-
<ul>
|
38
|
-
<li>return difference. (center difference)</li>
|
39
|
-
</ul></li>
|
40
|
-
</ul></li>
|
41
|
-
</ul>
|
42
|
-
<h1><a name="label:3" id="label:3">module NumRu::Derivative</a></h1><!-- RDLabel: "module NumRu::Derivative" -->
|
43
|
-
<p>Module functions of Derivative Operater for NArray.</p>
|
44
|
-
<dl>
|
45
|
-
<dt><a name="label:4" id="label:4"><code>threepoint_O2nd_deriv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "threepoint_O2nd_deriv" -->
|
46
|
-
<dd>
|
47
|
-
<p>Derivate <code>z</code> respect to <code>dim</code> th dimension with 2nd Order difference.
|
48
|
-
return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
|
49
|
-
<code>x</code> (in other wards, </p>
|
50
|
-
<pre>(s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)):
|
51
|
-
now s represents (x_{i} - x_{i-1}) ,t represents (x_{i+1} - x_{i})
|
52
|
-
and _{i} represents the suffix of {i} th element in the ((<dim>)) th
|
53
|
-
dimension of array. ).</pre>
|
54
|
-
<p>ARGUMENTS</p>
|
55
|
-
<ul>
|
56
|
-
<li>z (NArray): a NArray which you want to derivative.</li>
|
57
|
-
<li>x (NArray): a NArray represents the dimension which derivative respect to.
|
58
|
-
z.rank must be 1.</li>
|
59
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative respect to.
|
60
|
-
you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
61
|
-
<li>bc (Numeric) : a Numeric which represent boundary condition.
|
62
|
-
now only LINEAR_EXT(=1) supported. LINEAR_EXT load <a href="#label:6">b_expand_linear_ext</a> which
|
63
|
-
extend boundary with lenear value.</li>
|
64
|
-
</ul>
|
65
|
-
<p>RETURN VALUE</p>
|
66
|
-
<ul>
|
67
|
-
<li>O2nd_deriv_data (NArray): (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t))</li>
|
68
|
-
</ul></dd>
|
69
|
-
<dt><a name="label:5" id="label:5"><code>cderiv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "cderiv" -->
|
70
|
-
<dd>
|
71
|
-
<p>Derivate <code>z</code> respect to <code>dim</code> th dimension with center difference.
|
72
|
-
return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
|
73
|
-
<code>x</code> ( in other wards, (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}):
|
74
|
-
now _{i} represents the suffix of {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th
|
75
|
-
dimension of array. ).</p>
|
76
|
-
<p>ARGUMENTS</p>
|
77
|
-
<ul>
|
78
|
-
<li>z (NArray): a NArray which you want to derivative.</li>
|
79
|
-
<li>x (NArray): a NArray represents the dimension which derivative respect
|
80
|
-
to. z.rank must be 1.</li>
|
81
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative
|
82
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
83
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
84
|
-
<li>bc (Numeric) : a Numeric which represent boundary condition.
|
85
|
-
now only LINEAR_EXT(=1) supported. LINEAR_EXT load
|
86
|
-
<a href="#label:6">b_expand_linear_ext</a> which extend boundary with lenear value.</li>
|
87
|
-
</ul>
|
88
|
-
<p>RETURN VALUE</p>
|
89
|
-
<ul>
|
90
|
-
<li>cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1})</li>
|
91
|
-
</ul></dd>
|
92
|
-
<dt><a name="label:6" id="label:6"><code>b_expand_linear_ext(<var>z</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "b_expand_linear_ext" -->
|
93
|
-
<dd>
|
94
|
-
<p>expand boundary with linear value. extend array with 1 grid at each
|
95
|
-
boundary with <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension, and assign th value which diffrential
|
96
|
-
value between a grid short of boundary and boundary grid in original array.
|
97
|
-
(on other wards, 2*z_{0}-z_{1} or 2*z_{n-1}-z_{n-2}: now _{i} represents the </p>
|
98
|
-
<pre>suffix of {i} th element in the ((<dim>)) th dimension of array. ).</pre>
|
99
|
-
<p>ARGUMENTS</p>
|
100
|
-
<ul>
|
101
|
-
<li>z (NArray): a NArray which you want to expand boundary.</li>
|
102
|
-
<li>dim (Numeric): a Numeric represents the dimention which derivative
|
103
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
104
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
105
|
-
</ul>
|
106
|
-
<p>RETURN VALUE</p>
|
107
|
-
<ul>
|
108
|
-
<li>expand_data (NArray): </li>
|
109
|
-
</ul></dd>
|
110
|
-
<dt><a name="label:7" id="label:7"><code>cdiff(<var>x</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "cdiff" -->
|
111
|
-
<dd>
|
112
|
-
<p>Diffrence operater. return an NArray which a difference <!-- Reference, RDLabel "x" doesn't exist --><em class="label-not-found">x</em><!-- Reference end -->
|
113
|
-
( in other wards, (x_{i+1} - x_{i-1}): now _{i} represents the suffix of
|
114
|
-
{i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension of array. ).</p>
|
115
|
-
<p>ARGUMENTS</p>
|
116
|
-
<ul>
|
117
|
-
<li>x (NArray): a NArray which you want to get difference.</li>
|
118
|
-
<li>dim (Numeric): a Numeric representing the dimention which derivative
|
119
|
-
respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --><0), but
|
120
|
-
<!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be > 0. </li>
|
121
|
-
</ul>
|
122
|
-
<p>RETURN VALUE</p>
|
123
|
-
<ul>
|
124
|
-
<li>cdiff_data (NArray): (x_{i+1} - x_{i-1})</li>
|
125
|
-
</ul></dd>
|
126
|
-
</dl>
|
127
|
-
|
128
|
-
</body>
|
129
|
-
</html>
|