gphys 1.1.1 → 1.2.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,238 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</TITLE>
13
- <META NAME="description" CONTENT="$BITEy4V3V3J;R$NFs<!@:EY:9J,(B">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="next" HREF="node2.html">
25
- <LINK REL="previous" HREF="document.html">
26
- <LINK REL="up" HREF="document.html">
27
- <LINK REL="next" HREF="node2.html">
28
- </HEAD>
29
-
30
- <BODY >
31
- <!--Navigation Panel-->
32
- <A NAME="tex2html13"
33
- HREF="node2.html">
34
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
35
- <A NAME="tex2html11"
36
- HREF="document.html">
37
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
38
- <A NAME="tex2html5"
39
- HREF="document.html">
40
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
41
- <BR>
42
- <B> :</B> <A NAME="tex2html14"
43
- HREF="node2.html">$B$3$NJ8=q$K$D$$$F(B...</A>
44
- <B> :</B> <A NAME="tex2html12"
45
- HREF="document.html">NumRu::Derivative</A>
46
- <B> :</B> <A NAME="tex2html6"
47
- HREF="document.html">NumRu::Derivative</A>
48
- <BR>
49
- <BR>
50
- <!--End of Navigation Panel-->
51
-
52
- <H1><A NAME="SECTION000100000000000000000">
53
- $BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
54
- </H1>
55
- $BK\%I%-%e%a%s%H$G$O(B, NumRu::Derivative $B$GDj5A$5$l$k(B threepoints_O2nd_deriv $B$GMQ$$$k(B
56
- $BITEy4V3V3J;R$NFs<!@:EY:9J,$K$D$$$F$^$H$a$k(B. $B$3$N:9J,$O6KC<$KITEy4V3V$G$O$J$$%G!<%?$K(B
57
- $BBP$7$FFs<!@:EY$N:9J,$rM?$($k$b$N$G$"$k(B.
58
-
59
- $B:#(B, $B4X?t(B<IMG
60
- WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
61
- SRC="img1.png"
62
- ALT="$ f(x)$">$B$r(B, $B?tNs(B <!-- MATH
63
- $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$
64
- -->
65
- <IMG
66
- WIDTH="184" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
67
- SRC="img2.png"
68
- ALT="$ x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$"> $B>e$KN%;62=$9$k(B.
69
- <P></P>
70
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
71
- <TR VALIGN="MIDDLE">
72
- <TD NOWRAP ALIGN="RIGHT"><IMG
73
- WIDTH="19" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
74
- SRC="img3.png"
75
- ALT="$\displaystyle f_i$"></TD>
76
- <TD NOWRAP ALIGN="LEFT"><IMG
77
- WIDTH="67" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
78
- SRC="img4.png"
79
- ALT="$\displaystyle \equiv f(x_i)$"></TD>
80
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
81
- (1.1)</TD></TR>
82
- <TR VALIGN="MIDDLE">
83
- <TD NOWRAP ALIGN="RIGHT"><IMG
84
- WIDTH="12" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
85
- SRC="img5.png"
86
- ALT="$\displaystyle t$"></TD>
87
- <TD NOWRAP ALIGN="LEFT"><IMG
88
- WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
89
- SRC="img6.png"
90
- ALT="$\displaystyle \equiv (x_{i+1} - x_{i})$"></TD>
91
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
92
- (1.2)</TD></TR>
93
- <TR VALIGN="MIDDLE">
94
- <TD NOWRAP ALIGN="RIGHT"><IMG
95
- WIDTH="14" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
96
- SRC="img7.png"
97
- ALT="$\displaystyle s$"></TD>
98
- <TD NOWRAP ALIGN="LEFT"><IMG
99
- WIDTH="112" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
100
- SRC="img8.png"
101
- ALT="$\displaystyle \equiv (x_{i} - x_{i-1})$"></TD>
102
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
103
- (1.3)</TD></TR>
104
- </TABLE></DIV>
105
- <BR CLEAR="ALL"><P></P>
106
- $B$3$3$G(B, <IMG
107
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
108
- SRC="img9.png"
109
- ALT="$ s$">$B$H(B<IMG
110
- WIDTH="12" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
111
- SRC="img10.png"
112
- ALT="$ t$">$B$O$[$\F1$8%*!<%@!<$NCM$G$"$k>l9g$rA[Dj$7$F5DO@$r?J$a$k(B.
113
-
114
- $B$3$3$G(B, <IMG
115
- WIDTH="41" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
116
- SRC="img1.png"
117
- ALT="$ f(x)$">$B$r3F3J;RE@6aK5$K$F%F%$%i!<E83+$9$k(B.
118
- <P></P>
119
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
120
- <TR VALIGN="MIDDLE">
121
- <TD NOWRAP ALIGN="RIGHT"><IMG
122
- WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
123
- SRC="img11.png"
124
- ALT="$\displaystyle f(x_{i+1}) - f(x_{i})$"></TD>
125
- <TD NOWRAP ALIGN="LEFT"><IMG
126
- WIDTH="235" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
127
- SRC="img12.png"
128
- ALT="$\displaystyle = tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)$"></TD>
129
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
130
- (1.4)</TD></TR>
131
- <TR VALIGN="MIDDLE">
132
- <TD NOWRAP ALIGN="RIGHT"><IMG
133
- WIDTH="129" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
134
- SRC="img13.png"
135
- ALT="$\displaystyle f(x_{i-1}) - f(x_{i})$"></TD>
136
- <TD NOWRAP ALIGN="LEFT"><IMG
137
- WIDTH="256" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
138
- SRC="img14.png"
139
- ALT="$\displaystyle = -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)$"></TD>
140
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
141
- (1.5)</TD></TR>
142
- </TABLE></DIV>
143
- <BR CLEAR="ALL"><P></P>
144
- $B$3$3$G(B, <!-- MATH
145
- $f'(x_i), f''(x_i)$
146
- -->
147
- <IMG
148
- WIDTH="109" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
149
- SRC="img15.png"
150
- ALT="$ f'(x_i), f''(x_i)$">$B$O$=$l$>$l(B<IMG
151
- WIDTH="21" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
152
- SRC="img16.png"
153
- ALT="$ x_i$">$B$K$*$1$k(B<IMG
154
- WIDTH="16" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
155
- SRC="img17.png"
156
- ALT="$ f$">$B$N(B<IMG
157
- WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
158
- SRC="img18.png"
159
- ALT="$ x$">$B$K4X$9$k0l3,$*$h$SFs3,$NHyJ,9`(B, <IMG
160
- WIDTH="48" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
161
- SRC="img19.png"
162
- ALT="$ O(t^3)$">$B$O(B<IMG
163
- WIDTH="19" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
164
- SRC="img20.png"
165
- ALT="$ t^3$">$B$N%*!<%@!<$NCM$rI=$9(B. $BN><0$+$i(B<IMG
166
- WIDTH="24" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
167
- SRC="img21.png"
168
- ALT="$ f''$">$B$N9`$r>C5n$9$k$?$a$K(B, <IMG
169
- WIDTH="36" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
170
- SRC="img22.png"
171
- ALT="$ s^2\times$">(1.4) - <IMG
172
- WIDTH="34" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
173
- SRC="img23.png"
174
- ALT="$ t^2\times$">(1.5) $B$r7W;;$9$k$H(B,
175
- <P></P>
176
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
177
- <TR VALIGN="MIDDLE">
178
- <TD NOWRAP ALIGN="RIGHT"><IMG
179
- WIDTH="229" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
180
- SRC="img24.png"
181
- ALT="$\displaystyle s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}$"></TD>
182
- <TD NOWRAP ALIGN="LEFT"><IMG
183
- WIDTH="314" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
184
- SRC="img25.png"
185
- ALT="$\displaystyle = (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)$"></TD>
186
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
187
- (1.6)</TD></TR>
188
- </TABLE></DIV>
189
- <BR CLEAR="ALL"><P></P>
190
- $B$H$J$k(B. $B>e<0$rJQ7A$7$F(B
191
- <P></P>
192
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
193
- <TR VALIGN="MIDDLE">
194
- <TD NOWRAP ALIGN="RIGHT"><IMG
195
- WIDTH="233" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
196
- SRC="img26.png"
197
- ALT="$\displaystyle \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
198
- <TD NOWRAP ALIGN="LEFT"><IMG
199
- WIDTH="241" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
200
- SRC="img27.png"
201
- ALT="$\displaystyle = f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}$"></TD>
202
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
203
- (1.7)</TD></TR>
204
- <TR VALIGN="MIDDLE">
205
- <TD>&nbsp;</TD>
206
- <TD NOWRAP ALIGN="LEFT"><IMG
207
- WIDTH="73" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
208
- SRC="img28.png"
209
- ALT="$\displaystyle = O(t^2).$"></TD>
210
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
211
- (1.8)</TD></TR>
212
- </TABLE></DIV>
213
- <BR CLEAR="ALL"><P></P>
214
- $B$3$l$h$j(B, 2$B<!@:EY:9J,$N8x<0$O(B
215
- <P></P>
216
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
217
- <TR VALIGN="MIDDLE">
218
- <TD NOWRAP ALIGN="RIGHT"><IMG
219
- WIDTH="51" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
220
- SRC="img29.png"
221
- ALT="$\displaystyle f'(x_i)$"></TD>
222
- <TD NOWRAP ALIGN="LEFT"><IMG
223
- WIDTH="252" HEIGHT="64" ALIGN="MIDDLE" BORDER="0"
224
- SRC="img30.png"
225
- ALT="$\displaystyle = \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}$"></TD>
226
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
227
- (1.9)</TD></TR>
228
- </TABLE></DIV>
229
- <BR CLEAR="ALL"><P></P>
230
- $B$H=q$/$3$H$,$G$-$k(B.
231
-
232
- <BR><HR>
233
- <ADDRESS>
234
- Tsukahara Daisuke
235
- $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
236
- </ADDRESS>
237
- </BODY>
238
- </HTML>
@@ -1,75 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$B$3$NJ8=q$K$D$$$F(B...</TITLE>
13
- <META NAME="description" CONTENT="$B$3$NJ8=q$K$D$$$F(B...">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="previous" HREF="node1.html">
25
- <LINK REL="up" HREF="document.html">
26
- </HEAD>
27
-
28
- <BODY >
29
- <!--Navigation Panel-->
30
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_g.png">
31
- <A NAME="tex2html19"
32
- HREF="document.html">
33
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
34
- <A NAME="tex2html15"
35
- HREF="node1.html">
36
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
37
- <BR>
38
- <B> :</B> <A NAME="tex2html20"
39
- HREF="document.html">NumRu::Derivative</A>
40
- <B> :</B> <A NAME="tex2html16"
41
- HREF="node1.html">$BITEy4V3V3J;R$NFs<!@:EY:9J,(B</A>
42
- <BR>
43
- <BR>
44
- <!--End of Navigation Panel-->
45
-
46
- <H1><A NAME="SECTION000200000000000000000">
47
- $B$3$NJ8=q$K$D$$$F(B...</A>
48
- </H1>
49
- <STRONG>NumRu::Derivative</STRONG><P>
50
- $B$3$NJ8=q$O(B<A HREF="http://www-texdev.mpce.mq.edu.au/l2h/docs/manual/"><STRONG>LaTeX</STRONG>2<tt>HTML</tt></A> $BK]Lu%W%m%0%i%`(B Version 2K.1beta (1.48)
51
- <P>
52
- Copyright &#169; 1993, 1994, 1995, 1996,
53
- <A HREF="http://cbl.leeds.ac.uk/nikos/personal.html">Nikos Drakos</A>,
54
- Computer Based Learning Unit, University of Leeds,
55
- <BR>
56
- Copyright &#169; 1997, 1998, 1999,
57
- <A HREF="http://www.maths.mq.edu.au/~ross/">Ross Moore</A>,
58
- Mathematics Department, Macquarie University, Sydney.
59
- <P>$B$r(B<A HREF="http://www.topstudio.co.jp/~kmuto/software/latex2html/">$BF|K\8l2=$7$?$b$N(B</A>(
60
- 2K.1beta (1.48) JA patch-1.4 $BHG(B)
61
- <P>
62
- Copyright &#169; 1998, 1999,
63
- <A HREF="http://www.topstudio.co.jp/~kmuto/">Kenshi Muto</A>,
64
- Debian Project.
65
- <P>$B$rMQ$$$F@8@.$5$l$^$7$?!#(B
66
- <P>$B%3%^%s%I9T$O0J2<$NDL$j$G$7$?!#(B: <BR>
67
- <STRONG>latex2html</STRONG> <tt>-local_icons document.tex</tt>.
68
- <P>$BK]Lu$O(B Tsukahara Daisuke $B$K$h$C$F(B $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B $B$K<B9T$5$l$^$7$?!#(B
69
- <BR><HR>
70
- <ADDRESS>
71
- Tsukahara Daisuke
72
- $BJ?@.(B17$BG/(B3$B7n(B3$BF|(B
73
- </ADDRESS>
74
- </BODY>
75
- </HTML>
Binary file
@@ -1,158 +0,0 @@
1
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
- %%%%%%%% Style Setting %%%%%%%%
3
- \documentclass[a4j,12pt,openbib]{jarticle}
4
-
5
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
- %%%%%%%% Package Include %%%%%%%%
7
- \usepackage{ascmac}
8
- \usepackage{tabularx}
9
- \usepackage{graphicx}
10
- \usepackage{amssymb}
11
- \usepackage{amsmath}
12
- \usepackage{Dennou6}
13
- %%%%%%%% PageStyle Setting %%%%%%%%
14
- \pagestyle{Dmyheadings}
15
-
16
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
- %%%%%%%% Title Setting %%%%%%%%
18
- \Dtitle{NumRu::Derivative}
19
-
20
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21
- %%%%%%%% Set Counter (chapter, section etc. ) %%%%%%%%
22
- %\setcounter{chapter}{1}
23
- \setcounter{section}{0}
24
- \setcounter{equation}{0}
25
- \setcounter{page}{1}
26
- \setcounter{figure}{0}
27
- \setcounter{footnote}{0}
28
-
29
-
30
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
- %%%%%%%% Counter Output Format %%%%%%%%
32
-
33
- %\def\thesection{\arabic{chapter}.\arabic{section}}
34
- %\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}
35
- %\def\thepage{\arabic{page}}
36
- %\def\thefigure{\arabic{section}.\arabic{figure}}
37
- %\def\thetable{\arabic{section}.\arabic{table}}
38
- %\def\thefootnote{\arabic{footnote}}
39
- \def\thesection{\arabic{section}}
40
- \def\theequation{\arabic{section}.\arabic{equation}}
41
- \def\thepage{\arabic{page}}
42
- \def\thefigure{\arabic{section}.\arabic{figure}}
43
- \def\thetable{\arabic{section}.\arabic{table}}
44
- \def\thefootnote{\arabic{footnote}}
45
-
46
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47
- %%%%%%%% Dennou-Style Definition %%%%%%%%
48
- \Dparskip
49
- %\Dnoparskip
50
- \Dparindent
51
- %\Dnoparindent
52
-
53
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54
- %%%%%%%% Local Definition %%%%%%%%
55
- \def\dfrac#1#2{{\displaystyle\frac{#1}{#2}}}
56
- \def\minicaption#1#2{\begin{quote} \caption{\footnotesize #1} \Dfiglab{#2} \end{quote}}
57
-
58
-
59
-
60
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61
- %%%%%%%% Text Start %%%%%%%%
62
- \begin{document}
63
- \section{�����ֳֳʻҤ������ٺ�ʬ}
64
- �ܥɥ�����ȤǤ�, NumRu::Derivative ���������� threepoints\_O2nd\_deriv ���Ѥ���
65
- �����ֳֳʻҤ������ٺ�ʬ�ˤĤ��ƤޤȤ��. ���κ�ʬ�϶�ü�������ֳ֤ǤϤʤ��ǡ�����
66
- �Ф��������٤κ�ʬ��Ϳ�����ΤǤ���.
67
-
68
- ��, �ؿ�$f(x)$��, ���� $x_n (x_0, x_1, ..., x_{i}, ..., x_{n})$ ���Υ��������.
69
- %
70
- \begin{align}
71
- f_i &\equiv f(x_i)\\
72
- t &\equiv (x_{i+1} - x_{i})\\
73
- s &\equiv (x_{i} - x_{i-1})
74
- \end{align}
75
- %
76
- ������, $s$��$t$�Ϥۤ�Ʊ�������������ͤǤ���������ꤷ�Ƶ�����ʤ��.
77
-
78
- ������, $f(x)$��Ƴʻ�����˵�ˤƥƥ��顼Ÿ������.
79
- %
80
- \begin{align}
81
- f(x_{i+1}) - f(x_{i}) &= tf'(x_i) + \frac{t^2}{2}f''(x_i) + O(t^3)\\
82
- f(x_{i-1}) - f(x_{i}) &= -sf'(x_i) + \frac{s^2}{2}f''(x_i) + O(s^3)
83
- \end{align}
84
- %
85
- ������, $f'(x_i), f''(x_i)$�Ϥ��줾��$x_i$�ˤ�����$f$��$x$�˴ؤ���쳬������󳬤���ʬ��, $O(t^3)$��$t^3$�Υ����������ͤ�ɽ��. ξ������$f''$�ι��õ�뤿���, $s^2\times$(1.4) - $t^2\times$(1.5) ��׻������,
86
- %
87
- \begin{align}
88
- s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1} &= (s^2 + st^2)f'(x_i) + s^2O(t^3) + t^2O(s^3)
89
- \end{align}
90
- %
91
- �Ȥʤ�. �弰���ѷ�����
92
- %
93
- \begin{align}
94
- \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
95
- &= f'(x_i) + \frac{O(s^2t^3) + O(t^2s^3)}{st(s + t)}\\
96
- &= O(t^2).
97
- \end{align}
98
- %
99
- ������, 2�����ٺ�ʬ�θ�����
100
- \begin{align}
101
- f'(x_i) &= \frac{s^2f_{i+1} + (t^2 -s^2)f_i - t^2f_{i-1}}{st(s + t)}
102
- \end{align}
103
- %
104
- �Ƚ񤯤��Ȥ��Ǥ���.
105
-
106
- \end{document}
107
- %%%%%%%% Text End %%%%%%%%
108
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109
-
110
-
111
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112
- %%%%%%%% Sample %%%%%%%%
113
-
114
- %%%%%%%% ���� (��٥��դ�) %%%%%%%%
115
- %
116
- %\begin{eqnarray}
117
- % \Deqlab{1.1} % ���ʽ�Ǥμ��ֹ�������.
118
- % \DP{\rho}{t} + \Ddiv (\rho \Dvect{V}) = 0.
119
- %\end{eqnarray}
120
- %
121
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
122
-
123
-
124
- %%%%%%%% ���� (���ֹ����Ω���ƽ񤭤������) %%%%%%%%
125
- %
126
- %$$
127
- % \DP{p}{z} = \rho g.
128
- % \eqno \textrm{(1.11)}
129
- %$$
130
- %
131
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132
-
133
-
134
- %%%%%%%% ����ʸ�� (��ʸ�˽񤯾��) %%%%%%%%
135
- %
136
- %{\bfseries ����ʸ��}
137
- %\vspace{-7mm}
138
- %\begin{description}
139
- % \item ����̾, 2000:
140
- % ����̾, (��, ��).
141
- % ���Ǽ�, 319pp.
142
- %\end{description}
143
- %
144
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
145
-
146
- %%%%%%%% �ޤ�Ž���� %%%%%%%%
147
- %
148
- %\begin{figure}[hbtp]
149
- % \begin{center}
150
- % \Depsf[][]{./SEC01/images/fig0101.eps}
151
- % \end{center}
152
- % \caption{
153
- % ����
154
- % }
155
- % \Dfiglab{fig0101} % ���ʽ�οޤ��ֹ�������,
156
- % % table �οޤξ��� tab0101
157
- %\end{figure}
158
- %
@@ -1,129 +0,0 @@
1
- <?xml version="1.0" ?>
2
- <!DOCTYPE html
3
- PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
4
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
5
- <html xmlns="http://www.w3.org/1999/xhtml">
6
- <head>
7
- <title>../../lib/numru/derivative.rb</title>
8
- </head>
9
- <body>
10
- <h1><a name="label:0" id="label:0">module NumRu::Derivative in derivative.rb</a></h1><!-- RDLabel: "module NumRu::Derivative in derivative.rb" -->
11
- <h2><a name="label:1" id="label:1">todo</a></h2><!-- RDLabel: "todo" -->
12
- <ul>
13
- <li>decide argument of b_expand_linear_ext is Symbol or Numeric.
14
- <ul>
15
- <li>now is Numeric.</li>
16
- <li>it denpends the treatment of dRuby.</li>
17
- </ul></li>
18
- <li>support other boundary conditions.</li>
19
- </ul>
20
- <h2><a name="label:2" id="label:2">Index</a></h2><!-- RDLabel: "Index" -->
21
- <ul>
22
- <li><a href="#label:3">module NumRu::Derivative</a>
23
- <ul>
24
- <li><a href="#label:4">threepoint_O2nd_deriv</a>
25
- <ul>
26
- <li>First derivative (2nd Order difference use three point.)</li>
27
- </ul></li>
28
- <li><a href="#label:5">cderiv</a>
29
- <ul>
30
- <li>First derivative (center difference use two point.)</li>
31
- </ul></li>
32
- <li><a href="#label:6">b_expand_linear_ext</a>
33
- <ul>
34
- <li>return array extended boundaries with linear extention.</li>
35
- </ul></li>
36
- <li><a href="#label:7">cdiff</a>
37
- <ul>
38
- <li>return difference. (center difference)</li>
39
- </ul></li>
40
- </ul></li>
41
- </ul>
42
- <h1><a name="label:3" id="label:3">module NumRu::Derivative</a></h1><!-- RDLabel: "module NumRu::Derivative" -->
43
- <p>Module functions of Derivative Operater for NArray.</p>
44
- <dl>
45
- <dt><a name="label:4" id="label:4"><code>threepoint_O2nd_deriv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "threepoint_O2nd_deriv" -->
46
- <dd>
47
- <p>Derivate <code>z</code> respect to <code>dim</code> th dimension with 2nd Order difference.
48
- return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
49
- <code>x</code> (in other wards, </p>
50
- <pre>(s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)):
51
- now s represents (x_{i} - x_{i-1}) ,t represents (x_{i+1} - x_{i})
52
- and _{i} represents the suffix of {i} th element in the ((&lt;dim&gt;)) th
53
- dimension of array. ).</pre>
54
- <p>ARGUMENTS</p>
55
- <ul>
56
- <li>z (NArray): a NArray which you want to derivative.</li>
57
- <li>x (NArray): a NArray represents the dimension which derivative respect to.
58
- z.rank must be 1.</li>
59
- <li>dim (Numeric): a Numeric represents the dimention which derivative respect to.
60
- you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
61
- <li>bc (Numeric) : a Numeric which represent boundary condition.
62
- now only LINEAR_EXT(=1) supported. LINEAR_EXT load <a href="#label:6">b_expand_linear_ext</a> which
63
- extend boundary with lenear value.</li>
64
- </ul>
65
- <p>RETURN VALUE</p>
66
- <ul>
67
- <li>O2nd_deriv_data (NArray): (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t))</li>
68
- </ul></dd>
69
- <dt><a name="label:5" id="label:5"><code>cderiv(<var>z</var>, <var>x</var>, <var>dim</var>, <var>bc</var>=<var>LINEAR_EXT</var>)</code></a></dt><!-- RDLabel: "cderiv" -->
70
- <dd>
71
- <p>Derivate <code>z</code> respect to <code>dim</code> th dimension with center difference.
72
- return an NArray which result of the difference <!-- Reference, RDLabel "z" doesn't exist --><em class="label-not-found">z</em><!-- Reference end --> divided difference
73
- <code>x</code> ( in other wards, (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}):
74
- now _{i} represents the suffix of {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th
75
- dimension of array. ).</p>
76
- <p>ARGUMENTS</p>
77
- <ul>
78
- <li>z (NArray): a NArray which you want to derivative.</li>
79
- <li>x (NArray): a NArray represents the dimension which derivative respect
80
- to. z.rank must be 1.</li>
81
- <li>dim (Numeric): a Numeric represents the dimention which derivative
82
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
83
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
84
- <li>bc (Numeric) : a Numeric which represent boundary condition.
85
- now only LINEAR_EXT(=1) supported. LINEAR_EXT load
86
- <a href="#label:6">b_expand_linear_ext</a> which extend boundary with lenear value.</li>
87
- </ul>
88
- <p>RETURN VALUE</p>
89
- <ul>
90
- <li>cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1})</li>
91
- </ul></dd>
92
- <dt><a name="label:6" id="label:6"><code>b_expand_linear_ext(<var>z</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "b_expand_linear_ext" -->
93
- <dd>
94
- <p>expand boundary with linear value. extend array with 1 grid at each
95
- boundary with <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension, and assign th value which diffrential
96
- value between a grid short of boundary and boundary grid in original array.
97
- (on other wards, 2*z_{0}-z_{1} or 2*z_{n-1}-z_{n-2}: now _{i} represents the </p>
98
- <pre>suffix of {i} th element in the ((&lt;dim&gt;)) th dimension of array. ).</pre>
99
- <p>ARGUMENTS</p>
100
- <ul>
101
- <li>z (NArray): a NArray which you want to expand boundary.</li>
102
- <li>dim (Numeric): a Numeric represents the dimention which derivative
103
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
104
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
105
- </ul>
106
- <p>RETURN VALUE</p>
107
- <ul>
108
- <li>expand_data (NArray): </li>
109
- </ul></dd>
110
- <dt><a name="label:7" id="label:7"><code>cdiff(<var>x</var>, <var>dim</var>)</code></a></dt><!-- RDLabel: "cdiff" -->
111
- <dd>
112
- <p>Diffrence operater. return an NArray which a difference <!-- Reference, RDLabel "x" doesn't exist --><em class="label-not-found">x</em><!-- Reference end -->
113
- ( in other wards, (x_{i+1} - x_{i-1}): now _{i} represents the suffix of
114
- {i} th element in the <!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end --> th dimension of array. ).</p>
115
- <p>ARGUMENTS</p>
116
- <ul>
117
- <li>x (NArray): a NArray which you want to get difference.</li>
118
- <li>dim (Numeric): a Numeric representing the dimention which derivative
119
- respect to. you can give number count backward (<!-- Reference, RDLabel "dim" doesn't exist --><em class="label-not-found">dim</em><!-- Reference end -->&lt;0), but
120
- <!-- Reference, RDLabel "z.rank ��dim" doesn't exist --><em class="label-not-found">z.rank ��dim</em><!-- Reference end --> must be &gt; 0. </li>
121
- </ul>
122
- <p>RETURN VALUE</p>
123
- <ul>
124
- <li>cdiff_data (NArray): (x_{i+1} - x_{i-1})</li>
125
- </ul></dd>
126
- </dl>
127
-
128
- </body>
129
- </html>