gphys 1.1.1 → 1.2.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,1065 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
13
- <META NAME="description" CONTENT="$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="previous" HREF="node13.html">
25
- <LINK REL="up" HREF="node11.html">
26
- <LINK REL="next" HREF="node15.html">
27
- </HEAD>
28
-
29
- <BODY >
30
- <!--Navigation Panel-->
31
- <A NAME="tex2html206"
32
- HREF="node15.html">
33
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
34
- <A NAME="tex2html202"
35
- HREF="node11.html">
36
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
37
- <A NAME="tex2html198"
38
- HREF="node13.html">
39
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
40
- <A NAME="tex2html204"
41
- HREF="node1.html">
42
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
43
- <BR>
44
- <B> :</B> <A NAME="tex2html207"
45
- HREF="node15.html">$B;29MJ88%(B</A>
46
- <B> :</B> <A NAME="tex2html203"
47
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
48
- <B> :</B> <A NAME="tex2html199"
49
- HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
50
- &nbsp <B> <A NAME="tex2html205"
51
- HREF="node1.html">$BL\<!(B</A></B>
52
- <BR>
53
- <BR>
54
- <!--End of Navigation Panel-->
55
-
56
- <H1><A NAME="SECTION004300000000000000000">
57
- $BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
58
- </H1>
59
-
60
- (<A HREF="node13.html#eq:new_euler_mean_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r(B EP $B%U%i%C%/%9(B, $B;D:9=[4D$rMQ$$$F=q$-D>$9(B.
61
- EP $B%U%i%C%/%9(B, $B;D:9=[4D$O0J2<$N$h$&$KDj5A$9$k(B.
62
-
63
- <DIV ALIGN="CENTER"><A NAME="eq:residual_v_app"></A><A NAME="eq:residual_w_app"></A><!-- MATH
64
- \begin{subequations}
65
- \begin{align}
66
- \overline{v}^*
67
- & =
68
- \overline{v}
69
- - \Dinv{\rho_0} \DP{}{z^*}
70
- \left( \rho_0
71
- \frac{\overline{v'\theta'}}
72
- {\overline{\DP{\theta}{z^*}}}
73
- \right)
74
- \\
75
- \overline{w}^*
76
- & = \overline{w}
77
- + \Dinv{a \cos\phi}
78
- \DP{}{\phi}
79
- \left( \cos \phi
80
- \frac{\overline{v'\theta'}}
81
- {\overline{\DP{\theta}{z^*}}}
82
- \right)
83
- \end{align}
84
-
85
- \end{subequations}
86
- -->
87
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
88
- <TR VALIGN="MIDDLE">
89
- <TD NOWRAP ALIGN="CENTER"><IMG
90
- WIDTH="555" HEIGHT="129" ALIGN="BOTTOM" BORDER="0"
91
- SRC="img124.png"
92
- ALT="\begin{subequations}\begin{align}
93
  \overline{v}^*
94
1
  &amp; =
95
2
  \overline{v}
96
3
  - \Dinv{...
97
- ...\theta'}}
98
4
  {\overline{\DP{\theta}{z^*}}}
99
5
  \right)
100
6
  \end{align}\end{subequations}"></TD></TR>
101
- </TABLE></DIV>
102
- <BR CLEAR="ALL">
103
-
104
- <BR>
105
- <DIV ALIGN="CENTER">
106
- <!-- MATH
107
- \begin{eqnarray*}
108
- {F_\phi} &=& \rho_0 a
109
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
110
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
111
- \overline{u'v'}\right) \\
112
- {F_z^*} &=& \rho_0 a
113
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
114
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
115
- \overline{u'w'}\right)
116
-
117
- \end{eqnarray*}
118
- -->
119
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
120
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
121
- WIDTH="26" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
122
- SRC="img125.png"
123
- ALT="$\displaystyle {F_\phi}$"></TD>
124
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
125
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
126
- SRC="img5.png"
127
- ALT="$\displaystyle =$"></TD>
128
- <TD ALIGN="LEFT" NOWRAP><IMG
129
- WIDTH="225" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
130
- SRC="img126.png"
131
- ALT="$\displaystyle \rho_0 a
132
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
133
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
134
- \overline{u'v'}\right)$"></TD>
135
- <TD WIDTH=10 ALIGN="RIGHT">
136
- &nbsp;</TD></TR>
137
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
138
- WIDTH="27" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
139
- SRC="img127.png"
140
- ALT="$\displaystyle {F_z^*}$"></TD>
141
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
142
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
143
- SRC="img5.png"
144
- ALT="$\displaystyle =$"></TD>
145
- <TD ALIGN="LEFT" NOWRAP><IMG
146
- WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
147
- SRC="img128.png"
148
- ALT="$\displaystyle \rho_0 a
149
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \p...
150
- ...rac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
151
- \overline{u'w'}\right)$"></TD>
152
- <TD WIDTH=10 ALIGN="RIGHT">
153
- &nbsp;</TD></TR>
154
- </TABLE></DIV>
155
- <BR CLEAR="ALL"><P></P>
156
-
157
- <BR>
158
- <BR>
159
-
160
- $B$^$:O"B3$N<0$r=q$-49$($k(B.
161
- (<A HREF="node13.html#eq:new_euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
162
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
163
- <P></P>
164
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
165
- <TR VALIGN="MIDDLE">
166
- <TD>&nbsp;</TD>
167
- <TD NOWRAP ALIGN="LEFT"><IMG
168
- WIDTH="362" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
169
- SRC="img129.png"
170
- ALT="$\displaystyle \Dinv{a \cos \phi}
171
7
  \DP{}{\phi}\left[
172
8
  \left\{
173
9
  \overline{v}^*
174
- ...v'\theta'}}
175
10
  {\overline{\DP{\theta}{z^*}}}
176
11
  \right)
177
12
  \right\}
178
13
  \cos\phi \right]$"></TD>
179
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
180
- &nbsp;&nbsp;&nbsp;</TD></TR>
181
- <TR VALIGN="MIDDLE">
182
- <TD>&nbsp;</TD>
183
- <TD NOWRAP ALIGN="LEFT"><IMG
184
- WIDTH="458" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
185
- SRC="img130.png"
186
- ALT="$\displaystyle \qquad
187
14
  + \Dinv{\rho_0}
188
15
  \DP{}{z^*}
189
16
  \left[ \rho_0
190
17
  \left\{
191
18
  \o...
192
- ...ne{v'\theta'}}
193
19
  {\overline{\DP{\theta}{z^*}}}
194
20
  \right)
195
21
  \right\}
196
22
  \right]
197
23
  = 0,$"></TD>
198
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
199
- &nbsp;&nbsp;&nbsp;</TD></TR>
200
- <TR VALIGN="MIDDLE">
201
- <TD>&nbsp;</TD>
202
- <TD NOWRAP ALIGN="LEFT"><IMG
203
- WIDTH="298" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
204
- SRC="img131.png"
205
- ALT="$\displaystyle \Dinv{a \cos \phi}
206
24
  \DP{}{\phi}
207
25
  \left(
208
26
  \overline{v}^* \cos\phi
209
27
  \right)
210
28
  + \Dinv{\rho_0}
211
29
  \DP{}{z^*}
212
30
  \left( \rho_0 \overline{w}^* \right)$"></TD>
213
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
214
- &nbsp;&nbsp;&nbsp;</TD></TR>
215
- <TR VALIGN="MIDDLE">
216
- <TD>&nbsp;</TD>
217
- <TD NOWRAP ALIGN="LEFT"><IMG
218
- WIDTH="704" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
219
- SRC="img132.png"
220
- ALT="$\displaystyle \qquad
221
31
  + \Dinv{a \cos \phi}
222
32
  \DP{}{\phi}
223
33
  \left\{
224
34
  \Dinv{\rho_0...
225
- ...c{\overline{v'\theta'}}
226
35
  {\overline{\DP{\theta}{z^*}}}
227
36
  \right)
228
37
  \right\}
229
38
  = 0.$"></TD>
230
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
231
- &nbsp;&nbsp;&nbsp;</TD></TR>
232
- </TABLE></DIV>
233
- <BR CLEAR="ALL"><P></P>
234
- $B$3$NBh;09`$HBh;M9`$@$1$r<h$j=P$9$H(B
235
- <P></P>
236
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
237
- <TR VALIGN="MIDDLE">
238
- <TD>&nbsp;</TD>
239
- <TD NOWRAP ALIGN="LEFT"><IMG
240
- WIDTH="648" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
241
- SRC="img133.png"
242
- ALT="$\displaystyle \qquad
243
39
  \Dinv{a \cos \phi}
244
40
  \DP{}{\phi}
245
41
  \left\{
246
42
  \Dinv{\rho_0}...
247
- ...
248
43
  \frac{\overline{v'\theta'}}
249
44
  {\overline{\DP{\theta}{z^*}}}
250
45
  \right)
251
46
  \right\}$"></TD>
252
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
253
- &nbsp;&nbsp;&nbsp;</TD></TR>
254
- <TR VALIGN="MIDDLE">
255
- <TD>&nbsp;</TD>
256
- <TD NOWRAP ALIGN="LEFT"><IMG
257
- WIDTH="597" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
258
- SRC="img134.png"
259
- ALT="$\displaystyle =
260
47
  \Dinv{a \cos \phi}
261
48
  \left[
262
49
  \DP{}{\phi}
263
50
  \left\{
264
51
  \Dinv{\rho...
265
- ...overline{v'\theta'}}
266
52
  {\overline{\DP{\theta}{z^*}}}
267
53
  \right)
268
54
  \right\}
269
55
  \right]$"></TD>
270
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
271
- &nbsp;&nbsp;&nbsp;</TD></TR>
272
- <TR VALIGN="MIDDLE">
273
- <TD>&nbsp;</TD>
274
- <TD NOWRAP ALIGN="LEFT"><IMG
275
- WIDTH="601" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
276
- SRC="img135.png"
277
- ALT="$\displaystyle =
278
56
  \Dinv{a \cos \phi}
279
57
  \left[
280
58
  \Dinv{\rho_0}
281
59
  \DP{}{\phi}
282
60
  \left...
283
- ...overline{v'\theta'}}
284
61
  {\overline{\DP{\theta}{z^*}}}
285
62
  \right)
286
63
  \right\}
287
64
  \right]$"></TD>
288
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
289
- &nbsp;&nbsp;&nbsp;</TD></TR>
290
- <TR VALIGN="MIDDLE">
291
- <TD>&nbsp;</TD>
292
- <TD NOWRAP ALIGN="LEFT"><IMG
293
- WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
294
- SRC="img136.png"
295
- ALT="$\displaystyle = 0.$"></TD>
296
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
297
- &nbsp;&nbsp;&nbsp;</TD></TR>
298
- </TABLE></DIV>
299
- <BR CLEAR="ALL"><P></P>
300
- $B$7$?$,$C$F(B, $BO"B3$N<0$O0J2<$N$h$&$K$J$k(B.
301
- <BR>
302
- <DIV ALIGN="CENTER">
303
- <!-- MATH
304
- \begin{eqnarray}
305
- \Dinv{a \cos \phi}
306
- \DP{}{\phi}
307
- \left(
308
- \overline{v}^* \cos\phi
309
- \right)
310
- + \Dinv{\rho_0}
311
- \DP{}{z^*}
312
- \left( \rho_0 \overline{w}^* \right) = 0.
313
- \end{eqnarray}
314
- -->
315
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
316
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
317
- WIDTH="338" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
318
- SRC="img137.png"
319
- ALT="$\displaystyle \Dinv{a \cos \phi}
320
- \DP{}{\phi}
321
- \left(
322
- \overline{v}^* \cos\phi
323
- \right)
324
- + \Dinv{\rho_0}
325
- \DP{}{z^*}
326
- \left( \rho_0 \overline{w}^* \right) = 0.$"></TD>
327
- <TD>&nbsp;</TD>
328
- <TD>&nbsp;</TD>
329
- <TD WIDTH=10 ALIGN="RIGHT">
330
- (A.14)</TD></TR>
331
- </TABLE></DIV>
332
- <BR CLEAR="ALL"><P></P>
333
-
334
- <BR>
335
- <BR>
336
-
337
- $B<!$K(B <IMG
338
- WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
339
- SRC="img45.png"
340
- ALT="$ u$"> $B$N<0$r=q$-49$($k(B.
341
- (<A HREF="node13.html#eq:new_euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
342
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
343
- <P></P>
344
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
345
- <TR VALIGN="MIDDLE">
346
- <TD NOWRAP ALIGN="RIGHT"><IMG
347
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
348
- SRC="img88.png"
349
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
350
- <TD NOWRAP ALIGN="LEFT"><IMG
351
- WIDTH="574" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
352
- SRC="img138.png"
353
- ALT="$\displaystyle + \Dinv{a}
354
65
  \left[
355
66
  \overline{v}^*
356
67
  + \Dinv{\rho_0} \DP{}{z^*}
357
- ...eta'}}
358
68
  {\overline{\DP{\theta}{z^*}}}
359
69
  \right)
360
70
  \right]
361
71
  \DP{\overline{u}}{z^*}$"></TD>
362
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
363
- &nbsp;&nbsp;&nbsp;</TD></TR>
364
- <TR VALIGN="MIDDLE">
365
- <TD>&nbsp;</TD>
366
- <TD NOWRAP ALIGN="LEFT"><IMG
367
- WIDTH="627" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
368
- SRC="img139.png"
369
- ALT="$\displaystyle \qquad \qquad
370
72
  - f
371
73
  \left[
372
74
  \overline{v}^*
373
75
  + \Dinv{\rho_0} \D...
374
- ...ne{v'\theta'}}
375
76
  {\overline{\DP{\theta}{z^*}}}
376
77
  \right)
377
78
  \right]
378
79
  - \overline{X}$"></TD>
379
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
380
- &nbsp;&nbsp;&nbsp;</TD></TR>
381
- <TR VALIGN="MIDDLE">
382
- <TD>&nbsp;</TD>
383
- <TD NOWRAP ALIGN="LEFT"><IMG
384
- WIDTH="408" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
385
- SRC="img140.png"
386
- ALT="$\displaystyle \qquad
387
80
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
388
81
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$"></TD>
389
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
390
- &nbsp;&nbsp;&nbsp;</TD></TR>
391
- <TR VALIGN="MIDDLE">
392
- <TD NOWRAP ALIGN="RIGHT"><IMG
393
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
394
- SRC="img88.png"
395
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
396
- <TD NOWRAP ALIGN="LEFT"><IMG
397
- WIDTH="339" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
398
- SRC="img141.png"
399
- ALT="$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
400
82
  + \overline{w...
401
- ...ine{v}^*
402
83
  - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
403
84
  - \overline{X}$"></TD>
404
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
405
- &nbsp;&nbsp;&nbsp;</TD></TR>
406
- <TR VALIGN="MIDDLE">
407
- <TD>&nbsp;</TD>
408
- <TD NOWRAP ALIGN="LEFT"><IMG
409
- WIDTH="507" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
410
- SRC="img142.png"
411
- ALT="$\displaystyle \qquad
412
85
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^...
413
- ...line{v'\theta'}}
414
86
  {\overline{\DP{\theta}{z^*}}}
415
87
  \right) \DP{\overline{u}}{z^*}$"></TD>
416
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
417
- &nbsp;&nbsp;&nbsp;</TD></TR>
418
- <TR VALIGN="MIDDLE">
419
- <TD>&nbsp;</TD>
420
- <TD NOWRAP ALIGN="LEFT"><IMG
421
- WIDTH="384" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
422
- SRC="img143.png"
423
- ALT="$\displaystyle \qquad \qquad
424
88
  + f \Dinv{\rho_0} \DP{}{z^*}
425
89
  \left( \rho_0
426
90
  \fra...
427
- ...\DP{\theta}{z^*}}}
428
91
  \right)
429
92
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$"></TD>
430
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
431
- &nbsp;&nbsp;&nbsp;</TD></TR>
432
- <TR VALIGN="MIDDLE">
433
- <TD>&nbsp;</TD>
434
- <TD NOWRAP ALIGN="LEFT"><IMG
435
- WIDTH="493" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
436
- SRC="img144.png"
437
- ALT="$\displaystyle \qquad \qquad
438
93
  - \Dinv{\rho_0 a} \DP{}{z^*}
439
94
  \left( \rho_0
440
95
  \fra...
441
- ...( \rho_0
442
96
  \frac{\overline{v'\theta'}}
443
97
  {\overline{\DP{\theta}{z^*}}}
444
98
  \right),$"></TD>
445
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
446
- &nbsp;&nbsp;&nbsp;</TD></TR>
447
- <TR VALIGN="MIDDLE">
448
- <TD NOWRAP ALIGN="RIGHT"><IMG
449
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
450
- SRC="img88.png"
451
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
452
- <TD NOWRAP ALIGN="LEFT"><IMG
453
- WIDTH="342" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
454
- SRC="img145.png"
455
- ALT="$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
456
99
  \left( \overli...
457
- ...)
458
100
  + \overline{w}^* \DP{\overline{u}}{z^*}
459
101
  - f \overline{v}^*
460
102
  - \overline{X}$"></TD>
461
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
462
- &nbsp;&nbsp;&nbsp;</TD></TR>
463
- <TR VALIGN="MIDDLE">
464
- <TD>&nbsp;</TD>
465
- <TD NOWRAP ALIGN="LEFT"><IMG
466
- WIDTH="559" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
467
- SRC="img146.png"
468
- ALT="$\displaystyle \qquad
469
103
  = - \Dinv{\rho_0 a^2 \cos^2 \phi}
470
104
  \DP{}{\phi} (\rho_0 a...
471
- ...line{v'\theta'}}
472
105
  {\overline{\DP{\theta}{z^*}}}
473
106
  \right) \DP{\overline{u}}{z^*}$"></TD>
474
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
475
- &nbsp;&nbsp;&nbsp;</TD></TR>
476
- <TR VALIGN="MIDDLE">
477
- <TD>&nbsp;</TD>
478
- <TD NOWRAP ALIGN="LEFT"><IMG
479
- WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
480
- SRC="img147.png"
481
- ALT="$\displaystyle \qquad \qquad
482
107
  + \frac{1}{\rho_0 a \cos \phi}
483
108
  \DP{}{z^*}
484
109
  \left...
485
- ... \frac{1}{\rho_0 a \cos \phi}
486
110
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
487
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
488
- &nbsp;&nbsp;&nbsp;</TD></TR>
489
- <TR VALIGN="MIDDLE">
490
- <TD>&nbsp;</TD>
491
- <TD NOWRAP ALIGN="LEFT"><IMG
492
- WIDTH="485" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
493
- SRC="img148.png"
494
- ALT="$\displaystyle \qquad \qquad
495
111
  - \Dinv{\rho_0 a} \DP{}{z^*}
496
112
  \left( \rho_0
497
113
  \fra...
498
- ...t( \rho_0
499
114
  \frac{\overline{v'\theta'}}
500
115
  {\overline{\DP{\theta}{z^*}}}
501
116
  \right)$"></TD>
502
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
503
- <A NAME="eq:tem-u-tochuu">(A.15)</A></TD></TR>
504
- </TABLE></DIV>
505
- <BR CLEAR="ALL"><P></P>
506
- (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$N1&JU$r0J2<$N$h$&$KJQ7A$9$k(B.
507
- <P></P>
508
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
509
- <TR VALIGN="MIDDLE">
510
- <TD>&nbsp;</TD>
511
- <TD NOWRAP ALIGN="LEFT"><IMG
512
- WIDTH="594" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
513
- SRC="img149.png"
514
- ALT="$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
515
117
  \DP{}{\phi} (\rho_0 a \overline...
516
- ...\cos \phi
517
118
  \frac{\overline{v'\theta'}}
518
119
  {\overline{\DP{\theta}{z^*}}}
519
120
  \right)$"></TD>
520
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
521
- &nbsp;&nbsp;&nbsp;</TD></TR>
522
- <TR VALIGN="MIDDLE">
523
- <TD>&nbsp;</TD>
524
- <TD NOWRAP ALIGN="LEFT"><IMG
525
- WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
526
- SRC="img147.png"
527
- ALT="$\displaystyle \qquad \qquad
528
121
  + \frac{1}{\rho_0 a \cos \phi}
529
122
  \DP{}{z^*}
530
123
  \left...
531
- ... \frac{1}{\rho_0 a \cos \phi}
532
124
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
533
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
534
- &nbsp;&nbsp;&nbsp;</TD></TR>
535
- <TR VALIGN="MIDDLE">
536
- <TD>&nbsp;</TD>
537
- <TD NOWRAP ALIGN="LEFT"><IMG
538
- WIDTH="460" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
539
- SRC="img150.png"
540
- ALT="$\displaystyle \qquad \qquad
541
125
  - \Dinv{\rho_0 a} \DP{}{z^*}
542
126
  \left( \rho_0
543
127
  \fra...
544
- ...rline{\DP{\theta}{z^*}}}
545
128
  \DP{}{z^*}
546
129
  \left(
547
130
  \DP{\overline{u}}{\phi}
548
131
  \right)$"></TD>
549
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
550
- &nbsp;&nbsp;&nbsp;</TD></TR>
551
- <TR VALIGN="MIDDLE">
552
- <TD>&nbsp;</TD>
553
- <TD NOWRAP ALIGN="LEFT"><IMG
554
- WIDTH="443" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
555
- SRC="img151.png"
556
- ALT="$\displaystyle \qquad \qquad
557
132
  + \frac{\tan \phi}{\rho_0 a}
558
133
  \DP{}{z^*}
559
134
  \left( \...
560
- ...eta'}}
561
135
  {\overline{\DP{\theta}{z^*}}}
562
136
  \DP{}{z^*}
563
137
  \left( \overline{u}
564
138
  \right)$"></TD>
565
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
566
- &nbsp;&nbsp;&nbsp;</TD></TR>
567
- <TR VALIGN="MIDDLE">
568
- <TD>&nbsp;</TD>
569
- <TD NOWRAP ALIGN="LEFT"><IMG
570
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
571
- SRC="img152.png"
572
- ALT="$\displaystyle =
573
139
  \Dinv{\rho_0 a^2 \cos^2 \phi}
574
140
  \left[
575
141
  - \DP{}{\phi} (\rho_0 ...
576
- ...
577
142
  \frac{\overline{v'\theta'}}
578
143
  {\overline{\DP{\theta}{z^*}}}
579
144
  \right)
580
145
  \right]$"></TD>
581
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
582
- &nbsp;&nbsp;&nbsp;</TD></TR>
583
- <TR VALIGN="MIDDLE">
584
- <TD>&nbsp;</TD>
585
- <TD NOWRAP ALIGN="LEFT"><IMG
586
- WIDTH="377" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
587
- SRC="img153.png"
588
- ALT="$\displaystyle \qquad
589
146
  + \Dinv{\rho_0 a}
590
147
  \rho_0
591
148
  \frac{\overline{v'\theta'}}
592
- ...ac{\overline{v'\theta'}}
593
149
  {\overline{\DP{\theta}{z^*}}}
594
150
  \DP{\overline{u}}{z^*}$"></TD>
595
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
596
- &nbsp;&nbsp;&nbsp;</TD></TR>
597
- <TR VALIGN="MIDDLE">
598
- <TD>&nbsp;</TD>
599
- <TD NOWRAP ALIGN="LEFT"><IMG
600
- WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
601
- SRC="img154.png"
602
- ALT="$\displaystyle \qquad
603
151
  + \frac{1}{\rho_0 a \cos \phi}
604
152
  \DP{}{z^*}
605
153
  \left[
606
154
  \lef...
607
- ...line{\DP{\theta}{z^*}}}
608
155
  \right)
609
156
  - \rho_0 a \cos \phi \overline{w'u'}
610
157
  \right]$"></TD>
611
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
612
- &nbsp;&nbsp;&nbsp;</TD></TR>
613
- <TR VALIGN="MIDDLE">
614
- <TD>&nbsp;</TD>
615
- <TD NOWRAP ALIGN="LEFT"><IMG
616
- WIDTH="423" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
617
- SRC="img155.png"
618
- ALT="$\displaystyle \qquad
619
158
  - \Dinv{\rho_0 a} \DP{}{z^*}
620
159
  \left( \rho_0
621
160
  \frac{\over...
622
- ...u} \rho_0
623
161
  \frac{\overline{v'\theta'}}
624
162
  {\overline{\DP{\theta}{z^*}}}
625
163
  \right)$"></TD>
626
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
627
- &nbsp;&nbsp;&nbsp;</TD></TR>
628
- <TR VALIGN="MIDDLE">
629
- <TD>&nbsp;</TD>
630
- <TD NOWRAP ALIGN="LEFT"><IMG
631
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
632
- SRC="img152.png"
633
- ALT="$\displaystyle =
634
164
  \Dinv{\rho_0 a^2 \cos^2 \phi}
635
165
  \left[
636
166
  - \DP{}{\phi} (\rho_0 ...
637
- ...
638
167
  \frac{\overline{v'\theta'}}
639
168
  {\overline{\DP{\theta}{z^*}}}
640
169
  \right)
641
170
  \right]$"></TD>
642
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
643
- &nbsp;&nbsp;&nbsp;</TD></TR>
644
- <TR VALIGN="MIDDLE">
645
- <TD>&nbsp;</TD>
646
- <TD NOWRAP ALIGN="LEFT"><IMG
647
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
648
- SRC="img156.png"
649
- ALT="$\displaystyle \qquad
650
171
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
651
172
  \left[
652
173
  \rho_0 a \cos^2...
653
- ...ine{v'\theta'}}
654
174
  {\overline{\DP{\theta}{z^*}}}
655
175
  \DP{\overline{u}}{z^*}
656
176
  \right]$"></TD>
657
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
658
- &nbsp;&nbsp;&nbsp;</TD></TR>
659
- <TR VALIGN="MIDDLE">
660
- <TD>&nbsp;</TD>
661
- <TD NOWRAP ALIGN="LEFT"><IMG
662
- WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
663
- SRC="img154.png"
664
- ALT="$\displaystyle \qquad
665
177
  + \frac{1}{\rho_0 a \cos \phi}
666
178
  \DP{}{z^*}
667
179
  \left[
668
180
  \lef...
669
- ...line{\DP{\theta}{z^*}}}
670
181
  \right)
671
182
  - \rho_0 a \cos \phi \overline{w'u'}
672
183
  \right]$"></TD>
673
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
674
- &nbsp;&nbsp;&nbsp;</TD></TR>
675
- <TR VALIGN="MIDDLE">
676
- <TD>&nbsp;</TD>
677
- <TD NOWRAP ALIGN="LEFT"><IMG
678
- WIDTH="580" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
679
- SRC="img157.png"
680
- ALT="$\displaystyle \qquad
681
184
  + \Dinv{\rho_0 a \cos \phi}
682
185
  \left[
683
186
  - \cos \phi
684
187
  \DP{}{...
685
- ...
686
188
  \frac{\overline{v'\theta'}}
687
189
  {\overline{\DP{\theta}{z^*}}}
688
190
  \right)
689
191
  \right]$"></TD>
690
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
691
- &nbsp;&nbsp;&nbsp;</TD></TR>
692
- <TR VALIGN="MIDDLE">
693
- <TD>&nbsp;</TD>
694
- <TD NOWRAP ALIGN="LEFT"><IMG
695
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
696
- SRC="img152.png"
697
- ALT="$\displaystyle =
698
192
  \Dinv{\rho_0 a^2 \cos^2 \phi}
699
193
  \left[
700
194
  - \DP{}{\phi} (\rho_0 ...
701
- ...
702
195
  \frac{\overline{v'\theta'}}
703
196
  {\overline{\DP{\theta}{z^*}}}
704
197
  \right)
705
198
  \right]$"></TD>
706
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
707
- &nbsp;&nbsp;&nbsp;</TD></TR>
708
- <TR VALIGN="MIDDLE">
709
- <TD>&nbsp;</TD>
710
- <TD NOWRAP ALIGN="LEFT"><IMG
711
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
712
- SRC="img156.png"
713
- ALT="$\displaystyle \qquad
714
199
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
715
200
  \left[
716
201
  \rho_0 a \cos^2...
717
- ...ine{v'\theta'}}
718
202
  {\overline{\DP{\theta}{z^*}}}
719
203
  \DP{\overline{u}}{z^*}
720
204
  \right]$"></TD>
721
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
722
- &nbsp;&nbsp;&nbsp;</TD></TR>
723
- <TR VALIGN="MIDDLE">
724
- <TD>&nbsp;</TD>
725
- <TD NOWRAP ALIGN="LEFT"><IMG
726
- WIDTH="427" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
727
- SRC="img158.png"
728
- ALT="$\displaystyle \qquad
729
205
  + \frac{1}{\rho_0 a \cos \phi}
730
206
  \DP{}{z^*}
731
207
  \left[
732
208
  f \r...
733
- ...}
734
209
  {\overline{\DP{\theta}{z^*}}}
735
210
  - \rho_0 a \cos \phi \overline{w'u'}
736
211
  \right]$"></TD>
737
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
738
- &nbsp;&nbsp;&nbsp;</TD></TR>
739
- <TR VALIGN="MIDDLE">
740
- <TD>&nbsp;</TD>
741
- <TD NOWRAP ALIGN="LEFT"><IMG
742
- WIDTH="441" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
743
- SRC="img159.png"
744
- ALT="$\displaystyle \qquad
745
212
  + \Dinv{\rho_0 a \cos \phi}
746
213
  \DP{}{z^*}
747
214
  \left[
748
215
  - \rho_...
749
- ...u} \rho_0
750
216
  \frac{\overline{v'\theta'}}
751
217
  {\overline{\DP{\theta}{z^*}}}
752
218
  \right]$"></TD>
753
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
754
- <A NAME="eq:tem-u-uhen">(A.16)</A></TD></TR>
755
- </TABLE></DIV>
756
- <BR CLEAR="ALL"><P></P>
757
- (<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh0l9`$HBhFs9`$@$1<h$j=P$9$H(B
758
- <P></P>
759
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
760
- <TR VALIGN="MIDDLE">
761
- <TD>&nbsp;</TD>
762
- <TD NOWRAP ALIGN="LEFT"><IMG
763
- WIDTH="537" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
764
- SRC="img160.png"
765
- ALT="$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
766
219
  \left[
767
220
  - \DP{}{\phi} (\rho_0 a \...
768
- ...
769
221
  \frac{\overline{v'\theta'}}
770
222
  {\overline{\DP{\theta}{z^*}}}
771
223
  \right)
772
224
  \right]$"></TD>
773
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
774
- &nbsp;&nbsp;&nbsp;</TD></TR>
775
- <TR VALIGN="MIDDLE">
776
- <TD>&nbsp;</TD>
777
- <TD NOWRAP ALIGN="LEFT"><IMG
778
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
779
- SRC="img156.png"
780
- ALT="$\displaystyle \qquad
781
225
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
782
226
  \left[
783
227
  \rho_0 a \cos^2...
784
- ...ine{v'\theta'}}
785
228
  {\overline{\DP{\theta}{z^*}}}
786
229
  \DP{\overline{u}}{z^*}
787
230
  \right]$"></TD>
788
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
789
- &nbsp;&nbsp;&nbsp;</TD></TR>
790
- <TR VALIGN="MIDDLE">
791
- <TD>&nbsp;</TD>
792
- <TD NOWRAP ALIGN="LEFT"><IMG
793
- WIDTH="299" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
794
- SRC="img161.png"
795
- ALT="$\displaystyle =
796
231
  \Dinv{\rho_0 a^2 \cos^2 \phi}
797
232
  \left[
798
233
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
799
234
  \right]$"></TD>
800
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
801
- &nbsp;&nbsp;&nbsp;</TD></TR>
802
- <TR VALIGN="MIDDLE">
803
- <TD>&nbsp;</TD>
804
- <TD NOWRAP ALIGN="LEFT"><IMG
805
- WIDTH="587" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
806
- SRC="img162.png"
807
- ALT="$\displaystyle \qquad
808
235
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
809
236
  \left[
810
237
  \rho_0 a \cos^2...
811
- ...
812
238
  \frac{\overline{v'\theta'}}
813
239
  {\overline{\DP{\theta}{z^*}}}
814
240
  \right)
815
241
  \right]$"></TD>
816
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
817
- &nbsp;&nbsp;&nbsp;</TD></TR>
818
- <TR VALIGN="MIDDLE">
819
- <TD>&nbsp;</TD>
820
- <TD NOWRAP ALIGN="LEFT"><IMG
821
- WIDTH="630" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
822
- SRC="img163.png"
823
- ALT="$\displaystyle =
824
242
  \Dinv{\rho_0 a^2 \cos^2 \phi}
825
243
  \left[
826
244
  - \DP{}{\phi} (\rho_0 ...
827
- ...ta'}}
828
245
  {\overline{\DP{\theta}{z^*}}}
829
246
  \DP{\overline{u}}{z^*}
830
247
  \right)
831
248
  \right]$"></TD>
832
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
833
- &nbsp;&nbsp;&nbsp;</TD></TR>
834
- <TR VALIGN="MIDDLE">
835
- <TD>&nbsp;</TD>
836
- <TD NOWRAP ALIGN="LEFT"><IMG
837
- WIDTH="451" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
838
- SRC="img164.png"
839
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
840
249
  \DP{}{\phi}
841
250
  \left[
842
251
  - \rho_0 a...
843
- ...ine{v'\theta'}}
844
252
  {\overline{\DP{\theta}{z^*}}}
845
253
  \DP{\overline{u}}{z^*}
846
254
  \right]$"></TD>
847
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
848
- &nbsp;&nbsp;&nbsp;</TD></TR>
849
- <TR VALIGN="MIDDLE">
850
- <TD>&nbsp;</TD>
851
- <TD NOWRAP ALIGN="LEFT"><IMG
852
- WIDTH="393" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
853
- SRC="img165.png"
854
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
855
255
  \DP{}{\phi}
856
256
  \left[
857
257
  \rho_0 a \...
858
- ...'\theta'}}
859
258
  {\overline{\DP{\theta}{z^*}}}
860
259
  - \overline{v'u'}
861
260
  \right\}
862
261
  \right]$"></TD>
863
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
864
- &nbsp;&nbsp;&nbsp;</TD></TR>
865
- <TR VALIGN="MIDDLE">
866
- <TD>&nbsp;</TD>
867
- <TD NOWRAP ALIGN="LEFT"><IMG
868
- WIDTH="222" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
869
- SRC="img166.png"
870
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
871
262
  \DP{}{\phi}
872
263
  \left(
873
264
  \cos \phi F^{*}_{\phi}
874
265
  \right)$"></TD>
875
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
876
- &nbsp;&nbsp;&nbsp;</TD></TR>
877
- </TABLE></DIV>
878
- <BR CLEAR="ALL"><P></P>
879
- (<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh;09`$HBh;M9`$@$1<h$j=P$9$H(B
880
- <P></P>
881
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
882
- <TR VALIGN="MIDDLE">
883
- <TD>&nbsp;</TD>
884
- <TD NOWRAP ALIGN="LEFT"><IMG
885
- WIDTH="775" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
886
- SRC="img167.png"
887
- ALT="$\displaystyle \frac{1}{\rho_0 a \cos \phi}
888
266
  \DP{}{z^*}
889
267
  \left[
890
268
  f \rho_0 a \co...
891
- ...u} \rho_0
892
269
  \frac{\overline{v'\theta'}}
893
270
  {\overline{\DP{\theta}{z^*}}}
894
271
  \right]$"></TD>
895
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
896
- &nbsp;&nbsp;&nbsp;</TD></TR>
897
- <TR VALIGN="MIDDLE">
898
- <TD>&nbsp;</TD>
899
- <TD NOWRAP ALIGN="LEFT"><IMG
900
- WIDTH="595" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
901
- SRC="img168.png"
902
- ALT="$\displaystyle =
903
272
  \frac{1}{\rho_0 a \cos \phi}
904
273
  \DP{}{z^*}
905
274
  \left[
906
275
  \rho_0 a \...
907
- ...rline{v'\theta'}}
908
276
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
909
277
  \right\}
910
278
  \right]$"></TD>
911
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
912
- &nbsp;&nbsp;&nbsp;</TD></TR>
913
- <TR VALIGN="MIDDLE">
914
- <TD>&nbsp;</TD>
915
- <TD NOWRAP ALIGN="LEFT"><IMG
916
- WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
917
- SRC="img169.png"
918
- ALT="$\displaystyle =
919
279
  \frac{1}{\rho_0 a \cos \phi}
920
280
  \DP{}{z^*}
921
281
  \left[
922
282
  \rho_0 a \...
923
- ...{a \cos \phi \overline{\DP{\theta}{z^*}}}
924
283
  - \overline{w'u'}
925
284
  \right\}
926
285
  \right]$"></TD>
927
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
928
- &nbsp;&nbsp;&nbsp;</TD></TR>
929
- <TR VALIGN="MIDDLE">
930
- <TD>&nbsp;</TD>
931
- <TD NOWRAP ALIGN="LEFT"><IMG
932
- WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
933
- SRC="img169.png"
934
- ALT="$\displaystyle =
935
286
  \frac{1}{\rho_0 a \cos \phi}
936
287
  \DP{}{z^*}
937
288
  \left[
938
289
  \rho_0 a \...
939
- ...{a \cos \phi \overline{\DP{\theta}{z^*}}}
940
290
  - \overline{w'u'}
941
291
  \right\}
942
292
  \right]$"></TD>
943
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
944
- &nbsp;&nbsp;&nbsp;</TD></TR>
945
- <TR VALIGN="MIDDLE">
946
- <TD>&nbsp;</TD>
947
- <TD NOWRAP ALIGN="LEFT"><IMG
948
- WIDTH="481" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
949
- SRC="img170.png"
950
- ALT="$\displaystyle =
951
293
  \frac{1}{\rho_0 a \cos \phi}
952
294
  \DP{}{z^*}
953
295
  \left[
954
296
  \rho_0 a \...
955
- ...'\theta'}}
956
297
  {\overline{\DP{\theta}{z^*}}}
957
298
  - \overline{w'u'}
958
299
  \right\}
959
300
  \right]$"></TD>
960
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
961
- &nbsp;&nbsp;&nbsp;</TD></TR>
962
- <TR VALIGN="MIDDLE">
963
- <TD>&nbsp;</TD>
964
- <TD NOWRAP ALIGN="LEFT"><IMG
965
- WIDTH="136" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
966
- SRC="img171.png"
967
- ALT="$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
968
301
  \DP{F^{*}_{z}}{z^*}$"></TD>
969
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
970
- &nbsp;&nbsp;&nbsp;</TD></TR>
971
- </TABLE></DIV>
972
- <BR CLEAR="ALL"><P></P>
973
- $B0J>e$h$j(B, (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$O<!$N$h$&$K$J$k(B.
974
- <P></P>
975
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
976
- <TR VALIGN="MIDDLE">
977
- <TD>&nbsp;</TD>
978
- <TD NOWRAP ALIGN="LEFT"><IMG
979
- WIDTH="736" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
980
- SRC="img172.png"
981
- ALT="$\displaystyle \DP{\overline{u}}{t}
982
302
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
983
- ...hi}
984
303
  \right)
985
304
  + \frac{1}{\rho_0 a \cos \phi}
986
305
  \DP{F^{*}_{z}}{z^*},
987
306
  \nonumber$"></TD>
988
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
989
- &nbsp;&nbsp;&nbsp;</TD></TR>
990
- <TR VALIGN="MIDDLE">
991
- <TD>&nbsp;</TD>
992
- <TD NOWRAP ALIGN="LEFT"><IMG
993
- WIDTH="518" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
994
- SRC="img173.png"
995
- ALT="$\displaystyle \DP{\overline{u}}{t}
996
307
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
997
- ...\overline{v}^*
998
308
  - \overline{X}
999
309
  = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$"></TD>
1000
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1001
- &nbsp;&nbsp;&nbsp;</TD></TR>
1002
- </TABLE></DIV>
1003
- <BR CLEAR="ALL"><P></P>
1004
- $B$3$3$G(B, $B;R8aLLFb$NH/;6$r0J2<$N$h$&$KI=$7$?(B.
1005
- <P></P>
1006
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1007
- <TR VALIGN="MIDDLE">
1008
- <TD NOWRAP ALIGN="CENTER"><IMG
1009
- WIDTH="279" HEIGHT="62" ALIGN="MIDDLE" BORDER="0"
1010
- SRC="img174.png"
1011
- ALT="$\displaystyle \Ddiv{\Dvect{F}}
1012
310
  = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$"></TD>
1013
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1014
- (A.17)</TD></TR>
1015
- </TABLE></DIV>
1016
- <BR CLEAR="ALL"><P></P>
1017
-
1018
- <BR>
1019
- <BR>
1020
-
1021
- $B<!$KG.NO3X$N<0$r=q$-49$($k(B.
1022
- (<A HREF="node13.html#eq:new_euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
1023
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
1024
- <P></P>
1025
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1026
- <TR VALIGN="MIDDLE">
1027
- <TD>&nbsp;</TD>
1028
- <TD NOWRAP ALIGN="LEFT"><IMG
1029
- WIDTH="647" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1030
- SRC="img175.png"
1031
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1032
311
  + \frac{1}{a}
1033
312
  \left[
1034
313
  \overline{v}^...
1035
- ...P{\theta}{z^*}}}
1036
314
  \right)
1037
315
  \right]
1038
316
  \DP{\overline{\theta}}{z^*}
1039
317
  - \overline{Q}$"></TD>
1040
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1041
- &nbsp;&nbsp;&nbsp;</TD></TR>
1042
- <TR VALIGN="MIDDLE">
1043
- <TD>&nbsp;</TD>
1044
- <TD NOWRAP ALIGN="LEFT"><IMG
1045
- WIDTH="390" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1046
- SRC="img176.png"
1047
- ALT="$\displaystyle \qquad
1048
318
  =
1049
319
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1050
320
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$"></TD>
1051
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1052
- &nbsp;&nbsp;&nbsp;</TD></TR>
1053
- <TR VALIGN="MIDDLE">
1054
- <TD>&nbsp;</TD>
1055
- <TD NOWRAP ALIGN="LEFT"><IMG
1056
- WIDTH="215" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1057
- SRC="img177.png"
1058
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1059
321
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
1060
322
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
1061
323
  - \overline{Q}$"></TD>
1062
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1063
- &nbsp;&nbsp;&nbsp;</TD></TR>
1064
- <TR VALIGN="MIDDLE">
1065
- <TD>&nbsp;</TD>
1066
- <TD NOWRAP ALIGN="LEFT"><IMG
1067
- WIDTH="498" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1068
- SRC="img178.png"
1069
- ALT="$\displaystyle \qquad
1070
324
  = - \Dinv{\rho_0 a} \DP{}{z^*}
1071
325
  \left( \rho_0
1072
326
  \frac{\o...
1073
- ...v'\theta'}}
1074
327
  {\overline{\DP{\theta}{z^*}}}
1075
328
  \right) \DP{\overline{\theta}}{z^*}$"></TD>
1076
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1077
- &nbsp;&nbsp;&nbsp;</TD></TR>
1078
- <TR VALIGN="MIDDLE">
1079
- <TD>&nbsp;</TD>
1080
- <TD NOWRAP ALIGN="LEFT"><IMG
1081
- WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1082
- SRC="img179.png"
1083
- ALT="$\displaystyle \qquad \qquad
1084
329
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1085
330
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1086
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1087
- &nbsp;&nbsp;&nbsp;</TD></TR>
1088
- </TABLE></DIV>
1089
- <BR CLEAR="ALL"><P></P>
1090
- $B$H$J$k(B.
1091
- $B$3$N1&JU$r99$KJQ7A$9$k$H(B
1092
- <P></P>
1093
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1094
- <TR VALIGN="MIDDLE">
1095
- <TD>&nbsp;</TD>
1096
- <TD NOWRAP ALIGN="LEFT"><IMG
1097
- WIDTH="439" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1098
- SRC="img180.png"
1099
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1100
331
  \left( \rho_0
1101
332
  \frac{\overline{v'\th...
1102
- ...v'\theta'}}
1103
333
  {\overline{\DP{\theta}{z^*}}}
1104
334
  \right) \DP{\overline{\theta}}{z^*}$"></TD>
1105
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1106
- &nbsp;&nbsp;&nbsp;</TD></TR>
1107
- <TR VALIGN="MIDDLE">
1108
- <TD>&nbsp;</TD>
1109
- <TD NOWRAP ALIGN="LEFT"><IMG
1110
- WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1111
- SRC="img181.png"
1112
- ALT="$\displaystyle \qquad
1113
335
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1114
336
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1115
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1116
- &nbsp;&nbsp;&nbsp;</TD></TR>
1117
- <TR VALIGN="MIDDLE">
1118
- <TD NOWRAP ALIGN="RIGHT"><IMG
1119
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1120
- SRC="img5.png"
1121
- ALT="$\displaystyle =$"></TD>
1122
- <TD NOWRAP ALIGN="LEFT"><IMG
1123
- WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1124
- SRC="img182.png"
1125
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1126
337
  \left( \rho_0
1127
338
  \frac{\overline{v'\th...
1128
- ...eta'}}
1129
339
  {a \overline{\DP{\theta}{z^*}}}
1130
340
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}$"></TD>
1131
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1132
- &nbsp;&nbsp;&nbsp;</TD></TR>
1133
- <TR VALIGN="MIDDLE">
1134
- <TD>&nbsp;</TD>
1135
- <TD NOWRAP ALIGN="LEFT"><IMG
1136
- WIDTH="520" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1137
- SRC="img183.png"
1138
- ALT="$\displaystyle \qquad
1139
341
  + \Dinv{a \cos\phi}
1140
342
  \left[
1141
343
  \DP{}{\phi} \left( \cos \...
1142
- ...( \overline{\DP{\theta}{z^*}} \right)^{-1}
1143
344
  \right] \DP{\overline{\theta}}{z^*}$"></TD>
1144
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1145
- &nbsp;&nbsp;&nbsp;</TD></TR>
1146
- <TR VALIGN="MIDDLE">
1147
- <TD>&nbsp;</TD>
1148
- <TD NOWRAP ALIGN="LEFT"><IMG
1149
- WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1150
- SRC="img181.png"
1151
- ALT="$\displaystyle \qquad
1152
345
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1153
346
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1154
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1155
- &nbsp;&nbsp;&nbsp;</TD></TR>
1156
- <TR VALIGN="MIDDLE">
1157
- <TD NOWRAP ALIGN="RIGHT"><IMG
1158
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1159
- SRC="img5.png"
1160
- ALT="$\displaystyle =$"></TD>
1161
- <TD NOWRAP ALIGN="LEFT"><IMG
1162
- WIDTH="658" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1163
- SRC="img184.png"
1164
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1165
347
  \left( \rho_0
1166
348
  \frac{\overline{v'\th...
1167
- ...{\overline{\theta}}{z^*}
1168
349
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1169
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1170
- &nbsp;&nbsp;&nbsp;</TD></TR>
1171
- <TR VALIGN="MIDDLE">
1172
- <TD NOWRAP ALIGN="RIGHT"><IMG
1173
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1174
- SRC="img5.png"
1175
- ALT="$\displaystyle =$"></TD>
1176
- <TD NOWRAP ALIGN="LEFT"><IMG
1177
- WIDTH="585" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1178
- SRC="img185.png"
1179
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1180
350
  \left[ \rho_0
1181
351
  \frac{\overline{v'\th...
1182
- ... \overline{\DP{\theta}{z^*}} \right)^{-1}
1183
352
  \DP{\overline{\theta}}{z^*}
1184
353
  \right]$"></TD>
1185
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1186
- &nbsp;&nbsp;&nbsp;</TD></TR>
1187
- <TR VALIGN="MIDDLE">
1188
- <TD NOWRAP ALIGN="RIGHT"><IMG
1189
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1190
- SRC="img5.png"
1191
- ALT="$\displaystyle =$"></TD>
1192
- <TD NOWRAP ALIGN="LEFT"><IMG
1193
- WIDTH="416" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1194
- SRC="img186.png"
1195
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1196
354
  \left[ \rho_0
1197
355
  \left(
1198
356
  \frac{\overli...
1199
- ... \frac{ \DP{\overline{\theta}}{z^*} }
1200
357
  { \overline{\DP{\theta}{z^*}} }
1201
358
  \right)$"></TD>
1202
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1203
- &nbsp;&nbsp;&nbsp;</TD></TR>
1204
- <TR VALIGN="MIDDLE">
1205
- <TD NOWRAP ALIGN="RIGHT"><IMG
1206
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1207
- SRC="img5.png"
1208
- ALT="$\displaystyle =$"></TD>
1209
- <TD NOWRAP ALIGN="LEFT"><IMG
1210
- WIDTH="279" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1211
- SRC="img187.png"
1212
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1213
359
  \left[ \rho_0
1214
360
  \left(
1215
361
  \frac{\overli...
1216
- ...^*}}}
1217
362
  \DP{\overline{\theta}}{\phi}
1218
363
  + \overline{w'\theta'}
1219
364
  \right)
1220
365
  \right].$"></TD>
1221
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1222
- &nbsp;&nbsp;&nbsp;</TD></TR>
1223
- </TABLE></DIV>
1224
- <BR CLEAR="ALL"><P></P>
1225
- $B$3$l$h$j(B, $BG.NO3X$N<0$O0J2<$N$h$&$K$J$k(B.
1226
- <P></P>
1227
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1228
- <TR VALIGN="MIDDLE">
1229
- <TD NOWRAP ALIGN="CENTER"><IMG
1230
- WIDTH="515" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1231
- SRC="img188.png"
1232
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1233
366
  + \frac{\overline{v}^*}{a} \DP{\overli...
1234
- ...^*}}}
1235
367
  \DP{\overline{\theta}}{\phi}
1236
368
  + \overline{w'\theta'}
1237
369
  \right)
1238
370
  \right].$"></TD>
1239
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1240
- &nbsp;&nbsp;&nbsp;</TD></TR>
1241
- </TABLE></DIV>
1242
- <BR CLEAR="ALL"><P></P>
1243
-
1244
- <BR>
1245
- <BR>
1246
-
1247
- $B:G8e$K(B <IMG
1248
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1249
- SRC="img189.png"
1250
- ALT="$ v$"> $B$N<0$K$D$$$F9M$($k(B.
1251
- (<A HREF="node13.html#eq:new_euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
1252
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
1253
- <P></P>
1254
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1255
- <TR VALIGN="MIDDLE">
1256
- <TD>&nbsp;</TD>
1257
- <TD NOWRAP ALIGN="LEFT"><IMG
1258
- WIDTH="692" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1259
- SRC="img190.png"
1260
- ALT="$\displaystyle \DP{}{t}
1261
371
  \left[
1262
372
  \overline{v}^*
1263
373
  + \Dinv{\rho_0} \DP{}{z^*}
1264
374
  \...
1265
- ...
1266
375
  \frac{\overline{v'\theta'}}
1267
376
  {\overline{\DP{\theta}{z^*}}}
1268
377
  \right)
1269
378
  \right]$"></TD>
1270
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1271
- &nbsp;&nbsp;&nbsp;</TD></TR>
1272
- <TR VALIGN="MIDDLE">
1273
- <TD>&nbsp;</TD>
1274
- <TD NOWRAP ALIGN="LEFT"><IMG
1275
- WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1276
- SRC="img191.png"
1277
- ALT="$\displaystyle \qquad \qquad
1278
379
  + \left[
1279
380
  \overline{w}^*
1280
381
  - \Dinv{a \cos\phi}
1281
382
  \...
1282
- ...
1283
383
  \frac{\overline{v'\theta'}}
1284
384
  {\overline{\DP{\theta}{z^*}}}
1285
385
  \right)
1286
386
  \right]$"></TD>
1287
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1288
- &nbsp;&nbsp;&nbsp;</TD></TR>
1289
- <TR VALIGN="MIDDLE">
1290
- <TD>&nbsp;</TD>
1291
- <TD NOWRAP ALIGN="LEFT"><IMG
1292
- WIDTH="321" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1293
- SRC="img192.png"
1294
- ALT="$\displaystyle \qquad \qquad
1295
387
  + f \overline{u}
1296
388
  + \frac{\tan\phi}{a} (\overline{u})^2
1297
389
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1298
390
  - \overline{Y}$"></TD>
1299
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1300
- &nbsp;&nbsp;&nbsp;</TD></TR>
1301
- <TR VALIGN="MIDDLE">
1302
- <TD>&nbsp;</TD>
1303
- <TD NOWRAP ALIGN="LEFT"><IMG
1304
- WIDTH="474" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1305
- SRC="img193.png"
1306
- ALT="$\displaystyle \qquad
1307
391
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)...
1308
- ...\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1309
392
  - \overline{u'^2}\frac{\tan\phi}{a},$"></TD>
1310
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1311
- &nbsp;&nbsp;&nbsp;</TD></TR>
1312
- <TR VALIGN="MIDDLE">
1313
- <TD>&nbsp;</TD>
1314
- <TD NOWRAP ALIGN="LEFT"><IMG
1315
- WIDTH="193" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1316
- SRC="img194.png"
1317
- ALT="$\displaystyle f \overline{u}
1318
393
  + \frac{\tan\phi}{a} (\overline{u})^2
1319
394
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}$"></TD>
1320
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1321
- &nbsp;&nbsp;&nbsp;</TD></TR>
1322
- <TR VALIGN="MIDDLE">
1323
- <TD>&nbsp;</TD>
1324
- <TD NOWRAP ALIGN="LEFT"><IMG
1325
- WIDTH="764" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1326
- SRC="img195.png"
1327
- ALT="$\displaystyle \qquad
1328
395
  = - \DP{}{t}
1329
396
  \left[
1330
397
  \overline{v}^*
1331
398
  + \Dinv{\rho_0} \...
1332
- ...
1333
399
  \frac{\overline{v'\theta'}}
1334
400
  {\overline{\DP{\theta}{z^*}}}
1335
401
  \right)
1336
402
  \right]$"></TD>
1337
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1338
- &nbsp;&nbsp;&nbsp;</TD></TR>
1339
- <TR VALIGN="MIDDLE">
1340
- <TD>&nbsp;</TD>
1341
- <TD NOWRAP ALIGN="LEFT"><IMG
1342
- WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1343
- SRC="img196.png"
1344
- ALT="$\displaystyle \qquad \qquad
1345
403
  - \left[
1346
404
  \overline{w}^*
1347
405
  - \Dinv{a \cos\phi}
1348
406
  \...
1349
- ...
1350
407
  \frac{\overline{v'\theta'}}
1351
408
  {\overline{\DP{\theta}{z^*}}}
1352
409
  \right)
1353
410
  \right]$"></TD>
1354
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1355
- &nbsp;&nbsp;&nbsp;</TD></TR>
1356
- <TR VALIGN="MIDDLE">
1357
- <TD>&nbsp;</TD>
1358
- <TD NOWRAP ALIGN="LEFT"><IMG
1359
- WIDTH="525" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1360
- SRC="img197.png"
1361
- ALT="$\displaystyle \qquad \qquad
1362
411
  - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \co...
1363
- ...}(\rho_0\overline{v' w'})
1364
412
  - \overline{u'^2} \frac{\tan\phi}{a}
1365
413
  + \overline{Y}$"></TD>
1366
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1367
- &nbsp;&nbsp;&nbsp;</TD></TR>
1368
- </TABLE></DIV>
1369
- <BR CLEAR="ALL"><P></P>
1370
- Andrews <I>et al.</I> (1987) $B$K$h$l$P(B, $B$3$N<0$N1&JU$NNL$O(B
1371
- $B:8JU$KHf$Y$l$P>.$5$$(B. $B1&JU$N9`$rA4$F$^$H$a$F(B <IMG
1372
- WIDTH="20" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1373
- SRC="img198.png"
1374
- ALT="$ G$"> $B$H=q$/$H(B
1375
- <IMG
1376
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1377
- SRC="img189.png"
1378
- ALT="$ v$"> $B$N<0$O<!$N$h$&$K$J$k(B.
1379
- <P></P>
1380
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1381
- <TR VALIGN="MIDDLE">
1382
- <TD NOWRAP ALIGN="CENTER"><IMG
1383
- WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1384
- SRC="img199.png"
1385
- ALT="$\displaystyle \overline{u}
1386
414
  \left( f + \frac{\tan\phi}{a} \overline{u} \right)
1387
415
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1388
416
  = G.$"></TD>
1389
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1390
- &nbsp;&nbsp;&nbsp;</TD></TR>
1391
- </TABLE></DIV>
1392
- <BR CLEAR="ALL"><P></P>
1393
-
1394
- <BR>
1395
- <BR>
1396
-
1397
- $B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$BJQ7A%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
1398
- <TABLE BORDER="1"><TR><TD>
1399
-
1400
- <DIV ALIGN="CENTER"><A NAME="eq:transformed_euler_mean_pe"></A><A NAME="eq:transformed_euler_mean_pe_momentum_x"></A><A NAME="eq:transformed_euler_mean_pe_momentum_y"></A><A NAME="eq:transformed_euler_mean_pe_momentum_z^*"></A><A NAME="eq:transformed_euler_mean_pe_continuity"></A><A NAME="eq:transformed_euler_mean_pe_thermal"></A><!-- MATH
1401
- \begin{subequations}
1402
- \begin{align}&
1403
- \DP{\overline{u}}{t}
1404
- + \overline{v}^*
1405
- \left[
1406
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
1407
- \right]
1408
- + \overline{w}^*\DP{\overline{u}}{z^*}
1409
- - \overline{X}
1410
- = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
1411
- \overline{u}
1412
- \left( f + \overline{u}\frac{\tan\phi}{a} \right)
1413
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
1414
- = G.
1415
- \end{align}
1416
- \begin{align}
1417
- \DP{\overline{\Phi}}{z^*}
1418
- - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
1419
- = 0.
1420
- \end{align}
1421
- \begin{align}
1422
- \Dinv{a\cos\phi}&\left[
1423
- \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
1424
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
1425
- = 0.
1426
- \end{align}
1427
- \begin{align}
1428
- \DP{\overline{\theta}}{t}
1429
- + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
1430
- + \overline{w}^*\DP{\overline{\theta}}{z^*}
1431
- - \overline{Q} =
1432
- - \Dinv{\rho_0}\DP{}{z^*}
1433
- \left[\rho_0
1434
- \left(
1435
- \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
1436
- {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
1437
- \right)
1438
- \right].
1439
- \end{align}
1440
- \end{subequations}
1441
- -->
1442
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1443
- <TR VALIGN="MIDDLE">
1444
- <TD NOWRAP ALIGN="CENTER"><IMG
1445
- WIDTH="555" HEIGHT="316" ALIGN="BOTTOM" BORDER="0"
1446
- SRC="img200.png"
1447
- ALT="\begin{subequations}\begin{align}&amp;
1448
417
  \DP{\overline{u}}{t}
1449
418
  + \overline{v}^*
1450
419
  \lef...
1451
- ...}{z^*}} + \overline{w'\theta'}
1452
420
  \right)
1453
421
  \right].
1454
422
  \end{align}\end{subequations}"></TD></TR>
1455
- </TABLE></DIV>
1456
- <BR CLEAR="ALL">
1457
- </TD></TR></TABLE>
1458
-
1459
- <HR>
1460
- <!--Navigation Panel-->
1461
- <A NAME="tex2html206"
1462
- HREF="node15.html">
1463
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
1464
- <A NAME="tex2html202"
1465
- HREF="node11.html">
1466
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
1467
- <A NAME="tex2html198"
1468
- HREF="node13.html">
1469
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
1470
- <A NAME="tex2html204"
1471
- HREF="node1.html">
1472
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
1473
- <BR>
1474
- <B> :</B> <A NAME="tex2html207"
1475
- HREF="node15.html">$B;29MJ88%(B</A>
1476
- <B> :</B> <A NAME="tex2html203"
1477
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
1478
- <B> :</B> <A NAME="tex2html199"
1479
- HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
1480
- &nbsp <B> <A NAME="tex2html205"
1481
- HREF="node1.html">$BL\<!(B</A></B>
1482
- <!--End of Navigation Panel-->
1483
- <ADDRESS>
1484
- Tsukahara Daisuke
1485
- $BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
1486
- </ADDRESS>
1487
- </BODY>
1488
- </HTML>