gphys 1.1.1 → 1.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,1065 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="previous" HREF="node13.html">
|
25
|
-
<LINK REL="up" HREF="node11.html">
|
26
|
-
<LINK REL="next" HREF="node15.html">
|
27
|
-
</HEAD>
|
28
|
-
|
29
|
-
<BODY >
|
30
|
-
<!--Navigation Panel-->
|
31
|
-
<A NAME="tex2html206"
|
32
|
-
HREF="node15.html">
|
33
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
34
|
-
<A NAME="tex2html202"
|
35
|
-
HREF="node11.html">
|
36
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
37
|
-
<A NAME="tex2html198"
|
38
|
-
HREF="node13.html">
|
39
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
40
|
-
<A NAME="tex2html204"
|
41
|
-
HREF="node1.html">
|
42
|
-
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
43
|
-
<BR>
|
44
|
-
<B> :</B> <A NAME="tex2html207"
|
45
|
-
HREF="node15.html">$B;29MJ88%(B</A>
|
46
|
-
<B> :</B> <A NAME="tex2html203"
|
47
|
-
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
48
|
-
<B> :</B> <A NAME="tex2html199"
|
49
|
-
HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
|
50
|
-
  <B> <A NAME="tex2html205"
|
51
|
-
HREF="node1.html">$BL\<!(B</A></B>
|
52
|
-
<BR>
|
53
|
-
<BR>
|
54
|
-
<!--End of Navigation Panel-->
|
55
|
-
|
56
|
-
<H1><A NAME="SECTION004300000000000000000">
|
57
|
-
$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
|
58
|
-
</H1>
|
59
|
-
|
60
|
-
(<A HREF="node13.html#eq:new_euler_mean_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r(B EP $B%U%i%C%/%9(B, $B;D:9=[4D$rMQ$$$F=q$-D>$9(B.
|
61
|
-
EP $B%U%i%C%/%9(B, $B;D:9=[4D$O0J2<$N$h$&$KDj5A$9$k(B.
|
62
|
-
|
63
|
-
<DIV ALIGN="CENTER"><A NAME="eq:residual_v_app"></A><A NAME="eq:residual_w_app"></A><!-- MATH
|
64
|
-
\begin{subequations}
|
65
|
-
\begin{align}
|
66
|
-
\overline{v}^*
|
67
|
-
& =
|
68
|
-
\overline{v}
|
69
|
-
- \Dinv{\rho_0} \DP{}{z^*}
|
70
|
-
\left( \rho_0
|
71
|
-
\frac{\overline{v'\theta'}}
|
72
|
-
{\overline{\DP{\theta}{z^*}}}
|
73
|
-
\right)
|
74
|
-
\\
|
75
|
-
\overline{w}^*
|
76
|
-
& = \overline{w}
|
77
|
-
+ \Dinv{a \cos\phi}
|
78
|
-
\DP{}{\phi}
|
79
|
-
\left( \cos \phi
|
80
|
-
\frac{\overline{v'\theta'}}
|
81
|
-
{\overline{\DP{\theta}{z^*}}}
|
82
|
-
\right)
|
83
|
-
\end{align}
|
84
|
-
|
85
|
-
\end{subequations}
|
86
|
-
-->
|
87
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
88
|
-
<TR VALIGN="MIDDLE">
|
89
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
90
|
-
WIDTH="555" HEIGHT="129" ALIGN="BOTTOM" BORDER="0"
|
91
|
-
SRC="img124.png"
|
92
|
-
ALT="\begin{subequations}\begin{align}
|
93
|
\overline{v}^*
|
94
1
|
& =
|
95
2
|
\overline{v}
|
96
3
|
- \Dinv{...
|
97
|
-
...\theta'}}
|
98
4
|
{\overline{\DP{\theta}{z^*}}}
|
99
5
|
\right)
|
100
6
|
\end{align}\end{subequations}"></TD></TR>
|
101
|
-
</TABLE></DIV>
|
102
|
-
<BR CLEAR="ALL">
|
103
|
-
|
104
|
-
<BR>
|
105
|
-
<DIV ALIGN="CENTER">
|
106
|
-
<!-- MATH
|
107
|
-
\begin{eqnarray*}
|
108
|
-
{F_\phi} &=& \rho_0 a
|
109
|
-
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
110
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
111
|
-
\overline{u'v'}\right) \\
|
112
|
-
{F_z^*} &=& \rho_0 a
|
113
|
-
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
114
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
115
|
-
\overline{u'w'}\right)
|
116
|
-
|
117
|
-
\end{eqnarray*}
|
118
|
-
-->
|
119
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
120
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
121
|
-
WIDTH="26" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
122
|
-
SRC="img125.png"
|
123
|
-
ALT="$\displaystyle {F_\phi}$"></TD>
|
124
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
125
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
126
|
-
SRC="img5.png"
|
127
|
-
ALT="$\displaystyle =$"></TD>
|
128
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
129
|
-
WIDTH="225" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
130
|
-
SRC="img126.png"
|
131
|
-
ALT="$\displaystyle \rho_0 a
|
132
|
-
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
133
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
134
|
-
\overline{u'v'}\right)$"></TD>
|
135
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
136
|
-
</TD></TR>
|
137
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
138
|
-
WIDTH="27" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
|
139
|
-
SRC="img127.png"
|
140
|
-
ALT="$\displaystyle {F_z^*}$"></TD>
|
141
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
142
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
143
|
-
SRC="img5.png"
|
144
|
-
ALT="$\displaystyle =$"></TD>
|
145
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
146
|
-
WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
147
|
-
SRC="img128.png"
|
148
|
-
ALT="$\displaystyle \rho_0 a
|
149
|
-
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \p...
|
150
|
-
...rac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
151
|
-
\overline{u'w'}\right)$"></TD>
|
152
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
153
|
-
</TD></TR>
|
154
|
-
</TABLE></DIV>
|
155
|
-
<BR CLEAR="ALL"><P></P>
|
156
|
-
|
157
|
-
<BR>
|
158
|
-
<BR>
|
159
|
-
|
160
|
-
$B$^$:O"B3$N<0$r=q$-49$($k(B.
|
161
|
-
(<A HREF="node13.html#eq:new_euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
162
|
-
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
163
|
-
<P></P>
|
164
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
165
|
-
<TR VALIGN="MIDDLE">
|
166
|
-
<TD> </TD>
|
167
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
168
|
-
WIDTH="362" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
169
|
-
SRC="img129.png"
|
170
|
-
ALT="$\displaystyle \Dinv{a \cos \phi}
|
171
7
|
\DP{}{\phi}\left[
|
172
8
|
\left\{
|
173
9
|
\overline{v}^*
|
174
|
-
...v'\theta'}}
|
175
10
|
{\overline{\DP{\theta}{z^*}}}
|
176
11
|
\right)
|
177
12
|
\right\}
|
178
13
|
\cos\phi \right]$"></TD>
|
179
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
180
|
-
</TD></TR>
|
181
|
-
<TR VALIGN="MIDDLE">
|
182
|
-
<TD> </TD>
|
183
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
184
|
-
WIDTH="458" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
185
|
-
SRC="img130.png"
|
186
|
-
ALT="$\displaystyle \qquad
|
187
14
|
+ \Dinv{\rho_0}
|
188
15
|
\DP{}{z^*}
|
189
16
|
\left[ \rho_0
|
190
17
|
\left\{
|
191
18
|
\o...
|
192
|
-
...ne{v'\theta'}}
|
193
19
|
{\overline{\DP{\theta}{z^*}}}
|
194
20
|
\right)
|
195
21
|
\right\}
|
196
22
|
\right]
|
197
23
|
= 0,$"></TD>
|
198
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
199
|
-
</TD></TR>
|
200
|
-
<TR VALIGN="MIDDLE">
|
201
|
-
<TD> </TD>
|
202
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
203
|
-
WIDTH="298" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
204
|
-
SRC="img131.png"
|
205
|
-
ALT="$\displaystyle \Dinv{a \cos \phi}
|
206
24
|
\DP{}{\phi}
|
207
25
|
\left(
|
208
26
|
\overline{v}^* \cos\phi
|
209
27
|
\right)
|
210
28
|
+ \Dinv{\rho_0}
|
211
29
|
\DP{}{z^*}
|
212
30
|
\left( \rho_0 \overline{w}^* \right)$"></TD>
|
213
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
214
|
-
</TD></TR>
|
215
|
-
<TR VALIGN="MIDDLE">
|
216
|
-
<TD> </TD>
|
217
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
218
|
-
WIDTH="704" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
219
|
-
SRC="img132.png"
|
220
|
-
ALT="$\displaystyle \qquad
|
221
31
|
+ \Dinv{a \cos \phi}
|
222
32
|
\DP{}{\phi}
|
223
33
|
\left\{
|
224
34
|
\Dinv{\rho_0...
|
225
|
-
...c{\overline{v'\theta'}}
|
226
35
|
{\overline{\DP{\theta}{z^*}}}
|
227
36
|
\right)
|
228
37
|
\right\}
|
229
38
|
= 0.$"></TD>
|
230
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
231
|
-
</TD></TR>
|
232
|
-
</TABLE></DIV>
|
233
|
-
<BR CLEAR="ALL"><P></P>
|
234
|
-
$B$3$NBh;09`$HBh;M9`$@$1$r<h$j=P$9$H(B
|
235
|
-
<P></P>
|
236
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
237
|
-
<TR VALIGN="MIDDLE">
|
238
|
-
<TD> </TD>
|
239
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
240
|
-
WIDTH="648" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
241
|
-
SRC="img133.png"
|
242
|
-
ALT="$\displaystyle \qquad
|
243
39
|
\Dinv{a \cos \phi}
|
244
40
|
\DP{}{\phi}
|
245
41
|
\left\{
|
246
42
|
\Dinv{\rho_0}...
|
247
|
-
...
|
248
43
|
\frac{\overline{v'\theta'}}
|
249
44
|
{\overline{\DP{\theta}{z^*}}}
|
250
45
|
\right)
|
251
46
|
\right\}$"></TD>
|
252
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
253
|
-
</TD></TR>
|
254
|
-
<TR VALIGN="MIDDLE">
|
255
|
-
<TD> </TD>
|
256
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
257
|
-
WIDTH="597" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
258
|
-
SRC="img134.png"
|
259
|
-
ALT="$\displaystyle =
|
260
47
|
\Dinv{a \cos \phi}
|
261
48
|
\left[
|
262
49
|
\DP{}{\phi}
|
263
50
|
\left\{
|
264
51
|
\Dinv{\rho...
|
265
|
-
...overline{v'\theta'}}
|
266
52
|
{\overline{\DP{\theta}{z^*}}}
|
267
53
|
\right)
|
268
54
|
\right\}
|
269
55
|
\right]$"></TD>
|
270
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
271
|
-
</TD></TR>
|
272
|
-
<TR VALIGN="MIDDLE">
|
273
|
-
<TD> </TD>
|
274
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
275
|
-
WIDTH="601" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
276
|
-
SRC="img135.png"
|
277
|
-
ALT="$\displaystyle =
|
278
56
|
\Dinv{a \cos \phi}
|
279
57
|
\left[
|
280
58
|
\Dinv{\rho_0}
|
281
59
|
\DP{}{\phi}
|
282
60
|
\left...
|
283
|
-
...overline{v'\theta'}}
|
284
61
|
{\overline{\DP{\theta}{z^*}}}
|
285
62
|
\right)
|
286
63
|
\right\}
|
287
64
|
\right]$"></TD>
|
288
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
289
|
-
</TD></TR>
|
290
|
-
<TR VALIGN="MIDDLE">
|
291
|
-
<TD> </TD>
|
292
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
293
|
-
WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
294
|
-
SRC="img136.png"
|
295
|
-
ALT="$\displaystyle = 0.$"></TD>
|
296
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
297
|
-
</TD></TR>
|
298
|
-
</TABLE></DIV>
|
299
|
-
<BR CLEAR="ALL"><P></P>
|
300
|
-
$B$7$?$,$C$F(B, $BO"B3$N<0$O0J2<$N$h$&$K$J$k(B.
|
301
|
-
<BR>
|
302
|
-
<DIV ALIGN="CENTER">
|
303
|
-
<!-- MATH
|
304
|
-
\begin{eqnarray}
|
305
|
-
\Dinv{a \cos \phi}
|
306
|
-
\DP{}{\phi}
|
307
|
-
\left(
|
308
|
-
\overline{v}^* \cos\phi
|
309
|
-
\right)
|
310
|
-
+ \Dinv{\rho_0}
|
311
|
-
\DP{}{z^*}
|
312
|
-
\left( \rho_0 \overline{w}^* \right) = 0.
|
313
|
-
\end{eqnarray}
|
314
|
-
-->
|
315
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
316
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
317
|
-
WIDTH="338" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
318
|
-
SRC="img137.png"
|
319
|
-
ALT="$\displaystyle \Dinv{a \cos \phi}
|
320
|
-
\DP{}{\phi}
|
321
|
-
\left(
|
322
|
-
\overline{v}^* \cos\phi
|
323
|
-
\right)
|
324
|
-
+ \Dinv{\rho_0}
|
325
|
-
\DP{}{z^*}
|
326
|
-
\left( \rho_0 \overline{w}^* \right) = 0.$"></TD>
|
327
|
-
<TD> </TD>
|
328
|
-
<TD> </TD>
|
329
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
330
|
-
(A.14)</TD></TR>
|
331
|
-
</TABLE></DIV>
|
332
|
-
<BR CLEAR="ALL"><P></P>
|
333
|
-
|
334
|
-
<BR>
|
335
|
-
<BR>
|
336
|
-
|
337
|
-
$B<!$K(B <IMG
|
338
|
-
WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
339
|
-
SRC="img45.png"
|
340
|
-
ALT="$ u$"> $B$N<0$r=q$-49$($k(B.
|
341
|
-
(<A HREF="node13.html#eq:new_euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
342
|
-
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
343
|
-
<P></P>
|
344
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
345
|
-
<TR VALIGN="MIDDLE">
|
346
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
347
|
-
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
348
|
-
SRC="img88.png"
|
349
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
350
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
351
|
-
WIDTH="574" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
352
|
-
SRC="img138.png"
|
353
|
-
ALT="$\displaystyle + \Dinv{a}
|
354
65
|
\left[
|
355
66
|
\overline{v}^*
|
356
67
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
357
|
-
...eta'}}
|
358
68
|
{\overline{\DP{\theta}{z^*}}}
|
359
69
|
\right)
|
360
70
|
\right]
|
361
71
|
\DP{\overline{u}}{z^*}$"></TD>
|
362
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
363
|
-
</TD></TR>
|
364
|
-
<TR VALIGN="MIDDLE">
|
365
|
-
<TD> </TD>
|
366
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
367
|
-
WIDTH="627" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
368
|
-
SRC="img139.png"
|
369
|
-
ALT="$\displaystyle \qquad \qquad
|
370
72
|
- f
|
371
73
|
\left[
|
372
74
|
\overline{v}^*
|
373
75
|
+ \Dinv{\rho_0} \D...
|
374
|
-
...ne{v'\theta'}}
|
375
76
|
{\overline{\DP{\theta}{z^*}}}
|
376
77
|
\right)
|
377
78
|
\right]
|
378
79
|
- \overline{X}$"></TD>
|
379
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
380
|
-
</TD></TR>
|
381
|
-
<TR VALIGN="MIDDLE">
|
382
|
-
<TD> </TD>
|
383
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
384
|
-
WIDTH="408" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
385
|
-
SRC="img140.png"
|
386
|
-
ALT="$\displaystyle \qquad
|
387
80
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
388
81
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$"></TD>
|
389
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
390
|
-
</TD></TR>
|
391
|
-
<TR VALIGN="MIDDLE">
|
392
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
393
|
-
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
394
|
-
SRC="img88.png"
|
395
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
396
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
397
|
-
WIDTH="339" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
398
|
-
SRC="img141.png"
|
399
|
-
ALT="$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
|
400
82
|
+ \overline{w...
|
401
|
-
...ine{v}^*
|
402
83
|
- \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
|
403
84
|
- \overline{X}$"></TD>
|
404
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
405
|
-
</TD></TR>
|
406
|
-
<TR VALIGN="MIDDLE">
|
407
|
-
<TD> </TD>
|
408
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
409
|
-
WIDTH="507" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
410
|
-
SRC="img142.png"
|
411
|
-
ALT="$\displaystyle \qquad
|
412
85
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^...
|
413
|
-
...line{v'\theta'}}
|
414
86
|
{\overline{\DP{\theta}{z^*}}}
|
415
87
|
\right) \DP{\overline{u}}{z^*}$"></TD>
|
416
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
417
|
-
</TD></TR>
|
418
|
-
<TR VALIGN="MIDDLE">
|
419
|
-
<TD> </TD>
|
420
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
421
|
-
WIDTH="384" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
422
|
-
SRC="img143.png"
|
423
|
-
ALT="$\displaystyle \qquad \qquad
|
424
88
|
+ f \Dinv{\rho_0} \DP{}{z^*}
|
425
89
|
\left( \rho_0
|
426
90
|
\fra...
|
427
|
-
...\DP{\theta}{z^*}}}
|
428
91
|
\right)
|
429
92
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$"></TD>
|
430
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
431
|
-
</TD></TR>
|
432
|
-
<TR VALIGN="MIDDLE">
|
433
|
-
<TD> </TD>
|
434
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
435
|
-
WIDTH="493" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
436
|
-
SRC="img144.png"
|
437
|
-
ALT="$\displaystyle \qquad \qquad
|
438
93
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
439
94
|
\left( \rho_0
|
440
95
|
\fra...
|
441
|
-
...( \rho_0
|
442
96
|
\frac{\overline{v'\theta'}}
|
443
97
|
{\overline{\DP{\theta}{z^*}}}
|
444
98
|
\right),$"></TD>
|
445
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
446
|
-
</TD></TR>
|
447
|
-
<TR VALIGN="MIDDLE">
|
448
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
449
|
-
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
450
|
-
SRC="img88.png"
|
451
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
452
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
453
|
-
WIDTH="342" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
454
|
-
SRC="img145.png"
|
455
|
-
ALT="$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
456
99
|
\left( \overli...
|
457
|
-
...)
|
458
100
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
459
101
|
- f \overline{v}^*
|
460
102
|
- \overline{X}$"></TD>
|
461
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
462
|
-
</TD></TR>
|
463
|
-
<TR VALIGN="MIDDLE">
|
464
|
-
<TD> </TD>
|
465
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
466
|
-
WIDTH="559" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
467
|
-
SRC="img146.png"
|
468
|
-
ALT="$\displaystyle \qquad
|
469
103
|
= - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
470
104
|
\DP{}{\phi} (\rho_0 a...
|
471
|
-
...line{v'\theta'}}
|
472
105
|
{\overline{\DP{\theta}{z^*}}}
|
473
106
|
\right) \DP{\overline{u}}{z^*}$"></TD>
|
474
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
475
|
-
</TD></TR>
|
476
|
-
<TR VALIGN="MIDDLE">
|
477
|
-
<TD> </TD>
|
478
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
479
|
-
WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
480
|
-
SRC="img147.png"
|
481
|
-
ALT="$\displaystyle \qquad \qquad
|
482
107
|
+ \frac{1}{\rho_0 a \cos \phi}
|
483
108
|
\DP{}{z^*}
|
484
109
|
\left...
|
485
|
-
... \frac{1}{\rho_0 a \cos \phi}
|
486
110
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
|
487
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
488
|
-
</TD></TR>
|
489
|
-
<TR VALIGN="MIDDLE">
|
490
|
-
<TD> </TD>
|
491
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
492
|
-
WIDTH="485" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
493
|
-
SRC="img148.png"
|
494
|
-
ALT="$\displaystyle \qquad \qquad
|
495
111
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
496
112
|
\left( \rho_0
|
497
113
|
\fra...
|
498
|
-
...t( \rho_0
|
499
114
|
\frac{\overline{v'\theta'}}
|
500
115
|
{\overline{\DP{\theta}{z^*}}}
|
501
116
|
\right)$"></TD>
|
502
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
503
|
-
<A NAME="eq:tem-u-tochuu">(A.15)</A></TD></TR>
|
504
|
-
</TABLE></DIV>
|
505
|
-
<BR CLEAR="ALL"><P></P>
|
506
|
-
(<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$N1&JU$r0J2<$N$h$&$KJQ7A$9$k(B.
|
507
|
-
<P></P>
|
508
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
509
|
-
<TR VALIGN="MIDDLE">
|
510
|
-
<TD> </TD>
|
511
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
512
|
-
WIDTH="594" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
513
|
-
SRC="img149.png"
|
514
|
-
ALT="$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
515
117
|
\DP{}{\phi} (\rho_0 a \overline...
|
516
|
-
...\cos \phi
|
517
118
|
\frac{\overline{v'\theta'}}
|
518
119
|
{\overline{\DP{\theta}{z^*}}}
|
519
120
|
\right)$"></TD>
|
520
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
521
|
-
</TD></TR>
|
522
|
-
<TR VALIGN="MIDDLE">
|
523
|
-
<TD> </TD>
|
524
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
525
|
-
WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
526
|
-
SRC="img147.png"
|
527
|
-
ALT="$\displaystyle \qquad \qquad
|
528
121
|
+ \frac{1}{\rho_0 a \cos \phi}
|
529
122
|
\DP{}{z^*}
|
530
123
|
\left...
|
531
|
-
... \frac{1}{\rho_0 a \cos \phi}
|
532
124
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
|
533
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
534
|
-
</TD></TR>
|
535
|
-
<TR VALIGN="MIDDLE">
|
536
|
-
<TD> </TD>
|
537
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
538
|
-
WIDTH="460" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
539
|
-
SRC="img150.png"
|
540
|
-
ALT="$\displaystyle \qquad \qquad
|
541
125
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
542
126
|
\left( \rho_0
|
543
127
|
\fra...
|
544
|
-
...rline{\DP{\theta}{z^*}}}
|
545
128
|
\DP{}{z^*}
|
546
129
|
\left(
|
547
130
|
\DP{\overline{u}}{\phi}
|
548
131
|
\right)$"></TD>
|
549
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
550
|
-
</TD></TR>
|
551
|
-
<TR VALIGN="MIDDLE">
|
552
|
-
<TD> </TD>
|
553
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
554
|
-
WIDTH="443" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
555
|
-
SRC="img151.png"
|
556
|
-
ALT="$\displaystyle \qquad \qquad
|
557
132
|
+ \frac{\tan \phi}{\rho_0 a}
|
558
133
|
\DP{}{z^*}
|
559
134
|
\left( \...
|
560
|
-
...eta'}}
|
561
135
|
{\overline{\DP{\theta}{z^*}}}
|
562
136
|
\DP{}{z^*}
|
563
137
|
\left( \overline{u}
|
564
138
|
\right)$"></TD>
|
565
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
566
|
-
</TD></TR>
|
567
|
-
<TR VALIGN="MIDDLE">
|
568
|
-
<TD> </TD>
|
569
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
570
|
-
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
571
|
-
SRC="img152.png"
|
572
|
-
ALT="$\displaystyle =
|
573
139
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
574
140
|
\left[
|
575
141
|
- \DP{}{\phi} (\rho_0 ...
|
576
|
-
...
|
577
142
|
\frac{\overline{v'\theta'}}
|
578
143
|
{\overline{\DP{\theta}{z^*}}}
|
579
144
|
\right)
|
580
145
|
\right]$"></TD>
|
581
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
582
|
-
</TD></TR>
|
583
|
-
<TR VALIGN="MIDDLE">
|
584
|
-
<TD> </TD>
|
585
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
586
|
-
WIDTH="377" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
587
|
-
SRC="img153.png"
|
588
|
-
ALT="$\displaystyle \qquad
|
589
146
|
+ \Dinv{\rho_0 a}
|
590
147
|
\rho_0
|
591
148
|
\frac{\overline{v'\theta'}}
|
592
|
-
...ac{\overline{v'\theta'}}
|
593
149
|
{\overline{\DP{\theta}{z^*}}}
|
594
150
|
\DP{\overline{u}}{z^*}$"></TD>
|
595
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
596
|
-
</TD></TR>
|
597
|
-
<TR VALIGN="MIDDLE">
|
598
|
-
<TD> </TD>
|
599
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
600
|
-
WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
601
|
-
SRC="img154.png"
|
602
|
-
ALT="$\displaystyle \qquad
|
603
151
|
+ \frac{1}{\rho_0 a \cos \phi}
|
604
152
|
\DP{}{z^*}
|
605
153
|
\left[
|
606
154
|
\lef...
|
607
|
-
...line{\DP{\theta}{z^*}}}
|
608
155
|
\right)
|
609
156
|
- \rho_0 a \cos \phi \overline{w'u'}
|
610
157
|
\right]$"></TD>
|
611
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
612
|
-
</TD></TR>
|
613
|
-
<TR VALIGN="MIDDLE">
|
614
|
-
<TD> </TD>
|
615
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
616
|
-
WIDTH="423" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
617
|
-
SRC="img155.png"
|
618
|
-
ALT="$\displaystyle \qquad
|
619
158
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
620
159
|
\left( \rho_0
|
621
160
|
\frac{\over...
|
622
|
-
...u} \rho_0
|
623
161
|
\frac{\overline{v'\theta'}}
|
624
162
|
{\overline{\DP{\theta}{z^*}}}
|
625
163
|
\right)$"></TD>
|
626
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
627
|
-
</TD></TR>
|
628
|
-
<TR VALIGN="MIDDLE">
|
629
|
-
<TD> </TD>
|
630
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
631
|
-
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
632
|
-
SRC="img152.png"
|
633
|
-
ALT="$\displaystyle =
|
634
164
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
635
165
|
\left[
|
636
166
|
- \DP{}{\phi} (\rho_0 ...
|
637
|
-
...
|
638
167
|
\frac{\overline{v'\theta'}}
|
639
168
|
{\overline{\DP{\theta}{z^*}}}
|
640
169
|
\right)
|
641
170
|
\right]$"></TD>
|
642
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
643
|
-
</TD></TR>
|
644
|
-
<TR VALIGN="MIDDLE">
|
645
|
-
<TD> </TD>
|
646
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
647
|
-
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
648
|
-
SRC="img156.png"
|
649
|
-
ALT="$\displaystyle \qquad
|
650
171
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
651
172
|
\left[
|
652
173
|
\rho_0 a \cos^2...
|
653
|
-
...ine{v'\theta'}}
|
654
174
|
{\overline{\DP{\theta}{z^*}}}
|
655
175
|
\DP{\overline{u}}{z^*}
|
656
176
|
\right]$"></TD>
|
657
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
658
|
-
</TD></TR>
|
659
|
-
<TR VALIGN="MIDDLE">
|
660
|
-
<TD> </TD>
|
661
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
662
|
-
WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
663
|
-
SRC="img154.png"
|
664
|
-
ALT="$\displaystyle \qquad
|
665
177
|
+ \frac{1}{\rho_0 a \cos \phi}
|
666
178
|
\DP{}{z^*}
|
667
179
|
\left[
|
668
180
|
\lef...
|
669
|
-
...line{\DP{\theta}{z^*}}}
|
670
181
|
\right)
|
671
182
|
- \rho_0 a \cos \phi \overline{w'u'}
|
672
183
|
\right]$"></TD>
|
673
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
674
|
-
</TD></TR>
|
675
|
-
<TR VALIGN="MIDDLE">
|
676
|
-
<TD> </TD>
|
677
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
678
|
-
WIDTH="580" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
679
|
-
SRC="img157.png"
|
680
|
-
ALT="$\displaystyle \qquad
|
681
184
|
+ \Dinv{\rho_0 a \cos \phi}
|
682
185
|
\left[
|
683
186
|
- \cos \phi
|
684
187
|
\DP{}{...
|
685
|
-
...
|
686
188
|
\frac{\overline{v'\theta'}}
|
687
189
|
{\overline{\DP{\theta}{z^*}}}
|
688
190
|
\right)
|
689
191
|
\right]$"></TD>
|
690
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
691
|
-
</TD></TR>
|
692
|
-
<TR VALIGN="MIDDLE">
|
693
|
-
<TD> </TD>
|
694
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
695
|
-
WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
696
|
-
SRC="img152.png"
|
697
|
-
ALT="$\displaystyle =
|
698
192
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
699
193
|
\left[
|
700
194
|
- \DP{}{\phi} (\rho_0 ...
|
701
|
-
...
|
702
195
|
\frac{\overline{v'\theta'}}
|
703
196
|
{\overline{\DP{\theta}{z^*}}}
|
704
197
|
\right)
|
705
198
|
\right]$"></TD>
|
706
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
707
|
-
</TD></TR>
|
708
|
-
<TR VALIGN="MIDDLE">
|
709
|
-
<TD> </TD>
|
710
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
711
|
-
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
712
|
-
SRC="img156.png"
|
713
|
-
ALT="$\displaystyle \qquad
|
714
199
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
715
200
|
\left[
|
716
201
|
\rho_0 a \cos^2...
|
717
|
-
...ine{v'\theta'}}
|
718
202
|
{\overline{\DP{\theta}{z^*}}}
|
719
203
|
\DP{\overline{u}}{z^*}
|
720
204
|
\right]$"></TD>
|
721
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
722
|
-
</TD></TR>
|
723
|
-
<TR VALIGN="MIDDLE">
|
724
|
-
<TD> </TD>
|
725
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
726
|
-
WIDTH="427" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
727
|
-
SRC="img158.png"
|
728
|
-
ALT="$\displaystyle \qquad
|
729
205
|
+ \frac{1}{\rho_0 a \cos \phi}
|
730
206
|
\DP{}{z^*}
|
731
207
|
\left[
|
732
208
|
f \r...
|
733
|
-
...}
|
734
209
|
{\overline{\DP{\theta}{z^*}}}
|
735
210
|
- \rho_0 a \cos \phi \overline{w'u'}
|
736
211
|
\right]$"></TD>
|
737
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
738
|
-
</TD></TR>
|
739
|
-
<TR VALIGN="MIDDLE">
|
740
|
-
<TD> </TD>
|
741
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
742
|
-
WIDTH="441" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
743
|
-
SRC="img159.png"
|
744
|
-
ALT="$\displaystyle \qquad
|
745
212
|
+ \Dinv{\rho_0 a \cos \phi}
|
746
213
|
\DP{}{z^*}
|
747
214
|
\left[
|
748
215
|
- \rho_...
|
749
|
-
...u} \rho_0
|
750
216
|
\frac{\overline{v'\theta'}}
|
751
217
|
{\overline{\DP{\theta}{z^*}}}
|
752
218
|
\right]$"></TD>
|
753
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
754
|
-
<A NAME="eq:tem-u-uhen">(A.16)</A></TD></TR>
|
755
|
-
</TABLE></DIV>
|
756
|
-
<BR CLEAR="ALL"><P></P>
|
757
|
-
(<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh0l9`$HBhFs9`$@$1<h$j=P$9$H(B
|
758
|
-
<P></P>
|
759
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
760
|
-
<TR VALIGN="MIDDLE">
|
761
|
-
<TD> </TD>
|
762
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
763
|
-
WIDTH="537" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
764
|
-
SRC="img160.png"
|
765
|
-
ALT="$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
|
766
219
|
\left[
|
767
220
|
- \DP{}{\phi} (\rho_0 a \...
|
768
|
-
...
|
769
221
|
\frac{\overline{v'\theta'}}
|
770
222
|
{\overline{\DP{\theta}{z^*}}}
|
771
223
|
\right)
|
772
224
|
\right]$"></TD>
|
773
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
774
|
-
</TD></TR>
|
775
|
-
<TR VALIGN="MIDDLE">
|
776
|
-
<TD> </TD>
|
777
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
778
|
-
WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
779
|
-
SRC="img156.png"
|
780
|
-
ALT="$\displaystyle \qquad
|
781
225
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
782
226
|
\left[
|
783
227
|
\rho_0 a \cos^2...
|
784
|
-
...ine{v'\theta'}}
|
785
228
|
{\overline{\DP{\theta}{z^*}}}
|
786
229
|
\DP{\overline{u}}{z^*}
|
787
230
|
\right]$"></TD>
|
788
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
789
|
-
</TD></TR>
|
790
|
-
<TR VALIGN="MIDDLE">
|
791
|
-
<TD> </TD>
|
792
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
793
|
-
WIDTH="299" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
|
794
|
-
SRC="img161.png"
|
795
|
-
ALT="$\displaystyle =
|
796
231
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
797
232
|
\left[
|
798
233
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
799
234
|
\right]$"></TD>
|
800
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
801
|
-
</TD></TR>
|
802
|
-
<TR VALIGN="MIDDLE">
|
803
|
-
<TD> </TD>
|
804
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
805
|
-
WIDTH="587" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
806
|
-
SRC="img162.png"
|
807
|
-
ALT="$\displaystyle \qquad
|
808
235
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
809
236
|
\left[
|
810
237
|
\rho_0 a \cos^2...
|
811
|
-
...
|
812
238
|
\frac{\overline{v'\theta'}}
|
813
239
|
{\overline{\DP{\theta}{z^*}}}
|
814
240
|
\right)
|
815
241
|
\right]$"></TD>
|
816
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
817
|
-
</TD></TR>
|
818
|
-
<TR VALIGN="MIDDLE">
|
819
|
-
<TD> </TD>
|
820
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
821
|
-
WIDTH="630" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
822
|
-
SRC="img163.png"
|
823
|
-
ALT="$\displaystyle =
|
824
242
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
825
243
|
\left[
|
826
244
|
- \DP{}{\phi} (\rho_0 ...
|
827
|
-
...ta'}}
|
828
245
|
{\overline{\DP{\theta}{z^*}}}
|
829
246
|
\DP{\overline{u}}{z^*}
|
830
247
|
\right)
|
831
248
|
\right]$"></TD>
|
832
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
833
|
-
</TD></TR>
|
834
|
-
<TR VALIGN="MIDDLE">
|
835
|
-
<TD> </TD>
|
836
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
837
|
-
WIDTH="451" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
838
|
-
SRC="img164.png"
|
839
|
-
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
840
249
|
\DP{}{\phi}
|
841
250
|
\left[
|
842
251
|
- \rho_0 a...
|
843
|
-
...ine{v'\theta'}}
|
844
252
|
{\overline{\DP{\theta}{z^*}}}
|
845
253
|
\DP{\overline{u}}{z^*}
|
846
254
|
\right]$"></TD>
|
847
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
848
|
-
</TD></TR>
|
849
|
-
<TR VALIGN="MIDDLE">
|
850
|
-
<TD> </TD>
|
851
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
852
|
-
WIDTH="393" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
853
|
-
SRC="img165.png"
|
854
|
-
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
855
255
|
\DP{}{\phi}
|
856
256
|
\left[
|
857
257
|
\rho_0 a \...
|
858
|
-
...'\theta'}}
|
859
258
|
{\overline{\DP{\theta}{z^*}}}
|
860
259
|
- \overline{v'u'}
|
861
260
|
\right\}
|
862
261
|
\right]$"></TD>
|
863
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
864
|
-
</TD></TR>
|
865
|
-
<TR VALIGN="MIDDLE">
|
866
|
-
<TD> </TD>
|
867
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
868
|
-
WIDTH="222" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
869
|
-
SRC="img166.png"
|
870
|
-
ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
871
262
|
\DP{}{\phi}
|
872
263
|
\left(
|
873
264
|
\cos \phi F^{*}_{\phi}
|
874
265
|
\right)$"></TD>
|
875
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
876
|
-
</TD></TR>
|
877
|
-
</TABLE></DIV>
|
878
|
-
<BR CLEAR="ALL"><P></P>
|
879
|
-
(<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh;09`$HBh;M9`$@$1<h$j=P$9$H(B
|
880
|
-
<P></P>
|
881
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
882
|
-
<TR VALIGN="MIDDLE">
|
883
|
-
<TD> </TD>
|
884
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
885
|
-
WIDTH="775" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
886
|
-
SRC="img167.png"
|
887
|
-
ALT="$\displaystyle \frac{1}{\rho_0 a \cos \phi}
|
888
266
|
\DP{}{z^*}
|
889
267
|
\left[
|
890
268
|
f \rho_0 a \co...
|
891
|
-
...u} \rho_0
|
892
269
|
\frac{\overline{v'\theta'}}
|
893
270
|
{\overline{\DP{\theta}{z^*}}}
|
894
271
|
\right]$"></TD>
|
895
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
896
|
-
</TD></TR>
|
897
|
-
<TR VALIGN="MIDDLE">
|
898
|
-
<TD> </TD>
|
899
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
900
|
-
WIDTH="595" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
901
|
-
SRC="img168.png"
|
902
|
-
ALT="$\displaystyle =
|
903
272
|
\frac{1}{\rho_0 a \cos \phi}
|
904
273
|
\DP{}{z^*}
|
905
274
|
\left[
|
906
275
|
\rho_0 a \...
|
907
|
-
...rline{v'\theta'}}
|
908
276
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
909
277
|
\right\}
|
910
278
|
\right]$"></TD>
|
911
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
912
|
-
</TD></TR>
|
913
|
-
<TR VALIGN="MIDDLE">
|
914
|
-
<TD> </TD>
|
915
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
916
|
-
WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
917
|
-
SRC="img169.png"
|
918
|
-
ALT="$\displaystyle =
|
919
279
|
\frac{1}{\rho_0 a \cos \phi}
|
920
280
|
\DP{}{z^*}
|
921
281
|
\left[
|
922
282
|
\rho_0 a \...
|
923
|
-
...{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
924
283
|
- \overline{w'u'}
|
925
284
|
\right\}
|
926
285
|
\right]$"></TD>
|
927
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
928
|
-
</TD></TR>
|
929
|
-
<TR VALIGN="MIDDLE">
|
930
|
-
<TD> </TD>
|
931
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
932
|
-
WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
933
|
-
SRC="img169.png"
|
934
|
-
ALT="$\displaystyle =
|
935
286
|
\frac{1}{\rho_0 a \cos \phi}
|
936
287
|
\DP{}{z^*}
|
937
288
|
\left[
|
938
289
|
\rho_0 a \...
|
939
|
-
...{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
940
290
|
- \overline{w'u'}
|
941
291
|
\right\}
|
942
292
|
\right]$"></TD>
|
943
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
944
|
-
</TD></TR>
|
945
|
-
<TR VALIGN="MIDDLE">
|
946
|
-
<TD> </TD>
|
947
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
948
|
-
WIDTH="481" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
|
949
|
-
SRC="img170.png"
|
950
|
-
ALT="$\displaystyle =
|
951
293
|
\frac{1}{\rho_0 a \cos \phi}
|
952
294
|
\DP{}{z^*}
|
953
295
|
\left[
|
954
296
|
\rho_0 a \...
|
955
|
-
...'\theta'}}
|
956
297
|
{\overline{\DP{\theta}{z^*}}}
|
957
298
|
- \overline{w'u'}
|
958
299
|
\right\}
|
959
300
|
\right]$"></TD>
|
960
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
961
|
-
</TD></TR>
|
962
|
-
<TR VALIGN="MIDDLE">
|
963
|
-
<TD> </TD>
|
964
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
965
|
-
WIDTH="136" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
966
|
-
SRC="img171.png"
|
967
|
-
ALT="$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
|
968
301
|
\DP{F^{*}_{z}}{z^*}$"></TD>
|
969
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
970
|
-
</TD></TR>
|
971
|
-
</TABLE></DIV>
|
972
|
-
<BR CLEAR="ALL"><P></P>
|
973
|
-
$B0J>e$h$j(B, (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$O<!$N$h$&$K$J$k(B.
|
974
|
-
<P></P>
|
975
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
976
|
-
<TR VALIGN="MIDDLE">
|
977
|
-
<TD> </TD>
|
978
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
979
|
-
WIDTH="736" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
|
980
|
-
SRC="img172.png"
|
981
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}
|
982
302
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
|
983
|
-
...hi}
|
984
303
|
\right)
|
985
304
|
+ \frac{1}{\rho_0 a \cos \phi}
|
986
305
|
\DP{F^{*}_{z}}{z^*},
|
987
306
|
\nonumber$"></TD>
|
988
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
989
|
-
</TD></TR>
|
990
|
-
<TR VALIGN="MIDDLE">
|
991
|
-
<TD> </TD>
|
992
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
993
|
-
WIDTH="518" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
994
|
-
SRC="img173.png"
|
995
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}
|
996
307
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
|
997
|
-
...\overline{v}^*
|
998
308
|
- \overline{X}
|
999
309
|
= \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$"></TD>
|
1000
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1001
|
-
</TD></TR>
|
1002
|
-
</TABLE></DIV>
|
1003
|
-
<BR CLEAR="ALL"><P></P>
|
1004
|
-
$B$3$3$G(B, $B;R8aLLFb$NH/;6$r0J2<$N$h$&$KI=$7$?(B.
|
1005
|
-
<P></P>
|
1006
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1007
|
-
<TR VALIGN="MIDDLE">
|
1008
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
1009
|
-
WIDTH="279" HEIGHT="62" ALIGN="MIDDLE" BORDER="0"
|
1010
|
-
SRC="img174.png"
|
1011
|
-
ALT="$\displaystyle \Ddiv{\Dvect{F}}
|
1012
310
|
= \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$"></TD>
|
1013
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1014
|
-
(A.17)</TD></TR>
|
1015
|
-
</TABLE></DIV>
|
1016
|
-
<BR CLEAR="ALL"><P></P>
|
1017
|
-
|
1018
|
-
<BR>
|
1019
|
-
<BR>
|
1020
|
-
|
1021
|
-
$B<!$KG.NO3X$N<0$r=q$-49$($k(B.
|
1022
|
-
(<A HREF="node13.html#eq:new_euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
1023
|
-
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
1024
|
-
<P></P>
|
1025
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1026
|
-
<TR VALIGN="MIDDLE">
|
1027
|
-
<TD> </TD>
|
1028
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1029
|
-
WIDTH="647" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1030
|
-
SRC="img175.png"
|
1031
|
-
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
1032
311
|
+ \frac{1}{a}
|
1033
312
|
\left[
|
1034
313
|
\overline{v}^...
|
1035
|
-
...P{\theta}{z^*}}}
|
1036
314
|
\right)
|
1037
315
|
\right]
|
1038
316
|
\DP{\overline{\theta}}{z^*}
|
1039
317
|
- \overline{Q}$"></TD>
|
1040
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1041
|
-
</TD></TR>
|
1042
|
-
<TR VALIGN="MIDDLE">
|
1043
|
-
<TD> </TD>
|
1044
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1045
|
-
WIDTH="390" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1046
|
-
SRC="img176.png"
|
1047
|
-
ALT="$\displaystyle \qquad
|
1048
318
|
=
|
1049
319
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1050
320
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$"></TD>
|
1051
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1052
|
-
</TD></TR>
|
1053
|
-
<TR VALIGN="MIDDLE">
|
1054
|
-
<TD> </TD>
|
1055
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1056
|
-
WIDTH="215" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1057
|
-
SRC="img177.png"
|
1058
|
-
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
1059
321
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
1060
322
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
1061
323
|
- \overline{Q}$"></TD>
|
1062
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1063
|
-
</TD></TR>
|
1064
|
-
<TR VALIGN="MIDDLE">
|
1065
|
-
<TD> </TD>
|
1066
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1067
|
-
WIDTH="498" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1068
|
-
SRC="img178.png"
|
1069
|
-
ALT="$\displaystyle \qquad
|
1070
324
|
= - \Dinv{\rho_0 a} \DP{}{z^*}
|
1071
325
|
\left( \rho_0
|
1072
326
|
\frac{\o...
|
1073
|
-
...v'\theta'}}
|
1074
327
|
{\overline{\DP{\theta}{z^*}}}
|
1075
328
|
\right) \DP{\overline{\theta}}{z^*}$"></TD>
|
1076
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1077
|
-
</TD></TR>
|
1078
|
-
<TR VALIGN="MIDDLE">
|
1079
|
-
<TD> </TD>
|
1080
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1081
|
-
WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1082
|
-
SRC="img179.png"
|
1083
|
-
ALT="$\displaystyle \qquad \qquad
|
1084
329
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1085
330
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1086
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1087
|
-
</TD></TR>
|
1088
|
-
</TABLE></DIV>
|
1089
|
-
<BR CLEAR="ALL"><P></P>
|
1090
|
-
$B$H$J$k(B.
|
1091
|
-
$B$3$N1&JU$r99$KJQ7A$9$k$H(B
|
1092
|
-
<P></P>
|
1093
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1094
|
-
<TR VALIGN="MIDDLE">
|
1095
|
-
<TD> </TD>
|
1096
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1097
|
-
WIDTH="439" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1098
|
-
SRC="img180.png"
|
1099
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1100
331
|
\left( \rho_0
|
1101
332
|
\frac{\overline{v'\th...
|
1102
|
-
...v'\theta'}}
|
1103
333
|
{\overline{\DP{\theta}{z^*}}}
|
1104
334
|
\right) \DP{\overline{\theta}}{z^*}$"></TD>
|
1105
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1106
|
-
</TD></TR>
|
1107
|
-
<TR VALIGN="MIDDLE">
|
1108
|
-
<TD> </TD>
|
1109
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1110
|
-
WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1111
|
-
SRC="img181.png"
|
1112
|
-
ALT="$\displaystyle \qquad
|
1113
335
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1114
336
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1115
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1116
|
-
</TD></TR>
|
1117
|
-
<TR VALIGN="MIDDLE">
|
1118
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1119
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1120
|
-
SRC="img5.png"
|
1121
|
-
ALT="$\displaystyle =$"></TD>
|
1122
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1123
|
-
WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1124
|
-
SRC="img182.png"
|
1125
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1126
337
|
\left( \rho_0
|
1127
338
|
\frac{\overline{v'\th...
|
1128
|
-
...eta'}}
|
1129
339
|
{a \overline{\DP{\theta}{z^*}}}
|
1130
340
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}$"></TD>
|
1131
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1132
|
-
</TD></TR>
|
1133
|
-
<TR VALIGN="MIDDLE">
|
1134
|
-
<TD> </TD>
|
1135
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1136
|
-
WIDTH="520" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1137
|
-
SRC="img183.png"
|
1138
|
-
ALT="$\displaystyle \qquad
|
1139
341
|
+ \Dinv{a \cos\phi}
|
1140
342
|
\left[
|
1141
343
|
\DP{}{\phi} \left( \cos \...
|
1142
|
-
...( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
1143
344
|
\right] \DP{\overline{\theta}}{z^*}$"></TD>
|
1144
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1145
|
-
</TD></TR>
|
1146
|
-
<TR VALIGN="MIDDLE">
|
1147
|
-
<TD> </TD>
|
1148
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1149
|
-
WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1150
|
-
SRC="img181.png"
|
1151
|
-
ALT="$\displaystyle \qquad
|
1152
345
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1153
346
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1154
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1155
|
-
</TD></TR>
|
1156
|
-
<TR VALIGN="MIDDLE">
|
1157
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1158
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1159
|
-
SRC="img5.png"
|
1160
|
-
ALT="$\displaystyle =$"></TD>
|
1161
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1162
|
-
WIDTH="658" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1163
|
-
SRC="img184.png"
|
1164
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1165
347
|
\left( \rho_0
|
1166
348
|
\frac{\overline{v'\th...
|
1167
|
-
...{\overline{\theta}}{z^*}
|
1168
349
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
|
1169
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1170
|
-
</TD></TR>
|
1171
|
-
<TR VALIGN="MIDDLE">
|
1172
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1173
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1174
|
-
SRC="img5.png"
|
1175
|
-
ALT="$\displaystyle =$"></TD>
|
1176
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1177
|
-
WIDTH="585" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1178
|
-
SRC="img185.png"
|
1179
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1180
350
|
\left[ \rho_0
|
1181
351
|
\frac{\overline{v'\th...
|
1182
|
-
... \overline{\DP{\theta}{z^*}} \right)^{-1}
|
1183
352
|
\DP{\overline{\theta}}{z^*}
|
1184
353
|
\right]$"></TD>
|
1185
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1186
|
-
</TD></TR>
|
1187
|
-
<TR VALIGN="MIDDLE">
|
1188
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1189
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1190
|
-
SRC="img5.png"
|
1191
|
-
ALT="$\displaystyle =$"></TD>
|
1192
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1193
|
-
WIDTH="416" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1194
|
-
SRC="img186.png"
|
1195
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1196
354
|
\left[ \rho_0
|
1197
355
|
\left(
|
1198
356
|
\frac{\overli...
|
1199
|
-
... \frac{ \DP{\overline{\theta}}{z^*} }
|
1200
357
|
{ \overline{\DP{\theta}{z^*}} }
|
1201
358
|
\right)$"></TD>
|
1202
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1203
|
-
</TD></TR>
|
1204
|
-
<TR VALIGN="MIDDLE">
|
1205
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
1206
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
1207
|
-
SRC="img5.png"
|
1208
|
-
ALT="$\displaystyle =$"></TD>
|
1209
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1210
|
-
WIDTH="279" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1211
|
-
SRC="img187.png"
|
1212
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
1213
359
|
\left[ \rho_0
|
1214
360
|
\left(
|
1215
361
|
\frac{\overli...
|
1216
|
-
...^*}}}
|
1217
362
|
\DP{\overline{\theta}}{\phi}
|
1218
363
|
+ \overline{w'\theta'}
|
1219
364
|
\right)
|
1220
365
|
\right].$"></TD>
|
1221
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1222
|
-
</TD></TR>
|
1223
|
-
</TABLE></DIV>
|
1224
|
-
<BR CLEAR="ALL"><P></P>
|
1225
|
-
$B$3$l$h$j(B, $BG.NO3X$N<0$O0J2<$N$h$&$K$J$k(B.
|
1226
|
-
<P></P>
|
1227
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1228
|
-
<TR VALIGN="MIDDLE">
|
1229
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
1230
|
-
WIDTH="515" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
|
1231
|
-
SRC="img188.png"
|
1232
|
-
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
1233
366
|
+ \frac{\overline{v}^*}{a} \DP{\overli...
|
1234
|
-
...^*}}}
|
1235
367
|
\DP{\overline{\theta}}{\phi}
|
1236
368
|
+ \overline{w'\theta'}
|
1237
369
|
\right)
|
1238
370
|
\right].$"></TD>
|
1239
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1240
|
-
</TD></TR>
|
1241
|
-
</TABLE></DIV>
|
1242
|
-
<BR CLEAR="ALL"><P></P>
|
1243
|
-
|
1244
|
-
<BR>
|
1245
|
-
<BR>
|
1246
|
-
|
1247
|
-
$B:G8e$K(B <IMG
|
1248
|
-
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1249
|
-
SRC="img189.png"
|
1250
|
-
ALT="$ v$"> $B$N<0$K$D$$$F9M$($k(B.
|
1251
|
-
(<A HREF="node13.html#eq:new_euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
|
1252
|
-
(<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
|
1253
|
-
<P></P>
|
1254
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1255
|
-
<TR VALIGN="MIDDLE">
|
1256
|
-
<TD> </TD>
|
1257
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1258
|
-
WIDTH="692" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1259
|
-
SRC="img190.png"
|
1260
|
-
ALT="$\displaystyle \DP{}{t}
|
1261
371
|
\left[
|
1262
372
|
\overline{v}^*
|
1263
373
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1264
374
|
\...
|
1265
|
-
...
|
1266
375
|
\frac{\overline{v'\theta'}}
|
1267
376
|
{\overline{\DP{\theta}{z^*}}}
|
1268
377
|
\right)
|
1269
378
|
\right]$"></TD>
|
1270
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1271
|
-
</TD></TR>
|
1272
|
-
<TR VALIGN="MIDDLE">
|
1273
|
-
<TD> </TD>
|
1274
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1275
|
-
WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1276
|
-
SRC="img191.png"
|
1277
|
-
ALT="$\displaystyle \qquad \qquad
|
1278
379
|
+ \left[
|
1279
380
|
\overline{w}^*
|
1280
381
|
- \Dinv{a \cos\phi}
|
1281
382
|
\...
|
1282
|
-
...
|
1283
383
|
\frac{\overline{v'\theta'}}
|
1284
384
|
{\overline{\DP{\theta}{z^*}}}
|
1285
385
|
\right)
|
1286
386
|
\right]$"></TD>
|
1287
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1288
|
-
</TD></TR>
|
1289
|
-
<TR VALIGN="MIDDLE">
|
1290
|
-
<TD> </TD>
|
1291
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1292
|
-
WIDTH="321" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1293
|
-
SRC="img192.png"
|
1294
|
-
ALT="$\displaystyle \qquad \qquad
|
1295
387
|
+ f \overline{u}
|
1296
388
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1297
389
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1298
390
|
- \overline{Y}$"></TD>
|
1299
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1300
|
-
</TD></TR>
|
1301
|
-
<TR VALIGN="MIDDLE">
|
1302
|
-
<TD> </TD>
|
1303
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1304
|
-
WIDTH="474" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1305
|
-
SRC="img193.png"
|
1306
|
-
ALT="$\displaystyle \qquad
|
1307
391
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)...
|
1308
|
-
...\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
1309
392
|
- \overline{u'^2}\frac{\tan\phi}{a},$"></TD>
|
1310
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1311
|
-
</TD></TR>
|
1312
|
-
<TR VALIGN="MIDDLE">
|
1313
|
-
<TD> </TD>
|
1314
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1315
|
-
WIDTH="193" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1316
|
-
SRC="img194.png"
|
1317
|
-
ALT="$\displaystyle f \overline{u}
|
1318
393
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1319
394
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}$"></TD>
|
1320
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1321
|
-
</TD></TR>
|
1322
|
-
<TR VALIGN="MIDDLE">
|
1323
|
-
<TD> </TD>
|
1324
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1325
|
-
WIDTH="764" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1326
|
-
SRC="img195.png"
|
1327
|
-
ALT="$\displaystyle \qquad
|
1328
395
|
= - \DP{}{t}
|
1329
396
|
\left[
|
1330
397
|
\overline{v}^*
|
1331
398
|
+ \Dinv{\rho_0} \...
|
1332
|
-
...
|
1333
399
|
\frac{\overline{v'\theta'}}
|
1334
400
|
{\overline{\DP{\theta}{z^*}}}
|
1335
401
|
\right)
|
1336
402
|
\right]$"></TD>
|
1337
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1338
|
-
</TD></TR>
|
1339
|
-
<TR VALIGN="MIDDLE">
|
1340
|
-
<TD> </TD>
|
1341
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1342
|
-
WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
|
1343
|
-
SRC="img196.png"
|
1344
|
-
ALT="$\displaystyle \qquad \qquad
|
1345
403
|
- \left[
|
1346
404
|
\overline{w}^*
|
1347
405
|
- \Dinv{a \cos\phi}
|
1348
406
|
\...
|
1349
|
-
...
|
1350
407
|
\frac{\overline{v'\theta'}}
|
1351
408
|
{\overline{\DP{\theta}{z^*}}}
|
1352
409
|
\right)
|
1353
410
|
\right]$"></TD>
|
1354
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1355
|
-
</TD></TR>
|
1356
|
-
<TR VALIGN="MIDDLE">
|
1357
|
-
<TD> </TD>
|
1358
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
1359
|
-
WIDTH="525" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
1360
|
-
SRC="img197.png"
|
1361
|
-
ALT="$\displaystyle \qquad \qquad
|
1362
411
|
- \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \co...
|
1363
|
-
...}(\rho_0\overline{v' w'})
|
1364
412
|
- \overline{u'^2} \frac{\tan\phi}{a}
|
1365
413
|
+ \overline{Y}$"></TD>
|
1366
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1367
|
-
</TD></TR>
|
1368
|
-
</TABLE></DIV>
|
1369
|
-
<BR CLEAR="ALL"><P></P>
|
1370
|
-
Andrews <I>et al.</I> (1987) $B$K$h$l$P(B, $B$3$N<0$N1&JU$NNL$O(B
|
1371
|
-
$B:8JU$KHf$Y$l$P>.$5$$(B. $B1&JU$N9`$rA4$F$^$H$a$F(B <IMG
|
1372
|
-
WIDTH="20" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1373
|
-
SRC="img198.png"
|
1374
|
-
ALT="$ G$"> $B$H=q$/$H(B
|
1375
|
-
<IMG
|
1376
|
-
WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
1377
|
-
SRC="img189.png"
|
1378
|
-
ALT="$ v$"> $B$N<0$O<!$N$h$&$K$J$k(B.
|
1379
|
-
<P></P>
|
1380
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1381
|
-
<TR VALIGN="MIDDLE">
|
1382
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
1383
|
-
WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
1384
|
-
SRC="img199.png"
|
1385
|
-
ALT="$\displaystyle \overline{u}
|
1386
414
|
\left( f + \frac{\tan\phi}{a} \overline{u} \right)
|
1387
415
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1388
416
|
= G.$"></TD>
|
1389
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
1390
|
-
</TD></TR>
|
1391
|
-
</TABLE></DIV>
|
1392
|
-
<BR CLEAR="ALL"><P></P>
|
1393
|
-
|
1394
|
-
<BR>
|
1395
|
-
<BR>
|
1396
|
-
|
1397
|
-
$B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$BJQ7A%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
|
1398
|
-
<TABLE BORDER="1"><TR><TD>
|
1399
|
-
|
1400
|
-
<DIV ALIGN="CENTER"><A NAME="eq:transformed_euler_mean_pe"></A><A NAME="eq:transformed_euler_mean_pe_momentum_x"></A><A NAME="eq:transformed_euler_mean_pe_momentum_y"></A><A NAME="eq:transformed_euler_mean_pe_momentum_z^*"></A><A NAME="eq:transformed_euler_mean_pe_continuity"></A><A NAME="eq:transformed_euler_mean_pe_thermal"></A><!-- MATH
|
1401
|
-
\begin{subequations}
|
1402
|
-
\begin{align}&
|
1403
|
-
\DP{\overline{u}}{t}
|
1404
|
-
+ \overline{v}^*
|
1405
|
-
\left[
|
1406
|
-
\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
|
1407
|
-
\right]
|
1408
|
-
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
1409
|
-
- \overline{X}
|
1410
|
-
= \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
|
1411
|
-
\overline{u}
|
1412
|
-
\left( f + \overline{u}\frac{\tan\phi}{a} \right)
|
1413
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
1414
|
-
= G.
|
1415
|
-
\end{align}
|
1416
|
-
\begin{align}
|
1417
|
-
\DP{\overline{\Phi}}{z^*}
|
1418
|
-
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
1419
|
-
= 0.
|
1420
|
-
\end{align}
|
1421
|
-
\begin{align}
|
1422
|
-
\Dinv{a\cos\phi}&\left[
|
1423
|
-
\DP{}{\phi}(\overline{v}^*\cos\phi)\right]
|
1424
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
|
1425
|
-
= 0.
|
1426
|
-
\end{align}
|
1427
|
-
\begin{align}
|
1428
|
-
\DP{\overline{\theta}}{t}
|
1429
|
-
+ \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
|
1430
|
-
+ \overline{w}^*\DP{\overline{\theta}}{z^*}
|
1431
|
-
- \overline{Q} =
|
1432
|
-
- \Dinv{\rho_0}\DP{}{z^*}
|
1433
|
-
\left[\rho_0
|
1434
|
-
\left(
|
1435
|
-
\overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
|
1436
|
-
{a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
|
1437
|
-
\right)
|
1438
|
-
\right].
|
1439
|
-
\end{align}
|
1440
|
-
\end{subequations}
|
1441
|
-
-->
|
1442
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
1443
|
-
<TR VALIGN="MIDDLE">
|
1444
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
1445
|
-
WIDTH="555" HEIGHT="316" ALIGN="BOTTOM" BORDER="0"
|
1446
|
-
SRC="img200.png"
|
1447
|
-
ALT="\begin{subequations}\begin{align}&
|
1448
417
|
\DP{\overline{u}}{t}
|
1449
418
|
+ \overline{v}^*
|
1450
419
|
\lef...
|
1451
|
-
...}{z^*}} + \overline{w'\theta'}
|
1452
420
|
\right)
|
1453
421
|
\right].
|
1454
422
|
\end{align}\end{subequations}"></TD></TR>
|
1455
|
-
</TABLE></DIV>
|
1456
|
-
<BR CLEAR="ALL">
|
1457
|
-
</TD></TR></TABLE>
|
1458
|
-
|
1459
|
-
<HR>
|
1460
|
-
<!--Navigation Panel-->
|
1461
|
-
<A NAME="tex2html206"
|
1462
|
-
HREF="node15.html">
|
1463
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
1464
|
-
<A NAME="tex2html202"
|
1465
|
-
HREF="node11.html">
|
1466
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
1467
|
-
<A NAME="tex2html198"
|
1468
|
-
HREF="node13.html">
|
1469
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
1470
|
-
<A NAME="tex2html204"
|
1471
|
-
HREF="node1.html">
|
1472
|
-
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
1473
|
-
<BR>
|
1474
|
-
<B> :</B> <A NAME="tex2html207"
|
1475
|
-
HREF="node15.html">$B;29MJ88%(B</A>
|
1476
|
-
<B> :</B> <A NAME="tex2html203"
|
1477
|
-
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
1478
|
-
<B> :</B> <A NAME="tex2html199"
|
1479
|
-
HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
|
1480
|
-
  <B> <A NAME="tex2html205"
|
1481
|
-
HREF="node1.html">$BL\<!(B</A></B>
|
1482
|
-
<!--End of Navigation Panel-->
|
1483
|
-
<ADDRESS>
|
1484
|
-
Tsukahara Daisuke
|
1485
|
-
$BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
|
1486
|
-
</ADDRESS>
|
1487
|
-
</BODY>
|
1488
|
-
</HTML>
|