gphys 1.1.1 → 1.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,1065 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
13
- <META NAME="description" CONTENT="$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="previous" HREF="node13.html">
25
- <LINK REL="up" HREF="node11.html">
26
- <LINK REL="next" HREF="node15.html">
27
- </HEAD>
28
-
29
- <BODY >
30
- <!--Navigation Panel-->
31
- <A NAME="tex2html206"
32
- HREF="node15.html">
33
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
34
- <A NAME="tex2html202"
35
- HREF="node11.html">
36
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
37
- <A NAME="tex2html198"
38
- HREF="node13.html">
39
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
40
- <A NAME="tex2html204"
41
- HREF="node1.html">
42
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
43
- <BR>
44
- <B> :</B> <A NAME="tex2html207"
45
- HREF="node15.html">$B;29MJ88%(B</A>
46
- <B> :</B> <A NAME="tex2html203"
47
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
48
- <B> :</B> <A NAME="tex2html199"
49
- HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
50
- &nbsp <B> <A NAME="tex2html205"
51
- HREF="node1.html">$BL\<!(B</A></B>
52
- <BR>
53
- <BR>
54
- <!--End of Navigation Panel-->
55
-
56
- <H1><A NAME="SECTION004300000000000000000">
57
- $BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
58
- </H1>
59
-
60
- (<A HREF="node13.html#eq:new_euler_mean_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r(B EP $B%U%i%C%/%9(B, $B;D:9=[4D$rMQ$$$F=q$-D>$9(B.
61
- EP $B%U%i%C%/%9(B, $B;D:9=[4D$O0J2<$N$h$&$KDj5A$9$k(B.
62
-
63
- <DIV ALIGN="CENTER"><A NAME="eq:residual_v_app"></A><A NAME="eq:residual_w_app"></A><!-- MATH
64
- \begin{subequations}
65
- \begin{align}
66
- \overline{v}^*
67
- & =
68
- \overline{v}
69
- - \Dinv{\rho_0} \DP{}{z^*}
70
- \left( \rho_0
71
- \frac{\overline{v'\theta'}}
72
- {\overline{\DP{\theta}{z^*}}}
73
- \right)
74
- \\
75
- \overline{w}^*
76
- & = \overline{w}
77
- + \Dinv{a \cos\phi}
78
- \DP{}{\phi}
79
- \left( \cos \phi
80
- \frac{\overline{v'\theta'}}
81
- {\overline{\DP{\theta}{z^*}}}
82
- \right)
83
- \end{align}
84
-
85
- \end{subequations}
86
- -->
87
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
88
- <TR VALIGN="MIDDLE">
89
- <TD NOWRAP ALIGN="CENTER"><IMG
90
- WIDTH="555" HEIGHT="129" ALIGN="BOTTOM" BORDER="0"
91
- SRC="img124.png"
92
- ALT="\begin{subequations}\begin{align}
93
  \overline{v}^*
94
1
  &amp; =
95
2
  \overline{v}
96
3
  - \Dinv{...
97
- ...\theta'}}
98
4
  {\overline{\DP{\theta}{z^*}}}
99
5
  \right)
100
6
  \end{align}\end{subequations}"></TD></TR>
101
- </TABLE></DIV>
102
- <BR CLEAR="ALL">
103
-
104
- <BR>
105
- <DIV ALIGN="CENTER">
106
- <!-- MATH
107
- \begin{eqnarray*}
108
- {F_\phi} &=& \rho_0 a
109
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
110
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
111
- \overline{u'v'}\right) \\
112
- {F_z^*} &=& \rho_0 a
113
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
114
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
115
- \overline{u'w'}\right)
116
-
117
- \end{eqnarray*}
118
- -->
119
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
120
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
121
- WIDTH="26" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
122
- SRC="img125.png"
123
- ALT="$\displaystyle {F_\phi}$"></TD>
124
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
125
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
126
- SRC="img5.png"
127
- ALT="$\displaystyle =$"></TD>
128
- <TD ALIGN="LEFT" NOWRAP><IMG
129
- WIDTH="225" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
130
- SRC="img126.png"
131
- ALT="$\displaystyle \rho_0 a
132
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
133
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
134
- \overline{u'v'}\right)$"></TD>
135
- <TD WIDTH=10 ALIGN="RIGHT">
136
- &nbsp;</TD></TR>
137
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
138
- WIDTH="27" HEIGHT="36" ALIGN="MIDDLE" BORDER="0"
139
- SRC="img127.png"
140
- ALT="$\displaystyle {F_z^*}$"></TD>
141
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
142
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
143
- SRC="img5.png"
144
- ALT="$\displaystyle =$"></TD>
145
- <TD ALIGN="LEFT" NOWRAP><IMG
146
- WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
147
- SRC="img128.png"
148
- ALT="$\displaystyle \rho_0 a
149
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \p...
150
- ...rac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
151
- \overline{u'w'}\right)$"></TD>
152
- <TD WIDTH=10 ALIGN="RIGHT">
153
- &nbsp;</TD></TR>
154
- </TABLE></DIV>
155
- <BR CLEAR="ALL"><P></P>
156
-
157
- <BR>
158
- <BR>
159
-
160
- $B$^$:O"B3$N<0$r=q$-49$($k(B.
161
- (<A HREF="node13.html#eq:new_euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
162
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
163
- <P></P>
164
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
165
- <TR VALIGN="MIDDLE">
166
- <TD>&nbsp;</TD>
167
- <TD NOWRAP ALIGN="LEFT"><IMG
168
- WIDTH="362" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
169
- SRC="img129.png"
170
- ALT="$\displaystyle \Dinv{a \cos \phi}
171
7
  \DP{}{\phi}\left[
172
8
  \left\{
173
9
  \overline{v}^*
174
- ...v'\theta'}}
175
10
  {\overline{\DP{\theta}{z^*}}}
176
11
  \right)
177
12
  \right\}
178
13
  \cos\phi \right]$"></TD>
179
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
180
- &nbsp;&nbsp;&nbsp;</TD></TR>
181
- <TR VALIGN="MIDDLE">
182
- <TD>&nbsp;</TD>
183
- <TD NOWRAP ALIGN="LEFT"><IMG
184
- WIDTH="458" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
185
- SRC="img130.png"
186
- ALT="$\displaystyle \qquad
187
14
  + \Dinv{\rho_0}
188
15
  \DP{}{z^*}
189
16
  \left[ \rho_0
190
17
  \left\{
191
18
  \o...
192
- ...ne{v'\theta'}}
193
19
  {\overline{\DP{\theta}{z^*}}}
194
20
  \right)
195
21
  \right\}
196
22
  \right]
197
23
  = 0,$"></TD>
198
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
199
- &nbsp;&nbsp;&nbsp;</TD></TR>
200
- <TR VALIGN="MIDDLE">
201
- <TD>&nbsp;</TD>
202
- <TD NOWRAP ALIGN="LEFT"><IMG
203
- WIDTH="298" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
204
- SRC="img131.png"
205
- ALT="$\displaystyle \Dinv{a \cos \phi}
206
24
  \DP{}{\phi}
207
25
  \left(
208
26
  \overline{v}^* \cos\phi
209
27
  \right)
210
28
  + \Dinv{\rho_0}
211
29
  \DP{}{z^*}
212
30
  \left( \rho_0 \overline{w}^* \right)$"></TD>
213
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
214
- &nbsp;&nbsp;&nbsp;</TD></TR>
215
- <TR VALIGN="MIDDLE">
216
- <TD>&nbsp;</TD>
217
- <TD NOWRAP ALIGN="LEFT"><IMG
218
- WIDTH="704" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
219
- SRC="img132.png"
220
- ALT="$\displaystyle \qquad
221
31
  + \Dinv{a \cos \phi}
222
32
  \DP{}{\phi}
223
33
  \left\{
224
34
  \Dinv{\rho_0...
225
- ...c{\overline{v'\theta'}}
226
35
  {\overline{\DP{\theta}{z^*}}}
227
36
  \right)
228
37
  \right\}
229
38
  = 0.$"></TD>
230
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
231
- &nbsp;&nbsp;&nbsp;</TD></TR>
232
- </TABLE></DIV>
233
- <BR CLEAR="ALL"><P></P>
234
- $B$3$NBh;09`$HBh;M9`$@$1$r<h$j=P$9$H(B
235
- <P></P>
236
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
237
- <TR VALIGN="MIDDLE">
238
- <TD>&nbsp;</TD>
239
- <TD NOWRAP ALIGN="LEFT"><IMG
240
- WIDTH="648" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
241
- SRC="img133.png"
242
- ALT="$\displaystyle \qquad
243
39
  \Dinv{a \cos \phi}
244
40
  \DP{}{\phi}
245
41
  \left\{
246
42
  \Dinv{\rho_0}...
247
- ...
248
43
  \frac{\overline{v'\theta'}}
249
44
  {\overline{\DP{\theta}{z^*}}}
250
45
  \right)
251
46
  \right\}$"></TD>
252
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
253
- &nbsp;&nbsp;&nbsp;</TD></TR>
254
- <TR VALIGN="MIDDLE">
255
- <TD>&nbsp;</TD>
256
- <TD NOWRAP ALIGN="LEFT"><IMG
257
- WIDTH="597" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
258
- SRC="img134.png"
259
- ALT="$\displaystyle =
260
47
  \Dinv{a \cos \phi}
261
48
  \left[
262
49
  \DP{}{\phi}
263
50
  \left\{
264
51
  \Dinv{\rho...
265
- ...overline{v'\theta'}}
266
52
  {\overline{\DP{\theta}{z^*}}}
267
53
  \right)
268
54
  \right\}
269
55
  \right]$"></TD>
270
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
271
- &nbsp;&nbsp;&nbsp;</TD></TR>
272
- <TR VALIGN="MIDDLE">
273
- <TD>&nbsp;</TD>
274
- <TD NOWRAP ALIGN="LEFT"><IMG
275
- WIDTH="601" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
276
- SRC="img135.png"
277
- ALT="$\displaystyle =
278
56
  \Dinv{a \cos \phi}
279
57
  \left[
280
58
  \Dinv{\rho_0}
281
59
  \DP{}{\phi}
282
60
  \left...
283
- ...overline{v'\theta'}}
284
61
  {\overline{\DP{\theta}{z^*}}}
285
62
  \right)
286
63
  \right\}
287
64
  \right]$"></TD>
288
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
289
- &nbsp;&nbsp;&nbsp;</TD></TR>
290
- <TR VALIGN="MIDDLE">
291
- <TD>&nbsp;</TD>
292
- <TD NOWRAP ALIGN="LEFT"><IMG
293
- WIDTH="39" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
294
- SRC="img136.png"
295
- ALT="$\displaystyle = 0.$"></TD>
296
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
297
- &nbsp;&nbsp;&nbsp;</TD></TR>
298
- </TABLE></DIV>
299
- <BR CLEAR="ALL"><P></P>
300
- $B$7$?$,$C$F(B, $BO"B3$N<0$O0J2<$N$h$&$K$J$k(B.
301
- <BR>
302
- <DIV ALIGN="CENTER">
303
- <!-- MATH
304
- \begin{eqnarray}
305
- \Dinv{a \cos \phi}
306
- \DP{}{\phi}
307
- \left(
308
- \overline{v}^* \cos\phi
309
- \right)
310
- + \Dinv{\rho_0}
311
- \DP{}{z^*}
312
- \left( \rho_0 \overline{w}^* \right) = 0.
313
- \end{eqnarray}
314
- -->
315
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
316
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
317
- WIDTH="338" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
318
- SRC="img137.png"
319
- ALT="$\displaystyle \Dinv{a \cos \phi}
320
- \DP{}{\phi}
321
- \left(
322
- \overline{v}^* \cos\phi
323
- \right)
324
- + \Dinv{\rho_0}
325
- \DP{}{z^*}
326
- \left( \rho_0 \overline{w}^* \right) = 0.$"></TD>
327
- <TD>&nbsp;</TD>
328
- <TD>&nbsp;</TD>
329
- <TD WIDTH=10 ALIGN="RIGHT">
330
- (A.14)</TD></TR>
331
- </TABLE></DIV>
332
- <BR CLEAR="ALL"><P></P>
333
-
334
- <BR>
335
- <BR>
336
-
337
- $B<!$K(B <IMG
338
- WIDTH="15" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
339
- SRC="img45.png"
340
- ALT="$ u$"> $B$N<0$r=q$-49$($k(B.
341
- (<A HREF="node13.html#eq:new_euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
342
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
343
- <P></P>
344
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
345
- <TR VALIGN="MIDDLE">
346
- <TD NOWRAP ALIGN="RIGHT"><IMG
347
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
348
- SRC="img88.png"
349
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
350
- <TD NOWRAP ALIGN="LEFT"><IMG
351
- WIDTH="574" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
352
- SRC="img138.png"
353
- ALT="$\displaystyle + \Dinv{a}
354
65
  \left[
355
66
  \overline{v}^*
356
67
  + \Dinv{\rho_0} \DP{}{z^*}
357
- ...eta'}}
358
68
  {\overline{\DP{\theta}{z^*}}}
359
69
  \right)
360
70
  \right]
361
71
  \DP{\overline{u}}{z^*}$"></TD>
362
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
363
- &nbsp;&nbsp;&nbsp;</TD></TR>
364
- <TR VALIGN="MIDDLE">
365
- <TD>&nbsp;</TD>
366
- <TD NOWRAP ALIGN="LEFT"><IMG
367
- WIDTH="627" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
368
- SRC="img139.png"
369
- ALT="$\displaystyle \qquad \qquad
370
72
  - f
371
73
  \left[
372
74
  \overline{v}^*
373
75
  + \Dinv{\rho_0} \D...
374
- ...ne{v'\theta'}}
375
76
  {\overline{\DP{\theta}{z^*}}}
376
77
  \right)
377
78
  \right]
378
79
  - \overline{X}$"></TD>
379
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
380
- &nbsp;&nbsp;&nbsp;</TD></TR>
381
- <TR VALIGN="MIDDLE">
382
- <TD>&nbsp;</TD>
383
- <TD NOWRAP ALIGN="LEFT"><IMG
384
- WIDTH="408" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
385
- SRC="img140.png"
386
- ALT="$\displaystyle \qquad
387
80
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
388
81
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$"></TD>
389
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
390
- &nbsp;&nbsp;&nbsp;</TD></TR>
391
- <TR VALIGN="MIDDLE">
392
- <TD NOWRAP ALIGN="RIGHT"><IMG
393
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
394
- SRC="img88.png"
395
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
396
- <TD NOWRAP ALIGN="LEFT"><IMG
397
- WIDTH="339" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
398
- SRC="img141.png"
399
- ALT="$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
400
82
  + \overline{w...
401
- ...ine{v}^*
402
83
  - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
403
84
  - \overline{X}$"></TD>
404
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
405
- &nbsp;&nbsp;&nbsp;</TD></TR>
406
- <TR VALIGN="MIDDLE">
407
- <TD>&nbsp;</TD>
408
- <TD NOWRAP ALIGN="LEFT"><IMG
409
- WIDTH="507" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
410
- SRC="img142.png"
411
- ALT="$\displaystyle \qquad
412
85
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^...
413
- ...line{v'\theta'}}
414
86
  {\overline{\DP{\theta}{z^*}}}
415
87
  \right) \DP{\overline{u}}{z^*}$"></TD>
416
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
417
- &nbsp;&nbsp;&nbsp;</TD></TR>
418
- <TR VALIGN="MIDDLE">
419
- <TD>&nbsp;</TD>
420
- <TD NOWRAP ALIGN="LEFT"><IMG
421
- WIDTH="384" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
422
- SRC="img143.png"
423
- ALT="$\displaystyle \qquad \qquad
424
88
  + f \Dinv{\rho_0} \DP{}{z^*}
425
89
  \left( \rho_0
426
90
  \fra...
427
- ...\DP{\theta}{z^*}}}
428
91
  \right)
429
92
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$"></TD>
430
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
431
- &nbsp;&nbsp;&nbsp;</TD></TR>
432
- <TR VALIGN="MIDDLE">
433
- <TD>&nbsp;</TD>
434
- <TD NOWRAP ALIGN="LEFT"><IMG
435
- WIDTH="493" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
436
- SRC="img144.png"
437
- ALT="$\displaystyle \qquad \qquad
438
93
  - \Dinv{\rho_0 a} \DP{}{z^*}
439
94
  \left( \rho_0
440
95
  \fra...
441
- ...( \rho_0
442
96
  \frac{\overline{v'\theta'}}
443
97
  {\overline{\DP{\theta}{z^*}}}
444
98
  \right),$"></TD>
445
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
446
- &nbsp;&nbsp;&nbsp;</TD></TR>
447
- <TR VALIGN="MIDDLE">
448
- <TD NOWRAP ALIGN="RIGHT"><IMG
449
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
450
- SRC="img88.png"
451
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
452
- <TD NOWRAP ALIGN="LEFT"><IMG
453
- WIDTH="342" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
454
- SRC="img145.png"
455
- ALT="$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
456
99
  \left( \overli...
457
- ...)
458
100
  + \overline{w}^* \DP{\overline{u}}{z^*}
459
101
  - f \overline{v}^*
460
102
  - \overline{X}$"></TD>
461
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
462
- &nbsp;&nbsp;&nbsp;</TD></TR>
463
- <TR VALIGN="MIDDLE">
464
- <TD>&nbsp;</TD>
465
- <TD NOWRAP ALIGN="LEFT"><IMG
466
- WIDTH="559" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
467
- SRC="img146.png"
468
- ALT="$\displaystyle \qquad
469
103
  = - \Dinv{\rho_0 a^2 \cos^2 \phi}
470
104
  \DP{}{\phi} (\rho_0 a...
471
- ...line{v'\theta'}}
472
105
  {\overline{\DP{\theta}{z^*}}}
473
106
  \right) \DP{\overline{u}}{z^*}$"></TD>
474
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
475
- &nbsp;&nbsp;&nbsp;</TD></TR>
476
- <TR VALIGN="MIDDLE">
477
- <TD>&nbsp;</TD>
478
- <TD NOWRAP ALIGN="LEFT"><IMG
479
- WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
480
- SRC="img147.png"
481
- ALT="$\displaystyle \qquad \qquad
482
107
  + \frac{1}{\rho_0 a \cos \phi}
483
108
  \DP{}{z^*}
484
109
  \left...
485
- ... \frac{1}{\rho_0 a \cos \phi}
486
110
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
487
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
488
- &nbsp;&nbsp;&nbsp;</TD></TR>
489
- <TR VALIGN="MIDDLE">
490
- <TD>&nbsp;</TD>
491
- <TD NOWRAP ALIGN="LEFT"><IMG
492
- WIDTH="485" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
493
- SRC="img148.png"
494
- ALT="$\displaystyle \qquad \qquad
495
111
  - \Dinv{\rho_0 a} \DP{}{z^*}
496
112
  \left( \rho_0
497
113
  \fra...
498
- ...t( \rho_0
499
114
  \frac{\overline{v'\theta'}}
500
115
  {\overline{\DP{\theta}{z^*}}}
501
116
  \right)$"></TD>
502
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
503
- <A NAME="eq:tem-u-tochuu">(A.15)</A></TD></TR>
504
- </TABLE></DIV>
505
- <BR CLEAR="ALL"><P></P>
506
- (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$N1&JU$r0J2<$N$h$&$KJQ7A$9$k(B.
507
- <P></P>
508
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
509
- <TR VALIGN="MIDDLE">
510
- <TD>&nbsp;</TD>
511
- <TD NOWRAP ALIGN="LEFT"><IMG
512
- WIDTH="594" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
513
- SRC="img149.png"
514
- ALT="$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
515
117
  \DP{}{\phi} (\rho_0 a \overline...
516
- ...\cos \phi
517
118
  \frac{\overline{v'\theta'}}
518
119
  {\overline{\DP{\theta}{z^*}}}
519
120
  \right)$"></TD>
520
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
521
- &nbsp;&nbsp;&nbsp;</TD></TR>
522
- <TR VALIGN="MIDDLE">
523
- <TD>&nbsp;</TD>
524
- <TD NOWRAP ALIGN="LEFT"><IMG
525
- WIDTH="589" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
526
- SRC="img147.png"
527
- ALT="$\displaystyle \qquad \qquad
528
121
  + \frac{1}{\rho_0 a \cos \phi}
529
122
  \DP{}{z^*}
530
123
  \left...
531
- ... \frac{1}{\rho_0 a \cos \phi}
532
124
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$"></TD>
533
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
534
- &nbsp;&nbsp;&nbsp;</TD></TR>
535
- <TR VALIGN="MIDDLE">
536
- <TD>&nbsp;</TD>
537
- <TD NOWRAP ALIGN="LEFT"><IMG
538
- WIDTH="460" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
539
- SRC="img150.png"
540
- ALT="$\displaystyle \qquad \qquad
541
125
  - \Dinv{\rho_0 a} \DP{}{z^*}
542
126
  \left( \rho_0
543
127
  \fra...
544
- ...rline{\DP{\theta}{z^*}}}
545
128
  \DP{}{z^*}
546
129
  \left(
547
130
  \DP{\overline{u}}{\phi}
548
131
  \right)$"></TD>
549
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
550
- &nbsp;&nbsp;&nbsp;</TD></TR>
551
- <TR VALIGN="MIDDLE">
552
- <TD>&nbsp;</TD>
553
- <TD NOWRAP ALIGN="LEFT"><IMG
554
- WIDTH="443" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
555
- SRC="img151.png"
556
- ALT="$\displaystyle \qquad \qquad
557
132
  + \frac{\tan \phi}{\rho_0 a}
558
133
  \DP{}{z^*}
559
134
  \left( \...
560
- ...eta'}}
561
135
  {\overline{\DP{\theta}{z^*}}}
562
136
  \DP{}{z^*}
563
137
  \left( \overline{u}
564
138
  \right)$"></TD>
565
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
566
- &nbsp;&nbsp;&nbsp;</TD></TR>
567
- <TR VALIGN="MIDDLE">
568
- <TD>&nbsp;</TD>
569
- <TD NOWRAP ALIGN="LEFT"><IMG
570
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
571
- SRC="img152.png"
572
- ALT="$\displaystyle =
573
139
  \Dinv{\rho_0 a^2 \cos^2 \phi}
574
140
  \left[
575
141
  - \DP{}{\phi} (\rho_0 ...
576
- ...
577
142
  \frac{\overline{v'\theta'}}
578
143
  {\overline{\DP{\theta}{z^*}}}
579
144
  \right)
580
145
  \right]$"></TD>
581
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
582
- &nbsp;&nbsp;&nbsp;</TD></TR>
583
- <TR VALIGN="MIDDLE">
584
- <TD>&nbsp;</TD>
585
- <TD NOWRAP ALIGN="LEFT"><IMG
586
- WIDTH="377" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
587
- SRC="img153.png"
588
- ALT="$\displaystyle \qquad
589
146
  + \Dinv{\rho_0 a}
590
147
  \rho_0
591
148
  \frac{\overline{v'\theta'}}
592
- ...ac{\overline{v'\theta'}}
593
149
  {\overline{\DP{\theta}{z^*}}}
594
150
  \DP{\overline{u}}{z^*}$"></TD>
595
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
596
- &nbsp;&nbsp;&nbsp;</TD></TR>
597
- <TR VALIGN="MIDDLE">
598
- <TD>&nbsp;</TD>
599
- <TD NOWRAP ALIGN="LEFT"><IMG
600
- WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
601
- SRC="img154.png"
602
- ALT="$\displaystyle \qquad
603
151
  + \frac{1}{\rho_0 a \cos \phi}
604
152
  \DP{}{z^*}
605
153
  \left[
606
154
  \lef...
607
- ...line{\DP{\theta}{z^*}}}
608
155
  \right)
609
156
  - \rho_0 a \cos \phi \overline{w'u'}
610
157
  \right]$"></TD>
611
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
612
- &nbsp;&nbsp;&nbsp;</TD></TR>
613
- <TR VALIGN="MIDDLE">
614
- <TD>&nbsp;</TD>
615
- <TD NOWRAP ALIGN="LEFT"><IMG
616
- WIDTH="423" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
617
- SRC="img155.png"
618
- ALT="$\displaystyle \qquad
619
158
  - \Dinv{\rho_0 a} \DP{}{z^*}
620
159
  \left( \rho_0
621
160
  \frac{\over...
622
- ...u} \rho_0
623
161
  \frac{\overline{v'\theta'}}
624
162
  {\overline{\DP{\theta}{z^*}}}
625
163
  \right)$"></TD>
626
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
627
- &nbsp;&nbsp;&nbsp;</TD></TR>
628
- <TR VALIGN="MIDDLE">
629
- <TD>&nbsp;</TD>
630
- <TD NOWRAP ALIGN="LEFT"><IMG
631
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
632
- SRC="img152.png"
633
- ALT="$\displaystyle =
634
164
  \Dinv{\rho_0 a^2 \cos^2 \phi}
635
165
  \left[
636
166
  - \DP{}{\phi} (\rho_0 ...
637
- ...
638
167
  \frac{\overline{v'\theta'}}
639
168
  {\overline{\DP{\theta}{z^*}}}
640
169
  \right)
641
170
  \right]$"></TD>
642
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
643
- &nbsp;&nbsp;&nbsp;</TD></TR>
644
- <TR VALIGN="MIDDLE">
645
- <TD>&nbsp;</TD>
646
- <TD NOWRAP ALIGN="LEFT"><IMG
647
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
648
- SRC="img156.png"
649
- ALT="$\displaystyle \qquad
650
171
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
651
172
  \left[
652
173
  \rho_0 a \cos^2...
653
- ...ine{v'\theta'}}
654
174
  {\overline{\DP{\theta}{z^*}}}
655
175
  \DP{\overline{u}}{z^*}
656
176
  \right]$"></TD>
657
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
658
- &nbsp;&nbsp;&nbsp;</TD></TR>
659
- <TR VALIGN="MIDDLE">
660
- <TD>&nbsp;</TD>
661
- <TD NOWRAP ALIGN="LEFT"><IMG
662
- WIDTH="457" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
663
- SRC="img154.png"
664
- ALT="$\displaystyle \qquad
665
177
  + \frac{1}{\rho_0 a \cos \phi}
666
178
  \DP{}{z^*}
667
179
  \left[
668
180
  \lef...
669
- ...line{\DP{\theta}{z^*}}}
670
181
  \right)
671
182
  - \rho_0 a \cos \phi \overline{w'u'}
672
183
  \right]$"></TD>
673
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
674
- &nbsp;&nbsp;&nbsp;</TD></TR>
675
- <TR VALIGN="MIDDLE">
676
- <TD>&nbsp;</TD>
677
- <TD NOWRAP ALIGN="LEFT"><IMG
678
- WIDTH="580" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
679
- SRC="img157.png"
680
- ALT="$\displaystyle \qquad
681
184
  + \Dinv{\rho_0 a \cos \phi}
682
185
  \left[
683
186
  - \cos \phi
684
187
  \DP{}{...
685
- ...
686
188
  \frac{\overline{v'\theta'}}
687
189
  {\overline{\DP{\theta}{z^*}}}
688
190
  \right)
689
191
  \right]$"></TD>
690
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
691
- &nbsp;&nbsp;&nbsp;</TD></TR>
692
- <TR VALIGN="MIDDLE">
693
- <TD>&nbsp;</TD>
694
- <TD NOWRAP ALIGN="LEFT"><IMG
695
- WIDTH="557" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
696
- SRC="img152.png"
697
- ALT="$\displaystyle =
698
192
  \Dinv{\rho_0 a^2 \cos^2 \phi}
699
193
  \left[
700
194
  - \DP{}{\phi} (\rho_0 ...
701
- ...
702
195
  \frac{\overline{v'\theta'}}
703
196
  {\overline{\DP{\theta}{z^*}}}
704
197
  \right)
705
198
  \right]$"></TD>
706
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
707
- &nbsp;&nbsp;&nbsp;</TD></TR>
708
- <TR VALIGN="MIDDLE">
709
- <TD>&nbsp;</TD>
710
- <TD NOWRAP ALIGN="LEFT"><IMG
711
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
712
- SRC="img156.png"
713
- ALT="$\displaystyle \qquad
714
199
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
715
200
  \left[
716
201
  \rho_0 a \cos^2...
717
- ...ine{v'\theta'}}
718
202
  {\overline{\DP{\theta}{z^*}}}
719
203
  \DP{\overline{u}}{z^*}
720
204
  \right]$"></TD>
721
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
722
- &nbsp;&nbsp;&nbsp;</TD></TR>
723
- <TR VALIGN="MIDDLE">
724
- <TD>&nbsp;</TD>
725
- <TD NOWRAP ALIGN="LEFT"><IMG
726
- WIDTH="427" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
727
- SRC="img158.png"
728
- ALT="$\displaystyle \qquad
729
205
  + \frac{1}{\rho_0 a \cos \phi}
730
206
  \DP{}{z^*}
731
207
  \left[
732
208
  f \r...
733
- ...}
734
209
  {\overline{\DP{\theta}{z^*}}}
735
210
  - \rho_0 a \cos \phi \overline{w'u'}
736
211
  \right]$"></TD>
737
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
738
- &nbsp;&nbsp;&nbsp;</TD></TR>
739
- <TR VALIGN="MIDDLE">
740
- <TD>&nbsp;</TD>
741
- <TD NOWRAP ALIGN="LEFT"><IMG
742
- WIDTH="441" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
743
- SRC="img159.png"
744
- ALT="$\displaystyle \qquad
745
212
  + \Dinv{\rho_0 a \cos \phi}
746
213
  \DP{}{z^*}
747
214
  \left[
748
215
  - \rho_...
749
- ...u} \rho_0
750
216
  \frac{\overline{v'\theta'}}
751
217
  {\overline{\DP{\theta}{z^*}}}
752
218
  \right]$"></TD>
753
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
754
- <A NAME="eq:tem-u-uhen">(A.16)</A></TD></TR>
755
- </TABLE></DIV>
756
- <BR CLEAR="ALL"><P></P>
757
- (<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh0l9`$HBhFs9`$@$1<h$j=P$9$H(B
758
- <P></P>
759
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
760
- <TR VALIGN="MIDDLE">
761
- <TD>&nbsp;</TD>
762
- <TD NOWRAP ALIGN="LEFT"><IMG
763
- WIDTH="537" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
764
- SRC="img160.png"
765
- ALT="$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
766
219
  \left[
767
220
  - \DP{}{\phi} (\rho_0 a \...
768
- ...
769
221
  \frac{\overline{v'\theta'}}
770
222
  {\overline{\DP{\theta}{z^*}}}
771
223
  \right)
772
224
  \right]$"></TD>
773
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
774
- &nbsp;&nbsp;&nbsp;</TD></TR>
775
- <TR VALIGN="MIDDLE">
776
- <TD>&nbsp;</TD>
777
- <TD NOWRAP ALIGN="LEFT"><IMG
778
- WIDTH="572" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
779
- SRC="img156.png"
780
- ALT="$\displaystyle \qquad
781
225
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
782
226
  \left[
783
227
  \rho_0 a \cos^2...
784
- ...ine{v'\theta'}}
785
228
  {\overline{\DP{\theta}{z^*}}}
786
229
  \DP{\overline{u}}{z^*}
787
230
  \right]$"></TD>
788
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
789
- &nbsp;&nbsp;&nbsp;</TD></TR>
790
- <TR VALIGN="MIDDLE">
791
- <TD>&nbsp;</TD>
792
- <TD NOWRAP ALIGN="LEFT"><IMG
793
- WIDTH="299" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
794
- SRC="img161.png"
795
- ALT="$\displaystyle =
796
231
  \Dinv{\rho_0 a^2 \cos^2 \phi}
797
232
  \left[
798
233
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
799
234
  \right]$"></TD>
800
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
801
- &nbsp;&nbsp;&nbsp;</TD></TR>
802
- <TR VALIGN="MIDDLE">
803
- <TD>&nbsp;</TD>
804
- <TD NOWRAP ALIGN="LEFT"><IMG
805
- WIDTH="587" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
806
- SRC="img162.png"
807
- ALT="$\displaystyle \qquad
808
235
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
809
236
  \left[
810
237
  \rho_0 a \cos^2...
811
- ...
812
238
  \frac{\overline{v'\theta'}}
813
239
  {\overline{\DP{\theta}{z^*}}}
814
240
  \right)
815
241
  \right]$"></TD>
816
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
817
- &nbsp;&nbsp;&nbsp;</TD></TR>
818
- <TR VALIGN="MIDDLE">
819
- <TD>&nbsp;</TD>
820
- <TD NOWRAP ALIGN="LEFT"><IMG
821
- WIDTH="630" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
822
- SRC="img163.png"
823
- ALT="$\displaystyle =
824
242
  \Dinv{\rho_0 a^2 \cos^2 \phi}
825
243
  \left[
826
244
  - \DP{}{\phi} (\rho_0 ...
827
- ...ta'}}
828
245
  {\overline{\DP{\theta}{z^*}}}
829
246
  \DP{\overline{u}}{z^*}
830
247
  \right)
831
248
  \right]$"></TD>
832
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
833
- &nbsp;&nbsp;&nbsp;</TD></TR>
834
- <TR VALIGN="MIDDLE">
835
- <TD>&nbsp;</TD>
836
- <TD NOWRAP ALIGN="LEFT"><IMG
837
- WIDTH="451" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
838
- SRC="img164.png"
839
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
840
249
  \DP{}{\phi}
841
250
  \left[
842
251
  - \rho_0 a...
843
- ...ine{v'\theta'}}
844
252
  {\overline{\DP{\theta}{z^*}}}
845
253
  \DP{\overline{u}}{z^*}
846
254
  \right]$"></TD>
847
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
848
- &nbsp;&nbsp;&nbsp;</TD></TR>
849
- <TR VALIGN="MIDDLE">
850
- <TD>&nbsp;</TD>
851
- <TD NOWRAP ALIGN="LEFT"><IMG
852
- WIDTH="393" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
853
- SRC="img165.png"
854
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
855
255
  \DP{}{\phi}
856
256
  \left[
857
257
  \rho_0 a \...
858
- ...'\theta'}}
859
258
  {\overline{\DP{\theta}{z^*}}}
860
259
  - \overline{v'u'}
861
260
  \right\}
862
261
  \right]$"></TD>
863
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
864
- &nbsp;&nbsp;&nbsp;</TD></TR>
865
- <TR VALIGN="MIDDLE">
866
- <TD>&nbsp;</TD>
867
- <TD NOWRAP ALIGN="LEFT"><IMG
868
- WIDTH="222" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
869
- SRC="img166.png"
870
- ALT="$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
871
262
  \DP{}{\phi}
872
263
  \left(
873
264
  \cos \phi F^{*}_{\phi}
874
265
  \right)$"></TD>
875
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
876
- &nbsp;&nbsp;&nbsp;</TD></TR>
877
- </TABLE></DIV>
878
- <BR CLEAR="ALL"><P></P>
879
- (<A HREF="node14.html#eq:tem-u-uhen"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$NBh;09`$HBh;M9`$@$1<h$j=P$9$H(B
880
- <P></P>
881
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
882
- <TR VALIGN="MIDDLE">
883
- <TD>&nbsp;</TD>
884
- <TD NOWRAP ALIGN="LEFT"><IMG
885
- WIDTH="775" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
886
- SRC="img167.png"
887
- ALT="$\displaystyle \frac{1}{\rho_0 a \cos \phi}
888
266
  \DP{}{z^*}
889
267
  \left[
890
268
  f \rho_0 a \co...
891
- ...u} \rho_0
892
269
  \frac{\overline{v'\theta'}}
893
270
  {\overline{\DP{\theta}{z^*}}}
894
271
  \right]$"></TD>
895
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
896
- &nbsp;&nbsp;&nbsp;</TD></TR>
897
- <TR VALIGN="MIDDLE">
898
- <TD>&nbsp;</TD>
899
- <TD NOWRAP ALIGN="LEFT"><IMG
900
- WIDTH="595" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
901
- SRC="img168.png"
902
- ALT="$\displaystyle =
903
272
  \frac{1}{\rho_0 a \cos \phi}
904
273
  \DP{}{z^*}
905
274
  \left[
906
275
  \rho_0 a \...
907
- ...rline{v'\theta'}}
908
276
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
909
277
  \right\}
910
278
  \right]$"></TD>
911
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
912
- &nbsp;&nbsp;&nbsp;</TD></TR>
913
- <TR VALIGN="MIDDLE">
914
- <TD>&nbsp;</TD>
915
- <TD NOWRAP ALIGN="LEFT"><IMG
916
- WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
917
- SRC="img169.png"
918
- ALT="$\displaystyle =
919
279
  \frac{1}{\rho_0 a \cos \phi}
920
280
  \DP{}{z^*}
921
281
  \left[
922
282
  \rho_0 a \...
923
- ...{a \cos \phi \overline{\DP{\theta}{z^*}}}
924
283
  - \overline{w'u'}
925
284
  \right\}
926
285
  \right]$"></TD>
927
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
928
- &nbsp;&nbsp;&nbsp;</TD></TR>
929
- <TR VALIGN="MIDDLE">
930
- <TD>&nbsp;</TD>
931
- <TD NOWRAP ALIGN="LEFT"><IMG
932
- WIDTH="626" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
933
- SRC="img169.png"
934
- ALT="$\displaystyle =
935
286
  \frac{1}{\rho_0 a \cos \phi}
936
287
  \DP{}{z^*}
937
288
  \left[
938
289
  \rho_0 a \...
939
- ...{a \cos \phi \overline{\DP{\theta}{z^*}}}
940
290
  - \overline{w'u'}
941
291
  \right\}
942
292
  \right]$"></TD>
943
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
944
- &nbsp;&nbsp;&nbsp;</TD></TR>
945
- <TR VALIGN="MIDDLE">
946
- <TD>&nbsp;</TD>
947
- <TD NOWRAP ALIGN="LEFT"><IMG
948
- WIDTH="481" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
949
- SRC="img170.png"
950
- ALT="$\displaystyle =
951
293
  \frac{1}{\rho_0 a \cos \phi}
952
294
  \DP{}{z^*}
953
295
  \left[
954
296
  \rho_0 a \...
955
- ...'\theta'}}
956
297
  {\overline{\DP{\theta}{z^*}}}
957
298
  - \overline{w'u'}
958
299
  \right\}
959
300
  \right]$"></TD>
960
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
961
- &nbsp;&nbsp;&nbsp;</TD></TR>
962
- <TR VALIGN="MIDDLE">
963
- <TD>&nbsp;</TD>
964
- <TD NOWRAP ALIGN="LEFT"><IMG
965
- WIDTH="136" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
966
- SRC="img171.png"
967
- ALT="$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
968
301
  \DP{F^{*}_{z}}{z^*}$"></TD>
969
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
970
- &nbsp;&nbsp;&nbsp;</TD></TR>
971
- </TABLE></DIV>
972
- <BR CLEAR="ALL"><P></P>
973
- $B0J>e$h$j(B, (<A HREF="node14.html#eq:tem-u-tochuu"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$O<!$N$h$&$K$J$k(B.
974
- <P></P>
975
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
976
- <TR VALIGN="MIDDLE">
977
- <TD>&nbsp;</TD>
978
- <TD NOWRAP ALIGN="LEFT"><IMG
979
- WIDTH="736" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
980
- SRC="img172.png"
981
- ALT="$\displaystyle \DP{\overline{u}}{t}
982
302
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
983
- ...hi}
984
303
  \right)
985
304
  + \frac{1}{\rho_0 a \cos \phi}
986
305
  \DP{F^{*}_{z}}{z^*},
987
306
  \nonumber$"></TD>
988
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
989
- &nbsp;&nbsp;&nbsp;</TD></TR>
990
- <TR VALIGN="MIDDLE">
991
- <TD>&nbsp;</TD>
992
- <TD NOWRAP ALIGN="LEFT"><IMG
993
- WIDTH="518" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
994
- SRC="img173.png"
995
- ALT="$\displaystyle \DP{\overline{u}}{t}
996
307
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{...
997
- ...\overline{v}^*
998
308
  - \overline{X}
999
309
  = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$"></TD>
1000
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1001
- &nbsp;&nbsp;&nbsp;</TD></TR>
1002
- </TABLE></DIV>
1003
- <BR CLEAR="ALL"><P></P>
1004
- $B$3$3$G(B, $B;R8aLLFb$NH/;6$r0J2<$N$h$&$KI=$7$?(B.
1005
- <P></P>
1006
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1007
- <TR VALIGN="MIDDLE">
1008
- <TD NOWRAP ALIGN="CENTER"><IMG
1009
- WIDTH="279" HEIGHT="62" ALIGN="MIDDLE" BORDER="0"
1010
- SRC="img174.png"
1011
- ALT="$\displaystyle \Ddiv{\Dvect{F}}
1012
310
  = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$"></TD>
1013
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1014
- (A.17)</TD></TR>
1015
- </TABLE></DIV>
1016
- <BR CLEAR="ALL"><P></P>
1017
-
1018
- <BR>
1019
- <BR>
1020
-
1021
- $B<!$KG.NO3X$N<0$r=q$-49$($k(B.
1022
- (<A HREF="node13.html#eq:new_euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
1023
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
1024
- <P></P>
1025
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1026
- <TR VALIGN="MIDDLE">
1027
- <TD>&nbsp;</TD>
1028
- <TD NOWRAP ALIGN="LEFT"><IMG
1029
- WIDTH="647" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1030
- SRC="img175.png"
1031
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1032
311
  + \frac{1}{a}
1033
312
  \left[
1034
313
  \overline{v}^...
1035
- ...P{\theta}{z^*}}}
1036
314
  \right)
1037
315
  \right]
1038
316
  \DP{\overline{\theta}}{z^*}
1039
317
  - \overline{Q}$"></TD>
1040
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1041
- &nbsp;&nbsp;&nbsp;</TD></TR>
1042
- <TR VALIGN="MIDDLE">
1043
- <TD>&nbsp;</TD>
1044
- <TD NOWRAP ALIGN="LEFT"><IMG
1045
- WIDTH="390" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1046
- SRC="img176.png"
1047
- ALT="$\displaystyle \qquad
1048
318
  =
1049
319
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1050
320
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$"></TD>
1051
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1052
- &nbsp;&nbsp;&nbsp;</TD></TR>
1053
- <TR VALIGN="MIDDLE">
1054
- <TD>&nbsp;</TD>
1055
- <TD NOWRAP ALIGN="LEFT"><IMG
1056
- WIDTH="215" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1057
- SRC="img177.png"
1058
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1059
321
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
1060
322
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
1061
323
  - \overline{Q}$"></TD>
1062
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1063
- &nbsp;&nbsp;&nbsp;</TD></TR>
1064
- <TR VALIGN="MIDDLE">
1065
- <TD>&nbsp;</TD>
1066
- <TD NOWRAP ALIGN="LEFT"><IMG
1067
- WIDTH="498" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1068
- SRC="img178.png"
1069
- ALT="$\displaystyle \qquad
1070
324
  = - \Dinv{\rho_0 a} \DP{}{z^*}
1071
325
  \left( \rho_0
1072
326
  \frac{\o...
1073
- ...v'\theta'}}
1074
327
  {\overline{\DP{\theta}{z^*}}}
1075
328
  \right) \DP{\overline{\theta}}{z^*}$"></TD>
1076
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1077
- &nbsp;&nbsp;&nbsp;</TD></TR>
1078
- <TR VALIGN="MIDDLE">
1079
- <TD>&nbsp;</TD>
1080
- <TD NOWRAP ALIGN="LEFT"><IMG
1081
- WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1082
- SRC="img179.png"
1083
- ALT="$\displaystyle \qquad \qquad
1084
329
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1085
330
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1086
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1087
- &nbsp;&nbsp;&nbsp;</TD></TR>
1088
- </TABLE></DIV>
1089
- <BR CLEAR="ALL"><P></P>
1090
- $B$H$J$k(B.
1091
- $B$3$N1&JU$r99$KJQ7A$9$k$H(B
1092
- <P></P>
1093
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1094
- <TR VALIGN="MIDDLE">
1095
- <TD>&nbsp;</TD>
1096
- <TD NOWRAP ALIGN="LEFT"><IMG
1097
- WIDTH="439" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1098
- SRC="img180.png"
1099
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1100
331
  \left( \rho_0
1101
332
  \frac{\overline{v'\th...
1102
- ...v'\theta'}}
1103
333
  {\overline{\DP{\theta}{z^*}}}
1104
334
  \right) \DP{\overline{\theta}}{z^*}$"></TD>
1105
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1106
- &nbsp;&nbsp;&nbsp;</TD></TR>
1107
- <TR VALIGN="MIDDLE">
1108
- <TD>&nbsp;</TD>
1109
- <TD NOWRAP ALIGN="LEFT"><IMG
1110
- WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1111
- SRC="img181.png"
1112
- ALT="$\displaystyle \qquad
1113
335
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1114
336
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1115
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1116
- &nbsp;&nbsp;&nbsp;</TD></TR>
1117
- <TR VALIGN="MIDDLE">
1118
- <TD NOWRAP ALIGN="RIGHT"><IMG
1119
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1120
- SRC="img5.png"
1121
- ALT="$\displaystyle =$"></TD>
1122
- <TD NOWRAP ALIGN="LEFT"><IMG
1123
- WIDTH="312" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1124
- SRC="img182.png"
1125
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1126
337
  \left( \rho_0
1127
338
  \frac{\overline{v'\th...
1128
- ...eta'}}
1129
339
  {a \overline{\DP{\theta}{z^*}}}
1130
340
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}$"></TD>
1131
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1132
- &nbsp;&nbsp;&nbsp;</TD></TR>
1133
- <TR VALIGN="MIDDLE">
1134
- <TD>&nbsp;</TD>
1135
- <TD NOWRAP ALIGN="LEFT"><IMG
1136
- WIDTH="520" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1137
- SRC="img183.png"
1138
- ALT="$\displaystyle \qquad
1139
341
  + \Dinv{a \cos\phi}
1140
342
  \left[
1141
343
  \DP{}{\phi} \left( \cos \...
1142
- ...( \overline{\DP{\theta}{z^*}} \right)^{-1}
1143
344
  \right] \DP{\overline{\theta}}{z^*}$"></TD>
1144
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1145
- &nbsp;&nbsp;&nbsp;</TD></TR>
1146
- <TR VALIGN="MIDDLE">
1147
- <TD>&nbsp;</TD>
1148
- <TD NOWRAP ALIGN="LEFT"><IMG
1149
- WIDTH="365" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1150
- SRC="img181.png"
1151
- ALT="$\displaystyle \qquad
1152
345
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1153
346
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1154
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1155
- &nbsp;&nbsp;&nbsp;</TD></TR>
1156
- <TR VALIGN="MIDDLE">
1157
- <TD NOWRAP ALIGN="RIGHT"><IMG
1158
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1159
- SRC="img5.png"
1160
- ALT="$\displaystyle =$"></TD>
1161
- <TD NOWRAP ALIGN="LEFT"><IMG
1162
- WIDTH="658" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1163
- SRC="img184.png"
1164
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1165
347
  \left( \rho_0
1166
348
  \frac{\overline{v'\th...
1167
- ...{\overline{\theta}}{z^*}
1168
349
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$"></TD>
1169
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1170
- &nbsp;&nbsp;&nbsp;</TD></TR>
1171
- <TR VALIGN="MIDDLE">
1172
- <TD NOWRAP ALIGN="RIGHT"><IMG
1173
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1174
- SRC="img5.png"
1175
- ALT="$\displaystyle =$"></TD>
1176
- <TD NOWRAP ALIGN="LEFT"><IMG
1177
- WIDTH="585" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1178
- SRC="img185.png"
1179
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1180
350
  \left[ \rho_0
1181
351
  \frac{\overline{v'\th...
1182
- ... \overline{\DP{\theta}{z^*}} \right)^{-1}
1183
352
  \DP{\overline{\theta}}{z^*}
1184
353
  \right]$"></TD>
1185
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1186
- &nbsp;&nbsp;&nbsp;</TD></TR>
1187
- <TR VALIGN="MIDDLE">
1188
- <TD NOWRAP ALIGN="RIGHT"><IMG
1189
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1190
- SRC="img5.png"
1191
- ALT="$\displaystyle =$"></TD>
1192
- <TD NOWRAP ALIGN="LEFT"><IMG
1193
- WIDTH="416" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1194
- SRC="img186.png"
1195
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1196
354
  \left[ \rho_0
1197
355
  \left(
1198
356
  \frac{\overli...
1199
- ... \frac{ \DP{\overline{\theta}}{z^*} }
1200
357
  { \overline{\DP{\theta}{z^*}} }
1201
358
  \right)$"></TD>
1202
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1203
- &nbsp;&nbsp;&nbsp;</TD></TR>
1204
- <TR VALIGN="MIDDLE">
1205
- <TD NOWRAP ALIGN="RIGHT"><IMG
1206
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
1207
- SRC="img5.png"
1208
- ALT="$\displaystyle =$"></TD>
1209
- <TD NOWRAP ALIGN="LEFT"><IMG
1210
- WIDTH="279" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1211
- SRC="img187.png"
1212
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
1213
359
  \left[ \rho_0
1214
360
  \left(
1215
361
  \frac{\overli...
1216
- ...^*}}}
1217
362
  \DP{\overline{\theta}}{\phi}
1218
363
  + \overline{w'\theta'}
1219
364
  \right)
1220
365
  \right].$"></TD>
1221
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1222
- &nbsp;&nbsp;&nbsp;</TD></TR>
1223
- </TABLE></DIV>
1224
- <BR CLEAR="ALL"><P></P>
1225
- $B$3$l$h$j(B, $BG.NO3X$N<0$O0J2<$N$h$&$K$J$k(B.
1226
- <P></P>
1227
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1228
- <TR VALIGN="MIDDLE">
1229
- <TD NOWRAP ALIGN="CENTER"><IMG
1230
- WIDTH="515" HEIGHT="75" ALIGN="MIDDLE" BORDER="0"
1231
- SRC="img188.png"
1232
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
1233
366
  + \frac{\overline{v}^*}{a} \DP{\overli...
1234
- ...^*}}}
1235
367
  \DP{\overline{\theta}}{\phi}
1236
368
  + \overline{w'\theta'}
1237
369
  \right)
1238
370
  \right].$"></TD>
1239
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1240
- &nbsp;&nbsp;&nbsp;</TD></TR>
1241
- </TABLE></DIV>
1242
- <BR CLEAR="ALL"><P></P>
1243
-
1244
- <BR>
1245
- <BR>
1246
-
1247
- $B:G8e$K(B <IMG
1248
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1249
- SRC="img189.png"
1250
- ALT="$ v$"> $B$N<0$K$D$$$F9M$($k(B.
1251
- (<A HREF="node13.html#eq:new_euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B
1252
- (<A HREF="node14.html#eq:residual_v_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node14.html#eq:residual_w_app"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rBeF~$9$k$H(B
1253
- <P></P>
1254
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1255
- <TR VALIGN="MIDDLE">
1256
- <TD>&nbsp;</TD>
1257
- <TD NOWRAP ALIGN="LEFT"><IMG
1258
- WIDTH="692" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1259
- SRC="img190.png"
1260
- ALT="$\displaystyle \DP{}{t}
1261
371
  \left[
1262
372
  \overline{v}^*
1263
373
  + \Dinv{\rho_0} \DP{}{z^*}
1264
374
  \...
1265
- ...
1266
375
  \frac{\overline{v'\theta'}}
1267
376
  {\overline{\DP{\theta}{z^*}}}
1268
377
  \right)
1269
378
  \right]$"></TD>
1270
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1271
- &nbsp;&nbsp;&nbsp;</TD></TR>
1272
- <TR VALIGN="MIDDLE">
1273
- <TD>&nbsp;</TD>
1274
- <TD NOWRAP ALIGN="LEFT"><IMG
1275
- WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1276
- SRC="img191.png"
1277
- ALT="$\displaystyle \qquad \qquad
1278
379
  + \left[
1279
380
  \overline{w}^*
1280
381
  - \Dinv{a \cos\phi}
1281
382
  \...
1282
- ...
1283
383
  \frac{\overline{v'\theta'}}
1284
384
  {\overline{\DP{\theta}{z^*}}}
1285
385
  \right)
1286
386
  \right]$"></TD>
1287
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1288
- &nbsp;&nbsp;&nbsp;</TD></TR>
1289
- <TR VALIGN="MIDDLE">
1290
- <TD>&nbsp;</TD>
1291
- <TD NOWRAP ALIGN="LEFT"><IMG
1292
- WIDTH="321" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1293
- SRC="img192.png"
1294
- ALT="$\displaystyle \qquad \qquad
1295
387
  + f \overline{u}
1296
388
  + \frac{\tan\phi}{a} (\overline{u})^2
1297
389
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1298
390
  - \overline{Y}$"></TD>
1299
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1300
- &nbsp;&nbsp;&nbsp;</TD></TR>
1301
- <TR VALIGN="MIDDLE">
1302
- <TD>&nbsp;</TD>
1303
- <TD NOWRAP ALIGN="LEFT"><IMG
1304
- WIDTH="474" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1305
- SRC="img193.png"
1306
- ALT="$\displaystyle \qquad
1307
391
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)...
1308
- ...\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1309
392
  - \overline{u'^2}\frac{\tan\phi}{a},$"></TD>
1310
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1311
- &nbsp;&nbsp;&nbsp;</TD></TR>
1312
- <TR VALIGN="MIDDLE">
1313
- <TD>&nbsp;</TD>
1314
- <TD NOWRAP ALIGN="LEFT"><IMG
1315
- WIDTH="193" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1316
- SRC="img194.png"
1317
- ALT="$\displaystyle f \overline{u}
1318
393
  + \frac{\tan\phi}{a} (\overline{u})^2
1319
394
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}$"></TD>
1320
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1321
- &nbsp;&nbsp;&nbsp;</TD></TR>
1322
- <TR VALIGN="MIDDLE">
1323
- <TD>&nbsp;</TD>
1324
- <TD NOWRAP ALIGN="LEFT"><IMG
1325
- WIDTH="764" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1326
- SRC="img195.png"
1327
- ALT="$\displaystyle \qquad
1328
395
  = - \DP{}{t}
1329
396
  \left[
1330
397
  \overline{v}^*
1331
398
  + \Dinv{\rho_0} \...
1332
- ...
1333
399
  \frac{\overline{v'\theta'}}
1334
400
  {\overline{\DP{\theta}{z^*}}}
1335
401
  \right)
1336
402
  \right]$"></TD>
1337
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1338
- &nbsp;&nbsp;&nbsp;</TD></TR>
1339
- <TR VALIGN="MIDDLE">
1340
- <TD>&nbsp;</TD>
1341
- <TD NOWRAP ALIGN="LEFT"><IMG
1342
- WIDTH="582" HEIGHT="76" ALIGN="MIDDLE" BORDER="0"
1343
- SRC="img196.png"
1344
- ALT="$\displaystyle \qquad \qquad
1345
403
  - \left[
1346
404
  \overline{w}^*
1347
405
  - \Dinv{a \cos\phi}
1348
406
  \...
1349
- ...
1350
407
  \frac{\overline{v'\theta'}}
1351
408
  {\overline{\DP{\theta}{z^*}}}
1352
409
  \right)
1353
410
  \right]$"></TD>
1354
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1355
- &nbsp;&nbsp;&nbsp;</TD></TR>
1356
- <TR VALIGN="MIDDLE">
1357
- <TD>&nbsp;</TD>
1358
- <TD NOWRAP ALIGN="LEFT"><IMG
1359
- WIDTH="525" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
1360
- SRC="img197.png"
1361
- ALT="$\displaystyle \qquad \qquad
1362
411
  - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \co...
1363
- ...}(\rho_0\overline{v' w'})
1364
412
  - \overline{u'^2} \frac{\tan\phi}{a}
1365
413
  + \overline{Y}$"></TD>
1366
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1367
- &nbsp;&nbsp;&nbsp;</TD></TR>
1368
- </TABLE></DIV>
1369
- <BR CLEAR="ALL"><P></P>
1370
- Andrews <I>et al.</I> (1987) $B$K$h$l$P(B, $B$3$N<0$N1&JU$NNL$O(B
1371
- $B:8JU$KHf$Y$l$P>.$5$$(B. $B1&JU$N9`$rA4$F$^$H$a$F(B <IMG
1372
- WIDTH="20" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1373
- SRC="img198.png"
1374
- ALT="$ G$"> $B$H=q$/$H(B
1375
- <IMG
1376
- WIDTH="14" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
1377
- SRC="img189.png"
1378
- ALT="$ v$"> $B$N<0$O<!$N$h$&$K$J$k(B.
1379
- <P></P>
1380
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1381
- <TR VALIGN="MIDDLE">
1382
- <TD NOWRAP ALIGN="CENTER"><IMG
1383
- WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
1384
- SRC="img199.png"
1385
- ALT="$\displaystyle \overline{u}
1386
414
  \left( f + \frac{\tan\phi}{a} \overline{u} \right)
1387
415
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1388
416
  = G.$"></TD>
1389
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
1390
- &nbsp;&nbsp;&nbsp;</TD></TR>
1391
- </TABLE></DIV>
1392
- <BR CLEAR="ALL"><P></P>
1393
-
1394
- <BR>
1395
- <BR>
1396
-
1397
- $B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$BJQ7A%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
1398
- <TABLE BORDER="1"><TR><TD>
1399
-
1400
- <DIV ALIGN="CENTER"><A NAME="eq:transformed_euler_mean_pe"></A><A NAME="eq:transformed_euler_mean_pe_momentum_x"></A><A NAME="eq:transformed_euler_mean_pe_momentum_y"></A><A NAME="eq:transformed_euler_mean_pe_momentum_z^*"></A><A NAME="eq:transformed_euler_mean_pe_continuity"></A><A NAME="eq:transformed_euler_mean_pe_thermal"></A><!-- MATH
1401
- \begin{subequations}
1402
- \begin{align}&
1403
- \DP{\overline{u}}{t}
1404
- + \overline{v}^*
1405
- \left[
1406
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
1407
- \right]
1408
- + \overline{w}^*\DP{\overline{u}}{z^*}
1409
- - \overline{X}
1410
- = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
1411
- \overline{u}
1412
- \left( f + \overline{u}\frac{\tan\phi}{a} \right)
1413
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
1414
- = G.
1415
- \end{align}
1416
- \begin{align}
1417
- \DP{\overline{\Phi}}{z^*}
1418
- - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
1419
- = 0.
1420
- \end{align}
1421
- \begin{align}
1422
- \Dinv{a\cos\phi}&\left[
1423
- \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
1424
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
1425
- = 0.
1426
- \end{align}
1427
- \begin{align}
1428
- \DP{\overline{\theta}}{t}
1429
- + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
1430
- + \overline{w}^*\DP{\overline{\theta}}{z^*}
1431
- - \overline{Q} =
1432
- - \Dinv{\rho_0}\DP{}{z^*}
1433
- \left[\rho_0
1434
- \left(
1435
- \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
1436
- {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
1437
- \right)
1438
- \right].
1439
- \end{align}
1440
- \end{subequations}
1441
- -->
1442
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
1443
- <TR VALIGN="MIDDLE">
1444
- <TD NOWRAP ALIGN="CENTER"><IMG
1445
- WIDTH="555" HEIGHT="316" ALIGN="BOTTOM" BORDER="0"
1446
- SRC="img200.png"
1447
- ALT="\begin{subequations}\begin{align}&amp;
1448
417
  \DP{\overline{u}}{t}
1449
418
  + \overline{v}^*
1450
419
  \lef...
1451
- ...}{z^*}} + \overline{w'\theta'}
1452
420
  \right)
1453
421
  \right].
1454
422
  \end{align}\end{subequations}"></TD></TR>
1455
- </TABLE></DIV>
1456
- <BR CLEAR="ALL">
1457
- </TD></TR></TABLE>
1458
-
1459
- <HR>
1460
- <!--Navigation Panel-->
1461
- <A NAME="tex2html206"
1462
- HREF="node15.html">
1463
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
1464
- <A NAME="tex2html202"
1465
- HREF="node11.html">
1466
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
1467
- <A NAME="tex2html198"
1468
- HREF="node13.html">
1469
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
1470
- <A NAME="tex2html204"
1471
- HREF="node1.html">
1472
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
1473
- <BR>
1474
- <B> :</B> <A NAME="tex2html207"
1475
- HREF="node15.html">$B;29MJ88%(B</A>
1476
- <B> :</B> <A NAME="tex2html203"
1477
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
1478
- <B> :</B> <A NAME="tex2html199"
1479
- HREF="node13.html">$B%*%$%i!<J?6QJ}Dx<07O(B</A>
1480
- &nbsp <B> <A NAME="tex2html205"
1481
- HREF="node1.html">$BL\<!(B</A></B>
1482
- <!--End of Navigation Panel-->
1483
- <ADDRESS>
1484
- Tsukahara Daisuke
1485
- $BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
1486
- </ADDRESS>
1487
- </BODY>
1488
- </HTML>