gphys 1.1.1 → 1.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,1471 +0,0 @@
|
|
1
|
-
\batchmode
|
2
|
-
|
3
|
-
|
4
|
-
\documentclass[a4j,12pt,openbib]{jreport}
|
5
|
-
\RequirePackage{ifthen}
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
\usepackage{ascmac}
|
10
|
-
\usepackage{tabularx}
|
11
|
-
\usepackage{graphicx}
|
12
|
-
\usepackage{amssymb}
|
13
|
-
\usepackage{amsmath}
|
14
|
-
\usepackage{Dennou6}
|
15
|
-
\pagestyle{Dmyheadings}
|
16
|
-
|
17
|
-
\Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
|
18
|
-
\Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
|
19
|
-
\Dfile{}
|
20
|
-
|
21
|
-
\setcounter{section}{0}
|
22
|
-
\setcounter{equation}{0}
|
23
|
-
\setcounter{page}{1}
|
24
|
-
\setcounter{figure}{0}
|
25
|
-
\setcounter{footnote}{0}
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
\Dparskip
|
36
|
-
\Dnoparindent
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
\usepackage[dvips]{color}
|
45
|
-
|
46
|
-
|
47
|
-
\pagecolor[gray]{.7}
|
48
|
-
|
49
|
-
\usepackage[]{inputenc}
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
\makeatletter
|
54
|
-
|
55
|
-
\makeatletter
|
56
|
-
\count@=\the\catcode`\_ \catcode`\_=8
|
57
|
-
\newenvironment{tex2html_wrap}{}{}%
|
58
|
-
\catcode`\<=12\catcode`\_=\count@
|
59
|
-
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
|
60
|
-
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
|
61
|
-
\expandafter\renewcommand\csname #1\endcsname}%
|
62
|
-
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
|
63
|
-
\let\newedcommand\renewedcommand
|
64
|
-
\let\renewedenvironment\newedenvironment
|
65
|
-
\makeatother
|
66
|
-
\let\mathon=$
|
67
|
-
\let\mathoff=$
|
68
|
-
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
|
69
|
-
\newbox\sizebox
|
70
|
-
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
|
71
|
-
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
|
72
|
-
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
|
73
|
-
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
|
74
|
-
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
|
75
|
-
\setlength{\textwidth}{349pt}
|
76
|
-
\newwrite\lthtmlwrite
|
77
|
-
\makeatletter
|
78
|
-
\let\realnormalsize=\normalsize
|
79
|
-
\global\topskip=2sp
|
80
|
-
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
|
81
|
-
\def\@float{\let\@savefreelist\@freelist\real@float}
|
82
|
-
\def\liih@math{\ifmmode$\else\bad@math\fi}
|
83
|
-
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
|
84
|
-
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
|
85
|
-
\let\@largefloatcheck=\relax
|
86
|
-
\let\if@boxedmulticols=\iftrue
|
87
|
-
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
|
88
|
-
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
|
89
|
-
\parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
|
90
|
-
\def\phantompar{\csname par\endcsname}\normalsize}%
|
91
|
-
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
|
92
|
-
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
|
93
|
-
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
|
94
|
-
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
|
95
|
-
\let\ifinner=\iffalse \let\)\liih@math }%
|
96
|
-
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
|
97
|
-
\expandafter\box\next\egroup}%
|
98
|
-
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
|
99
|
-
\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
|
100
|
-
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
|
101
|
-
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
|
102
|
-
\lthtmlmathtype{#1}\lthtmlvboxmathA}%
|
103
|
-
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
|
104
|
-
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
|
105
|
-
\let\@savefreelist\@freelist \lthtmlhboxmathB}%
|
106
|
-
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
|
107
|
-
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
|
108
|
-
\global\let\@freelist\@savefreelist}%
|
109
|
-
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
|
110
|
-
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
|
111
|
-
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
|
112
|
-
\lthtmldisplayA{#1}\let\@eqnnum\relax}%
|
113
|
-
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
|
114
|
-
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
|
115
|
-
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
|
116
|
-
\vrule height1.5ex width0pt }%
|
117
|
-
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
|
118
|
-
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
|
119
|
-
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
120
|
-
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
|
121
|
-
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
122
|
-
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
|
123
|
-
\newcommand\lthtmlindisplaymathZ{\egroup %
|
124
|
-
\centerinlinemath\lthtmllogmath\lthtmlsetmath}
|
125
|
-
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
|
126
|
-
\kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
|
127
|
-
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
128
|
-
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
|
129
|
-
\kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
|
130
|
-
\ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
|
131
|
-
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
132
|
-
\def\centerinlinemath{%
|
133
|
-
\dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
|
134
|
-
\advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
|
135
|
-
\dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
|
136
|
-
|
137
|
-
\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
|
138
|
-
\ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
|
139
|
-
\else\expandafter\vss\fi}%
|
140
|
-
\providecommand{\selectlanguage}[1]{}%
|
141
|
-
\makeatletter \tracingstats = 1
|
142
|
-
\providecommand{\Eta}{\textrm{H}}
|
143
|
-
\providecommand{\Mu}{\textrm{M}}
|
144
|
-
\providecommand{\Alpha}{\textrm{A}}
|
145
|
-
\providecommand{\Iota}{\textrm{J}}
|
146
|
-
\providecommand{\Nu}{\textrm{N}}
|
147
|
-
\providecommand{\Omicron}{\textrm{O}}
|
148
|
-
\providecommand{\omicron}{\textrm{o}}
|
149
|
-
\providecommand{\Chi}{\textrm{X}}
|
150
|
-
\providecommand{\Beta}{\textrm{B}}
|
151
|
-
\providecommand{\Kappa}{\textrm{K}}
|
152
|
-
\providecommand{\Tau}{\textrm{T}}
|
153
|
-
\providecommand{\Epsilon}{\textrm{E}}
|
154
|
-
\providecommand{\Zeta}{\textrm{Z}}
|
155
|
-
\providecommand{\Rho}{\textrm{R}}
|
156
|
-
|
157
|
-
|
158
|
-
\begin{document}
|
159
|
-
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
|
160
|
-
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
|
161
|
-
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
|
162
|
-
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
|
163
|
-
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
|
164
|
-
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
|
165
|
-
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
|
166
|
-
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
|
167
|
-
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
|
168
|
-
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
|
169
|
-
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
|
170
|
-
\makeatletter
|
171
|
-
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
|
172
|
-
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
|
173
|
-
\lthtmltypeout{}%
|
174
|
-
\makeatother
|
175
|
-
\setcounter{page}{1}
|
176
|
-
\onecolumn
|
177
|
-
|
178
|
-
% !!! IMAGES START HERE !!!
|
179
|
-
|
180
|
-
\setcounter{section}{0}
|
181
|
-
\setcounter{equation}{0}
|
182
|
-
\setcounter{figure}{0}
|
183
|
-
\setcounter{footnote}{0}
|
184
|
-
\stepcounter{chapter}
|
185
|
-
\stepcounter{chapter}
|
186
|
-
\stepcounter{section}
|
187
|
-
{\newpage\clearpage
|
188
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3164}%
|
189
|
-
$ \lambda$%
|
190
|
-
\lthtmlinlinemathZ
|
191
|
-
\lthtmlcheckvsize\clearpage}
|
192
|
-
|
193
|
-
{\newpage\clearpage
|
194
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3166}%
|
195
|
-
$ \phi$%
|
196
|
-
\lthtmlinlinemathZ
|
197
|
-
\lthtmlcheckvsize\clearpage}
|
198
|
-
|
199
|
-
{\newpage\clearpage
|
200
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3168}%
|
201
|
-
$ z^*$%
|
202
|
-
\lthtmlinlinemathZ
|
203
|
-
\lthtmlcheckvsize\clearpage}
|
204
|
-
|
205
|
-
{\newpage\clearpage
|
206
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3171}%
|
207
|
-
$\displaystyle z^*$%
|
208
|
-
\lthtmlindisplaymathZ
|
209
|
-
\lthtmlcheckvsize\clearpage}
|
210
|
-
|
211
|
-
{\newpage\clearpage
|
212
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3173}%
|
213
|
-
$\displaystyle =$%
|
214
|
-
\lthtmlindisplaymathZ
|
215
|
-
\lthtmlcheckvsize\clearpage}
|
216
|
-
|
217
|
-
{\newpage\clearpage
|
218
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3175}%
|
219
|
-
$\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$%
|
220
|
-
\lthtmlindisplaymathZ
|
221
|
-
\lthtmlcheckvsize\clearpage}
|
222
|
-
|
223
|
-
{\newpage\clearpage
|
224
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3177}%
|
225
|
-
$ H$%
|
226
|
-
\lthtmlinlinemathZ
|
227
|
-
\lthtmlcheckvsize\clearpage}
|
228
|
-
|
229
|
-
{\newpage\clearpage
|
230
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3179}%
|
231
|
-
$ R_{d}$%
|
232
|
-
\lthtmlinlinemathZ
|
233
|
-
\lthtmlcheckvsize\clearpage}
|
234
|
-
|
235
|
-
{\newpage\clearpage
|
236
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3181}%
|
237
|
-
$ R$%
|
238
|
-
\lthtmlinlinemathZ
|
239
|
-
\lthtmlcheckvsize\clearpage}
|
240
|
-
|
241
|
-
{\newpage\clearpage
|
242
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3183}%
|
243
|
-
$ w$%
|
244
|
-
\lthtmlinlinemathZ
|
245
|
-
\lthtmlcheckvsize\clearpage}
|
246
|
-
|
247
|
-
{\newpage\clearpage
|
248
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3185}%
|
249
|
-
$ R_{d} = R/w$%
|
250
|
-
\lthtmlinlinemathZ
|
251
|
-
\lthtmlcheckvsize\clearpage}
|
252
|
-
|
253
|
-
{\newpage\clearpage
|
254
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3187}%
|
255
|
-
$ T_s$%
|
256
|
-
\lthtmlinlinemathZ
|
257
|
-
\lthtmlcheckvsize\clearpage}
|
258
|
-
|
259
|
-
{\newpage\clearpage
|
260
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3189}%
|
261
|
-
$ g_0$%
|
262
|
-
\lthtmlinlinemathZ
|
263
|
-
\lthtmlcheckvsize\clearpage}
|
264
|
-
|
265
|
-
{\newpage\clearpage
|
266
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3191}%
|
267
|
-
$ p$%
|
268
|
-
\lthtmlinlinemathZ
|
269
|
-
\lthtmlcheckvsize\clearpage}
|
270
|
-
|
271
|
-
{\newpage\clearpage
|
272
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3193}%
|
273
|
-
$ p_s$%
|
274
|
-
\lthtmlinlinemathZ
|
275
|
-
\lthtmlcheckvsize\clearpage}
|
276
|
-
|
277
|
-
\stepcounter{section}
|
278
|
-
{\newpage\clearpage
|
279
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3200}%
|
280
|
-
$ \rho_s$%
|
281
|
-
\lthtmlinlinemathZ
|
282
|
-
\lthtmlcheckvsize\clearpage}
|
283
|
-
|
284
|
-
{\newpage\clearpage
|
285
|
-
\setcounter{equation}{1}
|
286
|
-
\lthtmldisplayA{subequations3202}%
|
287
|
-
\begin{subequations}\begin{align}
|
288
|
\hat{F}_\phi &\equiv \sigma
|
289
1
|
\cos \phi \left(
|
290
2
|
\DP{\overline{u}}{z^*}
|
291
3
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
|
292
4
|
\right), \\
|
293
5
|
\hat{F}_{z^*} &\equiv \sigma
|
294
6
|
\cos \phi \left(
|
295
7
|
\left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
|
296
8
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
|
297
9
|
\right)
|
298
10
|
\end{align}\end{subequations}%
|
299
|
-
\lthtmldisplayZ
|
300
|
-
\lthtmlcheckvsize\clearpage}
|
301
|
-
|
302
|
-
{\newpage\clearpage
|
303
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3204}%
|
304
|
-
$ \hat{F}_\phi$%
|
305
|
-
\lthtmlinlinemathZ
|
306
|
-
\lthtmlcheckvsize\clearpage}
|
307
|
-
|
308
|
-
{\newpage\clearpage
|
309
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3206}%
|
310
|
-
$ \hat{F}_{z^*}$%
|
311
|
-
\lthtmlinlinemathZ
|
312
|
-
\lthtmlcheckvsize\clearpage}
|
313
|
-
|
314
|
-
{\newpage\clearpage
|
315
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3212}%
|
316
|
-
$ \overline{\bullet}$%
|
317
|
-
\lthtmlinlinemathZ
|
318
|
-
\lthtmlcheckvsize\clearpage}
|
319
|
-
|
320
|
-
{\newpage\clearpage
|
321
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3214}%
|
322
|
-
$ \bullet'$%
|
323
|
-
\lthtmlinlinemathZ
|
324
|
-
\lthtmlcheckvsize\clearpage}
|
325
|
-
|
326
|
-
{\newpage\clearpage
|
327
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3216}%
|
328
|
-
$ u, v, w$%
|
329
|
-
\lthtmlinlinemathZ
|
330
|
-
\lthtmlcheckvsize\clearpage}
|
331
|
-
|
332
|
-
{\newpage\clearpage
|
333
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3219}%
|
334
|
-
$\displaystyle (u, v, w)$%
|
335
|
-
\lthtmlindisplaymathZ
|
336
|
-
\lthtmlcheckvsize\clearpage}
|
337
|
-
|
338
|
-
{\newpage\clearpage
|
339
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3221}%
|
340
|
-
$\displaystyle \equiv$%
|
341
|
-
\lthtmlindisplaymathZ
|
342
|
-
\lthtmlcheckvsize\clearpage}
|
343
|
-
|
344
|
-
{\newpage\clearpage
|
345
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3223}%
|
346
|
-
$\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$%
|
347
|
-
\lthtmlindisplaymathZ
|
348
|
-
\lthtmlcheckvsize\clearpage}
|
349
|
-
|
350
|
-
{\newpage\clearpage
|
351
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3225}%
|
352
|
-
$ \theta$%
|
353
|
-
\lthtmlinlinemathZ
|
354
|
-
\lthtmlcheckvsize\clearpage}
|
355
|
-
|
356
|
-
{\newpage\clearpage
|
357
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3227}%
|
358
|
-
$ a$%
|
359
|
-
\lthtmlinlinemathZ
|
360
|
-
\lthtmlcheckvsize\clearpage}
|
361
|
-
|
362
|
-
{\newpage\clearpage
|
363
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3229}%
|
364
|
-
$ \sigma$%
|
365
|
-
\lthtmlinlinemathZ
|
366
|
-
\lthtmlcheckvsize\clearpage}
|
367
|
-
|
368
|
-
{\newpage\clearpage
|
369
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3230}%
|
370
|
-
$\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$%
|
371
|
-
\lthtmlindisplaymathZ
|
372
|
-
\lthtmlcheckvsize\clearpage}
|
373
|
-
|
374
|
-
{\newpage\clearpage
|
375
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3232}%
|
376
|
-
$ \rho_0$%
|
377
|
-
\lthtmlinlinemathZ
|
378
|
-
\lthtmlcheckvsize\clearpage}
|
379
|
-
|
380
|
-
{\newpage\clearpage
|
381
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3235}%
|
382
|
-
$\displaystyle \rho_0(z^*)$%
|
383
|
-
\lthtmlindisplaymathZ
|
384
|
-
\lthtmlcheckvsize\clearpage}
|
385
|
-
|
386
|
-
{\newpage\clearpage
|
387
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3239}%
|
388
|
-
$\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$%
|
389
|
-
\lthtmlindisplaymathZ
|
390
|
-
\lthtmlcheckvsize\clearpage}
|
391
|
-
|
392
|
-
{\newpage\clearpage
|
393
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3241}%
|
394
|
-
$ f$%
|
395
|
-
\lthtmlinlinemathZ
|
396
|
-
\lthtmlcheckvsize\clearpage}
|
397
|
-
|
398
|
-
{\newpage\clearpage
|
399
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3244}%
|
400
|
-
$\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$%
|
401
|
-
\lthtmlindisplaymathZ
|
402
|
-
\lthtmlcheckvsize\clearpage}
|
403
|
-
|
404
|
-
{\newpage\clearpage
|
405
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3246}%
|
406
|
-
$ \Omega$%
|
407
|
-
\lthtmlinlinemathZ
|
408
|
-
\lthtmlcheckvsize\clearpage}
|
409
|
-
|
410
|
-
{\newpage\clearpage
|
411
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3248}%
|
412
|
-
$ T_{rot}$%
|
413
|
-
\lthtmlinlinemathZ
|
414
|
-
\lthtmlcheckvsize\clearpage}
|
415
|
-
|
416
|
-
{\newpage\clearpage
|
417
|
-
\setcounter{equation}{4}
|
418
|
-
\lthtmldisplayA{subequations3252}%
|
419
|
-
\setcounter{equation}{3}
|
420
|
-
\begin{subequations}\begin{align}
|
421
11
|
{F_\phi} =& \rho_0 a
|
422
12
|
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
423
13
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
|
424
14
|
{F_z^*} =& \rho_0 a
|
425
15
|
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
426
16
|
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
|
427
17
|
\end{align}\end{subequations}%
|
428
|
-
\lthtmldisplayZ
|
429
|
-
\lthtmlcheckvsize\clearpage}
|
430
|
-
|
431
|
-
{\newpage\clearpage
|
432
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3254}%
|
433
|
-
$ F_\phi$%
|
434
|
-
\lthtmlinlinemathZ
|
435
|
-
\lthtmlcheckvsize\clearpage}
|
436
|
-
|
437
|
-
{\newpage\clearpage
|
438
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3256}%
|
439
|
-
$ F_{z^*}$%
|
440
|
-
\lthtmlinlinemathZ
|
441
|
-
\lthtmlcheckvsize\clearpage}
|
442
|
-
|
443
|
-
{\newpage\clearpage
|
444
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3262}%
|
445
|
-
$ F_y, F_z^*$%
|
446
|
-
\lthtmlinlinemathZ
|
447
|
-
\lthtmlcheckvsize\clearpage}
|
448
|
-
|
449
|
-
{\newpage\clearpage
|
450
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3264}%
|
451
|
-
$ \hat{F_y}, \hat{F_z^*}$%
|
452
|
-
\lthtmlinlinemathZ
|
453
|
-
\lthtmlcheckvsize\clearpage}
|
454
|
-
|
455
|
-
{\newpage\clearpage
|
456
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3265}%
|
457
|
-
$\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$%
|
458
|
-
\lthtmlindisplaymathZ
|
459
|
-
\lthtmlcheckvsize\clearpage}
|
460
|
-
|
461
|
-
\stepcounter{section}
|
462
|
-
{\newpage\clearpage
|
463
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3270}%
|
464
|
-
$ (0, \overline{v}^*, \overline{w}^*)$%
|
465
|
-
\lthtmlinlinemathZ
|
466
|
-
\lthtmlcheckvsize\clearpage}
|
467
|
-
|
468
|
-
{\newpage\clearpage
|
469
|
-
\setcounter{equation}{6}
|
470
|
-
\lthtmldisplayA{subequations3272}%
|
471
|
-
\setcounter{equation}{5}
|
472
|
-
\begin{subequations}\begin{align}
|
473
18
|
\overline{v}^* &\equiv \overline{v}
|
474
19
|
- \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
|
475
20
|
{\DP{\overline{\theta}}{z^*}}\right)\\
|
476
21
|
&= \overline{v}
|
477
22
|
- \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
|
478
23
|
{\DP{\overline{\theta}}{z^*}}\right)\\
|
479
24
|
\overline{w}^* &\equiv \overline{w}
|
480
25
|
+ \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
|
481
26
|
{\DP{\overline{\theta}}{z^*}}\right)
|
482
27
|
\end{align}\end{subequations}%
|
483
|
-
\lthtmldisplayZ
|
484
|
-
\lthtmlcheckvsize\clearpage}
|
485
|
-
|
486
|
-
\stepcounter{section}
|
487
|
-
{\newpage\clearpage
|
488
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3277}%
|
489
|
-
$ u$%
|
490
|
-
\lthtmlinlinemathZ
|
491
|
-
\lthtmlcheckvsize\clearpage}
|
492
|
-
|
493
|
-
{\newpage\clearpage
|
494
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3280}%
|
495
|
-
$\displaystyle \DP{\overline{u}}{t}
|
496
|
-
+ \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
|
497
|
-
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
498
|
-
- \overline{X} =
|
499
|
-
\Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$%
|
500
|
-
\lthtmlindisplaymathZ
|
501
|
-
\lthtmlcheckvsize\clearpage}
|
502
|
-
|
503
|
-
\stepcounter{section}
|
504
|
-
{\newpage\clearpage
|
505
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3285}%
|
506
|
-
$ \Dvect{F}$%
|
507
|
-
\lthtmlinlinemathZ
|
508
|
-
\lthtmlcheckvsize\clearpage}
|
509
|
-
|
510
|
-
{\newpage\clearpage
|
511
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3286}%
|
512
|
-
$\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
|
513
28
|
+ \DP{F_{z^{*}}}{z^*}$%
|
514
|
-
\lthtmlindisplaymathZ
|
515
|
-
\lthtmlcheckvsize\clearpage}
|
516
|
-
|
517
|
-
\stepcounter{section}
|
518
|
-
{\newpage\clearpage
|
519
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3291}%
|
520
|
-
$ \Psi^*$%
|
521
|
-
\lthtmlinlinemathZ
|
522
|
-
\lthtmlcheckvsize\clearpage}
|
523
|
-
|
524
|
-
{\newpage\clearpage
|
525
|
-
\setcounter{equation}{9}
|
526
|
-
\lthtmldisplayA{subequations3293}%
|
527
|
-
\setcounter{equation}{8}
|
528
|
-
\begin{subequations}\begin{align}
|
529
29
|
\sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
|
530
30
|
\sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
|
531
31
|
\end{align}\end{subequations}%
|
532
|
-
\lthtmldisplayZ
|
533
|
-
\lthtmlcheckvsize\clearpage}
|
534
|
-
|
535
|
-
{\newpage\clearpage
|
536
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3300}%
|
537
|
-
$\displaystyle \DP{}{z^*}\Psi^*$%
|
538
|
-
\lthtmlindisplaymathZ
|
539
|
-
\lthtmlcheckvsize\clearpage}
|
540
|
-
|
541
|
-
{\newpage\clearpage
|
542
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3301}%
|
543
|
-
$\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$%
|
544
|
-
\lthtmlindisplaymathZ
|
545
|
-
\lthtmlcheckvsize\clearpage}
|
546
|
-
|
547
|
-
{\newpage\clearpage
|
548
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3303}%
|
549
|
-
$ p=0$%
|
550
|
-
\lthtmlinlinemathZ
|
551
|
-
\lthtmlcheckvsize\clearpage}
|
552
|
-
|
553
|
-
{\newpage\clearpage
|
554
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3305}%
|
555
|
-
$ \Psi^* = 0$%
|
556
|
-
\lthtmlinlinemathZ
|
557
|
-
\lthtmlcheckvsize\clearpage}
|
558
|
-
|
559
|
-
{\newpage\clearpage
|
560
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3306}%
|
561
|
-
$\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$%
|
562
|
-
\lthtmlindisplaymathZ
|
563
|
-
\lthtmlcheckvsize\clearpage}
|
564
|
-
|
565
|
-
\stepcounter{section}
|
566
|
-
{\newpage\clearpage
|
567
|
-
\setcounter{equation}{12}
|
568
|
-
\lthtmldisplayA{subequations3311}%
|
569
|
-
\setcounter{equation}{11}
|
570
|
-
\begin{subequations}\begin{align}
|
571
32
|
z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
|
572
33
|
p &= p_{00} \exp \left( -\frac{z^*}{H} \right)
|
573
34
|
\end{align}\end{subequations}%
|
574
|
-
\lthtmldisplayZ
|
575
|
-
\lthtmlcheckvsize\clearpage}
|
576
|
-
|
577
|
-
{\newpage\clearpage
|
578
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3315}%
|
579
|
-
$ p_{00}$%
|
580
|
-
\lthtmlinlinemathZ
|
581
|
-
\lthtmlcheckvsize\clearpage}
|
582
|
-
|
583
|
-
{\newpage\clearpage
|
584
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3321}%
|
585
|
-
$ T$%
|
586
|
-
\lthtmlinlinemathZ
|
587
|
-
\lthtmlcheckvsize\clearpage}
|
588
|
-
|
589
|
-
{\newpage\clearpage
|
590
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3323}%
|
591
|
-
$ \omega \equiv Dp/Dt$%
|
592
|
-
\lthtmlinlinemathZ
|
593
|
-
\lthtmlcheckvsize\clearpage}
|
594
|
-
|
595
|
-
{\newpage\clearpage
|
596
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3329}%
|
597
|
-
$ w, \theta$%
|
598
|
-
\lthtmlinlinemathZ
|
599
|
-
\lthtmlcheckvsize\clearpage}
|
600
|
-
|
601
|
-
{\newpage\clearpage
|
602
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3330}%
|
603
|
-
$\displaystyle w$%
|
604
|
-
\lthtmlindisplaymathZ
|
605
|
-
\lthtmlcheckvsize\clearpage}
|
606
|
-
|
607
|
-
{\newpage\clearpage
|
608
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3331}%
|
609
|
-
$\displaystyle = -\omega H / p$%
|
610
|
-
\lthtmlindisplaymathZ
|
611
|
-
\lthtmlcheckvsize\clearpage}
|
612
|
-
|
613
|
-
{\newpage\clearpage
|
614
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3332}%
|
615
|
-
$\displaystyle \theta$%
|
616
|
-
\lthtmlindisplaymathZ
|
617
|
-
\lthtmlcheckvsize\clearpage}
|
618
|
-
|
619
|
-
{\newpage\clearpage
|
620
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3333}%
|
621
|
-
$\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$%
|
622
|
-
\lthtmlindisplaymathZ
|
623
|
-
\lthtmlcheckvsize\clearpage}
|
624
|
-
|
625
|
-
{\newpage\clearpage
|
626
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3337}%
|
627
|
-
$ C_p$%
|
628
|
-
\lthtmlinlinemathZ
|
629
|
-
\lthtmlcheckvsize\clearpage}
|
630
|
-
|
631
|
-
\appendix
|
632
|
-
\stepcounter{chapter}
|
633
|
-
\stepcounter{section}
|
634
|
-
{\newpage\clearpage
|
635
|
-
\setcounter{equation}{0}
|
636
|
-
\lthtmldisplayA{subequations3343}%
|
637
|
-
\setcounter{equation}{-1}
|
638
|
-
\begin{subequations}\begin{align}
|
639
35
|
\DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
|
640
36
|
+ \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
|
641
37
|
\DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
|
642
38
|
+ \Dinv{a}\DP{\Phi}{\phi} = Y,
|
643
39
|
\end{align}
|
644
40
|
|
645
41
|
\begin{align}
|
646
42
|
\DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
|
647
43
|
\end{align}
|
648
44
|
|
649
45
|
\begin{align}
|
650
46
|
\Dinv{a\cos\phi} &
|
651
47
|
\left[
|
652
48
|
\DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
|
653
49
|
\right]
|
654
50
|
+ \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
|
655
51
|
= 0,
|
656
52
|
\end{align}
|
657
53
|
|
658
54
|
\begin{align}
|
659
55
|
\DD{\theta}{t} &= Q,
|
660
56
|
\end{align}\end{subequations}%
|
661
|
-
\lthtmldisplayZ
|
662
|
-
\lthtmlcheckvsize\clearpage}
|
663
|
-
|
664
|
-
{\newpage\clearpage
|
665
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3345}%
|
666
|
-
$ \Phi$%
|
667
|
-
\lthtmlinlinemathZ
|
668
|
-
\lthtmlcheckvsize\clearpage}
|
669
|
-
|
670
|
-
{\newpage\clearpage
|
671
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3347}%
|
672
|
-
$ X, Y$%
|
673
|
-
\lthtmlinlinemathZ
|
674
|
-
\lthtmlcheckvsize\clearpage}
|
675
|
-
|
676
|
-
{\newpage\clearpage
|
677
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3353}%
|
678
|
-
$ \kappa=R_{d}/c_p$%
|
679
|
-
\lthtmlinlinemathZ
|
680
|
-
\lthtmlcheckvsize\clearpage}
|
681
|
-
|
682
|
-
{\newpage\clearpage
|
683
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3355}%
|
684
|
-
$ c_p$%
|
685
|
-
\lthtmlinlinemathZ
|
686
|
-
\lthtmlcheckvsize\clearpage}
|
687
|
-
|
688
|
-
{\newpage\clearpage
|
689
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3357}%
|
690
|
-
$ Q$%
|
691
|
-
\lthtmlinlinemathZ
|
692
|
-
\lthtmlcheckvsize\clearpage}
|
693
|
-
|
694
|
-
{\newpage\clearpage
|
695
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3360}%
|
696
|
-
$\displaystyle Q$%
|
697
|
-
\lthtmlindisplaymathZ
|
698
|
-
\lthtmlcheckvsize\clearpage}
|
699
|
-
|
700
|
-
{\newpage\clearpage
|
701
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3364}%
|
702
|
-
$\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$%
|
703
|
-
\lthtmlindisplaymathZ
|
704
|
-
\lthtmlcheckvsize\clearpage}
|
705
|
-
|
706
|
-
{\newpage\clearpage
|
707
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3366}%
|
708
|
-
$ J$%
|
709
|
-
\lthtmlinlinemathZ
|
710
|
-
\lthtmlcheckvsize\clearpage}
|
711
|
-
|
712
|
-
\stepcounter{section}
|
713
|
-
{\newpage\clearpage
|
714
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3371}%
|
715
|
-
$ A$%
|
716
|
-
\lthtmlinlinemathZ
|
717
|
-
\lthtmlcheckvsize\clearpage}
|
718
|
-
|
719
|
-
{\newpage\clearpage
|
720
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3373}%
|
721
|
-
$ \phi, z^*, t$%
|
722
|
-
\lthtmlinlinemathZ
|
723
|
-
\lthtmlcheckvsize\clearpage}
|
724
|
-
|
725
|
-
{\newpage\clearpage
|
726
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3376}%
|
727
|
-
$\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$%
|
728
|
-
\lthtmlindisplaymathZ
|
729
|
-
\lthtmlcheckvsize\clearpage}
|
730
|
-
|
731
|
-
{\newpage\clearpage
|
732
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3378}%
|
733
|
-
$ A'$%
|
734
|
-
\lthtmlinlinemathZ
|
735
|
-
\lthtmlcheckvsize\clearpage}
|
736
|
-
|
737
|
-
{\newpage\clearpage
|
738
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3381}%
|
739
|
-
$\displaystyle A' = A - \overline{A}$%
|
740
|
-
\lthtmlindisplaymathZ
|
741
|
-
\lthtmlcheckvsize\clearpage}
|
742
|
-
|
743
|
-
{\newpage\clearpage
|
744
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3383}%
|
745
|
-
$ \overline{A'}=0$%
|
746
|
-
\lthtmlinlinemathZ
|
747
|
-
\lthtmlcheckvsize\clearpage}
|
748
|
-
|
749
|
-
{\newpage\clearpage
|
750
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3385}%
|
751
|
-
$ \partial \overline{A}/\partial\lambda = 0$%
|
752
|
-
\lthtmlinlinemathZ
|
753
|
-
\lthtmlcheckvsize\clearpage}
|
754
|
-
|
755
|
-
{\newpage\clearpage
|
756
|
-
\setcounter{equation}{3}
|
757
|
-
\lthtmldisplayA{subequations3387}%
|
758
|
-
\setcounter{equation}{2}
|
759
|
-
\begin{subequations}\begin{align}
|
760
57
|
& \DP{}{t}(\overline{u} + u')
|
761
58
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
|
762
59
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
|
763
60
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\
|
764
61
|
& \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
|
765
62
|
+ \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
|
766
63
|
& \DP{}{t}(\overline{v} + v')
|
767
64
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
|
768
65
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
|
769
66
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
|
770
67
|
& \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
|
771
68
|
+ \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
|
772
69
|
Y',
|
773
70
|
\\
|
774
71
|
& \DP{}{z^*}(\overline{\Phi} + \Phi')
|
775
72
|
= \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
|
776
73
|
& \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
|
777
74
|
+ \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
|
778
75
|
+ \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
|
779
76
|
& \DP{}{t}(\overline{\theta} + \theta')
|
780
77
|
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
|
781
78
|
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
|
782
79
|
+ (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
|
783
80
|
& \qquad = \overline{Q} + Q'
|
784
81
|
\end{align}\end{subequations}%
|
785
|
-
\lthtmldisplayZ
|
786
|
-
\lthtmlcheckvsize\clearpage}
|
787
|
-
|
788
|
-
{\newpage\clearpage
|
789
|
-
\setcounter{equation}{4}
|
790
|
-
\lthtmldisplayA{subequations3389}%
|
791
|
-
\setcounter{equation}{3}
|
792
|
-
\begin{subequations}\begin{align}
|
793
82
|
& \DP{\overline{u}}{t}
|
794
83
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
795
84
|
+ \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
|
796
85
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
797
86
|
- f\overline{v}
|
798
87
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
799
88
|
+ \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
|
800
89
|
- \overline{X}
|
801
90
|
\\
|
802
91
|
& \qquad
|
803
92
|
= - \DP{u'}{t}
|
804
93
|
- \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
|
805
94
|
- \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
806
95
|
- \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
|
807
96
|
& \qquad \qquad
|
808
97
|
- \frac{\overline{v}}{a}\DP{u'}{\phi}
|
809
98
|
- \frac{v'}{a}\DP{\overline{u}}{\phi}
|
810
99
|
- \frac{v'}{a}\DP{u'}{\phi}
|
811
100
|
- \overline{w}\DP{u'}{z^*}
|
812
101
|
- w'\DP{\overline{u}}{z^*}
|
813
102
|
- w'\DP{u'}{z^*}
|
814
103
|
+ fv'\notag\\
|
815
104
|
& \qquad \qquad
|
816
105
|
+ \frac{\tan\phi}{a} \overline{u} v'
|
817
106
|
+ \frac{\tan\phi}{a} u' \overline{v}
|
818
107
|
+ \frac{\tan\phi}{a} u'v'
|
819
108
|
- \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
|
820
109
|
+ X',\\
|
821
110
|
& \DP{\overline{v}}{t}
|
822
111
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
823
112
|
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
824
113
|
+ \overline{w}\DP{\overline{v}}{z^*}
|
825
114
|
+ f\overline{u}
|
826
115
|
+ \frac{\tan\phi}{a}(\overline{u})^2
|
827
116
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
828
117
|
- \overline{Y}
|
829
118
|
\notag\\
|
830
119
|
& \qquad
|
831
120
|
= - \DP{v'}{t}
|
832
121
|
- \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
|
833
122
|
- \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
834
123
|
- \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
|
835
124
|
& \qquad \qquad
|
836
125
|
- \frac{\overline{v}}{a}\DP{v'}{\phi}
|
837
126
|
- \frac{v'}{a}\DP{\overline{v}}{\phi}
|
838
127
|
- \frac{v'}{a}\DP{v'}{\phi}
|
839
128
|
- \overline{w}\DP{v'}{z^*}
|
840
129
|
- w'\DP{\overline{v}}{z^*}
|
841
130
|
- w'\DP{v'}{z^*}
|
842
131
|
- fu'\notag\\
|
843
132
|
& \qquad \qquad
|
844
133
|
- 2\frac{\tan\phi}{a}\overline{u}u'
|
845
134
|
- \frac{\tan\phi}{a}(u')^2
|
846
135
|
- \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
|
847
136
|
+ Y',\\
|
848
137
|
& \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
849
138
|
= - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
|
850
139
|
& \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
|
851
140
|
+ \DP{}{\phi}(\overline{v}\cos\phi)\right]
|
852
141
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
853
142
|
\notag\\
|
854
143
|
& \qquad
|
855
144
|
= - \Dinv{a\cos\phi}\left[
|
856
145
|
\DP{u'}{\lambda}
|
857
146
|
+ \DP{}{\phi}(v'\cos\phi)
|
858
147
|
\right]
|
859
148
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
|
860
149
|
& \DP{\overline{\theta}}{t}
|
861
150
|
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
862
151
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
863
152
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
864
153
|
- \overline{Q}
|
865
154
|
\notag\\
|
866
155
|
& \qquad
|
867
156
|
= - \DP{\theta'}{t}
|
868
157
|
- \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
|
869
158
|
- \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
870
159
|
- \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
|
871
160
|
\notag \\
|
872
161
|
& \qquad \qquad
|
873
162
|
- \frac{\overline{v}}{a}\DP{\theta'}{\phi}
|
874
163
|
- \frac{v'}{a}\DP{\overline{\theta}}{\phi}
|
875
164
|
- \frac{v'}{a}\DP{\theta'}{\phi}
|
876
165
|
- \overline{w}\DP{\theta'}{z^*}
|
877
166
|
- w'\DP{\overline{\theta}}{z^*}
|
878
167
|
- w'\DP{\theta'}{z^*}
|
879
168
|
+ Q'
|
880
169
|
\end{align}\end{subequations}%
|
881
|
-
\lthtmldisplayZ
|
882
|
-
\lthtmlcheckvsize\clearpage}
|
883
|
-
|
884
|
-
{\newpage\clearpage
|
885
|
-
\setcounter{equation}{5}
|
886
|
-
\lthtmldisplayA{subequations3391}%
|
887
|
-
\setcounter{equation}{4}
|
888
|
-
\begin{subequations}\begin{align}
|
889
170
|
& \DP{\overline{u}}{t}
|
890
171
|
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
891
172
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
892
173
|
- f\overline{v}
|
893
174
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
894
175
|
- \overline{X}
|
895
176
|
\\
|
896
177
|
& \qquad
|
897
178
|
= - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
|
898
179
|
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
899
180
|
- \overline{w'\DP{u'}{z^*}}
|
900
181
|
+ \frac{\tan\phi}{a}\overline{u'v'},\\
|
901
182
|
& \DP{\overline{v}}{t}
|
902
183
|
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
903
184
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
904
185
|
+ f \overline{u}
|
905
186
|
+ \frac{\tan \phi}{a} (\overline{u})^2
|
906
187
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
907
188
|
- \overline{Y}
|
908
189
|
\notag\\
|
909
190
|
& \qquad
|
910
191
|
= - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
|
911
192
|
- \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
|
912
193
|
- \overline{w'\DP{v'}{z^*}}
|
913
194
|
- \frac{\tan \phi}{a} \overline{u'^2},\\
|
914
195
|
& \DP{\overline{\Phi}}{z^*}
|
915
196
|
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
|
916
197
|
& \Dinv{a\cos\phi}
|
917
198
|
\left[
|
918
199
|
\DP{}{\phi}(\overline{v}\cos\phi)
|
919
200
|
\right]
|
920
201
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
921
202
|
= 0,\\
|
922
203
|
& \DP{\overline{\theta}}{t}
|
923
204
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
924
205
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
925
206
|
- \overline{Q} =
|
926
207
|
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
927
208
|
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
928
209
|
- \overline{w'\DP{\theta'}{z^*}}
|
929
210
|
\end{align}\end{subequations}%
|
930
|
-
\lthtmldisplayZ
|
931
|
-
\lthtmlcheckvsize\clearpage}
|
932
|
-
|
933
|
-
{\newpage\clearpage
|
934
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3394}%
|
935
|
-
$\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
|
936
|
-
+ \DP{}{\phi}(v'\cos\phi)\right]
|
937
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
|
938
|
-
= 0$%
|
939
|
-
\lthtmlindisplaymathZ
|
940
|
-
\lthtmlcheckvsize\clearpage}
|
941
|
-
|
942
|
-
{\newpage\clearpage
|
943
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3396}%
|
944
|
-
$ u'$%
|
945
|
-
\lthtmlinlinemathZ
|
946
|
-
\lthtmlcheckvsize\clearpage}
|
947
|
-
|
948
|
-
{\newpage\clearpage
|
949
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3399}%
|
950
|
-
$\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
|
951
|
-
+ \Dinv{a} \overline{ u' \DP{v'}{\phi} }
|
952
|
-
- \frac{\tan \phi}{a} \overline{ u' v' }
|
953
|
-
+ \overline{ u' \DP{w'}{z^*} }
|
954
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
|
955
|
-
= 0$%
|
956
|
-
\lthtmlindisplaymathZ
|
957
|
-
\lthtmlcheckvsize\clearpage}
|
958
|
-
|
959
|
-
{\newpage\clearpage
|
960
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3400}%
|
961
|
-
$\displaystyle \DP{\overline{u}}{t}$%
|
962
|
-
\lthtmlindisplaymathZ
|
963
|
-
\lthtmlcheckvsize\clearpage}
|
964
|
-
|
965
|
-
{\newpage\clearpage
|
966
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3401}%
|
967
|
-
$\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
968
211
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
969
212
|
- f\overline{v}
|
970
213
|
- \frac{\tan\phi}{a}\overline{u}\overline{v}
|
971
214
|
- \overline{X} \notag$%
|
972
|
-
\lthtmlindisplaymathZ
|
973
|
-
\lthtmlcheckvsize\clearpage}
|
974
|
-
|
975
|
-
{\newpage\clearpage
|
976
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3402}%
|
977
|
-
$\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
|
978
215
|
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
979
216
|
- \overline{w'\DP{u'}{z^*}}
|
980
217
|
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
981
218
|
+ \frac{2\tan\phi}{a}\overline{u'v'}
|
982
219
|
- \overline{u'\DP{w'}{z^*}}
|
983
220
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
|
984
|
-
\lthtmlindisplaymathZ
|
985
|
-
\lthtmlcheckvsize\clearpage}
|
986
|
-
|
987
|
-
{\newpage\clearpage
|
988
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3403}%
|
989
|
-
$\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$%
|
990
|
-
\lthtmlindisplaymathZ
|
991
|
-
\lthtmlcheckvsize\clearpage}
|
992
|
-
|
993
|
-
{\newpage\clearpage
|
994
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3404}%
|
995
|
-
$\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
|
996
221
|
= 0,$%
|
997
|
-
\lthtmlindisplaymathZ
|
998
|
-
\lthtmlcheckvsize\clearpage}
|
999
|
-
|
1000
|
-
{\newpage\clearpage
|
1001
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3405}%
|
1002
|
-
$\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
1003
222
|
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
1004
223
|
+ \frac{2\tan\phi}{a}\overline{u'v'}$%
|
1005
|
-
\lthtmlindisplaymathZ
|
1006
|
-
\lthtmlcheckvsize\clearpage}
|
1007
|
-
|
1008
|
-
{\newpage\clearpage
|
1009
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3406}%
|
1010
|
-
$\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$%
|
1011
|
-
\lthtmlindisplaymathZ
|
1012
|
-
\lthtmlcheckvsize\clearpage}
|
1013
|
-
|
1014
|
-
{\newpage\clearpage
|
1015
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3407}%
|
1016
|
-
$\displaystyle - \overline{w'\DP{u'}{z^*}}
|
1017
224
|
- \overline{u'\DP{w'}{z^*}}
|
1018
225
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
|
1019
|
-
\lthtmlindisplaymathZ
|
1020
|
-
\lthtmlcheckvsize\clearpage}
|
1021
|
-
|
1022
|
-
{\newpage\clearpage
|
1023
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3408}%
|
1024
|
-
$\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
|
1025
|
-
\lthtmlindisplaymathZ
|
1026
|
-
\lthtmlcheckvsize\clearpage}
|
1027
|
-
|
1028
|
-
{\newpage\clearpage
|
1029
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3409}%
|
1030
|
-
$\displaystyle \DP{\overline{u}}{t}
|
1031
226
|
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
1032
227
|
+ \overline{w}\DP{\overline{u}}{z^*}
|
1033
228
|
- f\overline{v}
|
1034
229
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
1035
230
|
- \overline{X}
|
1036
231
|
\notag$%
|
1037
|
-
\lthtmlindisplaymathZ
|
1038
|
-
\lthtmlcheckvsize\clearpage}
|
1039
|
-
|
1040
|
-
{\newpage\clearpage
|
1041
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3410}%
|
1042
|
-
$\displaystyle \qquad
|
1043
232
|
= - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
|
1044
233
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
|
1045
|
-
\lthtmlindisplaymathZ
|
1046
|
-
\lthtmlcheckvsize\clearpage}
|
1047
|
-
|
1048
|
-
{\newpage\clearpage
|
1049
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3412}%
|
1050
|
-
$ v'$%
|
1051
|
-
\lthtmlinlinemathZ
|
1052
|
-
\lthtmlcheckvsize\clearpage}
|
1053
|
-
|
1054
|
-
{\newpage\clearpage
|
1055
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3415}%
|
1056
|
-
$\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
|
1057
|
-
+ \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1058
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
1059
|
-
+ \overline{ v' \DP{w'}{z^*} }
|
1060
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
1061
|
-
= 0$%
|
1062
|
-
\lthtmlindisplaymathZ
|
1063
|
-
\lthtmlcheckvsize\clearpage}
|
1064
|
-
|
1065
|
-
{\newpage\clearpage
|
1066
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3416}%
|
1067
|
-
$\displaystyle \DP{\overline{v}}{t}
|
1068
234
|
+ \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
1069
235
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
1070
236
|
+ f \overline{u}
|
1071
237
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1072
238
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1073
239
|
- \overline{Y}
|
1074
240
|
\notag$%
|
1075
|
-
\lthtmlindisplaymathZ
|
1076
|
-
\lthtmlcheckvsize\clearpage}
|
1077
|
-
|
1078
|
-
{\newpage\clearpage
|
1079
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3417}%
|
1080
|
-
$\displaystyle \qquad
|
1081
241
|
= - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
1082
242
|
- \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
|
1083
243
|
- \overline{w'\DP{v'}{z^*}}
|
1084
244
|
- \frac{\tan\phi}{a} \overline{u'^2}
|
1085
245
|
\notag$%
|
1086
|
-
\lthtmlindisplaymathZ
|
1087
|
-
\lthtmlcheckvsize\clearpage}
|
1088
|
-
|
1089
|
-
{\newpage\clearpage
|
1090
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3418}%
|
1091
|
-
$\displaystyle \qquad \qquad
|
1092
246
|
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
|
1093
247
|
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1094
248
|
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
1095
249
|
- \overline{ v' \DP{w'}{z^*} }
|
1096
250
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
|
1097
|
-
\lthtmlindisplaymathZ
|
1098
|
-
\lthtmlcheckvsize\clearpage}
|
1099
|
-
|
1100
|
-
{\newpage\clearpage
|
1101
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3421}%
|
1102
|
-
$\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
1103
|
-
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$%
|
1104
|
-
\lthtmlindisplaymathZ
|
1105
|
-
\lthtmlcheckvsize\clearpage}
|
1106
|
-
|
1107
|
-
{\newpage\clearpage
|
1108
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3425}%
|
1109
|
-
$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
|
1110
|
-
= 0,$%
|
1111
|
-
\lthtmlindisplaymathZ
|
1112
|
-
\lthtmlcheckvsize\clearpage}
|
1113
|
-
|
1114
|
-
{\newpage\clearpage
|
1115
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3427}%
|
1116
|
-
$\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1117
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
1118
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }$%
|
1119
|
-
\lthtmlindisplaymathZ
|
1120
|
-
\lthtmlcheckvsize\clearpage}
|
1121
|
-
|
1122
|
-
{\newpage\clearpage
|
1123
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3431}%
|
1124
|
-
$\displaystyle - \Dinv{a \cos \phi}
|
1125
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$%
|
1126
|
-
\lthtmlindisplaymathZ
|
1127
|
-
\lthtmlcheckvsize\clearpage}
|
1128
|
-
|
1129
|
-
{\newpage\clearpage
|
1130
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3433}%
|
1131
|
-
$\displaystyle - \overline{w'\DP{v'}{z^*}}
|
1132
|
-
- \overline{ v' \DP{w'}{z^*} }
|
1133
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
|
1134
|
-
\lthtmlindisplaymathZ
|
1135
|
-
\lthtmlcheckvsize\clearpage}
|
1136
|
-
|
1137
|
-
{\newpage\clearpage
|
1138
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3437}%
|
1139
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
|
1140
|
-
\lthtmlindisplaymathZ
|
1141
|
-
\lthtmlcheckvsize\clearpage}
|
1142
|
-
|
1143
|
-
{\newpage\clearpage
|
1144
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3439}%
|
1145
|
-
$\displaystyle \qquad
|
1146
251
|
= - \Dinv{a \cos \phi}
|
1147
252
|
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
|
1148
253
|
- \frac{\tan\phi}{a} \overline{u'^2}
|
1149
254
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
|
1150
|
-
\lthtmlindisplaymathZ
|
1151
|
-
\lthtmlcheckvsize\clearpage}
|
1152
|
-
|
1153
|
-
{\newpage\clearpage
|
1154
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3441}%
|
1155
|
-
$ \theta'$%
|
1156
|
-
\lthtmlinlinemathZ
|
1157
|
-
\lthtmlcheckvsize\clearpage}
|
1158
|
-
|
1159
|
-
{\newpage\clearpage
|
1160
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3444}%
|
1161
|
-
$\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
1162
|
-
+ \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
1163
|
-
- \frac{\tan \phi}{a} \overline{ \theta' v' }
|
1164
|
-
+ \overline{ \theta' \DP{w'}{z^*} }
|
1165
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
1166
|
-
= 0$%
|
1167
|
-
\lthtmlindisplaymathZ
|
1168
|
-
\lthtmlcheckvsize\clearpage}
|
1169
|
-
|
1170
|
-
{\newpage\clearpage
|
1171
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3445}%
|
1172
|
-
$\displaystyle \DP{\overline{\theta}}{t}
|
1173
255
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
1174
256
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
1175
257
|
- \overline{Q}
|
1176
258
|
\notag$%
|
1177
|
-
\lthtmlindisplaymathZ
|
1178
|
-
\lthtmlcheckvsize\clearpage}
|
1179
|
-
|
1180
|
-
{\newpage\clearpage
|
1181
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3446}%
|
1182
|
-
$\displaystyle \qquad =
|
1183
259
|
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
1184
260
|
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
1185
261
|
- \overline{w'\DP{\theta'}{z^*}}
|
1186
262
|
\notag$%
|
1187
|
-
\lthtmlindisplaymathZ
|
1188
|
-
\lthtmlcheckvsize\clearpage}
|
1189
|
-
|
1190
|
-
{\newpage\clearpage
|
1191
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3447}%
|
1192
|
-
$\displaystyle \qquad \qquad
|
1193
263
|
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
1194
264
|
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
1195
265
|
+ \frac{\tan \phi}{a} \overline{ \theta' v' }
|
1196
266
|
- \overline{ \theta' \DP{w'}{z^*} }
|
1197
267
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
|
1198
|
-
\lthtmlindisplaymathZ
|
1199
|
-
\lthtmlcheckvsize\clearpage}
|
1200
|
-
|
1201
|
-
{\newpage\clearpage
|
1202
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3450}%
|
1203
|
-
$\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
|
1204
|
-
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$%
|
1205
|
-
\lthtmlindisplaymathZ
|
1206
|
-
\lthtmlcheckvsize\clearpage}
|
1207
|
-
|
1208
|
-
{\newpage\clearpage
|
1209
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3454}%
|
1210
|
-
$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
|
1211
|
-
= 0,$%
|
1212
|
-
\lthtmlindisplaymathZ
|
1213
|
-
\lthtmlcheckvsize\clearpage}
|
1214
|
-
|
1215
|
-
{\newpage\clearpage
|
1216
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3456}%
|
1217
|
-
$\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
|
1218
|
-
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
1219
|
-
+ \frac{\tan \phi}{a} \overline{ \theta' v' }$%
|
1220
|
-
\lthtmlindisplaymathZ
|
1221
|
-
\lthtmlcheckvsize\clearpage}
|
1222
|
-
|
1223
|
-
{\newpage\clearpage
|
1224
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3460}%
|
1225
|
-
$\displaystyle - \Dinv{a \cos \phi}
|
1226
|
-
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$%
|
1227
|
-
\lthtmlindisplaymathZ
|
1228
|
-
\lthtmlcheckvsize\clearpage}
|
1229
|
-
|
1230
|
-
{\newpage\clearpage
|
1231
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3462}%
|
1232
|
-
$\displaystyle - \overline{w'\DP{\theta'}{z^*}}
|
1233
|
-
- \overline{ \theta' \DP{w'}{z^*} }
|
1234
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
|
1235
|
-
\lthtmlindisplaymathZ
|
1236
|
-
\lthtmlcheckvsize\clearpage}
|
1237
|
-
|
1238
|
-
{\newpage\clearpage
|
1239
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3466}%
|
1240
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
|
1241
|
-
\lthtmlindisplaymathZ
|
1242
|
-
\lthtmlcheckvsize\clearpage}
|
1243
|
-
|
1244
|
-
{\newpage\clearpage
|
1245
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3467}%
|
1246
|
-
$\displaystyle \DP{\overline{\theta}}{t}
|
1247
268
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
1248
269
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
1249
270
|
- \overline{Q}
|
1250
271
|
= - \Dinv{a \cos \phi}
|
1251
272
|
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
|
1252
273
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
|
1253
|
-
\lthtmlindisplaymathZ
|
1254
|
-
\lthtmlcheckvsize\clearpage}
|
1255
|
-
|
1256
|
-
{\newpage\clearpage
|
1257
|
-
\setcounter{equation}{11}
|
1258
|
-
\lthtmldisplayA{subequations3469}%
|
1259
|
-
\setcounter{equation}{10}
|
1260
|
-
\begin{subequations}\begin{align}
|
1261
274
|
\DP{\overline{u}}{t}
|
1262
275
|
& + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
|
1263
276
|
+ \overline{w} \DP{\overline{u}}{z^*}
|
1264
277
|
- f\overline{v}
|
1265
278
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
1266
279
|
- \overline{X}
|
1267
280
|
\\
|
1268
281
|
& \qquad
|
1269
282
|
= - \Dinv{a\cos^2\phi}
|
1270
283
|
\DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
1271
284
|
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
|
1272
285
|
\DP{\overline{v}}{t}
|
1273
286
|
& + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
1274
287
|
+ \overline{w} \DP{\overline{v}}{z^*}
|
1275
288
|
+ f \overline{u}
|
1276
289
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
1277
290
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
1278
291
|
- \overline{Y}
|
1279
292
|
\notag\\
|
1280
293
|
& \qquad
|
1281
294
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
1282
295
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
1283
296
|
- \overline{u'^2}\frac{\tan\phi}{a},
|
1284
297
|
\end{align}
|
1285
298
|
\begin{align}
|
1286
299
|
\DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
|
1287
300
|
\end{align}
|
1288
301
|
\begin{align}
|
1289
302
|
\Dinv{a\cos\phi}&
|
1290
303
|
\DP{}{\phi}(\overline{v}\cos\phi)
|
1291
304
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
1292
305
|
= 0,
|
1293
306
|
\end{align}
|
1294
307
|
\begin{align}
|
1295
308
|
\DP{\overline{\theta}}{t}
|
1296
309
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
1297
310
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
1298
311
|
- \overline{Q} =
|
1299
312
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
1300
313
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
|
1301
314
|
\end{align}\end{subequations}%
|
1302
|
-
\lthtmldisplayZ
|
1303
|
-
\lthtmlcheckvsize\clearpage}
|
1304
|
-
|
1305
|
-
\stepcounter{section}
|
1306
|
-
{\newpage\clearpage
|
1307
|
-
\setcounter{equation}{12}
|
1308
|
-
\lthtmldisplayA{subequations3474}%
|
1309
|
-
\setcounter{equation}{11}
|
1310
|
-
\begin{subequations}\begin{align}
|
1311
315
|
\overline{v}^*
|
1312
316
|
& =
|
1313
317
|
\overline{v}
|
1314
318
|
- \Dinv{\rho_0} \DP{}{z^*}
|
1315
319
|
\left( \rho_0
|
1316
320
|
\frac{\overline{v'\theta'}}
|
1317
321
|
{\overline{\DP{\theta}{z^*}}}
|
1318
322
|
\right)
|
1319
323
|
\\
|
1320
324
|
\overline{w}^*
|
1321
325
|
& = \overline{w}
|
1322
326
|
+ \Dinv{a \cos\phi}
|
1323
327
|
\DP{}{\phi}
|
1324
328
|
\left( \cos \phi
|
1325
329
|
\frac{\overline{v'\theta'}}
|
1326
330
|
{\overline{\DP{\theta}{z^*}}}
|
1327
331
|
\right)
|
1328
332
|
\end{align}\end{subequations}%
|
1329
|
-
\lthtmldisplayZ
|
1330
|
-
\lthtmlcheckvsize\clearpage}
|
1331
|
-
|
1332
|
-
{\newpage\clearpage
|
1333
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3477}%
|
1334
|
-
$\displaystyle {F_\phi}$%
|
1335
|
-
\lthtmlindisplaymathZ
|
1336
|
-
\lthtmlcheckvsize\clearpage}
|
1337
|
-
|
1338
|
-
{\newpage\clearpage
|
1339
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3481}%
|
1340
|
-
$\displaystyle \rho_0 a
|
1341
|
-
\cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
|
1342
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
1343
|
-
\overline{u'v'}\right)$%
|
1344
|
-
\lthtmlindisplaymathZ
|
1345
|
-
\lthtmlcheckvsize\clearpage}
|
1346
|
-
|
1347
|
-
{\newpage\clearpage
|
1348
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3483}%
|
1349
|
-
$\displaystyle {F_z^*}$%
|
1350
|
-
\lthtmlindisplaymathZ
|
1351
|
-
\lthtmlcheckvsize\clearpage}
|
1352
|
-
|
1353
|
-
{\newpage\clearpage
|
1354
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3487}%
|
1355
|
-
$\displaystyle \rho_0 a
|
1356
|
-
\cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
|
1357
|
-
\frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
|
1358
|
-
\overline{u'w'}\right)$%
|
1359
|
-
\lthtmlindisplaymathZ
|
1360
|
-
\lthtmlcheckvsize\clearpage}
|
1361
|
-
|
1362
|
-
{\newpage\clearpage
|
1363
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3488}%
|
1364
|
-
$\displaystyle \Dinv{a \cos \phi}
|
1365
333
|
\DP{}{\phi}\left[
|
1366
334
|
\left\{
|
1367
335
|
\overline{v}^*
|
1368
336
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1369
337
|
\left( \rho_0
|
1370
338
|
\frac{\overline{v'\theta'}}
|
1371
339
|
{\overline{\DP{\theta}{z^*}}}
|
1372
340
|
\right)
|
1373
341
|
\right\}
|
1374
342
|
\cos\phi \right]$%
|
1375
|
-
\lthtmlindisplaymathZ
|
1376
|
-
\lthtmlcheckvsize\clearpage}
|
1377
|
-
|
1378
|
-
{\newpage\clearpage
|
1379
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3489}%
|
1380
|
-
$\displaystyle \qquad
|
1381
343
|
+ \Dinv{\rho_0}
|
1382
344
|
\DP{}{z^*}
|
1383
345
|
\left[ \rho_0
|
1384
346
|
\left\{
|
1385
347
|
\overline{w}^*
|
1386
348
|
- \Dinv{a \cos\phi}
|
1387
349
|
\DP{}{\phi}
|
1388
350
|
\left( \cos \phi
|
1389
351
|
\frac{\overline{v'\theta'}}
|
1390
352
|
{\overline{\DP{\theta}{z^*}}}
|
1391
353
|
\right)
|
1392
354
|
\right\}
|
1393
355
|
\right]
|
1394
356
|
= 0,$%
|
1395
|
-
\lthtmlindisplaymathZ
|
1396
|
-
\lthtmlcheckvsize\clearpage}
|
1397
|
-
|
1398
|
-
{\newpage\clearpage
|
1399
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3490}%
|
1400
|
-
$\displaystyle \Dinv{a \cos \phi}
|
1401
357
|
\DP{}{\phi}
|
1402
358
|
\left(
|
1403
359
|
\overline{v}^* \cos\phi
|
1404
360
|
\right)
|
1405
361
|
+ \Dinv{\rho_0}
|
1406
362
|
\DP{}{z^*}
|
1407
363
|
\left( \rho_0 \overline{w}^* \right)$%
|
1408
|
-
\lthtmlindisplaymathZ
|
1409
|
-
\lthtmlcheckvsize\clearpage}
|
1410
|
-
|
1411
|
-
{\newpage\clearpage
|
1412
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3491}%
|
1413
|
-
$\displaystyle \qquad
|
1414
364
|
+ \Dinv{a \cos \phi}
|
1415
365
|
\DP{}{\phi}
|
1416
366
|
\left\{
|
1417
367
|
\Dinv{\rho_0} \DP{}{z^*}
|
1418
368
|
\left( \rho_0
|
1419
369
|
\frac{\overline{v'\theta'}}
|
1420
370
|
{\overline{\DP{\theta}{z^*}}}
|
1421
371
|
\right) \cos\phi
|
1422
372
|
\right\}
|
1423
373
|
- \Dinv{\rho_0}
|
1424
374
|
\DP{}{z^*}
|
1425
375
|
\left\{
|
1426
376
|
\rho_0 \Dinv{a \cos\phi}
|
1427
377
|
\DP{}{\phi}
|
1428
378
|
\left( \cos \phi
|
1429
379
|
\frac{\overline{v'\theta'}}
|
1430
380
|
{\overline{\DP{\theta}{z^*}}}
|
1431
381
|
\right)
|
1432
382
|
\right\}
|
1433
383
|
= 0.$%
|
1434
|
-
\lthtmlindisplaymathZ
|
1435
|
-
\lthtmlcheckvsize\clearpage}
|
1436
|
-
|
1437
|
-
{\newpage\clearpage
|
1438
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3492}%
|
1439
|
-
$\displaystyle \qquad
|
1440
384
|
\Dinv{a \cos \phi}
|
1441
385
|
\DP{}{\phi}
|
1442
386
|
\left\{
|
1443
387
|
\Dinv{\rho_0} \DP{}{z^*}
|
1444
388
|
\left( \rho_0
|
1445
389
|
\frac{\overline{v'\theta'}}
|
1446
390
|
{\overline{\DP{\theta}{z^*}}}
|
1447
391
|
\right) \cos\phi
|
1448
392
|
\right\}
|
1449
393
|
- \Dinv{\rho_0}
|
1450
394
|
\DP{}{z^*}
|
1451
395
|
\left\{
|
1452
396
|
\rho_0 \Dinv{a \cos\phi}
|
1453
397
|
\DP{}{\phi}
|
1454
398
|
\left( \cos \phi
|
1455
399
|
\frac{\overline{v'\theta'}}
|
1456
400
|
{\overline{\DP{\theta}{z^*}}}
|
1457
401
|
\right)
|
1458
402
|
\right\}$%
|
1459
|
-
\lthtmlindisplaymathZ
|
1460
|
-
\lthtmlcheckvsize\clearpage}
|
1461
|
-
|
1462
|
-
{\newpage\clearpage
|
1463
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3493}%
|
1464
|
-
$\displaystyle =
|
1465
403
|
\Dinv{a \cos \phi}
|
1466
404
|
\left[
|
1467
405
|
\DP{}{\phi}
|
1468
406
|
\left\{
|
1469
407
|
\Dinv{\rho_0} \DP{}{z^*}
|
1470
408
|
\left( \rho_0
|
1471
409
|
\frac{\overline{v'\theta'}}
|
1472
410
|
{\overline{\DP{\theta}{z^*}}}
|
1473
411
|
\right) \cos\phi
|
1474
412
|
\right\}
|
1475
413
|
- \Dinv{\rho_0}
|
1476
414
|
\DP{}{z^*}
|
1477
415
|
\left\{
|
1478
416
|
\rho_0
|
1479
417
|
\DP{}{\phi}
|
1480
418
|
\left( \cos \phi
|
1481
419
|
\frac{\overline{v'\theta'}}
|
1482
420
|
{\overline{\DP{\theta}{z^*}}}
|
1483
421
|
\right)
|
1484
422
|
\right\}
|
1485
423
|
\right]$%
|
1486
|
-
\lthtmlindisplaymathZ
|
1487
|
-
\lthtmlcheckvsize\clearpage}
|
1488
|
-
|
1489
|
-
{\newpage\clearpage
|
1490
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3494}%
|
1491
|
-
$\displaystyle =
|
1492
424
|
\Dinv{a \cos \phi}
|
1493
425
|
\left[
|
1494
426
|
\Dinv{\rho_0}
|
1495
427
|
\DP{}{\phi}
|
1496
428
|
\left\{
|
1497
429
|
\DP{}{z^*}
|
1498
430
|
\left( \rho_0
|
1499
431
|
\frac{\overline{v'\theta'}}
|
1500
432
|
{\overline{\DP{\theta}{z^*}}}
|
1501
433
|
\cos\phi
|
1502
434
|
\right)
|
1503
435
|
\right\}
|
1504
436
|
- \Dinv{\rho_0}
|
1505
437
|
\DP{}{z^*}
|
1506
438
|
\left\{
|
1507
439
|
\DP{}{\phi}
|
1508
440
|
\left(\rho_0 \cos \phi
|
1509
441
|
\frac{\overline{v'\theta'}}
|
1510
442
|
{\overline{\DP{\theta}{z^*}}}
|
1511
443
|
\right)
|
1512
444
|
\right\}
|
1513
445
|
\right]$%
|
1514
|
-
\lthtmlindisplaymathZ
|
1515
|
-
\lthtmlcheckvsize\clearpage}
|
1516
|
-
|
1517
|
-
{\newpage\clearpage
|
1518
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3495}%
|
1519
|
-
$\displaystyle = 0.$%
|
1520
|
-
\lthtmlindisplaymathZ
|
1521
|
-
\lthtmlcheckvsize\clearpage}
|
1522
|
-
|
1523
|
-
{\newpage\clearpage
|
1524
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3498}%
|
1525
|
-
$\displaystyle \Dinv{a \cos \phi}
|
1526
|
-
\DP{}{\phi}
|
1527
|
-
\left(
|
1528
|
-
\overline{v}^* \cos\phi
|
1529
|
-
\right)
|
1530
|
-
+ \Dinv{\rho_0}
|
1531
|
-
\DP{}{z^*}
|
1532
|
-
\left( \rho_0 \overline{w}^* \right) = 0.$%
|
1533
|
-
\lthtmlindisplaymathZ
|
1534
|
-
\lthtmlcheckvsize\clearpage}
|
1535
|
-
|
1536
|
-
{\newpage\clearpage
|
1537
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3502}%
|
1538
|
-
$\displaystyle + \Dinv{a}
|
1539
446
|
\left[
|
1540
447
|
\overline{v}^*
|
1541
448
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1542
449
|
\left( \rho_0
|
1543
450
|
\frac{\overline{v'\theta'}}
|
1544
451
|
{\overline{\DP{\theta}{z^*}}}
|
1545
452
|
\right)
|
1546
453
|
\right]
|
1547
454
|
\DP{\overline{u}}{\phi}
|
1548
455
|
+ \left[
|
1549
456
|
\overline{w}^*
|
1550
457
|
- \Dinv{a \cos\phi}
|
1551
458
|
\DP{}{\phi}
|
1552
459
|
\left( \cos \phi
|
1553
460
|
\frac{\overline{v'\theta'}}
|
1554
461
|
{\overline{\DP{\theta}{z^*}}}
|
1555
462
|
\right)
|
1556
463
|
\right]
|
1557
464
|
\DP{\overline{u}}{z^*}$%
|
1558
|
-
\lthtmlindisplaymathZ
|
1559
|
-
\lthtmlcheckvsize\clearpage}
|
1560
|
-
|
1561
|
-
{\newpage\clearpage
|
1562
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3503}%
|
1563
|
-
$\displaystyle \qquad \qquad
|
1564
465
|
- f
|
1565
466
|
\left[
|
1566
467
|
\overline{v}^*
|
1567
468
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1568
469
|
\left( \rho_0
|
1569
470
|
\frac{\overline{v'\theta'}}
|
1570
471
|
{\overline{\DP{\theta}{z^*}}}
|
1571
472
|
\right)
|
1572
473
|
\right]
|
1573
474
|
- \frac{\tan \phi}{a} \overline{u}
|
1574
475
|
\left[
|
1575
476
|
\overline{v}^*
|
1576
477
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
1577
478
|
\left( \rho_0
|
1578
479
|
\frac{\overline{v'\theta'}}
|
1579
480
|
{\overline{\DP{\theta}{z^*}}}
|
1580
481
|
\right)
|
1581
482
|
\right]
|
1582
483
|
- \overline{X}$%
|
1583
|
-
\lthtmlindisplaymathZ
|
1584
|
-
\lthtmlcheckvsize\clearpage}
|
1585
|
-
|
1586
|
-
{\newpage\clearpage
|
1587
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3504}%
|
1588
|
-
$\displaystyle \qquad
|
1589
484
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
1590
485
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$%
|
1591
|
-
\lthtmlindisplaymathZ
|
1592
|
-
\lthtmlcheckvsize\clearpage}
|
1593
|
-
|
1594
|
-
{\newpage\clearpage
|
1595
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3506}%
|
1596
|
-
$\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
|
1597
486
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1598
487
|
- f \overline{v}^*
|
1599
488
|
- \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
|
1600
489
|
- \overline{X}$%
|
1601
|
-
\lthtmlindisplaymathZ
|
1602
|
-
\lthtmlcheckvsize\clearpage}
|
1603
|
-
|
1604
|
-
{\newpage\clearpage
|
1605
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3507}%
|
1606
|
-
$\displaystyle \qquad
|
1607
490
|
= - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
1608
491
|
+ \Dinv{a \cos\phi}
|
1609
492
|
\DP{}{\phi}
|
1610
493
|
\left( \cos \phi
|
1611
494
|
\frac{\overline{v'\theta'}}
|
1612
495
|
{\overline{\DP{\theta}{z^*}}}
|
1613
496
|
\right) \DP{\overline{u}}{z^*}$%
|
1614
|
-
\lthtmlindisplaymathZ
|
1615
|
-
\lthtmlcheckvsize\clearpage}
|
1616
|
-
|
1617
|
-
{\newpage\clearpage
|
1618
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3508}%
|
1619
|
-
$\displaystyle \qquad \qquad
|
1620
497
|
+ f \Dinv{\rho_0} \DP{}{z^*}
|
1621
498
|
\left( \rho_0
|
1622
499
|
\frac{\overline{v'\theta'}}
|
1623
500
|
{\overline{\DP{\theta}{z^*}}}
|
1624
501
|
\right)
|
1625
502
|
- \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$%
|
1626
|
-
\lthtmlindisplaymathZ
|
1627
|
-
\lthtmlcheckvsize\clearpage}
|
1628
|
-
|
1629
|
-
{\newpage\clearpage
|
1630
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3509}%
|
1631
|
-
$\displaystyle \qquad \qquad
|
1632
503
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1633
504
|
\left( \rho_0
|
1634
505
|
\frac{\overline{v'\theta'}}
|
1635
506
|
{\overline{\DP{\theta}{z^*}}}
|
1636
507
|
\right)
|
1637
508
|
\DP{\overline{u}}{\phi}
|
1638
509
|
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
1639
510
|
\left( \rho_0
|
1640
511
|
\frac{\overline{v'\theta'}}
|
1641
512
|
{\overline{\DP{\theta}{z^*}}}
|
1642
513
|
\right),$%
|
1643
|
-
\lthtmlindisplaymathZ
|
1644
|
-
\lthtmlcheckvsize\clearpage}
|
1645
|
-
|
1646
|
-
{\newpage\clearpage
|
1647
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3511}%
|
1648
|
-
$\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
1649
514
|
\left( \overline{u} \cos \phi \right)
|
1650
515
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
1651
516
|
- f \overline{v}^*
|
1652
517
|
- \overline{X}$%
|
1653
|
-
\lthtmlindisplaymathZ
|
1654
|
-
\lthtmlcheckvsize\clearpage}
|
1655
|
-
|
1656
|
-
{\newpage\clearpage
|
1657
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3512}%
|
1658
|
-
$\displaystyle \qquad
|
1659
518
|
= - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1660
519
|
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1661
520
|
+ \Dinv{a \cos\phi}
|
1662
521
|
\DP{}{\phi}
|
1663
522
|
\left( \cos \phi
|
1664
523
|
\frac{\overline{v'\theta'}}
|
1665
524
|
{\overline{\DP{\theta}{z^*}}}
|
1666
525
|
\right) \DP{\overline{u}}{z^*}$%
|
1667
|
-
\lthtmlindisplaymathZ
|
1668
|
-
\lthtmlcheckvsize\clearpage}
|
1669
|
-
|
1670
|
-
{\newpage\clearpage
|
1671
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3513}%
|
1672
|
-
$\displaystyle \qquad \qquad
|
1673
526
|
+ \frac{1}{\rho_0 a \cos \phi}
|
1674
527
|
\DP{}{z^*}
|
1675
528
|
\left( f \rho_0 a \cos \phi
|
1676
529
|
\frac{\overline{v'\theta'}}
|
1677
530
|
{\overline{\DP{\theta}{z^*}}}
|
1678
531
|
\right)
|
1679
532
|
- \frac{1}{\rho_0 a \cos \phi}
|
1680
533
|
\DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$%
|
1681
|
-
\lthtmlindisplaymathZ
|
1682
|
-
\lthtmlcheckvsize\clearpage}
|
1683
|
-
|
1684
|
-
{\newpage\clearpage
|
1685
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3514}%
|
1686
|
-
$\displaystyle \qquad \qquad
|
1687
534
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1688
535
|
\left( \rho_0
|
1689
536
|
\frac{\overline{v'\theta'}}
|
1690
537
|
{\overline{\DP{\theta}{z^*}}}
|
1691
538
|
\right)
|
1692
539
|
\DP{\overline{u}}{\phi}
|
1693
540
|
+ \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
|
1694
541
|
\left( \rho_0
|
1695
542
|
\frac{\overline{v'\theta'}}
|
1696
543
|
{\overline{\DP{\theta}{z^*}}}
|
1697
544
|
\right)$%
|
1698
|
-
\lthtmlindisplaymathZ
|
1699
|
-
\lthtmlcheckvsize\clearpage}
|
1700
|
-
|
1701
|
-
{\newpage\clearpage
|
1702
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3515}%
|
1703
|
-
$\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1704
545
|
\DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1705
546
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1706
547
|
\rho_0 a \cos \phi
|
1707
548
|
\DP{\overline{u}}{z^*}
|
1708
549
|
\DP{}{\phi}
|
1709
550
|
\left( \cos \phi
|
1710
551
|
\frac{\overline{v'\theta'}}
|
1711
552
|
{\overline{\DP{\theta}{z^*}}}
|
1712
553
|
\right)$%
|
1713
|
-
\lthtmlindisplaymathZ
|
1714
|
-
\lthtmlcheckvsize\clearpage}
|
1715
|
-
|
1716
|
-
{\newpage\clearpage
|
1717
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3517}%
|
1718
|
-
$\displaystyle \qquad \qquad
|
1719
554
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1720
555
|
\left( \rho_0
|
1721
556
|
\frac{\overline{v'\theta'}}
|
1722
557
|
{\overline{\DP{\theta}{z^*}}}
|
1723
558
|
\DP{\overline{u}}{\phi}
|
1724
559
|
\right)
|
1725
560
|
+ \Dinv{\rho_0 a}
|
1726
561
|
\rho_0
|
1727
562
|
\frac{\overline{v'\theta'}}
|
1728
563
|
{\overline{\DP{\theta}{z^*}}}
|
1729
564
|
\DP{}{z^*}
|
1730
565
|
\left(
|
1731
566
|
\DP{\overline{u}}{\phi}
|
1732
567
|
\right)$%
|
1733
|
-
\lthtmlindisplaymathZ
|
1734
|
-
\lthtmlcheckvsize\clearpage}
|
1735
|
-
|
1736
|
-
{\newpage\clearpage
|
1737
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3518}%
|
1738
|
-
$\displaystyle \qquad \qquad
|
1739
568
|
+ \frac{\tan \phi}{\rho_0 a}
|
1740
569
|
\DP{}{z^*}
|
1741
570
|
\left( \overline{u} \rho_0
|
1742
571
|
\frac{\overline{v'\theta'}}
|
1743
572
|
{\overline{\DP{\theta}{z^*}}}
|
1744
573
|
\right)
|
1745
574
|
- \frac{\tan \phi}{\rho_0 a}
|
1746
575
|
\rho_0
|
1747
576
|
\frac{\overline{v'\theta'}}
|
1748
577
|
{\overline{\DP{\theta}{z^*}}}
|
1749
578
|
\DP{}{z^*}
|
1750
579
|
\left( \overline{u}
|
1751
580
|
\right)$%
|
1752
|
-
\lthtmlindisplaymathZ
|
1753
|
-
\lthtmlcheckvsize\clearpage}
|
1754
|
-
|
1755
|
-
{\newpage\clearpage
|
1756
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3519}%
|
1757
|
-
$\displaystyle =
|
1758
581
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1759
582
|
\left[
|
1760
583
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1761
584
|
+ \rho_0 a \cos \phi
|
1762
585
|
\DP{\overline{u}}{z^*}
|
1763
586
|
\DP{}{\phi}
|
1764
587
|
\left( \cos \phi
|
1765
588
|
\frac{\overline{v'\theta'}}
|
1766
589
|
{\overline{\DP{\theta}{z^*}}}
|
1767
590
|
\right)
|
1768
591
|
\right]$%
|
1769
|
-
\lthtmlindisplaymathZ
|
1770
|
-
\lthtmlcheckvsize\clearpage}
|
1771
|
-
|
1772
|
-
{\newpage\clearpage
|
1773
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3520}%
|
1774
|
-
$\displaystyle \qquad
|
1775
592
|
+ \Dinv{\rho_0 a}
|
1776
593
|
\rho_0
|
1777
594
|
\frac{\overline{v'\theta'}}
|
1778
595
|
{\overline{\DP{\theta}{z^*}}}
|
1779
596
|
\DP{}{z^*}
|
1780
597
|
\left(
|
1781
598
|
\DP{\overline{u}}{\phi}
|
1782
599
|
\right)
|
1783
600
|
- \frac{\tan \phi}{\rho_0 a}
|
1784
601
|
\rho_0
|
1785
602
|
\frac{\overline{v'\theta'}}
|
1786
603
|
{\overline{\DP{\theta}{z^*}}}
|
1787
604
|
\DP{\overline{u}}{z^*}$%
|
1788
|
-
\lthtmlindisplaymathZ
|
1789
|
-
\lthtmlcheckvsize\clearpage}
|
1790
|
-
|
1791
|
-
{\newpage\clearpage
|
1792
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3521}%
|
1793
|
-
$\displaystyle \qquad
|
1794
605
|
+ \frac{1}{\rho_0 a \cos \phi}
|
1795
606
|
\DP{}{z^*}
|
1796
607
|
\left[
|
1797
608
|
\left( f \rho_0 a \cos \phi
|
1798
609
|
\frac{\overline{v'\theta'}}
|
1799
610
|
{\overline{\DP{\theta}{z^*}}}
|
1800
611
|
\right)
|
1801
612
|
- \rho_0 a \cos \phi \overline{w'u'}
|
1802
613
|
\right]$%
|
1803
|
-
\lthtmlindisplaymathZ
|
1804
|
-
\lthtmlcheckvsize\clearpage}
|
1805
|
-
|
1806
|
-
{\newpage\clearpage
|
1807
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3522}%
|
1808
|
-
$\displaystyle \qquad
|
1809
614
|
- \Dinv{\rho_0 a} \DP{}{z^*}
|
1810
615
|
\left( \rho_0
|
1811
616
|
\frac{\overline{v'\theta'}}
|
1812
617
|
{\overline{\DP{\theta}{z^*}}}
|
1813
618
|
\DP{\overline{u}}{\phi}
|
1814
619
|
\right)
|
1815
620
|
+ \frac{\tan \phi}{\rho_0 a}
|
1816
621
|
\DP{}{z^*}
|
1817
622
|
\left( \overline{u} \rho_0
|
1818
623
|
\frac{\overline{v'\theta'}}
|
1819
624
|
{\overline{\DP{\theta}{z^*}}}
|
1820
625
|
\right)$%
|
1821
|
-
\lthtmlindisplaymathZ
|
1822
|
-
\lthtmlcheckvsize\clearpage}
|
1823
|
-
|
1824
|
-
{\newpage\clearpage
|
1825
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3524}%
|
1826
|
-
$\displaystyle \qquad
|
1827
626
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1828
627
|
\left[
|
1829
628
|
\rho_0 a \cos^2 \phi
|
1830
629
|
\frac{\overline{v'\theta'}}
|
1831
630
|
{\overline{\DP{\theta}{z^*}}}
|
1832
631
|
\DP{}{z^*}
|
1833
632
|
\left(
|
1834
633
|
\DP{\overline{u}}{\phi}
|
1835
634
|
\right)
|
1836
635
|
- \rho_0 a \cos^2 \phi \tan \phi
|
1837
636
|
\frac{\overline{v'\theta'}}
|
1838
637
|
{\overline{\DP{\theta}{z^*}}}
|
1839
638
|
\DP{\overline{u}}{z^*}
|
1840
639
|
\right]$%
|
1841
|
-
\lthtmlindisplaymathZ
|
1842
|
-
\lthtmlcheckvsize\clearpage}
|
1843
|
-
|
1844
|
-
{\newpage\clearpage
|
1845
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3526}%
|
1846
|
-
$\displaystyle \qquad
|
1847
640
|
+ \Dinv{\rho_0 a \cos \phi}
|
1848
641
|
\left[
|
1849
642
|
- \cos \phi
|
1850
643
|
\DP{}{z^*}
|
1851
644
|
\left( \rho_0
|
1852
645
|
\frac{\overline{v'\theta'}}
|
1853
646
|
{\overline{\DP{\theta}{z^*}}}
|
1854
647
|
\DP{\overline{u}}{\phi}
|
1855
648
|
\right)
|
1856
649
|
+ \cos \phi \tan \phi
|
1857
650
|
\DP{}{z^*}
|
1858
651
|
\left( \overline{u} \rho_0
|
1859
652
|
\frac{\overline{v'\theta'}}
|
1860
653
|
{\overline{\DP{\theta}{z^*}}}
|
1861
654
|
\right)
|
1862
655
|
\right]$%
|
1863
|
-
\lthtmlindisplaymathZ
|
1864
|
-
\lthtmlcheckvsize\clearpage}
|
1865
|
-
|
1866
|
-
{\newpage\clearpage
|
1867
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3529}%
|
1868
|
-
$\displaystyle \qquad
|
1869
656
|
+ \frac{1}{\rho_0 a \cos \phi}
|
1870
657
|
\DP{}{z^*}
|
1871
658
|
\left[
|
1872
659
|
f \rho_0 a \cos \phi
|
1873
660
|
\frac{\overline{v'\theta'}}
|
1874
661
|
{\overline{\DP{\theta}{z^*}}}
|
1875
662
|
- \rho_0 a \cos \phi \overline{w'u'}
|
1876
663
|
\right]$%
|
1877
|
-
\lthtmlindisplaymathZ
|
1878
|
-
\lthtmlcheckvsize\clearpage}
|
1879
|
-
|
1880
|
-
{\newpage\clearpage
|
1881
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3530}%
|
1882
|
-
$\displaystyle \qquad
|
1883
664
|
+ \Dinv{\rho_0 a \cos \phi}
|
1884
665
|
\DP{}{z^*}
|
1885
666
|
\left[
|
1886
667
|
- \rho_0 \cos \phi
|
1887
668
|
\frac{\overline{v'\theta'}}
|
1888
669
|
{\overline{\DP{\theta}{z^*}}}
|
1889
670
|
\DP{\overline{u}}{\phi}
|
1890
671
|
+ \sin \phi \overline{u} \rho_0
|
1891
672
|
\frac{\overline{v'\theta'}}
|
1892
673
|
{\overline{\DP{\theta}{z^*}}}
|
1893
674
|
\right]$%
|
1894
|
-
\lthtmlindisplaymathZ
|
1895
|
-
\lthtmlcheckvsize\clearpage}
|
1896
|
-
|
1897
|
-
{\newpage\clearpage
|
1898
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3531}%
|
1899
|
-
$\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1900
675
|
\left[
|
1901
676
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1902
677
|
+ \rho_0 a \cos \phi
|
1903
678
|
\DP{\overline{u}}{z^*}
|
1904
679
|
\DP{}{\phi}
|
1905
680
|
\left( \cos \phi
|
1906
681
|
\frac{\overline{v'\theta'}}
|
1907
682
|
{\overline{\DP{\theta}{z^*}}}
|
1908
683
|
\right)
|
1909
684
|
\right]$%
|
1910
|
-
\lthtmlindisplaymathZ
|
1911
|
-
\lthtmlcheckvsize\clearpage}
|
1912
|
-
|
1913
|
-
{\newpage\clearpage
|
1914
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3533}%
|
1915
|
-
$\displaystyle =
|
1916
685
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1917
686
|
\left[
|
1918
687
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1919
688
|
\right]$%
|
1920
|
-
\lthtmlindisplaymathZ
|
1921
|
-
\lthtmlcheckvsize\clearpage}
|
1922
|
-
|
1923
|
-
{\newpage\clearpage
|
1924
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3534}%
|
1925
|
-
$\displaystyle \qquad
|
1926
689
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1927
690
|
\left[
|
1928
691
|
\rho_0 a \cos^2 \phi
|
1929
692
|
\frac{\overline{v'\theta'}}
|
1930
693
|
{\overline{\DP{\theta}{z^*}}}
|
1931
694
|
\DP{}{\phi}
|
1932
695
|
\left(
|
1933
696
|
\DP{\overline{u}}{z^*}
|
1934
697
|
\right)
|
1935
698
|
+ \DP{\overline{u}}{z^*}
|
1936
699
|
\DP{}{\phi}
|
1937
700
|
\left(\rho_0 a \cos^2 \phi
|
1938
701
|
\frac{\overline{v'\theta'}}
|
1939
702
|
{\overline{\DP{\theta}{z^*}}}
|
1940
703
|
\right)
|
1941
704
|
\right]$%
|
1942
|
-
\lthtmlindisplaymathZ
|
1943
|
-
\lthtmlcheckvsize\clearpage}
|
1944
|
-
|
1945
|
-
{\newpage\clearpage
|
1946
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3535}%
|
1947
|
-
$\displaystyle =
|
1948
705
|
\Dinv{\rho_0 a^2 \cos^2 \phi}
|
1949
706
|
\left[
|
1950
707
|
- \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
|
1951
708
|
\right]
|
1952
709
|
+ \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1953
710
|
\left[
|
1954
711
|
\DP{}{\phi}
|
1955
712
|
\left(\rho_0 a \cos^2 \phi
|
1956
713
|
\frac{\overline{v'\theta'}}
|
1957
714
|
{\overline{\DP{\theta}{z^*}}}
|
1958
715
|
\DP{\overline{u}}{z^*}
|
1959
716
|
\right)
|
1960
717
|
\right]$%
|
1961
|
-
\lthtmlindisplaymathZ
|
1962
|
-
\lthtmlcheckvsize\clearpage}
|
1963
|
-
|
1964
|
-
{\newpage\clearpage
|
1965
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3536}%
|
1966
|
-
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1967
718
|
\DP{}{\phi}
|
1968
719
|
\left[
|
1969
720
|
- \rho_0 a \overline{v'u'} \cos^2 \phi
|
1970
721
|
+ \rho_0 a \cos^2 \phi
|
1971
722
|
\frac{\overline{v'\theta'}}
|
1972
723
|
{\overline{\DP{\theta}{z^*}}}
|
1973
724
|
\DP{\overline{u}}{z^*}
|
1974
725
|
\right]$%
|
1975
|
-
\lthtmlindisplaymathZ
|
1976
|
-
\lthtmlcheckvsize\clearpage}
|
1977
|
-
|
1978
|
-
{\newpage\clearpage
|
1979
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3537}%
|
1980
|
-
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1981
726
|
\DP{}{\phi}
|
1982
727
|
\left[
|
1983
728
|
\rho_0 a \cos^2 \phi
|
1984
729
|
\left\{
|
1985
730
|
\DP{\overline{u}}{z^*}
|
1986
731
|
\frac{\overline{v'\theta'}}
|
1987
732
|
{\overline{\DP{\theta}{z^*}}}
|
1988
733
|
- \overline{v'u'}
|
1989
734
|
\right\}
|
1990
735
|
\right]$%
|
1991
|
-
\lthtmlindisplaymathZ
|
1992
|
-
\lthtmlcheckvsize\clearpage}
|
1993
|
-
|
1994
|
-
{\newpage\clearpage
|
1995
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3538}%
|
1996
|
-
$\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
|
1997
736
|
\DP{}{\phi}
|
1998
737
|
\left(
|
1999
738
|
\cos \phi F^{*}_{\phi}
|
2000
739
|
\right)$%
|
2001
|
-
\lthtmlindisplaymathZ
|
2002
|
-
\lthtmlcheckvsize\clearpage}
|
2003
|
-
|
2004
|
-
{\newpage\clearpage
|
2005
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3539}%
|
2006
|
-
$\displaystyle \frac{1}{\rho_0 a \cos \phi}
|
2007
740
|
\DP{}{z^*}
|
2008
741
|
\left[
|
2009
742
|
f \rho_0 a \cos \phi
|
2010
743
|
\frac{\overline{v'\theta'}}
|
2011
744
|
{\overline{\DP{\theta}{z^*}}}
|
2012
745
|
- \rho_0 a \cos \phi \overline{w'u'}
|
2013
746
|
\right]
|
2014
747
|
+ \Dinv{\rho_0 a \cos \phi}
|
2015
748
|
\DP{}{z^*}
|
2016
749
|
\left[
|
2017
750
|
- \rho_0 \cos \phi
|
2018
751
|
\frac{\overline{v'\theta'}}
|
2019
752
|
{\overline{\DP{\theta}{z^*}}}
|
2020
753
|
\DP{\overline{u}}{\phi}
|
2021
754
|
+ \sin \phi \overline{u} \rho_0
|
2022
755
|
\frac{\overline{v'\theta'}}
|
2023
756
|
{\overline{\DP{\theta}{z^*}}}
|
2024
757
|
\right]$%
|
2025
|
-
\lthtmlindisplaymathZ
|
2026
|
-
\lthtmlcheckvsize\clearpage}
|
2027
|
-
|
2028
|
-
{\newpage\clearpage
|
2029
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3540}%
|
2030
|
-
$\displaystyle =
|
2031
758
|
\frac{1}{\rho_0 a \cos \phi}
|
2032
759
|
\DP{}{z^*}
|
2033
760
|
\left[
|
2034
761
|
\rho_0 a \cos \phi
|
2035
762
|
\left\{
|
2036
763
|
f \frac{\overline{v'\theta'}}
|
2037
764
|
{\overline{\DP{\theta}{z^*}}}
|
2038
765
|
- \overline{w'u'}
|
2039
766
|
- \frac{\overline{v'\theta'}}
|
2040
767
|
{a \overline{\DP{\theta}{z^*}}}
|
2041
768
|
\DP{\overline{u}}{\phi}
|
2042
769
|
+ \sin \phi \overline{u}
|
2043
770
|
\frac{\overline{v'\theta'}}
|
2044
771
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
2045
772
|
\right\}
|
2046
773
|
\right]$%
|
2047
|
-
\lthtmlindisplaymathZ
|
2048
|
-
\lthtmlcheckvsize\clearpage}
|
2049
|
-
|
2050
|
-
{\newpage\clearpage
|
2051
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3541}%
|
2052
|
-
$\displaystyle =
|
2053
774
|
\frac{1}{\rho_0 a \cos \phi}
|
2054
775
|
\DP{}{z^*}
|
2055
776
|
\left[
|
2056
777
|
\rho_0 a \cos \phi
|
2057
778
|
\left\{
|
2058
779
|
f \frac{\overline{v'\theta'}}
|
2059
780
|
{\overline{\DP{\theta}{z^*}}}
|
2060
781
|
- \left(
|
2061
782
|
\cos \phi
|
2062
783
|
\DP{\overline{u}}{\phi}
|
2063
784
|
- \sin \phi \overline{u}
|
2064
785
|
\right)
|
2065
786
|
\frac{\overline{v'\theta'}}
|
2066
787
|
{a \cos \phi \overline{\DP{\theta}{z^*}}}
|
2067
788
|
- \overline{w'u'}
|
2068
789
|
\right\}
|
2069
790
|
\right]$%
|
2070
|
-
\lthtmlindisplaymathZ
|
2071
|
-
\lthtmlcheckvsize\clearpage}
|
2072
|
-
|
2073
|
-
{\newpage\clearpage
|
2074
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3543}%
|
2075
|
-
$\displaystyle =
|
2076
791
|
\frac{1}{\rho_0 a \cos \phi}
|
2077
792
|
\DP{}{z^*}
|
2078
793
|
\left[
|
2079
794
|
\rho_0 a \cos \phi
|
2080
795
|
\left\{
|
2081
796
|
\left( f
|
2082
797
|
- \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
|
2083
798
|
{a \cos \phi}
|
2084
799
|
\right)
|
2085
800
|
\frac{\overline{v'\theta'}}
|
2086
801
|
{\overline{\DP{\theta}{z^*}}}
|
2087
802
|
- \overline{w'u'}
|
2088
803
|
\right\}
|
2089
804
|
\right]$%
|
2090
|
-
\lthtmlindisplaymathZ
|
2091
|
-
\lthtmlcheckvsize\clearpage}
|
2092
|
-
|
2093
|
-
{\newpage\clearpage
|
2094
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3544}%
|
2095
|
-
$\displaystyle = \frac{1}{\rho_0 a \cos \phi}
|
2096
805
|
\DP{F^{*}_{z}}{z^*}$%
|
2097
|
-
\lthtmlindisplaymathZ
|
2098
|
-
\lthtmlcheckvsize\clearpage}
|
2099
|
-
|
2100
|
-
{\newpage\clearpage
|
2101
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3545}%
|
2102
|
-
$\displaystyle \DP{\overline{u}}{t}
|
2103
806
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
2104
807
|
\left( \overline{u} \cos \phi \right)
|
2105
808
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
2106
809
|
- f \overline{v}^*
|
2107
810
|
- \overline{X}
|
2108
811
|
= \Dinv{\rho_0 a^2 \cos^2 \phi}
|
2109
812
|
\DP{}{\phi}
|
2110
813
|
\left(
|
2111
814
|
\cos \phi F^{*}_{\phi}
|
2112
815
|
\right)
|
2113
816
|
+ \frac{1}{\rho_0 a \cos \phi}
|
2114
817
|
\DP{F^{*}_{z}}{z^*},
|
2115
818
|
\nonumber$%
|
2116
|
-
\lthtmlindisplaymathZ
|
2117
|
-
\lthtmlcheckvsize\clearpage}
|
2118
|
-
|
2119
|
-
{\newpage\clearpage
|
2120
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3546}%
|
2121
|
-
$\displaystyle \DP{\overline{u}}{t}
|
2122
819
|
+ \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
|
2123
820
|
\left( \overline{u} \cos \phi \right)
|
2124
821
|
+ \overline{w}^* \DP{\overline{u}}{z^*}
|
2125
822
|
- f \overline{v}^*
|
2126
823
|
- \overline{X}
|
2127
824
|
= \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$%
|
2128
|
-
\lthtmlindisplaymathZ
|
2129
|
-
\lthtmlcheckvsize\clearpage}
|
2130
|
-
|
2131
|
-
{\newpage\clearpage
|
2132
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3547}%
|
2133
|
-
$\displaystyle \Ddiv{\Dvect{F}}
|
2134
825
|
= \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$%
|
2135
|
-
\lthtmlindisplaymathZ
|
2136
|
-
\lthtmlcheckvsize\clearpage}
|
2137
|
-
|
2138
|
-
{\newpage\clearpage
|
2139
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3548}%
|
2140
|
-
$\displaystyle \DP{\overline{\theta}}{t}
|
2141
826
|
+ \frac{1}{a}
|
2142
827
|
\left[
|
2143
828
|
\overline{v}^*
|
2144
829
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2145
830
|
\left( \rho_0
|
2146
831
|
\frac{\overline{v'\theta'}}
|
2147
832
|
{\overline{\DP{\theta}{z^*}}}
|
2148
833
|
\right)
|
2149
834
|
\right]
|
2150
835
|
\DP{\overline{\theta}}{\phi}
|
2151
836
|
+ \left[
|
2152
837
|
\overline{w}^*
|
2153
838
|
- \Dinv{a \cos\phi}
|
2154
839
|
\DP{}{\phi}
|
2155
840
|
\left( \cos \phi
|
2156
841
|
\frac{\overline{v'\theta'}}
|
2157
842
|
{\overline{\DP{\theta}{z^*}}}
|
2158
843
|
\right)
|
2159
844
|
\right]
|
2160
845
|
\DP{\overline{\theta}}{z^*}
|
2161
846
|
- \overline{Q}$%
|
2162
|
-
\lthtmlindisplaymathZ
|
2163
|
-
\lthtmlcheckvsize\clearpage}
|
2164
|
-
|
2165
|
-
{\newpage\clearpage
|
2166
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3549}%
|
2167
|
-
$\displaystyle \qquad
|
2168
847
|
=
|
2169
848
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
2170
849
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$%
|
2171
|
-
\lthtmlindisplaymathZ
|
2172
|
-
\lthtmlcheckvsize\clearpage}
|
2173
|
-
|
2174
|
-
{\newpage\clearpage
|
2175
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3550}%
|
2176
|
-
$\displaystyle \DP{\overline{\theta}}{t}
|
2177
850
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
2178
851
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
2179
852
|
- \overline{Q}$%
|
2180
|
-
\lthtmlindisplaymathZ
|
2181
|
-
\lthtmlcheckvsize\clearpage}
|
2182
|
-
|
2183
|
-
{\newpage\clearpage
|
2184
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3551}%
|
2185
|
-
$\displaystyle \qquad
|
2186
853
|
= - \Dinv{\rho_0 a} \DP{}{z^*}
|
2187
854
|
\left( \rho_0
|
2188
855
|
\frac{\overline{v'\theta'}}
|
2189
856
|
{\overline{\DP{\theta}{z^*}}}
|
2190
857
|
\right) \DP{\overline{\theta}}{\phi}
|
2191
858
|
+ \Dinv{a \cos\phi}
|
2192
859
|
\DP{}{\phi}
|
2193
860
|
\left( \cos \phi
|
2194
861
|
\frac{\overline{v'\theta'}}
|
2195
862
|
{\overline{\DP{\theta}{z^*}}}
|
2196
863
|
\right) \DP{\overline{\theta}}{z^*}$%
|
2197
|
-
\lthtmlindisplaymathZ
|
2198
|
-
\lthtmlcheckvsize\clearpage}
|
2199
|
-
|
2200
|
-
{\newpage\clearpage
|
2201
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3552}%
|
2202
|
-
$\displaystyle \qquad \qquad
|
2203
864
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
2204
865
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2205
|
-
\lthtmlindisplaymathZ
|
2206
|
-
\lthtmlcheckvsize\clearpage}
|
2207
|
-
|
2208
|
-
{\newpage\clearpage
|
2209
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3553}%
|
2210
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2211
866
|
\left( \rho_0
|
2212
867
|
\frac{\overline{v'\theta'}}
|
2213
868
|
{a \overline{\DP{\theta}{z^*}}}
|
2214
869
|
\right) \DP{\overline{\theta}}{\phi}
|
2215
870
|
+ \Dinv{a \cos\phi}
|
2216
871
|
\DP{}{\phi}
|
2217
872
|
\left( \cos \phi
|
2218
873
|
\frac{\overline{v'\theta'}}
|
2219
874
|
{\overline{\DP{\theta}{z^*}}}
|
2220
875
|
\right) \DP{\overline{\theta}}{z^*}$%
|
2221
|
-
\lthtmlindisplaymathZ
|
2222
|
-
\lthtmlcheckvsize\clearpage}
|
2223
|
-
|
2224
|
-
{\newpage\clearpage
|
2225
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3554}%
|
2226
|
-
$\displaystyle \qquad
|
2227
876
|
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
2228
877
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2229
|
-
\lthtmlindisplaymathZ
|
2230
|
-
\lthtmlcheckvsize\clearpage}
|
2231
|
-
|
2232
|
-
{\newpage\clearpage
|
2233
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3556}%
|
2234
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2235
878
|
\left( \rho_0
|
2236
879
|
\frac{\overline{v'\theta'}}
|
2237
880
|
{a \overline{\DP{\theta}{z^*}}}
|
2238
881
|
\DP{\overline{\theta}}{\phi}
|
2239
882
|
\right)
|
2240
883
|
+ \frac{\overline{v'\theta'}}
|
2241
884
|
{a \overline{\DP{\theta}{z^*}}}
|
2242
885
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}$%
|
2243
|
-
\lthtmlindisplaymathZ
|
2244
|
-
\lthtmlcheckvsize\clearpage}
|
2245
|
-
|
2246
|
-
{\newpage\clearpage
|
2247
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3557}%
|
2248
|
-
$\displaystyle \qquad
|
2249
886
|
+ \Dinv{a \cos\phi}
|
2250
887
|
\left[
|
2251
888
|
\DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
|
2252
889
|
\frac{1}{\overline{\DP{\theta}{z^*}}}
|
2253
890
|
+ \cos \phi \overline{v'\theta'}
|
2254
891
|
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
2255
892
|
\right] \DP{\overline{\theta}}{z^*}$%
|
2256
|
-
\lthtmlindisplaymathZ
|
2257
|
-
\lthtmlcheckvsize\clearpage}
|
2258
|
-
|
2259
|
-
{\newpage\clearpage
|
2260
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3560}%
|
2261
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2262
893
|
\left( \rho_0
|
2263
894
|
\frac{\overline{v'\theta'}}
|
2264
895
|
{a \overline{\DP{\theta}{z^*}}}
|
2265
896
|
\DP{\overline{\theta}}{\phi}
|
2266
897
|
\right)
|
2267
898
|
+ \frac{\overline{v'\theta'}}
|
2268
899
|
{a \overline{\DP{\theta}{z^*}}}
|
2269
900
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
2270
901
|
+ \Dinv{a}
|
2271
902
|
\overline{v'\theta'}
|
2272
903
|
\DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
2273
904
|
\DP{\overline{\theta}}{z^*}
|
2274
905
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
|
2275
|
-
\lthtmlindisplaymathZ
|
2276
|
-
\lthtmlcheckvsize\clearpage}
|
2277
|
-
|
2278
|
-
{\newpage\clearpage
|
2279
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3562}%
|
2280
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2281
906
|
\left[ \rho_0
|
2282
907
|
\frac{\overline{v'\theta'}}
|
2283
908
|
{a \overline{\DP{\theta}{z^*}}}
|
2284
909
|
\DP{\overline{\theta}}{\phi}
|
2285
910
|
+ \rho_0\overline{w'\theta'}
|
2286
911
|
\right]
|
2287
912
|
+ \frac{\overline{v'\theta'}}{a}
|
2288
913
|
\left[
|
2289
914
|
\frac{1}
|
2290
915
|
{\overline{\DP{\theta}{z^*}}}
|
2291
916
|
\DP{}{z^*}\DP{\overline{\theta}}{\phi}
|
2292
917
|
+ \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
|
2293
918
|
\DP{\overline{\theta}}{z^*}
|
2294
919
|
\right]$%
|
2295
|
-
\lthtmlindisplaymathZ
|
2296
|
-
\lthtmlcheckvsize\clearpage}
|
2297
|
-
|
2298
|
-
{\newpage\clearpage
|
2299
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3564}%
|
2300
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2301
920
|
\left[ \rho_0
|
2302
921
|
\left(
|
2303
922
|
\frac{\overline{v'\theta'}}
|
2304
923
|
{a \overline{\DP{\theta}{z^*}}}
|
2305
924
|
\DP{\overline{\theta}}{\phi}
|
2306
925
|
+ \overline{w'\theta'}
|
2307
926
|
\right)
|
2308
927
|
\right]
|
2309
928
|
+ \frac{\overline{v'\theta'}}{a}
|
2310
929
|
\DP{}{\phi}
|
2311
930
|
\left(
|
2312
931
|
\frac{ \DP{\overline{\theta}}{z^*} }
|
2313
932
|
{ \overline{\DP{\theta}{z^*}} }
|
2314
933
|
\right)$%
|
2315
|
-
\lthtmlindisplaymathZ
|
2316
|
-
\lthtmlcheckvsize\clearpage}
|
2317
|
-
|
2318
|
-
{\newpage\clearpage
|
2319
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3566}%
|
2320
|
-
$\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
|
2321
934
|
\left[ \rho_0
|
2322
935
|
\left(
|
2323
936
|
\frac{\overline{v'\theta'}}
|
2324
937
|
{a \overline{\DP{\theta}{z^*}}}
|
2325
938
|
\DP{\overline{\theta}}{\phi}
|
2326
939
|
+ \overline{w'\theta'}
|
2327
940
|
\right)
|
2328
941
|
\right].$%
|
2329
|
-
\lthtmlindisplaymathZ
|
2330
|
-
\lthtmlcheckvsize\clearpage}
|
2331
|
-
|
2332
|
-
{\newpage\clearpage
|
2333
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3567}%
|
2334
|
-
$\displaystyle \DP{\overline{\theta}}{t}
|
2335
942
|
+ \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
|
2336
943
|
+ \overline{w}^* \DP{\overline{\theta}}{z^*}
|
2337
944
|
- \overline{Q}
|
2338
945
|
=
|
2339
946
|
- \Dinv{\rho_0} \DP{}{z^*}
|
2340
947
|
\left[ \rho_0
|
2341
948
|
\left(
|
2342
949
|
\frac{\overline{v'\theta'}}
|
2343
950
|
{a \overline{\DP{\theta}{z^*}}}
|
2344
951
|
\DP{\overline{\theta}}{\phi}
|
2345
952
|
+ \overline{w'\theta'}
|
2346
953
|
\right)
|
2347
954
|
\right].$%
|
2348
|
-
\lthtmlindisplaymathZ
|
2349
|
-
\lthtmlcheckvsize\clearpage}
|
2350
|
-
|
2351
|
-
{\newpage\clearpage
|
2352
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3569}%
|
2353
|
-
$ v$%
|
2354
|
-
\lthtmlinlinemathZ
|
2355
|
-
\lthtmlcheckvsize\clearpage}
|
2356
|
-
|
2357
|
-
{\newpage\clearpage
|
2358
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3570}%
|
2359
|
-
$\displaystyle \DP{}{t}
|
2360
955
|
\left[
|
2361
956
|
\overline{v}^*
|
2362
957
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2363
958
|
\left( \rho_0
|
2364
959
|
\frac{\overline{v'\theta'}}
|
2365
960
|
{\overline{\DP{\theta}{z^*}}}
|
2366
961
|
\right)
|
2367
962
|
\right]
|
2368
963
|
+ \frac{1}{a}
|
2369
964
|
\left[
|
2370
965
|
\overline{v}^*
|
2371
966
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2372
967
|
\left( \rho_0
|
2373
968
|
\frac{\overline{v'\theta'}}
|
2374
969
|
{\overline{\DP{\theta}{z^*}}}
|
2375
970
|
\right)
|
2376
971
|
\right]
|
2377
972
|
\DP{}{\phi}
|
2378
973
|
\left[
|
2379
974
|
\overline{v}^*
|
2380
975
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2381
976
|
\left( \rho_0
|
2382
977
|
\frac{\overline{v'\theta'}}
|
2383
978
|
{\overline{\DP{\theta}{z^*}}}
|
2384
979
|
\right)
|
2385
980
|
\right]$%
|
2386
|
-
\lthtmlindisplaymathZ
|
2387
|
-
\lthtmlcheckvsize\clearpage}
|
2388
|
-
|
2389
|
-
{\newpage\clearpage
|
2390
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3571}%
|
2391
|
-
$\displaystyle \qquad \qquad
|
2392
981
|
+ \left[
|
2393
982
|
\overline{w}^*
|
2394
983
|
- \Dinv{a \cos\phi}
|
2395
984
|
\DP{}{\phi}
|
2396
985
|
\left( \cos \phi
|
2397
986
|
\frac{\overline{v'\theta'}}
|
2398
987
|
{\overline{\DP{\theta}{z^*}}}
|
2399
988
|
\right)
|
2400
989
|
\right]
|
2401
990
|
\DP{}{z^*}
|
2402
991
|
\left[
|
2403
992
|
\overline{v}^*
|
2404
993
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2405
994
|
\left( \rho_0
|
2406
995
|
\frac{\overline{v'\theta'}}
|
2407
996
|
{\overline{\DP{\theta}{z^*}}}
|
2408
997
|
\right)
|
2409
998
|
\right]$%
|
2410
|
-
\lthtmlindisplaymathZ
|
2411
|
-
\lthtmlcheckvsize\clearpage}
|
2412
|
-
|
2413
|
-
{\newpage\clearpage
|
2414
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3572}%
|
2415
|
-
$\displaystyle \qquad \qquad
|
2416
999
|
+ f \overline{u}
|
2417
1000
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
2418
1001
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
2419
1002
|
- \overline{Y}$%
|
2420
|
-
\lthtmlindisplaymathZ
|
2421
|
-
\lthtmlcheckvsize\clearpage}
|
2422
|
-
|
2423
|
-
{\newpage\clearpage
|
2424
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3573}%
|
2425
|
-
$\displaystyle \qquad
|
2426
1003
|
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
2427
1004
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
2428
1005
|
- \overline{u'^2}\frac{\tan\phi}{a},$%
|
2429
|
-
\lthtmlindisplaymathZ
|
2430
|
-
\lthtmlcheckvsize\clearpage}
|
2431
|
-
|
2432
|
-
{\newpage\clearpage
|
2433
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3574}%
|
2434
|
-
$\displaystyle f \overline{u}
|
2435
1006
|
+ \frac{\tan\phi}{a} (\overline{u})^2
|
2436
1007
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}$%
|
2437
|
-
\lthtmlindisplaymathZ
|
2438
|
-
\lthtmlcheckvsize\clearpage}
|
2439
|
-
|
2440
|
-
{\newpage\clearpage
|
2441
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3575}%
|
2442
|
-
$\displaystyle \qquad
|
2443
1008
|
= - \DP{}{t}
|
2444
1009
|
\left[
|
2445
1010
|
\overline{v}^*
|
2446
1011
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2447
1012
|
\left( \rho_0
|
2448
1013
|
\frac{\overline{v'\theta'}}
|
2449
1014
|
{\overline{\DP{\theta}{z^*}}}
|
2450
1015
|
\right)
|
2451
1016
|
\right]
|
2452
1017
|
- \frac{1}{a}
|
2453
1018
|
\left[
|
2454
1019
|
\overline{v}^*
|
2455
1020
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2456
1021
|
\left( \rho_0
|
2457
1022
|
\frac{\overline{v'\theta'}}
|
2458
1023
|
{\overline{\DP{\theta}{z^*}}}
|
2459
1024
|
\right)
|
2460
1025
|
\right]
|
2461
1026
|
\DP{}{\phi}
|
2462
1027
|
\left[
|
2463
1028
|
\overline{v}^*
|
2464
1029
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2465
1030
|
\left( \rho_0
|
2466
1031
|
\frac{\overline{v'\theta'}}
|
2467
1032
|
{\overline{\DP{\theta}{z^*}}}
|
2468
1033
|
\right)
|
2469
1034
|
\right]$%
|
2470
|
-
\lthtmlindisplaymathZ
|
2471
|
-
\lthtmlcheckvsize\clearpage}
|
2472
|
-
|
2473
|
-
{\newpage\clearpage
|
2474
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3576}%
|
2475
|
-
$\displaystyle \qquad \qquad
|
2476
1035
|
- \left[
|
2477
1036
|
\overline{w}^*
|
2478
1037
|
- \Dinv{a \cos\phi}
|
2479
1038
|
\DP{}{\phi}
|
2480
1039
|
\left( \cos \phi
|
2481
1040
|
\frac{\overline{v'\theta'}}
|
2482
1041
|
{\overline{\DP{\theta}{z^*}}}
|
2483
1042
|
\right)
|
2484
1043
|
\right]
|
2485
1044
|
\DP{}{z^*}
|
2486
1045
|
\left[
|
2487
1046
|
\overline{v}^*
|
2488
1047
|
+ \Dinv{\rho_0} \DP{}{z^*}
|
2489
1048
|
\left( \rho_0
|
2490
1049
|
\frac{\overline{v'\theta'}}
|
2491
1050
|
{\overline{\DP{\theta}{z^*}}}
|
2492
1051
|
\right)
|
2493
1052
|
\right]$%
|
2494
|
-
\lthtmlindisplaymathZ
|
2495
|
-
\lthtmlcheckvsize\clearpage}
|
2496
|
-
|
2497
|
-
{\newpage\clearpage
|
2498
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3577}%
|
2499
|
-
$\displaystyle \qquad \qquad
|
2500
1053
|
- \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
|
2501
1054
|
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
|
2502
1055
|
- \overline{u'^2} \frac{\tan\phi}{a}
|
2503
1056
|
+ \overline{Y}$%
|
2504
|
-
\lthtmlindisplaymathZ
|
2505
|
-
\lthtmlcheckvsize\clearpage}
|
2506
|
-
|
2507
|
-
{\newpage\clearpage
|
2508
|
-
\lthtmlinlinemathA{tex2html_wrap_inline3579}%
|
2509
|
-
$ G$%
|
2510
|
-
\lthtmlinlinemathZ
|
2511
|
-
\lthtmlcheckvsize\clearpage}
|
2512
|
-
|
2513
|
-
{\newpage\clearpage
|
2514
|
-
\lthtmlinlinemathA{tex2html_wrap_indisplay3582}%
|
2515
|
-
$\displaystyle \overline{u}
|
2516
1057
|
\left( f + \frac{\tan\phi}{a} \overline{u} \right)
|
2517
1058
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
2518
1059
|
= G.$%
|
2519
|
-
\lthtmlindisplaymathZ
|
2520
|
-
\lthtmlcheckvsize\clearpage}
|
2521
|
-
|
2522
|
-
{\newpage\clearpage
|
2523
|
-
\setcounter{equation}{17}
|
2524
|
-
\lthtmldisplayA{subequations3584}%
|
2525
|
-
\setcounter{equation}{16}
|
2526
|
-
\begin{subequations}\begin{align}&
|
2527
1060
|
\DP{\overline{u}}{t}
|
2528
1061
|
+ \overline{v}^*
|
2529
1062
|
\left[
|
2530
1063
|
\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
|
2531
1064
|
\right]
|
2532
1065
|
+ \overline{w}^*\DP{\overline{u}}{z^*}
|
2533
1066
|
- \overline{X}
|
2534
1067
|
= \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
|
2535
1068
|
\overline{u}
|
2536
1069
|
\left( f + \overline{u}\frac{\tan\phi}{a} \right)
|
2537
1070
|
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
2538
1071
|
= G.
|
2539
1072
|
\end{align}
|
2540
1073
|
\begin{align}
|
2541
1074
|
\DP{\overline{\Phi}}{z^*}
|
2542
1075
|
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
2543
1076
|
= 0.
|
2544
1077
|
\end{align}
|
2545
1078
|
\begin{align}
|
2546
1079
|
\Dinv{a\cos\phi}&\left[
|
2547
1080
|
\DP{}{\phi}(\overline{v}^*\cos\phi)\right]
|
2548
1081
|
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
|
2549
1082
|
= 0.
|
2550
1083
|
\end{align}
|
2551
1084
|
\begin{align}
|
2552
1085
|
\DP{\overline{\theta}}{t}
|
2553
1086
|
+ \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
|
2554
1087
|
+ \overline{w}^*\DP{\overline{\theta}}{z^*}
|
2555
1088
|
- \overline{Q} =
|
2556
1089
|
- \Dinv{\rho_0}\DP{}{z^*}
|
2557
1090
|
\left[\rho_0
|
2558
1091
|
\left(
|
2559
1092
|
\overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
|
2560
1093
|
{a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
|
2561
1094
|
\right)
|
2562
1095
|
\right].
|
2563
1096
|
\end{align}\end{subequations}%
|
2564
|
-
\lthtmldisplayZ
|
2565
|
-
\lthtmlcheckvsize\clearpage}
|
2566
|
-
|
2567
|
-
|
2568
|
-
\end{document}
|