gphys 1.1.1 → 1.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,1471 +0,0 @@
1
- \batchmode
2
-
3
-
4
- \documentclass[a4j,12pt,openbib]{jreport}
5
- \RequirePackage{ifthen}
6
-
7
-
8
-
9
- \usepackage{ascmac}
10
- \usepackage{tabularx}
11
- \usepackage{graphicx}
12
- \usepackage{amssymb}
13
- \usepackage{amsmath}
14
- \usepackage{Dennou6}
15
- \pagestyle{Dmyheadings}
16
-
17
- \Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
18
- \Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
19
- \Dfile{}
20
-
21
- \setcounter{section}{0}
22
- \setcounter{equation}{0}
23
- \setcounter{page}{1}
24
- \setcounter{figure}{0}
25
- \setcounter{footnote}{0}
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
- \Dparskip
36
- \Dnoparindent
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
- \usepackage[dvips]{color}
45
-
46
-
47
- \pagecolor[gray]{.7}
48
-
49
- \usepackage[]{inputenc}
50
-
51
-
52
-
53
- \makeatletter
54
-
55
- \makeatletter
56
- \count@=\the\catcode`\_ \catcode`\_=8
57
- \newenvironment{tex2html_wrap}{}{}%
58
- \catcode`\<=12\catcode`\_=\count@
59
- \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
60
- \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
61
- \expandafter\renewcommand\csname #1\endcsname}%
62
- \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
63
- \let\newedcommand\renewedcommand
64
- \let\renewedenvironment\newedenvironment
65
- \makeatother
66
- \let\mathon=$
67
- \let\mathoff=$
68
- \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
69
- \newbox\sizebox
70
- \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
71
- \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
72
- \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
73
- \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
74
- \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
75
- \setlength{\textwidth}{349pt}
76
- \newwrite\lthtmlwrite
77
- \makeatletter
78
- \let\realnormalsize=\normalsize
79
- \global\topskip=2sp
80
- \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
81
- \def\@float{\let\@savefreelist\@freelist\real@float}
82
- \def\liih@math{\ifmmode$\else\bad@math\fi}
83
- \def\end@float{\realend@float\global\let\@freelist\@savefreelist}
84
- \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
85
- \let\@largefloatcheck=\relax
86
- \let\if@boxedmulticols=\iftrue
87
- \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
88
- \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
89
- \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
90
- \def\phantompar{\csname par\endcsname}\normalsize}%
91
- \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
92
- \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
93
- \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
94
- \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
95
- \let\ifinner=\iffalse \let\)\liih@math }%
96
- \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
97
- \expandafter\box\next\egroup}%
98
- \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
99
- \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
100
- :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
101
- \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
102
- \lthtmlmathtype{#1}\lthtmlvboxmathA}%
103
- \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
104
- \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
105
- \let\@savefreelist\@freelist \lthtmlhboxmathB}%
106
- \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
107
- \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
108
- \global\let\@freelist\@savefreelist}%
109
- \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
110
- \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
111
- \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
112
- \lthtmldisplayA{#1}\let\@eqnnum\relax}%
113
- \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
114
- \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
115
- \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
116
- \vrule height1.5ex width0pt }%
117
- \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
118
- \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
119
- \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
120
- \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
121
- \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
122
- \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
123
- \newcommand\lthtmlindisplaymathZ{\egroup %
124
- \centerinlinemath\lthtmllogmath\lthtmlsetmath}
125
- \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
126
- \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
127
- \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
128
- \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
129
- \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
130
- \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
131
- \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
132
- \def\centerinlinemath{%
133
- \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
134
- \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
135
- \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
136
-
137
- \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
138
- \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
139
- \else\expandafter\vss\fi}%
140
- \providecommand{\selectlanguage}[1]{}%
141
- \makeatletter \tracingstats = 1
142
- \providecommand{\Eta}{\textrm{H}}
143
- \providecommand{\Mu}{\textrm{M}}
144
- \providecommand{\Alpha}{\textrm{A}}
145
- \providecommand{\Iota}{\textrm{J}}
146
- \providecommand{\Nu}{\textrm{N}}
147
- \providecommand{\Omicron}{\textrm{O}}
148
- \providecommand{\omicron}{\textrm{o}}
149
- \providecommand{\Chi}{\textrm{X}}
150
- \providecommand{\Beta}{\textrm{B}}
151
- \providecommand{\Kappa}{\textrm{K}}
152
- \providecommand{\Tau}{\textrm{T}}
153
- \providecommand{\Epsilon}{\textrm{E}}
154
- \providecommand{\Zeta}{\textrm{Z}}
155
- \providecommand{\Rho}{\textrm{R}}
156
-
157
-
158
- \begin{document}
159
- \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
160
- \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
161
- \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
162
- \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
163
- \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
164
- \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
165
- \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
166
- \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
167
- \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
168
- \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
169
- \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
170
- \makeatletter
171
- \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
172
- \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
173
- \lthtmltypeout{}%
174
- \makeatother
175
- \setcounter{page}{1}
176
- \onecolumn
177
-
178
- % !!! IMAGES START HERE !!!
179
-
180
- \setcounter{section}{0}
181
- \setcounter{equation}{0}
182
- \setcounter{figure}{0}
183
- \setcounter{footnote}{0}
184
- \stepcounter{chapter}
185
- \stepcounter{chapter}
186
- \stepcounter{section}
187
- {\newpage\clearpage
188
- \lthtmlinlinemathA{tex2html_wrap_inline3164}%
189
- $ \lambda$%
190
- \lthtmlinlinemathZ
191
- \lthtmlcheckvsize\clearpage}
192
-
193
- {\newpage\clearpage
194
- \lthtmlinlinemathA{tex2html_wrap_inline3166}%
195
- $ \phi$%
196
- \lthtmlinlinemathZ
197
- \lthtmlcheckvsize\clearpage}
198
-
199
- {\newpage\clearpage
200
- \lthtmlinlinemathA{tex2html_wrap_inline3168}%
201
- $ z^*$%
202
- \lthtmlinlinemathZ
203
- \lthtmlcheckvsize\clearpage}
204
-
205
- {\newpage\clearpage
206
- \lthtmlinlinemathA{tex2html_wrap_indisplay3171}%
207
- $\displaystyle z^*$%
208
- \lthtmlindisplaymathZ
209
- \lthtmlcheckvsize\clearpage}
210
-
211
- {\newpage\clearpage
212
- \lthtmlinlinemathA{tex2html_wrap_indisplay3173}%
213
- $\displaystyle =$%
214
- \lthtmlindisplaymathZ
215
- \lthtmlcheckvsize\clearpage}
216
-
217
- {\newpage\clearpage
218
- \lthtmlinlinemathA{tex2html_wrap_indisplay3175}%
219
- $\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$%
220
- \lthtmlindisplaymathZ
221
- \lthtmlcheckvsize\clearpage}
222
-
223
- {\newpage\clearpage
224
- \lthtmlinlinemathA{tex2html_wrap_inline3177}%
225
- $ H$%
226
- \lthtmlinlinemathZ
227
- \lthtmlcheckvsize\clearpage}
228
-
229
- {\newpage\clearpage
230
- \lthtmlinlinemathA{tex2html_wrap_inline3179}%
231
- $ R_{d}$%
232
- \lthtmlinlinemathZ
233
- \lthtmlcheckvsize\clearpage}
234
-
235
- {\newpage\clearpage
236
- \lthtmlinlinemathA{tex2html_wrap_inline3181}%
237
- $ R$%
238
- \lthtmlinlinemathZ
239
- \lthtmlcheckvsize\clearpage}
240
-
241
- {\newpage\clearpage
242
- \lthtmlinlinemathA{tex2html_wrap_inline3183}%
243
- $ w$%
244
- \lthtmlinlinemathZ
245
- \lthtmlcheckvsize\clearpage}
246
-
247
- {\newpage\clearpage
248
- \lthtmlinlinemathA{tex2html_wrap_inline3185}%
249
- $ R_{d} = R/w$%
250
- \lthtmlinlinemathZ
251
- \lthtmlcheckvsize\clearpage}
252
-
253
- {\newpage\clearpage
254
- \lthtmlinlinemathA{tex2html_wrap_inline3187}%
255
- $ T_s$%
256
- \lthtmlinlinemathZ
257
- \lthtmlcheckvsize\clearpage}
258
-
259
- {\newpage\clearpage
260
- \lthtmlinlinemathA{tex2html_wrap_inline3189}%
261
- $ g_0$%
262
- \lthtmlinlinemathZ
263
- \lthtmlcheckvsize\clearpage}
264
-
265
- {\newpage\clearpage
266
- \lthtmlinlinemathA{tex2html_wrap_inline3191}%
267
- $ p$%
268
- \lthtmlinlinemathZ
269
- \lthtmlcheckvsize\clearpage}
270
-
271
- {\newpage\clearpage
272
- \lthtmlinlinemathA{tex2html_wrap_inline3193}%
273
- $ p_s$%
274
- \lthtmlinlinemathZ
275
- \lthtmlcheckvsize\clearpage}
276
-
277
- \stepcounter{section}
278
- {\newpage\clearpage
279
- \lthtmlinlinemathA{tex2html_wrap_inline3200}%
280
- $ \rho_s$%
281
- \lthtmlinlinemathZ
282
- \lthtmlcheckvsize\clearpage}
283
-
284
- {\newpage\clearpage
285
- \setcounter{equation}{1}
286
- \lthtmldisplayA{subequations3202}%
287
- \begin{subequations}\begin{align}
288
  \hat{F}_\phi &\equiv \sigma
289
1
  \cos \phi \left(
290
2
  \DP{\overline{u}}{z^*}
291
3
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
292
4
  \right), \\
293
5
  \hat{F}_{z^*} &\equiv \sigma
294
6
  \cos \phi \left(
295
7
  \left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
296
8
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
297
9
  \right)
298
10
  \end{align}\end{subequations}%
299
- \lthtmldisplayZ
300
- \lthtmlcheckvsize\clearpage}
301
-
302
- {\newpage\clearpage
303
- \lthtmlinlinemathA{tex2html_wrap_inline3204}%
304
- $ \hat{F}_\phi$%
305
- \lthtmlinlinemathZ
306
- \lthtmlcheckvsize\clearpage}
307
-
308
- {\newpage\clearpage
309
- \lthtmlinlinemathA{tex2html_wrap_inline3206}%
310
- $ \hat{F}_{z^*}$%
311
- \lthtmlinlinemathZ
312
- \lthtmlcheckvsize\clearpage}
313
-
314
- {\newpage\clearpage
315
- \lthtmlinlinemathA{tex2html_wrap_inline3212}%
316
- $ \overline{\bullet}$%
317
- \lthtmlinlinemathZ
318
- \lthtmlcheckvsize\clearpage}
319
-
320
- {\newpage\clearpage
321
- \lthtmlinlinemathA{tex2html_wrap_inline3214}%
322
- $ \bullet'$%
323
- \lthtmlinlinemathZ
324
- \lthtmlcheckvsize\clearpage}
325
-
326
- {\newpage\clearpage
327
- \lthtmlinlinemathA{tex2html_wrap_inline3216}%
328
- $ u, v, w$%
329
- \lthtmlinlinemathZ
330
- \lthtmlcheckvsize\clearpage}
331
-
332
- {\newpage\clearpage
333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3219}%
334
- $\displaystyle (u, v, w)$%
335
- \lthtmlindisplaymathZ
336
- \lthtmlcheckvsize\clearpage}
337
-
338
- {\newpage\clearpage
339
- \lthtmlinlinemathA{tex2html_wrap_indisplay3221}%
340
- $\displaystyle \equiv$%
341
- \lthtmlindisplaymathZ
342
- \lthtmlcheckvsize\clearpage}
343
-
344
- {\newpage\clearpage
345
- \lthtmlinlinemathA{tex2html_wrap_indisplay3223}%
346
- $\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$%
347
- \lthtmlindisplaymathZ
348
- \lthtmlcheckvsize\clearpage}
349
-
350
- {\newpage\clearpage
351
- \lthtmlinlinemathA{tex2html_wrap_inline3225}%
352
- $ \theta$%
353
- \lthtmlinlinemathZ
354
- \lthtmlcheckvsize\clearpage}
355
-
356
- {\newpage\clearpage
357
- \lthtmlinlinemathA{tex2html_wrap_inline3227}%
358
- $ a$%
359
- \lthtmlinlinemathZ
360
- \lthtmlcheckvsize\clearpage}
361
-
362
- {\newpage\clearpage
363
- \lthtmlinlinemathA{tex2html_wrap_inline3229}%
364
- $ \sigma$%
365
- \lthtmlinlinemathZ
366
- \lthtmlcheckvsize\clearpage}
367
-
368
- {\newpage\clearpage
369
- \lthtmlinlinemathA{tex2html_wrap_indisplay3230}%
370
- $\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$%
371
- \lthtmlindisplaymathZ
372
- \lthtmlcheckvsize\clearpage}
373
-
374
- {\newpage\clearpage
375
- \lthtmlinlinemathA{tex2html_wrap_inline3232}%
376
- $ \rho_0$%
377
- \lthtmlinlinemathZ
378
- \lthtmlcheckvsize\clearpage}
379
-
380
- {\newpage\clearpage
381
- \lthtmlinlinemathA{tex2html_wrap_indisplay3235}%
382
- $\displaystyle \rho_0(z^*)$%
383
- \lthtmlindisplaymathZ
384
- \lthtmlcheckvsize\clearpage}
385
-
386
- {\newpage\clearpage
387
- \lthtmlinlinemathA{tex2html_wrap_indisplay3239}%
388
- $\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$%
389
- \lthtmlindisplaymathZ
390
- \lthtmlcheckvsize\clearpage}
391
-
392
- {\newpage\clearpage
393
- \lthtmlinlinemathA{tex2html_wrap_inline3241}%
394
- $ f$%
395
- \lthtmlinlinemathZ
396
- \lthtmlcheckvsize\clearpage}
397
-
398
- {\newpage\clearpage
399
- \lthtmlinlinemathA{tex2html_wrap_indisplay3244}%
400
- $\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$%
401
- \lthtmlindisplaymathZ
402
- \lthtmlcheckvsize\clearpage}
403
-
404
- {\newpage\clearpage
405
- \lthtmlinlinemathA{tex2html_wrap_inline3246}%
406
- $ \Omega$%
407
- \lthtmlinlinemathZ
408
- \lthtmlcheckvsize\clearpage}
409
-
410
- {\newpage\clearpage
411
- \lthtmlinlinemathA{tex2html_wrap_inline3248}%
412
- $ T_{rot}$%
413
- \lthtmlinlinemathZ
414
- \lthtmlcheckvsize\clearpage}
415
-
416
- {\newpage\clearpage
417
- \setcounter{equation}{4}
418
- \lthtmldisplayA{subequations3252}%
419
- \setcounter{equation}{3}
420
- \begin{subequations}\begin{align}
421
11
  {F_\phi} =& \rho_0 a
422
12
  \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
423
13
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
424
14
  {F_z^*} =& \rho_0 a
425
15
  \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
426
16
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
427
17
  \end{align}\end{subequations}%
428
- \lthtmldisplayZ
429
- \lthtmlcheckvsize\clearpage}
430
-
431
- {\newpage\clearpage
432
- \lthtmlinlinemathA{tex2html_wrap_inline3254}%
433
- $ F_\phi$%
434
- \lthtmlinlinemathZ
435
- \lthtmlcheckvsize\clearpage}
436
-
437
- {\newpage\clearpage
438
- \lthtmlinlinemathA{tex2html_wrap_inline3256}%
439
- $ F_{z^*}$%
440
- \lthtmlinlinemathZ
441
- \lthtmlcheckvsize\clearpage}
442
-
443
- {\newpage\clearpage
444
- \lthtmlinlinemathA{tex2html_wrap_inline3262}%
445
- $ F_y, F_z^*$%
446
- \lthtmlinlinemathZ
447
- \lthtmlcheckvsize\clearpage}
448
-
449
- {\newpage\clearpage
450
- \lthtmlinlinemathA{tex2html_wrap_inline3264}%
451
- $ \hat{F_y}, \hat{F_z^*}$%
452
- \lthtmlinlinemathZ
453
- \lthtmlcheckvsize\clearpage}
454
-
455
- {\newpage\clearpage
456
- \lthtmlinlinemathA{tex2html_wrap_indisplay3265}%
457
- $\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$%
458
- \lthtmlindisplaymathZ
459
- \lthtmlcheckvsize\clearpage}
460
-
461
- \stepcounter{section}
462
- {\newpage\clearpage
463
- \lthtmlinlinemathA{tex2html_wrap_inline3270}%
464
- $ (0, \overline{v}^*, \overline{w}^*)$%
465
- \lthtmlinlinemathZ
466
- \lthtmlcheckvsize\clearpage}
467
-
468
- {\newpage\clearpage
469
- \setcounter{equation}{6}
470
- \lthtmldisplayA{subequations3272}%
471
- \setcounter{equation}{5}
472
- \begin{subequations}\begin{align}
473
18
  \overline{v}^* &\equiv \overline{v}
474
19
  - \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
475
20
  {\DP{\overline{\theta}}{z^*}}\right)\\
476
21
  &= \overline{v}
477
22
  - \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
478
23
  {\DP{\overline{\theta}}{z^*}}\right)\\
479
24
  \overline{w}^* &\equiv \overline{w}
480
25
  + \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
481
26
  {\DP{\overline{\theta}}{z^*}}\right)
482
27
  \end{align}\end{subequations}%
483
- \lthtmldisplayZ
484
- \lthtmlcheckvsize\clearpage}
485
-
486
- \stepcounter{section}
487
- {\newpage\clearpage
488
- \lthtmlinlinemathA{tex2html_wrap_inline3277}%
489
- $ u$%
490
- \lthtmlinlinemathZ
491
- \lthtmlcheckvsize\clearpage}
492
-
493
- {\newpage\clearpage
494
- \lthtmlinlinemathA{tex2html_wrap_indisplay3280}%
495
- $\displaystyle \DP{\overline{u}}{t}
496
- + \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
497
- + \overline{w}^*\DP{\overline{u}}{z^*}
498
- - \overline{X} =
499
- \Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$%
500
- \lthtmlindisplaymathZ
501
- \lthtmlcheckvsize\clearpage}
502
-
503
- \stepcounter{section}
504
- {\newpage\clearpage
505
- \lthtmlinlinemathA{tex2html_wrap_inline3285}%
506
- $ \Dvect{F}$%
507
- \lthtmlinlinemathZ
508
- \lthtmlcheckvsize\clearpage}
509
-
510
- {\newpage\clearpage
511
- \lthtmlinlinemathA{tex2html_wrap_indisplay3286}%
512
- $\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
513
28
  + \DP{F_{z^{*}}}{z^*}$%
514
- \lthtmlindisplaymathZ
515
- \lthtmlcheckvsize\clearpage}
516
-
517
- \stepcounter{section}
518
- {\newpage\clearpage
519
- \lthtmlinlinemathA{tex2html_wrap_inline3291}%
520
- $ \Psi^*$%
521
- \lthtmlinlinemathZ
522
- \lthtmlcheckvsize\clearpage}
523
-
524
- {\newpage\clearpage
525
- \setcounter{equation}{9}
526
- \lthtmldisplayA{subequations3293}%
527
- \setcounter{equation}{8}
528
- \begin{subequations}\begin{align}
529
29
  \sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
530
30
  \sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
531
31
  \end{align}\end{subequations}%
532
- \lthtmldisplayZ
533
- \lthtmlcheckvsize\clearpage}
534
-
535
- {\newpage\clearpage
536
- \lthtmlinlinemathA{tex2html_wrap_indisplay3300}%
537
- $\displaystyle \DP{}{z^*}\Psi^*$%
538
- \lthtmlindisplaymathZ
539
- \lthtmlcheckvsize\clearpage}
540
-
541
- {\newpage\clearpage
542
- \lthtmlinlinemathA{tex2html_wrap_indisplay3301}%
543
- $\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$%
544
- \lthtmlindisplaymathZ
545
- \lthtmlcheckvsize\clearpage}
546
-
547
- {\newpage\clearpage
548
- \lthtmlinlinemathA{tex2html_wrap_inline3303}%
549
- $ p=0$%
550
- \lthtmlinlinemathZ
551
- \lthtmlcheckvsize\clearpage}
552
-
553
- {\newpage\clearpage
554
- \lthtmlinlinemathA{tex2html_wrap_inline3305}%
555
- $ \Psi^* = 0$%
556
- \lthtmlinlinemathZ
557
- \lthtmlcheckvsize\clearpage}
558
-
559
- {\newpage\clearpage
560
- \lthtmlinlinemathA{tex2html_wrap_indisplay3306}%
561
- $\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$%
562
- \lthtmlindisplaymathZ
563
- \lthtmlcheckvsize\clearpage}
564
-
565
- \stepcounter{section}
566
- {\newpage\clearpage
567
- \setcounter{equation}{12}
568
- \lthtmldisplayA{subequations3311}%
569
- \setcounter{equation}{11}
570
- \begin{subequations}\begin{align}
571
32
  z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
572
33
  p &= p_{00} \exp \left( -\frac{z^*}{H} \right)
573
34
  \end{align}\end{subequations}%
574
- \lthtmldisplayZ
575
- \lthtmlcheckvsize\clearpage}
576
-
577
- {\newpage\clearpage
578
- \lthtmlinlinemathA{tex2html_wrap_inline3315}%
579
- $ p_{00}$%
580
- \lthtmlinlinemathZ
581
- \lthtmlcheckvsize\clearpage}
582
-
583
- {\newpage\clearpage
584
- \lthtmlinlinemathA{tex2html_wrap_inline3321}%
585
- $ T$%
586
- \lthtmlinlinemathZ
587
- \lthtmlcheckvsize\clearpage}
588
-
589
- {\newpage\clearpage
590
- \lthtmlinlinemathA{tex2html_wrap_inline3323}%
591
- $ \omega \equiv Dp/Dt$%
592
- \lthtmlinlinemathZ
593
- \lthtmlcheckvsize\clearpage}
594
-
595
- {\newpage\clearpage
596
- \lthtmlinlinemathA{tex2html_wrap_inline3329}%
597
- $ w, \theta$%
598
- \lthtmlinlinemathZ
599
- \lthtmlcheckvsize\clearpage}
600
-
601
- {\newpage\clearpage
602
- \lthtmlinlinemathA{tex2html_wrap_indisplay3330}%
603
- $\displaystyle w$%
604
- \lthtmlindisplaymathZ
605
- \lthtmlcheckvsize\clearpage}
606
-
607
- {\newpage\clearpage
608
- \lthtmlinlinemathA{tex2html_wrap_indisplay3331}%
609
- $\displaystyle = -\omega H / p$%
610
- \lthtmlindisplaymathZ
611
- \lthtmlcheckvsize\clearpage}
612
-
613
- {\newpage\clearpage
614
- \lthtmlinlinemathA{tex2html_wrap_indisplay3332}%
615
- $\displaystyle \theta$%
616
- \lthtmlindisplaymathZ
617
- \lthtmlcheckvsize\clearpage}
618
-
619
- {\newpage\clearpage
620
- \lthtmlinlinemathA{tex2html_wrap_indisplay3333}%
621
- $\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$%
622
- \lthtmlindisplaymathZ
623
- \lthtmlcheckvsize\clearpage}
624
-
625
- {\newpage\clearpage
626
- \lthtmlinlinemathA{tex2html_wrap_inline3337}%
627
- $ C_p$%
628
- \lthtmlinlinemathZ
629
- \lthtmlcheckvsize\clearpage}
630
-
631
- \appendix
632
- \stepcounter{chapter}
633
- \stepcounter{section}
634
- {\newpage\clearpage
635
- \setcounter{equation}{0}
636
- \lthtmldisplayA{subequations3343}%
637
- \setcounter{equation}{-1}
638
- \begin{subequations}\begin{align}
639
35
  \DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
640
36
  + \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
641
37
  \DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
642
38
  + \Dinv{a}\DP{\Phi}{\phi} = Y,
643
39
  \end{align}
644
40
 
645
41
  \begin{align}
646
42
  \DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
647
43
  \end{align}
648
44
 
649
45
  \begin{align}
650
46
  \Dinv{a\cos\phi} &
651
47
  \left[
652
48
  \DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
653
49
  \right]
654
50
  + \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
655
51
  = 0,
656
52
  \end{align}
657
53
 
658
54
  \begin{align}
659
55
  \DD{\theta}{t} &= Q,
660
56
  \end{align}\end{subequations}%
661
- \lthtmldisplayZ
662
- \lthtmlcheckvsize\clearpage}
663
-
664
- {\newpage\clearpage
665
- \lthtmlinlinemathA{tex2html_wrap_inline3345}%
666
- $ \Phi$%
667
- \lthtmlinlinemathZ
668
- \lthtmlcheckvsize\clearpage}
669
-
670
- {\newpage\clearpage
671
- \lthtmlinlinemathA{tex2html_wrap_inline3347}%
672
- $ X, Y$%
673
- \lthtmlinlinemathZ
674
- \lthtmlcheckvsize\clearpage}
675
-
676
- {\newpage\clearpage
677
- \lthtmlinlinemathA{tex2html_wrap_inline3353}%
678
- $ \kappa=R_{d}/c_p$%
679
- \lthtmlinlinemathZ
680
- \lthtmlcheckvsize\clearpage}
681
-
682
- {\newpage\clearpage
683
- \lthtmlinlinemathA{tex2html_wrap_inline3355}%
684
- $ c_p$%
685
- \lthtmlinlinemathZ
686
- \lthtmlcheckvsize\clearpage}
687
-
688
- {\newpage\clearpage
689
- \lthtmlinlinemathA{tex2html_wrap_inline3357}%
690
- $ Q$%
691
- \lthtmlinlinemathZ
692
- \lthtmlcheckvsize\clearpage}
693
-
694
- {\newpage\clearpage
695
- \lthtmlinlinemathA{tex2html_wrap_indisplay3360}%
696
- $\displaystyle Q$%
697
- \lthtmlindisplaymathZ
698
- \lthtmlcheckvsize\clearpage}
699
-
700
- {\newpage\clearpage
701
- \lthtmlinlinemathA{tex2html_wrap_indisplay3364}%
702
- $\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$%
703
- \lthtmlindisplaymathZ
704
- \lthtmlcheckvsize\clearpage}
705
-
706
- {\newpage\clearpage
707
- \lthtmlinlinemathA{tex2html_wrap_inline3366}%
708
- $ J$%
709
- \lthtmlinlinemathZ
710
- \lthtmlcheckvsize\clearpage}
711
-
712
- \stepcounter{section}
713
- {\newpage\clearpage
714
- \lthtmlinlinemathA{tex2html_wrap_inline3371}%
715
- $ A$%
716
- \lthtmlinlinemathZ
717
- \lthtmlcheckvsize\clearpage}
718
-
719
- {\newpage\clearpage
720
- \lthtmlinlinemathA{tex2html_wrap_inline3373}%
721
- $ \phi, z^*, t$%
722
- \lthtmlinlinemathZ
723
- \lthtmlcheckvsize\clearpage}
724
-
725
- {\newpage\clearpage
726
- \lthtmlinlinemathA{tex2html_wrap_indisplay3376}%
727
- $\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$%
728
- \lthtmlindisplaymathZ
729
- \lthtmlcheckvsize\clearpage}
730
-
731
- {\newpage\clearpage
732
- \lthtmlinlinemathA{tex2html_wrap_inline3378}%
733
- $ A'$%
734
- \lthtmlinlinemathZ
735
- \lthtmlcheckvsize\clearpage}
736
-
737
- {\newpage\clearpage
738
- \lthtmlinlinemathA{tex2html_wrap_indisplay3381}%
739
- $\displaystyle A' = A - \overline{A}$%
740
- \lthtmlindisplaymathZ
741
- \lthtmlcheckvsize\clearpage}
742
-
743
- {\newpage\clearpage
744
- \lthtmlinlinemathA{tex2html_wrap_inline3383}%
745
- $ \overline{A'}=0$%
746
- \lthtmlinlinemathZ
747
- \lthtmlcheckvsize\clearpage}
748
-
749
- {\newpage\clearpage
750
- \lthtmlinlinemathA{tex2html_wrap_inline3385}%
751
- $ \partial \overline{A}/\partial\lambda = 0$%
752
- \lthtmlinlinemathZ
753
- \lthtmlcheckvsize\clearpage}
754
-
755
- {\newpage\clearpage
756
- \setcounter{equation}{3}
757
- \lthtmldisplayA{subequations3387}%
758
- \setcounter{equation}{2}
759
- \begin{subequations}\begin{align}
760
57
  & \DP{}{t}(\overline{u} + u')
761
58
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
762
59
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
763
60
  + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\
764
61
  & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
765
62
  + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
766
63
  & \DP{}{t}(\overline{v} + v')
767
64
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
768
65
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
769
66
  + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
770
67
  & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
771
68
  + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
772
69
  Y',
773
70
  \\
774
71
  & \DP{}{z^*}(\overline{\Phi} + \Phi')
775
72
  = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
776
73
  & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
777
74
  + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
778
75
  + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
779
76
  & \DP{}{t}(\overline{\theta} + \theta')
780
77
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
781
78
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
782
79
  + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
783
80
  & \qquad = \overline{Q} + Q'
784
81
  \end{align}\end{subequations}%
785
- \lthtmldisplayZ
786
- \lthtmlcheckvsize\clearpage}
787
-
788
- {\newpage\clearpage
789
- \setcounter{equation}{4}
790
- \lthtmldisplayA{subequations3389}%
791
- \setcounter{equation}{3}
792
- \begin{subequations}\begin{align}
793
82
  & \DP{\overline{u}}{t}
794
83
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
795
84
  + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
796
85
  + \overline{w}\DP{\overline{u}}{z^*}
797
86
  - f\overline{v}
798
87
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
799
88
  + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
800
89
  - \overline{X}
801
90
  \\
802
91
  & \qquad
803
92
  = - \DP{u'}{t}
804
93
  - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
805
94
  - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
806
95
  - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
807
96
  & \qquad \qquad
808
97
  - \frac{\overline{v}}{a}\DP{u'}{\phi}
809
98
  - \frac{v'}{a}\DP{\overline{u}}{\phi}
810
99
  - \frac{v'}{a}\DP{u'}{\phi}
811
100
  - \overline{w}\DP{u'}{z^*}
812
101
  - w'\DP{\overline{u}}{z^*}
813
102
  - w'\DP{u'}{z^*}
814
103
  + fv'\notag\\
815
104
  & \qquad \qquad
816
105
  + \frac{\tan\phi}{a} \overline{u} v'
817
106
  + \frac{\tan\phi}{a} u' \overline{v}
818
107
  + \frac{\tan\phi}{a} u'v'
819
108
  - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
820
109
  + X',\\
821
110
  & \DP{\overline{v}}{t}
822
111
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
823
112
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
824
113
  + \overline{w}\DP{\overline{v}}{z^*}
825
114
  + f\overline{u}
826
115
  + \frac{\tan\phi}{a}(\overline{u})^2
827
116
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
828
117
  - \overline{Y}
829
118
  \notag\\
830
119
  & \qquad
831
120
  = - \DP{v'}{t}
832
121
  - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
833
122
  - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
834
123
  - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
835
124
  & \qquad \qquad
836
125
  - \frac{\overline{v}}{a}\DP{v'}{\phi}
837
126
  - \frac{v'}{a}\DP{\overline{v}}{\phi}
838
127
  - \frac{v'}{a}\DP{v'}{\phi}
839
128
  - \overline{w}\DP{v'}{z^*}
840
129
  - w'\DP{\overline{v}}{z^*}
841
130
  - w'\DP{v'}{z^*}
842
131
  - fu'\notag\\
843
132
  & \qquad \qquad
844
133
  - 2\frac{\tan\phi}{a}\overline{u}u'
845
134
  - \frac{\tan\phi}{a}(u')^2
846
135
  - \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
847
136
  + Y',\\
848
137
  & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
849
138
  = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
850
139
  & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
851
140
  + \DP{}{\phi}(\overline{v}\cos\phi)\right]
852
141
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
853
142
  \notag\\
854
143
  & \qquad
855
144
  = - \Dinv{a\cos\phi}\left[
856
145
  \DP{u'}{\lambda}
857
146
  + \DP{}{\phi}(v'\cos\phi)
858
147
  \right]
859
148
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
860
149
  & \DP{\overline{\theta}}{t}
861
150
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
862
151
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
863
152
  + \overline{w}\DP{\overline{\theta}}{z^*}
864
153
  - \overline{Q}
865
154
  \notag\\
866
155
  & \qquad
867
156
  = - \DP{\theta'}{t}
868
157
  - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
869
158
  - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
870
159
  - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
871
160
  \notag \\
872
161
  & \qquad \qquad
873
162
  - \frac{\overline{v}}{a}\DP{\theta'}{\phi}
874
163
  - \frac{v'}{a}\DP{\overline{\theta}}{\phi}
875
164
  - \frac{v'}{a}\DP{\theta'}{\phi}
876
165
  - \overline{w}\DP{\theta'}{z^*}
877
166
  - w'\DP{\overline{\theta}}{z^*}
878
167
  - w'\DP{\theta'}{z^*}
879
168
  + Q'
880
169
  \end{align}\end{subequations}%
881
- \lthtmldisplayZ
882
- \lthtmlcheckvsize\clearpage}
883
-
884
- {\newpage\clearpage
885
- \setcounter{equation}{5}
886
- \lthtmldisplayA{subequations3391}%
887
- \setcounter{equation}{4}
888
- \begin{subequations}\begin{align}
889
170
  & \DP{\overline{u}}{t}
890
171
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
891
172
  + \overline{w}\DP{\overline{u}}{z^*}
892
173
  - f\overline{v}
893
174
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
894
175
  - \overline{X}
895
176
  \\
896
177
  & \qquad
897
178
  = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
898
179
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
899
180
  - \overline{w'\DP{u'}{z^*}}
900
181
  + \frac{\tan\phi}{a}\overline{u'v'},\\
901
182
  & \DP{\overline{v}}{t}
902
183
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
903
184
  + \overline{w} \DP{\overline{v}}{z^*}
904
185
  + f \overline{u}
905
186
  + \frac{\tan \phi}{a} (\overline{u})^2
906
187
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
907
188
  - \overline{Y}
908
189
  \notag\\
909
190
  & \qquad
910
191
  = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
911
192
  - \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
912
193
  - \overline{w'\DP{v'}{z^*}}
913
194
  - \frac{\tan \phi}{a} \overline{u'^2},\\
914
195
  & \DP{\overline{\Phi}}{z^*}
915
196
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
916
197
  & \Dinv{a\cos\phi}
917
198
  \left[
918
199
  \DP{}{\phi}(\overline{v}\cos\phi)
919
200
  \right]
920
201
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
921
202
  = 0,\\
922
203
  & \DP{\overline{\theta}}{t}
923
204
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
924
205
  + \overline{w}\DP{\overline{\theta}}{z^*}
925
206
  - \overline{Q} =
926
207
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
927
208
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
928
209
  - \overline{w'\DP{\theta'}{z^*}}
929
210
  \end{align}\end{subequations}%
930
- \lthtmldisplayZ
931
- \lthtmlcheckvsize\clearpage}
932
-
933
- {\newpage\clearpage
934
- \lthtmlinlinemathA{tex2html_wrap_indisplay3394}%
935
- $\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
936
- + \DP{}{\phi}(v'\cos\phi)\right]
937
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
938
- = 0$%
939
- \lthtmlindisplaymathZ
940
- \lthtmlcheckvsize\clearpage}
941
-
942
- {\newpage\clearpage
943
- \lthtmlinlinemathA{tex2html_wrap_inline3396}%
944
- $ u'$%
945
- \lthtmlinlinemathZ
946
- \lthtmlcheckvsize\clearpage}
947
-
948
- {\newpage\clearpage
949
- \lthtmlinlinemathA{tex2html_wrap_indisplay3399}%
950
- $\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
951
- + \Dinv{a} \overline{ u' \DP{v'}{\phi} }
952
- - \frac{\tan \phi}{a} \overline{ u' v' }
953
- + \overline{ u' \DP{w'}{z^*} }
954
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
955
- = 0$%
956
- \lthtmlindisplaymathZ
957
- \lthtmlcheckvsize\clearpage}
958
-
959
- {\newpage\clearpage
960
- \lthtmlinlinemathA{tex2html_wrap_indisplay3400}%
961
- $\displaystyle \DP{\overline{u}}{t}$%
962
- \lthtmlindisplaymathZ
963
- \lthtmlcheckvsize\clearpage}
964
-
965
- {\newpage\clearpage
966
- \lthtmlinlinemathA{tex2html_wrap_indisplay3401}%
967
- $\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
968
211
  + \overline{w}\DP{\overline{u}}{z^*}
969
212
  - f\overline{v}
970
213
  - \frac{\tan\phi}{a}\overline{u}\overline{v}
971
214
  - \overline{X} \notag$%
972
- \lthtmlindisplaymathZ
973
- \lthtmlcheckvsize\clearpage}
974
-
975
- {\newpage\clearpage
976
- \lthtmlinlinemathA{tex2html_wrap_indisplay3402}%
977
- $\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
978
215
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
979
216
  - \overline{w'\DP{u'}{z^*}}
980
217
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
981
218
  + \frac{2\tan\phi}{a}\overline{u'v'}
982
219
  - \overline{u'\DP{w'}{z^*}}
983
220
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
984
- \lthtmlindisplaymathZ
985
- \lthtmlcheckvsize\clearpage}
986
-
987
- {\newpage\clearpage
988
- \lthtmlinlinemathA{tex2html_wrap_indisplay3403}%
989
- $\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$%
990
- \lthtmlindisplaymathZ
991
- \lthtmlcheckvsize\clearpage}
992
-
993
- {\newpage\clearpage
994
- \lthtmlinlinemathA{tex2html_wrap_indisplay3404}%
995
- $\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
996
221
  = 0,$%
997
- \lthtmlindisplaymathZ
998
- \lthtmlcheckvsize\clearpage}
999
-
1000
- {\newpage\clearpage
1001
- \lthtmlinlinemathA{tex2html_wrap_indisplay3405}%
1002
- $\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
1003
222
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
1004
223
  + \frac{2\tan\phi}{a}\overline{u'v'}$%
1005
- \lthtmlindisplaymathZ
1006
- \lthtmlcheckvsize\clearpage}
1007
-
1008
- {\newpage\clearpage
1009
- \lthtmlinlinemathA{tex2html_wrap_indisplay3406}%
1010
- $\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$%
1011
- \lthtmlindisplaymathZ
1012
- \lthtmlcheckvsize\clearpage}
1013
-
1014
- {\newpage\clearpage
1015
- \lthtmlinlinemathA{tex2html_wrap_indisplay3407}%
1016
- $\displaystyle - \overline{w'\DP{u'}{z^*}}
1017
224
  - \overline{u'\DP{w'}{z^*}}
1018
225
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
1019
- \lthtmlindisplaymathZ
1020
- \lthtmlcheckvsize\clearpage}
1021
-
1022
- {\newpage\clearpage
1023
- \lthtmlinlinemathA{tex2html_wrap_indisplay3408}%
1024
- $\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1025
- \lthtmlindisplaymathZ
1026
- \lthtmlcheckvsize\clearpage}
1027
-
1028
- {\newpage\clearpage
1029
- \lthtmlinlinemathA{tex2html_wrap_indisplay3409}%
1030
- $\displaystyle \DP{\overline{u}}{t}
1031
226
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
1032
227
  + \overline{w}\DP{\overline{u}}{z^*}
1033
228
  - f\overline{v}
1034
229
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
1035
230
  - \overline{X}
1036
231
  \notag$%
1037
- \lthtmlindisplaymathZ
1038
- \lthtmlcheckvsize\clearpage}
1039
-
1040
- {\newpage\clearpage
1041
- \lthtmlinlinemathA{tex2html_wrap_indisplay3410}%
1042
- $\displaystyle \qquad
1043
232
  = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
1044
233
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1045
- \lthtmlindisplaymathZ
1046
- \lthtmlcheckvsize\clearpage}
1047
-
1048
- {\newpage\clearpage
1049
- \lthtmlinlinemathA{tex2html_wrap_inline3412}%
1050
- $ v'$%
1051
- \lthtmlinlinemathZ
1052
- \lthtmlcheckvsize\clearpage}
1053
-
1054
- {\newpage\clearpage
1055
- \lthtmlinlinemathA{tex2html_wrap_indisplay3415}%
1056
- $\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
1057
- + \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1058
- + \frac{\tan \phi}{a} \overline{ v'^2 }
1059
- + \overline{ v' \DP{w'}{z^*} }
1060
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
1061
- = 0$%
1062
- \lthtmlindisplaymathZ
1063
- \lthtmlcheckvsize\clearpage}
1064
-
1065
- {\newpage\clearpage
1066
- \lthtmlinlinemathA{tex2html_wrap_indisplay3416}%
1067
- $\displaystyle \DP{\overline{v}}{t}
1068
234
  + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
1069
235
  + \overline{w} \DP{\overline{v}}{z^*}
1070
236
  + f \overline{u}
1071
237
  + \frac{\tan\phi}{a} (\overline{u})^2
1072
238
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1073
239
  - \overline{Y}
1074
240
  \notag$%
1075
- \lthtmlindisplaymathZ
1076
- \lthtmlcheckvsize\clearpage}
1077
-
1078
- {\newpage\clearpage
1079
- \lthtmlinlinemathA{tex2html_wrap_indisplay3417}%
1080
- $\displaystyle \qquad
1081
241
  = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
1082
242
  - \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
1083
243
  - \overline{w'\DP{v'}{z^*}}
1084
244
  - \frac{\tan\phi}{a} \overline{u'^2}
1085
245
  \notag$%
1086
- \lthtmlindisplaymathZ
1087
- \lthtmlcheckvsize\clearpage}
1088
-
1089
- {\newpage\clearpage
1090
- \lthtmlinlinemathA{tex2html_wrap_indisplay3418}%
1091
- $\displaystyle \qquad \qquad
1092
246
  - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
1093
247
  - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1094
248
  + \frac{\tan \phi}{a} \overline{ v'^2 }
1095
249
  - \overline{ v' \DP{w'}{z^*} }
1096
250
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1097
- \lthtmlindisplaymathZ
1098
- \lthtmlcheckvsize\clearpage}
1099
-
1100
- {\newpage\clearpage
1101
- \lthtmlinlinemathA{tex2html_wrap_indisplay3421}%
1102
- $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
1103
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$%
1104
- \lthtmlindisplaymathZ
1105
- \lthtmlcheckvsize\clearpage}
1106
-
1107
- {\newpage\clearpage
1108
- \lthtmlinlinemathA{tex2html_wrap_indisplay3425}%
1109
- $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
1110
- = 0,$%
1111
- \lthtmlindisplaymathZ
1112
- \lthtmlcheckvsize\clearpage}
1113
-
1114
- {\newpage\clearpage
1115
- \lthtmlinlinemathA{tex2html_wrap_indisplay3427}%
1116
- $\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1117
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1118
- + \frac{\tan \phi}{a} \overline{ v'^2 }$%
1119
- \lthtmlindisplaymathZ
1120
- \lthtmlcheckvsize\clearpage}
1121
-
1122
- {\newpage\clearpage
1123
- \lthtmlinlinemathA{tex2html_wrap_indisplay3431}%
1124
- $\displaystyle - \Dinv{a \cos \phi}
1125
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$%
1126
- \lthtmlindisplaymathZ
1127
- \lthtmlcheckvsize\clearpage}
1128
-
1129
- {\newpage\clearpage
1130
- \lthtmlinlinemathA{tex2html_wrap_indisplay3433}%
1131
- $\displaystyle - \overline{w'\DP{v'}{z^*}}
1132
- - \overline{ v' \DP{w'}{z^*} }
1133
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1134
- \lthtmlindisplaymathZ
1135
- \lthtmlcheckvsize\clearpage}
1136
-
1137
- {\newpage\clearpage
1138
- \lthtmlinlinemathA{tex2html_wrap_indisplay3437}%
1139
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1140
- \lthtmlindisplaymathZ
1141
- \lthtmlcheckvsize\clearpage}
1142
-
1143
- {\newpage\clearpage
1144
- \lthtmlinlinemathA{tex2html_wrap_indisplay3439}%
1145
- $\displaystyle \qquad
1146
251
  = - \Dinv{a \cos \phi}
1147
252
  \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
1148
253
  - \frac{\tan\phi}{a} \overline{u'^2}
1149
254
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1150
- \lthtmlindisplaymathZ
1151
- \lthtmlcheckvsize\clearpage}
1152
-
1153
- {\newpage\clearpage
1154
- \lthtmlinlinemathA{tex2html_wrap_inline3441}%
1155
- $ \theta'$%
1156
- \lthtmlinlinemathZ
1157
- \lthtmlcheckvsize\clearpage}
1158
-
1159
- {\newpage\clearpage
1160
- \lthtmlinlinemathA{tex2html_wrap_indisplay3444}%
1161
- $\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
1162
- + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1163
- - \frac{\tan \phi}{a} \overline{ \theta' v' }
1164
- + \overline{ \theta' \DP{w'}{z^*} }
1165
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
1166
- = 0$%
1167
- \lthtmlindisplaymathZ
1168
- \lthtmlcheckvsize\clearpage}
1169
-
1170
- {\newpage\clearpage
1171
- \lthtmlinlinemathA{tex2html_wrap_indisplay3445}%
1172
- $\displaystyle \DP{\overline{\theta}}{t}
1173
255
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1174
256
  + \overline{w}\DP{\overline{\theta}}{z^*}
1175
257
  - \overline{Q}
1176
258
  \notag$%
1177
- \lthtmlindisplaymathZ
1178
- \lthtmlcheckvsize\clearpage}
1179
-
1180
- {\newpage\clearpage
1181
- \lthtmlinlinemathA{tex2html_wrap_indisplay3446}%
1182
- $\displaystyle \qquad =
1183
259
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
1184
260
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
1185
261
  - \overline{w'\DP{\theta'}{z^*}}
1186
262
  \notag$%
1187
- \lthtmlindisplaymathZ
1188
- \lthtmlcheckvsize\clearpage}
1189
-
1190
- {\newpage\clearpage
1191
- \lthtmlinlinemathA{tex2html_wrap_indisplay3447}%
1192
- $\displaystyle \qquad \qquad
1193
263
  - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
1194
264
  - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1195
265
  + \frac{\tan \phi}{a} \overline{ \theta' v' }
1196
266
  - \overline{ \theta' \DP{w'}{z^*} }
1197
267
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1198
- \lthtmlindisplaymathZ
1199
- \lthtmlcheckvsize\clearpage}
1200
-
1201
- {\newpage\clearpage
1202
- \lthtmlinlinemathA{tex2html_wrap_indisplay3450}%
1203
- $\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
1204
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$%
1205
- \lthtmlindisplaymathZ
1206
- \lthtmlcheckvsize\clearpage}
1207
-
1208
- {\newpage\clearpage
1209
- \lthtmlinlinemathA{tex2html_wrap_indisplay3454}%
1210
- $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
1211
- = 0,$%
1212
- \lthtmlindisplaymathZ
1213
- \lthtmlcheckvsize\clearpage}
1214
-
1215
- {\newpage\clearpage
1216
- \lthtmlinlinemathA{tex2html_wrap_indisplay3456}%
1217
- $\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
1218
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1219
- + \frac{\tan \phi}{a} \overline{ \theta' v' }$%
1220
- \lthtmlindisplaymathZ
1221
- \lthtmlcheckvsize\clearpage}
1222
-
1223
- {\newpage\clearpage
1224
- \lthtmlinlinemathA{tex2html_wrap_indisplay3460}%
1225
- $\displaystyle - \Dinv{a \cos \phi}
1226
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$%
1227
- \lthtmlindisplaymathZ
1228
- \lthtmlcheckvsize\clearpage}
1229
-
1230
- {\newpage\clearpage
1231
- \lthtmlinlinemathA{tex2html_wrap_indisplay3462}%
1232
- $\displaystyle - \overline{w'\DP{\theta'}{z^*}}
1233
- - \overline{ \theta' \DP{w'}{z^*} }
1234
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1235
- \lthtmlindisplaymathZ
1236
- \lthtmlcheckvsize\clearpage}
1237
-
1238
- {\newpage\clearpage
1239
- \lthtmlinlinemathA{tex2html_wrap_indisplay3466}%
1240
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1241
- \lthtmlindisplaymathZ
1242
- \lthtmlcheckvsize\clearpage}
1243
-
1244
- {\newpage\clearpage
1245
- \lthtmlinlinemathA{tex2html_wrap_indisplay3467}%
1246
- $\displaystyle \DP{\overline{\theta}}{t}
1247
268
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1248
269
  + \overline{w}\DP{\overline{\theta}}{z^*}
1249
270
  - \overline{Q}
1250
271
  = - \Dinv{a \cos \phi}
1251
272
  \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
1252
273
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1253
- \lthtmlindisplaymathZ
1254
- \lthtmlcheckvsize\clearpage}
1255
-
1256
- {\newpage\clearpage
1257
- \setcounter{equation}{11}
1258
- \lthtmldisplayA{subequations3469}%
1259
- \setcounter{equation}{10}
1260
- \begin{subequations}\begin{align}
1261
274
  \DP{\overline{u}}{t}
1262
275
  & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
1263
276
  + \overline{w} \DP{\overline{u}}{z^*}
1264
277
  - f\overline{v}
1265
278
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
1266
279
  - \overline{X}
1267
280
  \\
1268
281
  & \qquad
1269
282
  = - \Dinv{a\cos^2\phi}
1270
283
  \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1271
284
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
1272
285
  \DP{\overline{v}}{t}
1273
286
  & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
1274
287
  + \overline{w} \DP{\overline{v}}{z^*}
1275
288
  + f \overline{u}
1276
289
  + \frac{\tan\phi}{a} (\overline{u})^2
1277
290
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1278
291
  - \overline{Y}
1279
292
  \notag\\
1280
293
  & \qquad
1281
294
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
1282
295
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1283
296
  - \overline{u'^2}\frac{\tan\phi}{a},
1284
297
  \end{align}
1285
298
  \begin{align}
1286
299
  \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
1287
300
  \end{align}
1288
301
  \begin{align}
1289
302
  \Dinv{a\cos\phi}&
1290
303
  \DP{}{\phi}(\overline{v}\cos\phi)
1291
304
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
1292
305
  = 0,
1293
306
  \end{align}
1294
307
  \begin{align}
1295
308
  \DP{\overline{\theta}}{t}
1296
309
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1297
310
  + \overline{w}\DP{\overline{\theta}}{z^*}
1298
311
  - \overline{Q} =
1299
312
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1300
313
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
1301
314
  \end{align}\end{subequations}%
1302
- \lthtmldisplayZ
1303
- \lthtmlcheckvsize\clearpage}
1304
-
1305
- \stepcounter{section}
1306
- {\newpage\clearpage
1307
- \setcounter{equation}{12}
1308
- \lthtmldisplayA{subequations3474}%
1309
- \setcounter{equation}{11}
1310
- \begin{subequations}\begin{align}
1311
315
  \overline{v}^*
1312
316
  & =
1313
317
  \overline{v}
1314
318
  - \Dinv{\rho_0} \DP{}{z^*}
1315
319
  \left( \rho_0
1316
320
  \frac{\overline{v'\theta'}}
1317
321
  {\overline{\DP{\theta}{z^*}}}
1318
322
  \right)
1319
323
  \\
1320
324
  \overline{w}^*
1321
325
  & = \overline{w}
1322
326
  + \Dinv{a \cos\phi}
1323
327
  \DP{}{\phi}
1324
328
  \left( \cos \phi
1325
329
  \frac{\overline{v'\theta'}}
1326
330
  {\overline{\DP{\theta}{z^*}}}
1327
331
  \right)
1328
332
  \end{align}\end{subequations}%
1329
- \lthtmldisplayZ
1330
- \lthtmlcheckvsize\clearpage}
1331
-
1332
- {\newpage\clearpage
1333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3477}%
1334
- $\displaystyle {F_\phi}$%
1335
- \lthtmlindisplaymathZ
1336
- \lthtmlcheckvsize\clearpage}
1337
-
1338
- {\newpage\clearpage
1339
- \lthtmlinlinemathA{tex2html_wrap_indisplay3481}%
1340
- $\displaystyle \rho_0 a
1341
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
1342
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1343
- \overline{u'v'}\right)$%
1344
- \lthtmlindisplaymathZ
1345
- \lthtmlcheckvsize\clearpage}
1346
-
1347
- {\newpage\clearpage
1348
- \lthtmlinlinemathA{tex2html_wrap_indisplay3483}%
1349
- $\displaystyle {F_z^*}$%
1350
- \lthtmlindisplaymathZ
1351
- \lthtmlcheckvsize\clearpage}
1352
-
1353
- {\newpage\clearpage
1354
- \lthtmlinlinemathA{tex2html_wrap_indisplay3487}%
1355
- $\displaystyle \rho_0 a
1356
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
1357
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1358
- \overline{u'w'}\right)$%
1359
- \lthtmlindisplaymathZ
1360
- \lthtmlcheckvsize\clearpage}
1361
-
1362
- {\newpage\clearpage
1363
- \lthtmlinlinemathA{tex2html_wrap_indisplay3488}%
1364
- $\displaystyle \Dinv{a \cos \phi}
1365
333
  \DP{}{\phi}\left[
1366
334
  \left\{
1367
335
  \overline{v}^*
1368
336
  + \Dinv{\rho_0} \DP{}{z^*}
1369
337
  \left( \rho_0
1370
338
  \frac{\overline{v'\theta'}}
1371
339
  {\overline{\DP{\theta}{z^*}}}
1372
340
  \right)
1373
341
  \right\}
1374
342
  \cos\phi \right]$%
1375
- \lthtmlindisplaymathZ
1376
- \lthtmlcheckvsize\clearpage}
1377
-
1378
- {\newpage\clearpage
1379
- \lthtmlinlinemathA{tex2html_wrap_indisplay3489}%
1380
- $\displaystyle \qquad
1381
343
  + \Dinv{\rho_0}
1382
344
  \DP{}{z^*}
1383
345
  \left[ \rho_0
1384
346
  \left\{
1385
347
  \overline{w}^*
1386
348
  - \Dinv{a \cos\phi}
1387
349
  \DP{}{\phi}
1388
350
  \left( \cos \phi
1389
351
  \frac{\overline{v'\theta'}}
1390
352
  {\overline{\DP{\theta}{z^*}}}
1391
353
  \right)
1392
354
  \right\}
1393
355
  \right]
1394
356
  = 0,$%
1395
- \lthtmlindisplaymathZ
1396
- \lthtmlcheckvsize\clearpage}
1397
-
1398
- {\newpage\clearpage
1399
- \lthtmlinlinemathA{tex2html_wrap_indisplay3490}%
1400
- $\displaystyle \Dinv{a \cos \phi}
1401
357
  \DP{}{\phi}
1402
358
  \left(
1403
359
  \overline{v}^* \cos\phi
1404
360
  \right)
1405
361
  + \Dinv{\rho_0}
1406
362
  \DP{}{z^*}
1407
363
  \left( \rho_0 \overline{w}^* \right)$%
1408
- \lthtmlindisplaymathZ
1409
- \lthtmlcheckvsize\clearpage}
1410
-
1411
- {\newpage\clearpage
1412
- \lthtmlinlinemathA{tex2html_wrap_indisplay3491}%
1413
- $\displaystyle \qquad
1414
364
  + \Dinv{a \cos \phi}
1415
365
  \DP{}{\phi}
1416
366
  \left\{
1417
367
  \Dinv{\rho_0} \DP{}{z^*}
1418
368
  \left( \rho_0
1419
369
  \frac{\overline{v'\theta'}}
1420
370
  {\overline{\DP{\theta}{z^*}}}
1421
371
  \right) \cos\phi
1422
372
  \right\}
1423
373
  - \Dinv{\rho_0}
1424
374
  \DP{}{z^*}
1425
375
  \left\{
1426
376
  \rho_0 \Dinv{a \cos\phi}
1427
377
  \DP{}{\phi}
1428
378
  \left( \cos \phi
1429
379
  \frac{\overline{v'\theta'}}
1430
380
  {\overline{\DP{\theta}{z^*}}}
1431
381
  \right)
1432
382
  \right\}
1433
383
  = 0.$%
1434
- \lthtmlindisplaymathZ
1435
- \lthtmlcheckvsize\clearpage}
1436
-
1437
- {\newpage\clearpage
1438
- \lthtmlinlinemathA{tex2html_wrap_indisplay3492}%
1439
- $\displaystyle \qquad
1440
384
  \Dinv{a \cos \phi}
1441
385
  \DP{}{\phi}
1442
386
  \left\{
1443
387
  \Dinv{\rho_0} \DP{}{z^*}
1444
388
  \left( \rho_0
1445
389
  \frac{\overline{v'\theta'}}
1446
390
  {\overline{\DP{\theta}{z^*}}}
1447
391
  \right) \cos\phi
1448
392
  \right\}
1449
393
  - \Dinv{\rho_0}
1450
394
  \DP{}{z^*}
1451
395
  \left\{
1452
396
  \rho_0 \Dinv{a \cos\phi}
1453
397
  \DP{}{\phi}
1454
398
  \left( \cos \phi
1455
399
  \frac{\overline{v'\theta'}}
1456
400
  {\overline{\DP{\theta}{z^*}}}
1457
401
  \right)
1458
402
  \right\}$%
1459
- \lthtmlindisplaymathZ
1460
- \lthtmlcheckvsize\clearpage}
1461
-
1462
- {\newpage\clearpage
1463
- \lthtmlinlinemathA{tex2html_wrap_indisplay3493}%
1464
- $\displaystyle =
1465
403
  \Dinv{a \cos \phi}
1466
404
  \left[
1467
405
  \DP{}{\phi}
1468
406
  \left\{
1469
407
  \Dinv{\rho_0} \DP{}{z^*}
1470
408
  \left( \rho_0
1471
409
  \frac{\overline{v'\theta'}}
1472
410
  {\overline{\DP{\theta}{z^*}}}
1473
411
  \right) \cos\phi
1474
412
  \right\}
1475
413
  - \Dinv{\rho_0}
1476
414
  \DP{}{z^*}
1477
415
  \left\{
1478
416
  \rho_0
1479
417
  \DP{}{\phi}
1480
418
  \left( \cos \phi
1481
419
  \frac{\overline{v'\theta'}}
1482
420
  {\overline{\DP{\theta}{z^*}}}
1483
421
  \right)
1484
422
  \right\}
1485
423
  \right]$%
1486
- \lthtmlindisplaymathZ
1487
- \lthtmlcheckvsize\clearpage}
1488
-
1489
- {\newpage\clearpage
1490
- \lthtmlinlinemathA{tex2html_wrap_indisplay3494}%
1491
- $\displaystyle =
1492
424
  \Dinv{a \cos \phi}
1493
425
  \left[
1494
426
  \Dinv{\rho_0}
1495
427
  \DP{}{\phi}
1496
428
  \left\{
1497
429
  \DP{}{z^*}
1498
430
  \left( \rho_0
1499
431
  \frac{\overline{v'\theta'}}
1500
432
  {\overline{\DP{\theta}{z^*}}}
1501
433
  \cos\phi
1502
434
  \right)
1503
435
  \right\}
1504
436
  - \Dinv{\rho_0}
1505
437
  \DP{}{z^*}
1506
438
  \left\{
1507
439
  \DP{}{\phi}
1508
440
  \left(\rho_0 \cos \phi
1509
441
  \frac{\overline{v'\theta'}}
1510
442
  {\overline{\DP{\theta}{z^*}}}
1511
443
  \right)
1512
444
  \right\}
1513
445
  \right]$%
1514
- \lthtmlindisplaymathZ
1515
- \lthtmlcheckvsize\clearpage}
1516
-
1517
- {\newpage\clearpage
1518
- \lthtmlinlinemathA{tex2html_wrap_indisplay3495}%
1519
- $\displaystyle = 0.$%
1520
- \lthtmlindisplaymathZ
1521
- \lthtmlcheckvsize\clearpage}
1522
-
1523
- {\newpage\clearpage
1524
- \lthtmlinlinemathA{tex2html_wrap_indisplay3498}%
1525
- $\displaystyle \Dinv{a \cos \phi}
1526
- \DP{}{\phi}
1527
- \left(
1528
- \overline{v}^* \cos\phi
1529
- \right)
1530
- + \Dinv{\rho_0}
1531
- \DP{}{z^*}
1532
- \left( \rho_0 \overline{w}^* \right) = 0.$%
1533
- \lthtmlindisplaymathZ
1534
- \lthtmlcheckvsize\clearpage}
1535
-
1536
- {\newpage\clearpage
1537
- \lthtmlinlinemathA{tex2html_wrap_indisplay3502}%
1538
- $\displaystyle + \Dinv{a}
1539
446
  \left[
1540
447
  \overline{v}^*
1541
448
  + \Dinv{\rho_0} \DP{}{z^*}
1542
449
  \left( \rho_0
1543
450
  \frac{\overline{v'\theta'}}
1544
451
  {\overline{\DP{\theta}{z^*}}}
1545
452
  \right)
1546
453
  \right]
1547
454
  \DP{\overline{u}}{\phi}
1548
455
  + \left[
1549
456
  \overline{w}^*
1550
457
  - \Dinv{a \cos\phi}
1551
458
  \DP{}{\phi}
1552
459
  \left( \cos \phi
1553
460
  \frac{\overline{v'\theta'}}
1554
461
  {\overline{\DP{\theta}{z^*}}}
1555
462
  \right)
1556
463
  \right]
1557
464
  \DP{\overline{u}}{z^*}$%
1558
- \lthtmlindisplaymathZ
1559
- \lthtmlcheckvsize\clearpage}
1560
-
1561
- {\newpage\clearpage
1562
- \lthtmlinlinemathA{tex2html_wrap_indisplay3503}%
1563
- $\displaystyle \qquad \qquad
1564
465
  - f
1565
466
  \left[
1566
467
  \overline{v}^*
1567
468
  + \Dinv{\rho_0} \DP{}{z^*}
1568
469
  \left( \rho_0
1569
470
  \frac{\overline{v'\theta'}}
1570
471
  {\overline{\DP{\theta}{z^*}}}
1571
472
  \right)
1572
473
  \right]
1573
474
  - \frac{\tan \phi}{a} \overline{u}
1574
475
  \left[
1575
476
  \overline{v}^*
1576
477
  + \Dinv{\rho_0} \DP{}{z^*}
1577
478
  \left( \rho_0
1578
479
  \frac{\overline{v'\theta'}}
1579
480
  {\overline{\DP{\theta}{z^*}}}
1580
481
  \right)
1581
482
  \right]
1582
483
  - \overline{X}$%
1583
- \lthtmlindisplaymathZ
1584
- \lthtmlcheckvsize\clearpage}
1585
-
1586
- {\newpage\clearpage
1587
- \lthtmlinlinemathA{tex2html_wrap_indisplay3504}%
1588
- $\displaystyle \qquad
1589
484
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1590
485
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$%
1591
- \lthtmlindisplaymathZ
1592
- \lthtmlcheckvsize\clearpage}
1593
-
1594
- {\newpage\clearpage
1595
- \lthtmlinlinemathA{tex2html_wrap_indisplay3506}%
1596
- $\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
1597
486
  + \overline{w}^* \DP{\overline{u}}{z^*}
1598
487
  - f \overline{v}^*
1599
488
  - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
1600
489
  - \overline{X}$%
1601
- \lthtmlindisplaymathZ
1602
- \lthtmlcheckvsize\clearpage}
1603
-
1604
- {\newpage\clearpage
1605
- \lthtmlinlinemathA{tex2html_wrap_indisplay3507}%
1606
- $\displaystyle \qquad
1607
490
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1608
491
  + \Dinv{a \cos\phi}
1609
492
  \DP{}{\phi}
1610
493
  \left( \cos \phi
1611
494
  \frac{\overline{v'\theta'}}
1612
495
  {\overline{\DP{\theta}{z^*}}}
1613
496
  \right) \DP{\overline{u}}{z^*}$%
1614
- \lthtmlindisplaymathZ
1615
- \lthtmlcheckvsize\clearpage}
1616
-
1617
- {\newpage\clearpage
1618
- \lthtmlinlinemathA{tex2html_wrap_indisplay3508}%
1619
- $\displaystyle \qquad \qquad
1620
497
  + f \Dinv{\rho_0} \DP{}{z^*}
1621
498
  \left( \rho_0
1622
499
  \frac{\overline{v'\theta'}}
1623
500
  {\overline{\DP{\theta}{z^*}}}
1624
501
  \right)
1625
502
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$%
1626
- \lthtmlindisplaymathZ
1627
- \lthtmlcheckvsize\clearpage}
1628
-
1629
- {\newpage\clearpage
1630
- \lthtmlinlinemathA{tex2html_wrap_indisplay3509}%
1631
- $\displaystyle \qquad \qquad
1632
503
  - \Dinv{\rho_0 a} \DP{}{z^*}
1633
504
  \left( \rho_0
1634
505
  \frac{\overline{v'\theta'}}
1635
506
  {\overline{\DP{\theta}{z^*}}}
1636
507
  \right)
1637
508
  \DP{\overline{u}}{\phi}
1638
509
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1639
510
  \left( \rho_0
1640
511
  \frac{\overline{v'\theta'}}
1641
512
  {\overline{\DP{\theta}{z^*}}}
1642
513
  \right),$%
1643
- \lthtmlindisplaymathZ
1644
- \lthtmlcheckvsize\clearpage}
1645
-
1646
- {\newpage\clearpage
1647
- \lthtmlinlinemathA{tex2html_wrap_indisplay3511}%
1648
- $\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
1649
514
  \left( \overline{u} \cos \phi \right)
1650
515
  + \overline{w}^* \DP{\overline{u}}{z^*}
1651
516
  - f \overline{v}^*
1652
517
  - \overline{X}$%
1653
- \lthtmlindisplaymathZ
1654
- \lthtmlcheckvsize\clearpage}
1655
-
1656
- {\newpage\clearpage
1657
- \lthtmlinlinemathA{tex2html_wrap_indisplay3512}%
1658
- $\displaystyle \qquad
1659
518
  = - \Dinv{\rho_0 a^2 \cos^2 \phi}
1660
519
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1661
520
  + \Dinv{a \cos\phi}
1662
521
  \DP{}{\phi}
1663
522
  \left( \cos \phi
1664
523
  \frac{\overline{v'\theta'}}
1665
524
  {\overline{\DP{\theta}{z^*}}}
1666
525
  \right) \DP{\overline{u}}{z^*}$%
1667
- \lthtmlindisplaymathZ
1668
- \lthtmlcheckvsize\clearpage}
1669
-
1670
- {\newpage\clearpage
1671
- \lthtmlinlinemathA{tex2html_wrap_indisplay3513}%
1672
- $\displaystyle \qquad \qquad
1673
526
  + \frac{1}{\rho_0 a \cos \phi}
1674
527
  \DP{}{z^*}
1675
528
  \left( f \rho_0 a \cos \phi
1676
529
  \frac{\overline{v'\theta'}}
1677
530
  {\overline{\DP{\theta}{z^*}}}
1678
531
  \right)
1679
532
  - \frac{1}{\rho_0 a \cos \phi}
1680
533
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$%
1681
- \lthtmlindisplaymathZ
1682
- \lthtmlcheckvsize\clearpage}
1683
-
1684
- {\newpage\clearpage
1685
- \lthtmlinlinemathA{tex2html_wrap_indisplay3514}%
1686
- $\displaystyle \qquad \qquad
1687
534
  - \Dinv{\rho_0 a} \DP{}{z^*}
1688
535
  \left( \rho_0
1689
536
  \frac{\overline{v'\theta'}}
1690
537
  {\overline{\DP{\theta}{z^*}}}
1691
538
  \right)
1692
539
  \DP{\overline{u}}{\phi}
1693
540
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1694
541
  \left( \rho_0
1695
542
  \frac{\overline{v'\theta'}}
1696
543
  {\overline{\DP{\theta}{z^*}}}
1697
544
  \right)$%
1698
- \lthtmlindisplaymathZ
1699
- \lthtmlcheckvsize\clearpage}
1700
-
1701
- {\newpage\clearpage
1702
- \lthtmlinlinemathA{tex2html_wrap_indisplay3515}%
1703
- $\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
1704
545
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1705
546
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1706
547
  \rho_0 a \cos \phi
1707
548
  \DP{\overline{u}}{z^*}
1708
549
  \DP{}{\phi}
1709
550
  \left( \cos \phi
1710
551
  \frac{\overline{v'\theta'}}
1711
552
  {\overline{\DP{\theta}{z^*}}}
1712
553
  \right)$%
1713
- \lthtmlindisplaymathZ
1714
- \lthtmlcheckvsize\clearpage}
1715
-
1716
- {\newpage\clearpage
1717
- \lthtmlinlinemathA{tex2html_wrap_indisplay3517}%
1718
- $\displaystyle \qquad \qquad
1719
554
  - \Dinv{\rho_0 a} \DP{}{z^*}
1720
555
  \left( \rho_0
1721
556
  \frac{\overline{v'\theta'}}
1722
557
  {\overline{\DP{\theta}{z^*}}}
1723
558
  \DP{\overline{u}}{\phi}
1724
559
  \right)
1725
560
  + \Dinv{\rho_0 a}
1726
561
  \rho_0
1727
562
  \frac{\overline{v'\theta'}}
1728
563
  {\overline{\DP{\theta}{z^*}}}
1729
564
  \DP{}{z^*}
1730
565
  \left(
1731
566
  \DP{\overline{u}}{\phi}
1732
567
  \right)$%
1733
- \lthtmlindisplaymathZ
1734
- \lthtmlcheckvsize\clearpage}
1735
-
1736
- {\newpage\clearpage
1737
- \lthtmlinlinemathA{tex2html_wrap_indisplay3518}%
1738
- $\displaystyle \qquad \qquad
1739
568
  + \frac{\tan \phi}{\rho_0 a}
1740
569
  \DP{}{z^*}
1741
570
  \left( \overline{u} \rho_0
1742
571
  \frac{\overline{v'\theta'}}
1743
572
  {\overline{\DP{\theta}{z^*}}}
1744
573
  \right)
1745
574
  - \frac{\tan \phi}{\rho_0 a}
1746
575
  \rho_0
1747
576
  \frac{\overline{v'\theta'}}
1748
577
  {\overline{\DP{\theta}{z^*}}}
1749
578
  \DP{}{z^*}
1750
579
  \left( \overline{u}
1751
580
  \right)$%
1752
- \lthtmlindisplaymathZ
1753
- \lthtmlcheckvsize\clearpage}
1754
-
1755
- {\newpage\clearpage
1756
- \lthtmlinlinemathA{tex2html_wrap_indisplay3519}%
1757
- $\displaystyle =
1758
581
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1759
582
  \left[
1760
583
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1761
584
  + \rho_0 a \cos \phi
1762
585
  \DP{\overline{u}}{z^*}
1763
586
  \DP{}{\phi}
1764
587
  \left( \cos \phi
1765
588
  \frac{\overline{v'\theta'}}
1766
589
  {\overline{\DP{\theta}{z^*}}}
1767
590
  \right)
1768
591
  \right]$%
1769
- \lthtmlindisplaymathZ
1770
- \lthtmlcheckvsize\clearpage}
1771
-
1772
- {\newpage\clearpage
1773
- \lthtmlinlinemathA{tex2html_wrap_indisplay3520}%
1774
- $\displaystyle \qquad
1775
592
  + \Dinv{\rho_0 a}
1776
593
  \rho_0
1777
594
  \frac{\overline{v'\theta'}}
1778
595
  {\overline{\DP{\theta}{z^*}}}
1779
596
  \DP{}{z^*}
1780
597
  \left(
1781
598
  \DP{\overline{u}}{\phi}
1782
599
  \right)
1783
600
  - \frac{\tan \phi}{\rho_0 a}
1784
601
  \rho_0
1785
602
  \frac{\overline{v'\theta'}}
1786
603
  {\overline{\DP{\theta}{z^*}}}
1787
604
  \DP{\overline{u}}{z^*}$%
1788
- \lthtmlindisplaymathZ
1789
- \lthtmlcheckvsize\clearpage}
1790
-
1791
- {\newpage\clearpage
1792
- \lthtmlinlinemathA{tex2html_wrap_indisplay3521}%
1793
- $\displaystyle \qquad
1794
605
  + \frac{1}{\rho_0 a \cos \phi}
1795
606
  \DP{}{z^*}
1796
607
  \left[
1797
608
  \left( f \rho_0 a \cos \phi
1798
609
  \frac{\overline{v'\theta'}}
1799
610
  {\overline{\DP{\theta}{z^*}}}
1800
611
  \right)
1801
612
  - \rho_0 a \cos \phi \overline{w'u'}
1802
613
  \right]$%
1803
- \lthtmlindisplaymathZ
1804
- \lthtmlcheckvsize\clearpage}
1805
-
1806
- {\newpage\clearpage
1807
- \lthtmlinlinemathA{tex2html_wrap_indisplay3522}%
1808
- $\displaystyle \qquad
1809
614
  - \Dinv{\rho_0 a} \DP{}{z^*}
1810
615
  \left( \rho_0
1811
616
  \frac{\overline{v'\theta'}}
1812
617
  {\overline{\DP{\theta}{z^*}}}
1813
618
  \DP{\overline{u}}{\phi}
1814
619
  \right)
1815
620
  + \frac{\tan \phi}{\rho_0 a}
1816
621
  \DP{}{z^*}
1817
622
  \left( \overline{u} \rho_0
1818
623
  \frac{\overline{v'\theta'}}
1819
624
  {\overline{\DP{\theta}{z^*}}}
1820
625
  \right)$%
1821
- \lthtmlindisplaymathZ
1822
- \lthtmlcheckvsize\clearpage}
1823
-
1824
- {\newpage\clearpage
1825
- \lthtmlinlinemathA{tex2html_wrap_indisplay3524}%
1826
- $\displaystyle \qquad
1827
626
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1828
627
  \left[
1829
628
  \rho_0 a \cos^2 \phi
1830
629
  \frac{\overline{v'\theta'}}
1831
630
  {\overline{\DP{\theta}{z^*}}}
1832
631
  \DP{}{z^*}
1833
632
  \left(
1834
633
  \DP{\overline{u}}{\phi}
1835
634
  \right)
1836
635
  - \rho_0 a \cos^2 \phi \tan \phi
1837
636
  \frac{\overline{v'\theta'}}
1838
637
  {\overline{\DP{\theta}{z^*}}}
1839
638
  \DP{\overline{u}}{z^*}
1840
639
  \right]$%
1841
- \lthtmlindisplaymathZ
1842
- \lthtmlcheckvsize\clearpage}
1843
-
1844
- {\newpage\clearpage
1845
- \lthtmlinlinemathA{tex2html_wrap_indisplay3526}%
1846
- $\displaystyle \qquad
1847
640
  + \Dinv{\rho_0 a \cos \phi}
1848
641
  \left[
1849
642
  - \cos \phi
1850
643
  \DP{}{z^*}
1851
644
  \left( \rho_0
1852
645
  \frac{\overline{v'\theta'}}
1853
646
  {\overline{\DP{\theta}{z^*}}}
1854
647
  \DP{\overline{u}}{\phi}
1855
648
  \right)
1856
649
  + \cos \phi \tan \phi
1857
650
  \DP{}{z^*}
1858
651
  \left( \overline{u} \rho_0
1859
652
  \frac{\overline{v'\theta'}}
1860
653
  {\overline{\DP{\theta}{z^*}}}
1861
654
  \right)
1862
655
  \right]$%
1863
- \lthtmlindisplaymathZ
1864
- \lthtmlcheckvsize\clearpage}
1865
-
1866
- {\newpage\clearpage
1867
- \lthtmlinlinemathA{tex2html_wrap_indisplay3529}%
1868
- $\displaystyle \qquad
1869
656
  + \frac{1}{\rho_0 a \cos \phi}
1870
657
  \DP{}{z^*}
1871
658
  \left[
1872
659
  f \rho_0 a \cos \phi
1873
660
  \frac{\overline{v'\theta'}}
1874
661
  {\overline{\DP{\theta}{z^*}}}
1875
662
  - \rho_0 a \cos \phi \overline{w'u'}
1876
663
  \right]$%
1877
- \lthtmlindisplaymathZ
1878
- \lthtmlcheckvsize\clearpage}
1879
-
1880
- {\newpage\clearpage
1881
- \lthtmlinlinemathA{tex2html_wrap_indisplay3530}%
1882
- $\displaystyle \qquad
1883
664
  + \Dinv{\rho_0 a \cos \phi}
1884
665
  \DP{}{z^*}
1885
666
  \left[
1886
667
  - \rho_0 \cos \phi
1887
668
  \frac{\overline{v'\theta'}}
1888
669
  {\overline{\DP{\theta}{z^*}}}
1889
670
  \DP{\overline{u}}{\phi}
1890
671
  + \sin \phi \overline{u} \rho_0
1891
672
  \frac{\overline{v'\theta'}}
1892
673
  {\overline{\DP{\theta}{z^*}}}
1893
674
  \right]$%
1894
- \lthtmlindisplaymathZ
1895
- \lthtmlcheckvsize\clearpage}
1896
-
1897
- {\newpage\clearpage
1898
- \lthtmlinlinemathA{tex2html_wrap_indisplay3531}%
1899
- $\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
1900
675
  \left[
1901
676
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1902
677
  + \rho_0 a \cos \phi
1903
678
  \DP{\overline{u}}{z^*}
1904
679
  \DP{}{\phi}
1905
680
  \left( \cos \phi
1906
681
  \frac{\overline{v'\theta'}}
1907
682
  {\overline{\DP{\theta}{z^*}}}
1908
683
  \right)
1909
684
  \right]$%
1910
- \lthtmlindisplaymathZ
1911
- \lthtmlcheckvsize\clearpage}
1912
-
1913
- {\newpage\clearpage
1914
- \lthtmlinlinemathA{tex2html_wrap_indisplay3533}%
1915
- $\displaystyle =
1916
685
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1917
686
  \left[
1918
687
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1919
688
  \right]$%
1920
- \lthtmlindisplaymathZ
1921
- \lthtmlcheckvsize\clearpage}
1922
-
1923
- {\newpage\clearpage
1924
- \lthtmlinlinemathA{tex2html_wrap_indisplay3534}%
1925
- $\displaystyle \qquad
1926
689
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1927
690
  \left[
1928
691
  \rho_0 a \cos^2 \phi
1929
692
  \frac{\overline{v'\theta'}}
1930
693
  {\overline{\DP{\theta}{z^*}}}
1931
694
  \DP{}{\phi}
1932
695
  \left(
1933
696
  \DP{\overline{u}}{z^*}
1934
697
  \right)
1935
698
  + \DP{\overline{u}}{z^*}
1936
699
  \DP{}{\phi}
1937
700
  \left(\rho_0 a \cos^2 \phi
1938
701
  \frac{\overline{v'\theta'}}
1939
702
  {\overline{\DP{\theta}{z^*}}}
1940
703
  \right)
1941
704
  \right]$%
1942
- \lthtmlindisplaymathZ
1943
- \lthtmlcheckvsize\clearpage}
1944
-
1945
- {\newpage\clearpage
1946
- \lthtmlinlinemathA{tex2html_wrap_indisplay3535}%
1947
- $\displaystyle =
1948
705
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1949
706
  \left[
1950
707
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1951
708
  \right]
1952
709
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1953
710
  \left[
1954
711
  \DP{}{\phi}
1955
712
  \left(\rho_0 a \cos^2 \phi
1956
713
  \frac{\overline{v'\theta'}}
1957
714
  {\overline{\DP{\theta}{z^*}}}
1958
715
  \DP{\overline{u}}{z^*}
1959
716
  \right)
1960
717
  \right]$%
1961
- \lthtmlindisplaymathZ
1962
- \lthtmlcheckvsize\clearpage}
1963
-
1964
- {\newpage\clearpage
1965
- \lthtmlinlinemathA{tex2html_wrap_indisplay3536}%
1966
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1967
718
  \DP{}{\phi}
1968
719
  \left[
1969
720
  - \rho_0 a \overline{v'u'} \cos^2 \phi
1970
721
  + \rho_0 a \cos^2 \phi
1971
722
  \frac{\overline{v'\theta'}}
1972
723
  {\overline{\DP{\theta}{z^*}}}
1973
724
  \DP{\overline{u}}{z^*}
1974
725
  \right]$%
1975
- \lthtmlindisplaymathZ
1976
- \lthtmlcheckvsize\clearpage}
1977
-
1978
- {\newpage\clearpage
1979
- \lthtmlinlinemathA{tex2html_wrap_indisplay3537}%
1980
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1981
726
  \DP{}{\phi}
1982
727
  \left[
1983
728
  \rho_0 a \cos^2 \phi
1984
729
  \left\{
1985
730
  \DP{\overline{u}}{z^*}
1986
731
  \frac{\overline{v'\theta'}}
1987
732
  {\overline{\DP{\theta}{z^*}}}
1988
733
  - \overline{v'u'}
1989
734
  \right\}
1990
735
  \right]$%
1991
- \lthtmlindisplaymathZ
1992
- \lthtmlcheckvsize\clearpage}
1993
-
1994
- {\newpage\clearpage
1995
- \lthtmlinlinemathA{tex2html_wrap_indisplay3538}%
1996
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1997
736
  \DP{}{\phi}
1998
737
  \left(
1999
738
  \cos \phi F^{*}_{\phi}
2000
739
  \right)$%
2001
- \lthtmlindisplaymathZ
2002
- \lthtmlcheckvsize\clearpage}
2003
-
2004
- {\newpage\clearpage
2005
- \lthtmlinlinemathA{tex2html_wrap_indisplay3539}%
2006
- $\displaystyle \frac{1}{\rho_0 a \cos \phi}
2007
740
  \DP{}{z^*}
2008
741
  \left[
2009
742
  f \rho_0 a \cos \phi
2010
743
  \frac{\overline{v'\theta'}}
2011
744
  {\overline{\DP{\theta}{z^*}}}
2012
745
  - \rho_0 a \cos \phi \overline{w'u'}
2013
746
  \right]
2014
747
  + \Dinv{\rho_0 a \cos \phi}
2015
748
  \DP{}{z^*}
2016
749
  \left[
2017
750
  - \rho_0 \cos \phi
2018
751
  \frac{\overline{v'\theta'}}
2019
752
  {\overline{\DP{\theta}{z^*}}}
2020
753
  \DP{\overline{u}}{\phi}
2021
754
  + \sin \phi \overline{u} \rho_0
2022
755
  \frac{\overline{v'\theta'}}
2023
756
  {\overline{\DP{\theta}{z^*}}}
2024
757
  \right]$%
2025
- \lthtmlindisplaymathZ
2026
- \lthtmlcheckvsize\clearpage}
2027
-
2028
- {\newpage\clearpage
2029
- \lthtmlinlinemathA{tex2html_wrap_indisplay3540}%
2030
- $\displaystyle =
2031
758
  \frac{1}{\rho_0 a \cos \phi}
2032
759
  \DP{}{z^*}
2033
760
  \left[
2034
761
  \rho_0 a \cos \phi
2035
762
  \left\{
2036
763
  f \frac{\overline{v'\theta'}}
2037
764
  {\overline{\DP{\theta}{z^*}}}
2038
765
  - \overline{w'u'}
2039
766
  - \frac{\overline{v'\theta'}}
2040
767
  {a \overline{\DP{\theta}{z^*}}}
2041
768
  \DP{\overline{u}}{\phi}
2042
769
  + \sin \phi \overline{u}
2043
770
  \frac{\overline{v'\theta'}}
2044
771
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
2045
772
  \right\}
2046
773
  \right]$%
2047
- \lthtmlindisplaymathZ
2048
- \lthtmlcheckvsize\clearpage}
2049
-
2050
- {\newpage\clearpage
2051
- \lthtmlinlinemathA{tex2html_wrap_indisplay3541}%
2052
- $\displaystyle =
2053
774
  \frac{1}{\rho_0 a \cos \phi}
2054
775
  \DP{}{z^*}
2055
776
  \left[
2056
777
  \rho_0 a \cos \phi
2057
778
  \left\{
2058
779
  f \frac{\overline{v'\theta'}}
2059
780
  {\overline{\DP{\theta}{z^*}}}
2060
781
  - \left(
2061
782
  \cos \phi
2062
783
  \DP{\overline{u}}{\phi}
2063
784
  - \sin \phi \overline{u}
2064
785
  \right)
2065
786
  \frac{\overline{v'\theta'}}
2066
787
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
2067
788
  - \overline{w'u'}
2068
789
  \right\}
2069
790
  \right]$%
2070
- \lthtmlindisplaymathZ
2071
- \lthtmlcheckvsize\clearpage}
2072
-
2073
- {\newpage\clearpage
2074
- \lthtmlinlinemathA{tex2html_wrap_indisplay3543}%
2075
- $\displaystyle =
2076
791
  \frac{1}{\rho_0 a \cos \phi}
2077
792
  \DP{}{z^*}
2078
793
  \left[
2079
794
  \rho_0 a \cos \phi
2080
795
  \left\{
2081
796
  \left( f
2082
797
  - \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
2083
798
  {a \cos \phi}
2084
799
  \right)
2085
800
  \frac{\overline{v'\theta'}}
2086
801
  {\overline{\DP{\theta}{z^*}}}
2087
802
  - \overline{w'u'}
2088
803
  \right\}
2089
804
  \right]$%
2090
- \lthtmlindisplaymathZ
2091
- \lthtmlcheckvsize\clearpage}
2092
-
2093
- {\newpage\clearpage
2094
- \lthtmlinlinemathA{tex2html_wrap_indisplay3544}%
2095
- $\displaystyle = \frac{1}{\rho_0 a \cos \phi}
2096
805
  \DP{F^{*}_{z}}{z^*}$%
2097
- \lthtmlindisplaymathZ
2098
- \lthtmlcheckvsize\clearpage}
2099
-
2100
- {\newpage\clearpage
2101
- \lthtmlinlinemathA{tex2html_wrap_indisplay3545}%
2102
- $\displaystyle \DP{\overline{u}}{t}
2103
806
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
2104
807
  \left( \overline{u} \cos \phi \right)
2105
808
  + \overline{w}^* \DP{\overline{u}}{z^*}
2106
809
  - f \overline{v}^*
2107
810
  - \overline{X}
2108
811
  = \Dinv{\rho_0 a^2 \cos^2 \phi}
2109
812
  \DP{}{\phi}
2110
813
  \left(
2111
814
  \cos \phi F^{*}_{\phi}
2112
815
  \right)
2113
816
  + \frac{1}{\rho_0 a \cos \phi}
2114
817
  \DP{F^{*}_{z}}{z^*},
2115
818
  \nonumber$%
2116
- \lthtmlindisplaymathZ
2117
- \lthtmlcheckvsize\clearpage}
2118
-
2119
- {\newpage\clearpage
2120
- \lthtmlinlinemathA{tex2html_wrap_indisplay3546}%
2121
- $\displaystyle \DP{\overline{u}}{t}
2122
819
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
2123
820
  \left( \overline{u} \cos \phi \right)
2124
821
  + \overline{w}^* \DP{\overline{u}}{z^*}
2125
822
  - f \overline{v}^*
2126
823
  - \overline{X}
2127
824
  = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$%
2128
- \lthtmlindisplaymathZ
2129
- \lthtmlcheckvsize\clearpage}
2130
-
2131
- {\newpage\clearpage
2132
- \lthtmlinlinemathA{tex2html_wrap_indisplay3547}%
2133
- $\displaystyle \Ddiv{\Dvect{F}}
2134
825
  = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$%
2135
- \lthtmlindisplaymathZ
2136
- \lthtmlcheckvsize\clearpage}
2137
-
2138
- {\newpage\clearpage
2139
- \lthtmlinlinemathA{tex2html_wrap_indisplay3548}%
2140
- $\displaystyle \DP{\overline{\theta}}{t}
2141
826
  + \frac{1}{a}
2142
827
  \left[
2143
828
  \overline{v}^*
2144
829
  + \Dinv{\rho_0} \DP{}{z^*}
2145
830
  \left( \rho_0
2146
831
  \frac{\overline{v'\theta'}}
2147
832
  {\overline{\DP{\theta}{z^*}}}
2148
833
  \right)
2149
834
  \right]
2150
835
  \DP{\overline{\theta}}{\phi}
2151
836
  + \left[
2152
837
  \overline{w}^*
2153
838
  - \Dinv{a \cos\phi}
2154
839
  \DP{}{\phi}
2155
840
  \left( \cos \phi
2156
841
  \frac{\overline{v'\theta'}}
2157
842
  {\overline{\DP{\theta}{z^*}}}
2158
843
  \right)
2159
844
  \right]
2160
845
  \DP{\overline{\theta}}{z^*}
2161
846
  - \overline{Q}$%
2162
- \lthtmlindisplaymathZ
2163
- \lthtmlcheckvsize\clearpage}
2164
-
2165
- {\newpage\clearpage
2166
- \lthtmlinlinemathA{tex2html_wrap_indisplay3549}%
2167
- $\displaystyle \qquad
2168
847
  =
2169
848
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2170
849
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$%
2171
- \lthtmlindisplaymathZ
2172
- \lthtmlcheckvsize\clearpage}
2173
-
2174
- {\newpage\clearpage
2175
- \lthtmlinlinemathA{tex2html_wrap_indisplay3550}%
2176
- $\displaystyle \DP{\overline{\theta}}{t}
2177
850
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
2178
851
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
2179
852
  - \overline{Q}$%
2180
- \lthtmlindisplaymathZ
2181
- \lthtmlcheckvsize\clearpage}
2182
-
2183
- {\newpage\clearpage
2184
- \lthtmlinlinemathA{tex2html_wrap_indisplay3551}%
2185
- $\displaystyle \qquad
2186
853
  = - \Dinv{\rho_0 a} \DP{}{z^*}
2187
854
  \left( \rho_0
2188
855
  \frac{\overline{v'\theta'}}
2189
856
  {\overline{\DP{\theta}{z^*}}}
2190
857
  \right) \DP{\overline{\theta}}{\phi}
2191
858
  + \Dinv{a \cos\phi}
2192
859
  \DP{}{\phi}
2193
860
  \left( \cos \phi
2194
861
  \frac{\overline{v'\theta'}}
2195
862
  {\overline{\DP{\theta}{z^*}}}
2196
863
  \right) \DP{\overline{\theta}}{z^*}$%
2197
- \lthtmlindisplaymathZ
2198
- \lthtmlcheckvsize\clearpage}
2199
-
2200
- {\newpage\clearpage
2201
- \lthtmlinlinemathA{tex2html_wrap_indisplay3552}%
2202
- $\displaystyle \qquad \qquad
2203
864
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2204
865
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2205
- \lthtmlindisplaymathZ
2206
- \lthtmlcheckvsize\clearpage}
2207
-
2208
- {\newpage\clearpage
2209
- \lthtmlinlinemathA{tex2html_wrap_indisplay3553}%
2210
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2211
866
  \left( \rho_0
2212
867
  \frac{\overline{v'\theta'}}
2213
868
  {a \overline{\DP{\theta}{z^*}}}
2214
869
  \right) \DP{\overline{\theta}}{\phi}
2215
870
  + \Dinv{a \cos\phi}
2216
871
  \DP{}{\phi}
2217
872
  \left( \cos \phi
2218
873
  \frac{\overline{v'\theta'}}
2219
874
  {\overline{\DP{\theta}{z^*}}}
2220
875
  \right) \DP{\overline{\theta}}{z^*}$%
2221
- \lthtmlindisplaymathZ
2222
- \lthtmlcheckvsize\clearpage}
2223
-
2224
- {\newpage\clearpage
2225
- \lthtmlinlinemathA{tex2html_wrap_indisplay3554}%
2226
- $\displaystyle \qquad
2227
876
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2228
877
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2229
- \lthtmlindisplaymathZ
2230
- \lthtmlcheckvsize\clearpage}
2231
-
2232
- {\newpage\clearpage
2233
- \lthtmlinlinemathA{tex2html_wrap_indisplay3556}%
2234
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2235
878
  \left( \rho_0
2236
879
  \frac{\overline{v'\theta'}}
2237
880
  {a \overline{\DP{\theta}{z^*}}}
2238
881
  \DP{\overline{\theta}}{\phi}
2239
882
  \right)
2240
883
  + \frac{\overline{v'\theta'}}
2241
884
  {a \overline{\DP{\theta}{z^*}}}
2242
885
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}$%
2243
- \lthtmlindisplaymathZ
2244
- \lthtmlcheckvsize\clearpage}
2245
-
2246
- {\newpage\clearpage
2247
- \lthtmlinlinemathA{tex2html_wrap_indisplay3557}%
2248
- $\displaystyle \qquad
2249
886
  + \Dinv{a \cos\phi}
2250
887
  \left[
2251
888
  \DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
2252
889
  \frac{1}{\overline{\DP{\theta}{z^*}}}
2253
890
  + \cos \phi \overline{v'\theta'}
2254
891
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2255
892
  \right] \DP{\overline{\theta}}{z^*}$%
2256
- \lthtmlindisplaymathZ
2257
- \lthtmlcheckvsize\clearpage}
2258
-
2259
- {\newpage\clearpage
2260
- \lthtmlinlinemathA{tex2html_wrap_indisplay3560}%
2261
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2262
893
  \left( \rho_0
2263
894
  \frac{\overline{v'\theta'}}
2264
895
  {a \overline{\DP{\theta}{z^*}}}
2265
896
  \DP{\overline{\theta}}{\phi}
2266
897
  \right)
2267
898
  + \frac{\overline{v'\theta'}}
2268
899
  {a \overline{\DP{\theta}{z^*}}}
2269
900
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
2270
901
  + \Dinv{a}
2271
902
  \overline{v'\theta'}
2272
903
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2273
904
  \DP{\overline{\theta}}{z^*}
2274
905
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2275
- \lthtmlindisplaymathZ
2276
- \lthtmlcheckvsize\clearpage}
2277
-
2278
- {\newpage\clearpage
2279
- \lthtmlinlinemathA{tex2html_wrap_indisplay3562}%
2280
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2281
906
  \left[ \rho_0
2282
907
  \frac{\overline{v'\theta'}}
2283
908
  {a \overline{\DP{\theta}{z^*}}}
2284
909
  \DP{\overline{\theta}}{\phi}
2285
910
  + \rho_0\overline{w'\theta'}
2286
911
  \right]
2287
912
  + \frac{\overline{v'\theta'}}{a}
2288
913
  \left[
2289
914
  \frac{1}
2290
915
  {\overline{\DP{\theta}{z^*}}}
2291
916
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
2292
917
  + \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2293
918
  \DP{\overline{\theta}}{z^*}
2294
919
  \right]$%
2295
- \lthtmlindisplaymathZ
2296
- \lthtmlcheckvsize\clearpage}
2297
-
2298
- {\newpage\clearpage
2299
- \lthtmlinlinemathA{tex2html_wrap_indisplay3564}%
2300
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2301
920
  \left[ \rho_0
2302
921
  \left(
2303
922
  \frac{\overline{v'\theta'}}
2304
923
  {a \overline{\DP{\theta}{z^*}}}
2305
924
  \DP{\overline{\theta}}{\phi}
2306
925
  + \overline{w'\theta'}
2307
926
  \right)
2308
927
  \right]
2309
928
  + \frac{\overline{v'\theta'}}{a}
2310
929
  \DP{}{\phi}
2311
930
  \left(
2312
931
  \frac{ \DP{\overline{\theta}}{z^*} }
2313
932
  { \overline{\DP{\theta}{z^*}} }
2314
933
  \right)$%
2315
- \lthtmlindisplaymathZ
2316
- \lthtmlcheckvsize\clearpage}
2317
-
2318
- {\newpage\clearpage
2319
- \lthtmlinlinemathA{tex2html_wrap_indisplay3566}%
2320
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2321
934
  \left[ \rho_0
2322
935
  \left(
2323
936
  \frac{\overline{v'\theta'}}
2324
937
  {a \overline{\DP{\theta}{z^*}}}
2325
938
  \DP{\overline{\theta}}{\phi}
2326
939
  + \overline{w'\theta'}
2327
940
  \right)
2328
941
  \right].$%
2329
- \lthtmlindisplaymathZ
2330
- \lthtmlcheckvsize\clearpage}
2331
-
2332
- {\newpage\clearpage
2333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3567}%
2334
- $\displaystyle \DP{\overline{\theta}}{t}
2335
942
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
2336
943
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
2337
944
  - \overline{Q}
2338
945
  =
2339
946
  - \Dinv{\rho_0} \DP{}{z^*}
2340
947
  \left[ \rho_0
2341
948
  \left(
2342
949
  \frac{\overline{v'\theta'}}
2343
950
  {a \overline{\DP{\theta}{z^*}}}
2344
951
  \DP{\overline{\theta}}{\phi}
2345
952
  + \overline{w'\theta'}
2346
953
  \right)
2347
954
  \right].$%
2348
- \lthtmlindisplaymathZ
2349
- \lthtmlcheckvsize\clearpage}
2350
-
2351
- {\newpage\clearpage
2352
- \lthtmlinlinemathA{tex2html_wrap_inline3569}%
2353
- $ v$%
2354
- \lthtmlinlinemathZ
2355
- \lthtmlcheckvsize\clearpage}
2356
-
2357
- {\newpage\clearpage
2358
- \lthtmlinlinemathA{tex2html_wrap_indisplay3570}%
2359
- $\displaystyle \DP{}{t}
2360
955
  \left[
2361
956
  \overline{v}^*
2362
957
  + \Dinv{\rho_0} \DP{}{z^*}
2363
958
  \left( \rho_0
2364
959
  \frac{\overline{v'\theta'}}
2365
960
  {\overline{\DP{\theta}{z^*}}}
2366
961
  \right)
2367
962
  \right]
2368
963
  + \frac{1}{a}
2369
964
  \left[
2370
965
  \overline{v}^*
2371
966
  + \Dinv{\rho_0} \DP{}{z^*}
2372
967
  \left( \rho_0
2373
968
  \frac{\overline{v'\theta'}}
2374
969
  {\overline{\DP{\theta}{z^*}}}
2375
970
  \right)
2376
971
  \right]
2377
972
  \DP{}{\phi}
2378
973
  \left[
2379
974
  \overline{v}^*
2380
975
  + \Dinv{\rho_0} \DP{}{z^*}
2381
976
  \left( \rho_0
2382
977
  \frac{\overline{v'\theta'}}
2383
978
  {\overline{\DP{\theta}{z^*}}}
2384
979
  \right)
2385
980
  \right]$%
2386
- \lthtmlindisplaymathZ
2387
- \lthtmlcheckvsize\clearpage}
2388
-
2389
- {\newpage\clearpage
2390
- \lthtmlinlinemathA{tex2html_wrap_indisplay3571}%
2391
- $\displaystyle \qquad \qquad
2392
981
  + \left[
2393
982
  \overline{w}^*
2394
983
  - \Dinv{a \cos\phi}
2395
984
  \DP{}{\phi}
2396
985
  \left( \cos \phi
2397
986
  \frac{\overline{v'\theta'}}
2398
987
  {\overline{\DP{\theta}{z^*}}}
2399
988
  \right)
2400
989
  \right]
2401
990
  \DP{}{z^*}
2402
991
  \left[
2403
992
  \overline{v}^*
2404
993
  + \Dinv{\rho_0} \DP{}{z^*}
2405
994
  \left( \rho_0
2406
995
  \frac{\overline{v'\theta'}}
2407
996
  {\overline{\DP{\theta}{z^*}}}
2408
997
  \right)
2409
998
  \right]$%
2410
- \lthtmlindisplaymathZ
2411
- \lthtmlcheckvsize\clearpage}
2412
-
2413
- {\newpage\clearpage
2414
- \lthtmlinlinemathA{tex2html_wrap_indisplay3572}%
2415
- $\displaystyle \qquad \qquad
2416
999
  + f \overline{u}
2417
1000
  + \frac{\tan\phi}{a} (\overline{u})^2
2418
1001
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
2419
1002
  - \overline{Y}$%
2420
- \lthtmlindisplaymathZ
2421
- \lthtmlcheckvsize\clearpage}
2422
-
2423
- {\newpage\clearpage
2424
- \lthtmlinlinemathA{tex2html_wrap_indisplay3573}%
2425
- $\displaystyle \qquad
2426
1003
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
2427
1004
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
2428
1005
  - \overline{u'^2}\frac{\tan\phi}{a},$%
2429
- \lthtmlindisplaymathZ
2430
- \lthtmlcheckvsize\clearpage}
2431
-
2432
- {\newpage\clearpage
2433
- \lthtmlinlinemathA{tex2html_wrap_indisplay3574}%
2434
- $\displaystyle f \overline{u}
2435
1006
  + \frac{\tan\phi}{a} (\overline{u})^2
2436
1007
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}$%
2437
- \lthtmlindisplaymathZ
2438
- \lthtmlcheckvsize\clearpage}
2439
-
2440
- {\newpage\clearpage
2441
- \lthtmlinlinemathA{tex2html_wrap_indisplay3575}%
2442
- $\displaystyle \qquad
2443
1008
  = - \DP{}{t}
2444
1009
  \left[
2445
1010
  \overline{v}^*
2446
1011
  + \Dinv{\rho_0} \DP{}{z^*}
2447
1012
  \left( \rho_0
2448
1013
  \frac{\overline{v'\theta'}}
2449
1014
  {\overline{\DP{\theta}{z^*}}}
2450
1015
  \right)
2451
1016
  \right]
2452
1017
  - \frac{1}{a}
2453
1018
  \left[
2454
1019
  \overline{v}^*
2455
1020
  + \Dinv{\rho_0} \DP{}{z^*}
2456
1021
  \left( \rho_0
2457
1022
  \frac{\overline{v'\theta'}}
2458
1023
  {\overline{\DP{\theta}{z^*}}}
2459
1024
  \right)
2460
1025
  \right]
2461
1026
  \DP{}{\phi}
2462
1027
  \left[
2463
1028
  \overline{v}^*
2464
1029
  + \Dinv{\rho_0} \DP{}{z^*}
2465
1030
  \left( \rho_0
2466
1031
  \frac{\overline{v'\theta'}}
2467
1032
  {\overline{\DP{\theta}{z^*}}}
2468
1033
  \right)
2469
1034
  \right]$%
2470
- \lthtmlindisplaymathZ
2471
- \lthtmlcheckvsize\clearpage}
2472
-
2473
- {\newpage\clearpage
2474
- \lthtmlinlinemathA{tex2html_wrap_indisplay3576}%
2475
- $\displaystyle \qquad \qquad
2476
1035
  - \left[
2477
1036
  \overline{w}^*
2478
1037
  - \Dinv{a \cos\phi}
2479
1038
  \DP{}{\phi}
2480
1039
  \left( \cos \phi
2481
1040
  \frac{\overline{v'\theta'}}
2482
1041
  {\overline{\DP{\theta}{z^*}}}
2483
1042
  \right)
2484
1043
  \right]
2485
1044
  \DP{}{z^*}
2486
1045
  \left[
2487
1046
  \overline{v}^*
2488
1047
  + \Dinv{\rho_0} \DP{}{z^*}
2489
1048
  \left( \rho_0
2490
1049
  \frac{\overline{v'\theta'}}
2491
1050
  {\overline{\DP{\theta}{z^*}}}
2492
1051
  \right)
2493
1052
  \right]$%
2494
- \lthtmlindisplaymathZ
2495
- \lthtmlcheckvsize\clearpage}
2496
-
2497
- {\newpage\clearpage
2498
- \lthtmlinlinemathA{tex2html_wrap_indisplay3577}%
2499
- $\displaystyle \qquad \qquad
2500
1053
  - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
2501
1054
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
2502
1055
  - \overline{u'^2} \frac{\tan\phi}{a}
2503
1056
  + \overline{Y}$%
2504
- \lthtmlindisplaymathZ
2505
- \lthtmlcheckvsize\clearpage}
2506
-
2507
- {\newpage\clearpage
2508
- \lthtmlinlinemathA{tex2html_wrap_inline3579}%
2509
- $ G$%
2510
- \lthtmlinlinemathZ
2511
- \lthtmlcheckvsize\clearpage}
2512
-
2513
- {\newpage\clearpage
2514
- \lthtmlinlinemathA{tex2html_wrap_indisplay3582}%
2515
- $\displaystyle \overline{u}
2516
1057
  \left( f + \frac{\tan\phi}{a} \overline{u} \right)
2517
1058
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
2518
1059
  = G.$%
2519
- \lthtmlindisplaymathZ
2520
- \lthtmlcheckvsize\clearpage}
2521
-
2522
- {\newpage\clearpage
2523
- \setcounter{equation}{17}
2524
- \lthtmldisplayA{subequations3584}%
2525
- \setcounter{equation}{16}
2526
- \begin{subequations}\begin{align}&
2527
1060
  \DP{\overline{u}}{t}
2528
1061
  + \overline{v}^*
2529
1062
  \left[
2530
1063
  \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
2531
1064
  \right]
2532
1065
  + \overline{w}^*\DP{\overline{u}}{z^*}
2533
1066
  - \overline{X}
2534
1067
  = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
2535
1068
  \overline{u}
2536
1069
  \left( f + \overline{u}\frac{\tan\phi}{a} \right)
2537
1070
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
2538
1071
  = G.
2539
1072
  \end{align}
2540
1073
  \begin{align}
2541
1074
  \DP{\overline{\Phi}}{z^*}
2542
1075
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
2543
1076
  = 0.
2544
1077
  \end{align}
2545
1078
  \begin{align}
2546
1079
  \Dinv{a\cos\phi}&\left[
2547
1080
  \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
2548
1081
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
2549
1082
  = 0.
2550
1083
  \end{align}
2551
1084
  \begin{align}
2552
1085
  \DP{\overline{\theta}}{t}
2553
1086
  + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
2554
1087
  + \overline{w}^*\DP{\overline{\theta}}{z^*}
2555
1088
  - \overline{Q} =
2556
1089
  - \Dinv{\rho_0}\DP{}{z^*}
2557
1090
  \left[\rho_0
2558
1091
  \left(
2559
1092
  \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
2560
1093
  {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
2561
1094
  \right)
2562
1095
  \right].
2563
1096
  \end{align}\end{subequations}%
2564
- \lthtmldisplayZ
2565
- \lthtmlcheckvsize\clearpage}
2566
-
2567
-
2568
- \end{document}