gphys 1.1.1 → 1.2.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,1471 +0,0 @@
1
- \batchmode
2
-
3
-
4
- \documentclass[a4j,12pt,openbib]{jreport}
5
- \RequirePackage{ifthen}
6
-
7
-
8
-
9
- \usepackage{ascmac}
10
- \usepackage{tabularx}
11
- \usepackage{graphicx}
12
- \usepackage{amssymb}
13
- \usepackage{amsmath}
14
- \usepackage{Dennou6}
15
- \pagestyle{Dmyheadings}
16
-
17
- \Dtitle[NumRu::GPhys::EP\_Flux]{NumRu::GPhys::EP\_Flux \\�����ɥ������}
18
- \Dauthor[�ϵ�ή����Ǿ�����]{�ϵ�ή����Ǿ�����}
19
- \Dfile{}
20
-
21
- \setcounter{section}{0}
22
- \setcounter{equation}{0}
23
- \setcounter{page}{1}
24
- \setcounter{figure}{0}
25
- \setcounter{footnote}{0}
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
- \Dparskip
36
- \Dnoparindent
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
- \usepackage[dvips]{color}
45
-
46
-
47
- \pagecolor[gray]{.7}
48
-
49
- \usepackage[]{inputenc}
50
-
51
-
52
-
53
- \makeatletter
54
-
55
- \makeatletter
56
- \count@=\the\catcode`\_ \catcode`\_=8
57
- \newenvironment{tex2html_wrap}{}{}%
58
- \catcode`\<=12\catcode`\_=\count@
59
- \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
60
- \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
61
- \expandafter\renewcommand\csname #1\endcsname}%
62
- \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
63
- \let\newedcommand\renewedcommand
64
- \let\renewedenvironment\newedenvironment
65
- \makeatother
66
- \let\mathon=$
67
- \let\mathoff=$
68
- \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
69
- \newbox\sizebox
70
- \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
71
- \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
72
- \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
73
- \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
74
- \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
75
- \setlength{\textwidth}{349pt}
76
- \newwrite\lthtmlwrite
77
- \makeatletter
78
- \let\realnormalsize=\normalsize
79
- \global\topskip=2sp
80
- \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
81
- \def\@float{\let\@savefreelist\@freelist\real@float}
82
- \def\liih@math{\ifmmode$\else\bad@math\fi}
83
- \def\end@float{\realend@float\global\let\@freelist\@savefreelist}
84
- \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
85
- \let\@largefloatcheck=\relax
86
- \let\if@boxedmulticols=\iftrue
87
- \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
88
- \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
89
- \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
90
- \def\phantompar{\csname par\endcsname}\normalsize}%
91
- \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
92
- \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
93
- \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
94
- \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
95
- \let\ifinner=\iffalse \let\)\liih@math }%
96
- \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
97
- \expandafter\box\next\egroup}%
98
- \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
99
- \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
100
- :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
101
- \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
102
- \lthtmlmathtype{#1}\lthtmlvboxmathA}%
103
- \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
104
- \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
105
- \let\@savefreelist\@freelist \lthtmlhboxmathB}%
106
- \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
107
- \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
108
- \global\let\@freelist\@savefreelist}%
109
- \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
110
- \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
111
- \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
112
- \lthtmldisplayA{#1}\let\@eqnnum\relax}%
113
- \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
114
- \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
115
- \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
116
- \vrule height1.5ex width0pt }%
117
- \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
118
- \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
119
- \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
120
- \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
121
- \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
122
- \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
123
- \newcommand\lthtmlindisplaymathZ{\egroup %
124
- \centerinlinemath\lthtmllogmath\lthtmlsetmath}
125
- \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
126
- \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
127
- \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
128
- \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
129
- \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
130
- \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
131
- \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
132
- \def\centerinlinemath{%
133
- \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
134
- \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
135
- \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
136
-
137
- \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
138
- \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
139
- \else\expandafter\vss\fi}%
140
- \providecommand{\selectlanguage}[1]{}%
141
- \makeatletter \tracingstats = 1
142
- \providecommand{\Eta}{\textrm{H}}
143
- \providecommand{\Mu}{\textrm{M}}
144
- \providecommand{\Alpha}{\textrm{A}}
145
- \providecommand{\Iota}{\textrm{J}}
146
- \providecommand{\Nu}{\textrm{N}}
147
- \providecommand{\Omicron}{\textrm{O}}
148
- \providecommand{\omicron}{\textrm{o}}
149
- \providecommand{\Chi}{\textrm{X}}
150
- \providecommand{\Beta}{\textrm{B}}
151
- \providecommand{\Kappa}{\textrm{K}}
152
- \providecommand{\Tau}{\textrm{T}}
153
- \providecommand{\Epsilon}{\textrm{E}}
154
- \providecommand{\Zeta}{\textrm{Z}}
155
- \providecommand{\Rho}{\textrm{R}}
156
-
157
-
158
- \begin{document}
159
- \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
160
- \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
161
- \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
162
- \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
163
- \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
164
- \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
165
- \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
166
- \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
167
- \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
168
- \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
169
- \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
170
- \makeatletter
171
- \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
172
- \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
173
- \lthtmltypeout{}%
174
- \makeatother
175
- \setcounter{page}{1}
176
- \onecolumn
177
-
178
- % !!! IMAGES START HERE !!!
179
-
180
- \setcounter{section}{0}
181
- \setcounter{equation}{0}
182
- \setcounter{figure}{0}
183
- \setcounter{footnote}{0}
184
- \stepcounter{chapter}
185
- \stepcounter{chapter}
186
- \stepcounter{section}
187
- {\newpage\clearpage
188
- \lthtmlinlinemathA{tex2html_wrap_inline3164}%
189
- $ \lambda$%
190
- \lthtmlinlinemathZ
191
- \lthtmlcheckvsize\clearpage}
192
-
193
- {\newpage\clearpage
194
- \lthtmlinlinemathA{tex2html_wrap_inline3166}%
195
- $ \phi$%
196
- \lthtmlinlinemathZ
197
- \lthtmlcheckvsize\clearpage}
198
-
199
- {\newpage\clearpage
200
- \lthtmlinlinemathA{tex2html_wrap_inline3168}%
201
- $ z^*$%
202
- \lthtmlinlinemathZ
203
- \lthtmlcheckvsize\clearpage}
204
-
205
- {\newpage\clearpage
206
- \lthtmlinlinemathA{tex2html_wrap_indisplay3171}%
207
- $\displaystyle z^*$%
208
- \lthtmlindisplaymathZ
209
- \lthtmlcheckvsize\clearpage}
210
-
211
- {\newpage\clearpage
212
- \lthtmlinlinemathA{tex2html_wrap_indisplay3173}%
213
- $\displaystyle =$%
214
- \lthtmlindisplaymathZ
215
- \lthtmlcheckvsize\clearpage}
216
-
217
- {\newpage\clearpage
218
- \lthtmlinlinemathA{tex2html_wrap_indisplay3175}%
219
- $\displaystyle -H \ln(p/p_s),\ \ \ \ H = \frac{R_{d} T_s}{g_0}$%
220
- \lthtmlindisplaymathZ
221
- \lthtmlcheckvsize\clearpage}
222
-
223
- {\newpage\clearpage
224
- \lthtmlinlinemathA{tex2html_wrap_inline3177}%
225
- $ H$%
226
- \lthtmlinlinemathZ
227
- \lthtmlcheckvsize\clearpage}
228
-
229
- {\newpage\clearpage
230
- \lthtmlinlinemathA{tex2html_wrap_inline3179}%
231
- $ R_{d}$%
232
- \lthtmlinlinemathZ
233
- \lthtmlcheckvsize\clearpage}
234
-
235
- {\newpage\clearpage
236
- \lthtmlinlinemathA{tex2html_wrap_inline3181}%
237
- $ R$%
238
- \lthtmlinlinemathZ
239
- \lthtmlcheckvsize\clearpage}
240
-
241
- {\newpage\clearpage
242
- \lthtmlinlinemathA{tex2html_wrap_inline3183}%
243
- $ w$%
244
- \lthtmlinlinemathZ
245
- \lthtmlcheckvsize\clearpage}
246
-
247
- {\newpage\clearpage
248
- \lthtmlinlinemathA{tex2html_wrap_inline3185}%
249
- $ R_{d} = R/w$%
250
- \lthtmlinlinemathZ
251
- \lthtmlcheckvsize\clearpage}
252
-
253
- {\newpage\clearpage
254
- \lthtmlinlinemathA{tex2html_wrap_inline3187}%
255
- $ T_s$%
256
- \lthtmlinlinemathZ
257
- \lthtmlcheckvsize\clearpage}
258
-
259
- {\newpage\clearpage
260
- \lthtmlinlinemathA{tex2html_wrap_inline3189}%
261
- $ g_0$%
262
- \lthtmlinlinemathZ
263
- \lthtmlcheckvsize\clearpage}
264
-
265
- {\newpage\clearpage
266
- \lthtmlinlinemathA{tex2html_wrap_inline3191}%
267
- $ p$%
268
- \lthtmlinlinemathZ
269
- \lthtmlcheckvsize\clearpage}
270
-
271
- {\newpage\clearpage
272
- \lthtmlinlinemathA{tex2html_wrap_inline3193}%
273
- $ p_s$%
274
- \lthtmlinlinemathZ
275
- \lthtmlcheckvsize\clearpage}
276
-
277
- \stepcounter{section}
278
- {\newpage\clearpage
279
- \lthtmlinlinemathA{tex2html_wrap_inline3200}%
280
- $ \rho_s$%
281
- \lthtmlinlinemathZ
282
- \lthtmlcheckvsize\clearpage}
283
-
284
- {\newpage\clearpage
285
- \setcounter{equation}{1}
286
- \lthtmldisplayA{subequations3202}%
287
- \begin{subequations}\begin{align}
288
  \hat{F}_\phi &\equiv \sigma
289
1
  \cos \phi \left(
290
2
  \DP{\overline{u}}{z^*}
291
3
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}
292
4
  \right), \\
293
5
  \hat{F}_{z^*} &\equiv \sigma
294
6
  \cos \phi \left(
295
7
  \left[ f - \Dinv{a\cos\phi}{\DP{\overline{u}\cos \phi}{\phi}} \right]
296
8
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}
297
9
  \right)
298
10
  \end{align}\end{subequations}%
299
- \lthtmldisplayZ
300
- \lthtmlcheckvsize\clearpage}
301
-
302
- {\newpage\clearpage
303
- \lthtmlinlinemathA{tex2html_wrap_inline3204}%
304
- $ \hat{F}_\phi$%
305
- \lthtmlinlinemathZ
306
- \lthtmlcheckvsize\clearpage}
307
-
308
- {\newpage\clearpage
309
- \lthtmlinlinemathA{tex2html_wrap_inline3206}%
310
- $ \hat{F}_{z^*}$%
311
- \lthtmlinlinemathZ
312
- \lthtmlcheckvsize\clearpage}
313
-
314
- {\newpage\clearpage
315
- \lthtmlinlinemathA{tex2html_wrap_inline3212}%
316
- $ \overline{\bullet}$%
317
- \lthtmlinlinemathZ
318
- \lthtmlcheckvsize\clearpage}
319
-
320
- {\newpage\clearpage
321
- \lthtmlinlinemathA{tex2html_wrap_inline3214}%
322
- $ \bullet'$%
323
- \lthtmlinlinemathZ
324
- \lthtmlcheckvsize\clearpage}
325
-
326
- {\newpage\clearpage
327
- \lthtmlinlinemathA{tex2html_wrap_inline3216}%
328
- $ u, v, w$%
329
- \lthtmlinlinemathZ
330
- \lthtmlcheckvsize\clearpage}
331
-
332
- {\newpage\clearpage
333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3219}%
334
- $\displaystyle (u, v, w)$%
335
- \lthtmlindisplaymathZ
336
- \lthtmlcheckvsize\clearpage}
337
-
338
- {\newpage\clearpage
339
- \lthtmlinlinemathA{tex2html_wrap_indisplay3221}%
340
- $\displaystyle \equiv$%
341
- \lthtmlindisplaymathZ
342
- \lthtmlcheckvsize\clearpage}
343
-
344
- {\newpage\clearpage
345
- \lthtmlinlinemathA{tex2html_wrap_indisplay3223}%
346
- $\displaystyle \left(a\cos\phi\DD{\lambda}{t}, a\DD{\phi}{t}, \DD{z^*}{t}\right)$%
347
- \lthtmlindisplaymathZ
348
- \lthtmlcheckvsize\clearpage}
349
-
350
- {\newpage\clearpage
351
- \lthtmlinlinemathA{tex2html_wrap_inline3225}%
352
- $ \theta$%
353
- \lthtmlinlinemathZ
354
- \lthtmlcheckvsize\clearpage}
355
-
356
- {\newpage\clearpage
357
- \lthtmlinlinemathA{tex2html_wrap_inline3227}%
358
- $ a$%
359
- \lthtmlinlinemathZ
360
- \lthtmlcheckvsize\clearpage}
361
-
362
- {\newpage\clearpage
363
- \lthtmlinlinemathA{tex2html_wrap_inline3229}%
364
- $ \sigma$%
365
- \lthtmlinlinemathZ
366
- \lthtmlcheckvsize\clearpage}
367
-
368
- {\newpage\clearpage
369
- \lthtmlinlinemathA{tex2html_wrap_indisplay3230}%
370
- $\displaystyle \sigma \equiv \frac{\rho_0}{\rho_s} = \exp\left(\frac{-z^*}{H}\right),$%
371
- \lthtmlindisplaymathZ
372
- \lthtmlcheckvsize\clearpage}
373
-
374
- {\newpage\clearpage
375
- \lthtmlinlinemathA{tex2html_wrap_inline3232}%
376
- $ \rho_0$%
377
- \lthtmlinlinemathZ
378
- \lthtmlcheckvsize\clearpage}
379
-
380
- {\newpage\clearpage
381
- \lthtmlinlinemathA{tex2html_wrap_indisplay3235}%
382
- $\displaystyle \rho_0(z^*)$%
383
- \lthtmlindisplaymathZ
384
- \lthtmlcheckvsize\clearpage}
385
-
386
- {\newpage\clearpage
387
- \lthtmlinlinemathA{tex2html_wrap_indisplay3239}%
388
- $\displaystyle \rho_s e^{-z^*/H}, \hspace{2em} \rho_s \equiv p_s/RT_s$%
389
- \lthtmlindisplaymathZ
390
- \lthtmlcheckvsize\clearpage}
391
-
392
- {\newpage\clearpage
393
- \lthtmlinlinemathA{tex2html_wrap_inline3241}%
394
- $ f$%
395
- \lthtmlinlinemathZ
396
- \lthtmlcheckvsize\clearpage}
397
-
398
- {\newpage\clearpage
399
- \lthtmlinlinemathA{tex2html_wrap_indisplay3244}%
400
- $\displaystyle f = 2 \Omega \sin \phi = \frac{4 \pi}{T_{rot}} \sin \phi$%
401
- \lthtmlindisplaymathZ
402
- \lthtmlcheckvsize\clearpage}
403
-
404
- {\newpage\clearpage
405
- \lthtmlinlinemathA{tex2html_wrap_inline3246}%
406
- $ \Omega$%
407
- \lthtmlinlinemathZ
408
- \lthtmlcheckvsize\clearpage}
409
-
410
- {\newpage\clearpage
411
- \lthtmlinlinemathA{tex2html_wrap_inline3248}%
412
- $ T_{rot}$%
413
- \lthtmlinlinemathZ
414
- \lthtmlcheckvsize\clearpage}
415
-
416
- {\newpage\clearpage
417
- \setcounter{equation}{4}
418
- \lthtmldisplayA{subequations3252}%
419
- \setcounter{equation}{3}
420
- \begin{subequations}\begin{align}
421
11
  {F_\phi} =& \rho_0 a
422
12
  \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
423
13
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'v'}\right)\\
424
14
  {F_z^*} =& \rho_0 a
425
15
  \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
426
16
  \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} - \overline{u'w'}\right).
427
17
  \end{align}\end{subequations}%
428
- \lthtmldisplayZ
429
- \lthtmlcheckvsize\clearpage}
430
-
431
- {\newpage\clearpage
432
- \lthtmlinlinemathA{tex2html_wrap_inline3254}%
433
- $ F_\phi$%
434
- \lthtmlinlinemathZ
435
- \lthtmlcheckvsize\clearpage}
436
-
437
- {\newpage\clearpage
438
- \lthtmlinlinemathA{tex2html_wrap_inline3256}%
439
- $ F_{z^*}$%
440
- \lthtmlinlinemathZ
441
- \lthtmlcheckvsize\clearpage}
442
-
443
- {\newpage\clearpage
444
- \lthtmlinlinemathA{tex2html_wrap_inline3262}%
445
- $ F_y, F_z^*$%
446
- \lthtmlinlinemathZ
447
- \lthtmlcheckvsize\clearpage}
448
-
449
- {\newpage\clearpage
450
- \lthtmlinlinemathA{tex2html_wrap_inline3264}%
451
- $ \hat{F_y}, \hat{F_z^*}$%
452
- \lthtmlinlinemathZ
453
- \lthtmlcheckvsize\clearpage}
454
-
455
- {\newpage\clearpage
456
- \lthtmlinlinemathA{tex2html_wrap_indisplay3265}%
457
- $\displaystyle (F_y, F_z^*) = a\rho_s(\hat{F_y}, \hat{F_{z^*}})$%
458
- \lthtmlindisplaymathZ
459
- \lthtmlcheckvsize\clearpage}
460
-
461
- \stepcounter{section}
462
- {\newpage\clearpage
463
- \lthtmlinlinemathA{tex2html_wrap_inline3270}%
464
- $ (0, \overline{v}^*, \overline{w}^*)$%
465
- \lthtmlinlinemathZ
466
- \lthtmlcheckvsize\clearpage}
467
-
468
- {\newpage\clearpage
469
- \setcounter{equation}{6}
470
- \lthtmldisplayA{subequations3272}%
471
- \setcounter{equation}{5}
472
- \begin{subequations}\begin{align}
473
18
  \overline{v}^* &\equiv \overline{v}
474
19
  - \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0\frac{\overline{v'\theta'}}
475
20
  {\DP{\overline{\theta}}{z^*}}\right)\\
476
21
  &= \overline{v}
477
22
  - \Dinv{\sigma}\DP{}{z^*}\left(\sigma\frac{\overline{v'\theta'}}
478
23
  {\DP{\overline{\theta}}{z^*}}\right)\\
479
24
  \overline{w}^* &\equiv \overline{w}
480
25
  + \Dinv{a \cos\phi}\DP{}{\phi}\left(\cos\phi\frac{\overline{v'\theta'}}
481
26
  {\DP{\overline{\theta}}{z^*}}\right)
482
27
  \end{align}\end{subequations}%
483
- \lthtmldisplayZ
484
- \lthtmlcheckvsize\clearpage}
485
-
486
- \stepcounter{section}
487
- {\newpage\clearpage
488
- \lthtmlinlinemathA{tex2html_wrap_inline3277}%
489
- $ u$%
490
- \lthtmlinlinemathZ
491
- \lthtmlcheckvsize\clearpage}
492
-
493
- {\newpage\clearpage
494
- \lthtmlinlinemathA{tex2html_wrap_indisplay3280}%
495
- $\displaystyle \DP{\overline{u}}{t}
496
- + \overline{v}^*\left[\Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f\right]
497
- + \overline{w}^*\DP{\overline{u}}{z^*}
498
- - \overline{X} =
499
- \Dinv{\sigma \cos\phi}\Ddiv\Dvect{\hat{F}}.$%
500
- \lthtmlindisplaymathZ
501
- \lthtmlcheckvsize\clearpage}
502
-
503
- \stepcounter{section}
504
- {\newpage\clearpage
505
- \lthtmlinlinemathA{tex2html_wrap_inline3285}%
506
- $ \Dvect{F}$%
507
- \lthtmlinlinemathZ
508
- \lthtmlcheckvsize\clearpage}
509
-
510
- {\newpage\clearpage
511
- \lthtmlinlinemathA{tex2html_wrap_indisplay3286}%
512
- $\displaystyle \Ddiv{} \Dvect{F}= \Dinv{a \cos \phi} \DP{(\cos \phi F_{\phi})}{\phi}
513
28
  + \DP{F_{z^{*}}}{z^*}$%
514
- \lthtmlindisplaymathZ
515
- \lthtmlcheckvsize\clearpage}
516
-
517
- \stepcounter{section}
518
- {\newpage\clearpage
519
- \lthtmlinlinemathA{tex2html_wrap_inline3291}%
520
- $ \Psi^*$%
521
- \lthtmlinlinemathZ
522
- \lthtmlcheckvsize\clearpage}
523
-
524
- {\newpage\clearpage
525
- \setcounter{equation}{9}
526
- \lthtmldisplayA{subequations3293}%
527
- \setcounter{equation}{8}
528
- \begin{subequations}\begin{align}
529
29
  \sigma \overline{v}^* &= -g\Dinv{2\pi a \cos\phi }\DP{\Psi^*}{z^{*}}, \\
530
30
  \sigma \overline{w}^* &= g\Dinv{2\pi a^2\cos\phi}\DP{\Psi^*}{\phi}
531
31
  \end{align}\end{subequations}%
532
- \lthtmldisplayZ
533
- \lthtmlcheckvsize\clearpage}
534
-
535
- {\newpage\clearpage
536
- \lthtmlinlinemathA{tex2html_wrap_indisplay3300}%
537
- $\displaystyle \DP{}{z^*}\Psi^*$%
538
- \lthtmlindisplaymathZ
539
- \lthtmlcheckvsize\clearpage}
540
-
541
- {\newpage\clearpage
542
- \lthtmlinlinemathA{tex2html_wrap_indisplay3301}%
543
- $\displaystyle = -\frac{p}{H}\DP{}{p}\Psi^*$%
544
- \lthtmlindisplaymathZ
545
- \lthtmlcheckvsize\clearpage}
546
-
547
- {\newpage\clearpage
548
- \lthtmlinlinemathA{tex2html_wrap_inline3303}%
549
- $ p=0$%
550
- \lthtmlinlinemathZ
551
- \lthtmlcheckvsize\clearpage}
552
-
553
- {\newpage\clearpage
554
- \lthtmlinlinemathA{tex2html_wrap_inline3305}%
555
- $ \Psi^* = 0$%
556
- \lthtmlinlinemathZ
557
- \lthtmlcheckvsize\clearpage}
558
-
559
- {\newpage\clearpage
560
- \lthtmlinlinemathA{tex2html_wrap_indisplay3306}%
561
- $\displaystyle \Psi^*(\theta, p) = \frac{2\pi a \cos\phi}{g} \int_{0}^{p}\overline{v}^*\Dd p$%
562
- \lthtmlindisplaymathZ
563
- \lthtmlcheckvsize\clearpage}
564
-
565
- \stepcounter{section}
566
- {\newpage\clearpage
567
- \setcounter{equation}{12}
568
- \lthtmldisplayA{subequations3311}%
569
- \setcounter{equation}{11}
570
- \begin{subequations}\begin{align}
571
32
  z^* &= -H \log \left( \frac{p}{p_{00}} \right),\\
572
33
  p &= p_{00} \exp \left( -\frac{z^*}{H} \right)
573
34
  \end{align}\end{subequations}%
574
- \lthtmldisplayZ
575
- \lthtmlcheckvsize\clearpage}
576
-
577
- {\newpage\clearpage
578
- \lthtmlinlinemathA{tex2html_wrap_inline3315}%
579
- $ p_{00}$%
580
- \lthtmlinlinemathZ
581
- \lthtmlcheckvsize\clearpage}
582
-
583
- {\newpage\clearpage
584
- \lthtmlinlinemathA{tex2html_wrap_inline3321}%
585
- $ T$%
586
- \lthtmlinlinemathZ
587
- \lthtmlcheckvsize\clearpage}
588
-
589
- {\newpage\clearpage
590
- \lthtmlinlinemathA{tex2html_wrap_inline3323}%
591
- $ \omega \equiv Dp/Dt$%
592
- \lthtmlinlinemathZ
593
- \lthtmlcheckvsize\clearpage}
594
-
595
- {\newpage\clearpage
596
- \lthtmlinlinemathA{tex2html_wrap_inline3329}%
597
- $ w, \theta$%
598
- \lthtmlinlinemathZ
599
- \lthtmlcheckvsize\clearpage}
600
-
601
- {\newpage\clearpage
602
- \lthtmlinlinemathA{tex2html_wrap_indisplay3330}%
603
- $\displaystyle w$%
604
- \lthtmlindisplaymathZ
605
- \lthtmlcheckvsize\clearpage}
606
-
607
- {\newpage\clearpage
608
- \lthtmlinlinemathA{tex2html_wrap_indisplay3331}%
609
- $\displaystyle = -\omega H / p$%
610
- \lthtmlindisplaymathZ
611
- \lthtmlcheckvsize\clearpage}
612
-
613
- {\newpage\clearpage
614
- \lthtmlinlinemathA{tex2html_wrap_indisplay3332}%
615
- $\displaystyle \theta$%
616
- \lthtmlindisplaymathZ
617
- \lthtmlcheckvsize\clearpage}
618
-
619
- {\newpage\clearpage
620
- \lthtmlinlinemathA{tex2html_wrap_indisplay3333}%
621
- $\displaystyle = T \left(\frac{p_{00}}{p}\right)^\kappa, \kappa = R/C_p$%
622
- \lthtmlindisplaymathZ
623
- \lthtmlcheckvsize\clearpage}
624
-
625
- {\newpage\clearpage
626
- \lthtmlinlinemathA{tex2html_wrap_inline3337}%
627
- $ C_p$%
628
- \lthtmlinlinemathZ
629
- \lthtmlcheckvsize\clearpage}
630
-
631
- \appendix
632
- \stepcounter{chapter}
633
- \stepcounter{section}
634
- {\newpage\clearpage
635
- \setcounter{equation}{0}
636
- \lthtmldisplayA{subequations3343}%
637
- \setcounter{equation}{-1}
638
- \begin{subequations}\begin{align}
639
35
  \DD{u}{t} &- \left(f + \frac{u\tan\phi}{a}\right)v
640
36
  + \Dinv{a\cos\phi}\DP{\Phi}{\lambda} = X,\\
641
37
  \DD{v}{t} &+ \left(f + \frac{u\tan\phi}{a}\right)u
642
38
  + \Dinv{a}\DP{\Phi}{\phi} = Y,
643
39
  \end{align}
644
40
 
645
41
  \begin{align}
646
42
  \DP{\Phi}{z^*} & = \frac{R\theta e^{-\kappa z^*/H}}{H},
647
43
  \end{align}
648
44
 
649
45
  \begin{align}
650
46
  \Dinv{a\cos\phi} &
651
47
  \left[
652
48
  \DP{u}{\lambda} + \left( \DP{v\cos\phi}{\phi} \right)
653
49
  \right]
654
50
  + \Dinv{\rho_0}\DP{}{z^*}\left(\rho_0 w\right)
655
51
  = 0,
656
52
  \end{align}
657
53
 
658
54
  \begin{align}
659
55
  \DD{\theta}{t} &= Q,
660
56
  \end{align}\end{subequations}%
661
- \lthtmldisplayZ
662
- \lthtmlcheckvsize\clearpage}
663
-
664
- {\newpage\clearpage
665
- \lthtmlinlinemathA{tex2html_wrap_inline3345}%
666
- $ \Phi$%
667
- \lthtmlinlinemathZ
668
- \lthtmlcheckvsize\clearpage}
669
-
670
- {\newpage\clearpage
671
- \lthtmlinlinemathA{tex2html_wrap_inline3347}%
672
- $ X, Y$%
673
- \lthtmlinlinemathZ
674
- \lthtmlcheckvsize\clearpage}
675
-
676
- {\newpage\clearpage
677
- \lthtmlinlinemathA{tex2html_wrap_inline3353}%
678
- $ \kappa=R_{d}/c_p$%
679
- \lthtmlinlinemathZ
680
- \lthtmlcheckvsize\clearpage}
681
-
682
- {\newpage\clearpage
683
- \lthtmlinlinemathA{tex2html_wrap_inline3355}%
684
- $ c_p$%
685
- \lthtmlinlinemathZ
686
- \lthtmlcheckvsize\clearpage}
687
-
688
- {\newpage\clearpage
689
- \lthtmlinlinemathA{tex2html_wrap_inline3357}%
690
- $ Q$%
691
- \lthtmlinlinemathZ
692
- \lthtmlcheckvsize\clearpage}
693
-
694
- {\newpage\clearpage
695
- \lthtmlinlinemathA{tex2html_wrap_indisplay3360}%
696
- $\displaystyle Q$%
697
- \lthtmlindisplaymathZ
698
- \lthtmlcheckvsize\clearpage}
699
-
700
- {\newpage\clearpage
701
- \lthtmlinlinemathA{tex2html_wrap_indisplay3364}%
702
- $\displaystyle \frac{J}{C_p}e^{\kappa z^*/H}$%
703
- \lthtmlindisplaymathZ
704
- \lthtmlcheckvsize\clearpage}
705
-
706
- {\newpage\clearpage
707
- \lthtmlinlinemathA{tex2html_wrap_inline3366}%
708
- $ J$%
709
- \lthtmlinlinemathZ
710
- \lthtmlcheckvsize\clearpage}
711
-
712
- \stepcounter{section}
713
- {\newpage\clearpage
714
- \lthtmlinlinemathA{tex2html_wrap_inline3371}%
715
- $ A$%
716
- \lthtmlinlinemathZ
717
- \lthtmlcheckvsize\clearpage}
718
-
719
- {\newpage\clearpage
720
- \lthtmlinlinemathA{tex2html_wrap_inline3373}%
721
- $ \phi, z^*, t$%
722
- \lthtmlinlinemathZ
723
- \lthtmlcheckvsize\clearpage}
724
-
725
- {\newpage\clearpage
726
- \lthtmlinlinemathA{tex2html_wrap_indisplay3376}%
727
- $\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$%
728
- \lthtmlindisplaymathZ
729
- \lthtmlcheckvsize\clearpage}
730
-
731
- {\newpage\clearpage
732
- \lthtmlinlinemathA{tex2html_wrap_inline3378}%
733
- $ A'$%
734
- \lthtmlinlinemathZ
735
- \lthtmlcheckvsize\clearpage}
736
-
737
- {\newpage\clearpage
738
- \lthtmlinlinemathA{tex2html_wrap_indisplay3381}%
739
- $\displaystyle A' = A - \overline{A}$%
740
- \lthtmlindisplaymathZ
741
- \lthtmlcheckvsize\clearpage}
742
-
743
- {\newpage\clearpage
744
- \lthtmlinlinemathA{tex2html_wrap_inline3383}%
745
- $ \overline{A'}=0$%
746
- \lthtmlinlinemathZ
747
- \lthtmlcheckvsize\clearpage}
748
-
749
- {\newpage\clearpage
750
- \lthtmlinlinemathA{tex2html_wrap_inline3385}%
751
- $ \partial \overline{A}/\partial\lambda = 0$%
752
- \lthtmlinlinemathZ
753
- \lthtmlcheckvsize\clearpage}
754
-
755
- {\newpage\clearpage
756
- \setcounter{equation}{3}
757
- \lthtmldisplayA{subequations3387}%
758
- \setcounter{equation}{2}
759
- \begin{subequations}\begin{align}
760
57
  & \DP{}{t}(\overline{u} + u')
761
58
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
762
59
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
763
60
  + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \\
764
61
  & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
765
62
  + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
766
63
  & \DP{}{t}(\overline{v} + v')
767
64
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
768
65
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
769
66
  + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
770
67
  & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
771
68
  + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
772
69
  Y',
773
70
  \\
774
71
  & \DP{}{z^*}(\overline{\Phi} + \Phi')
775
72
  = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
776
73
  & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
777
74
  + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
778
75
  + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
779
76
  & \DP{}{t}(\overline{\theta} + \theta')
780
77
  + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
781
78
  + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
782
79
  + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
783
80
  & \qquad = \overline{Q} + Q'
784
81
  \end{align}\end{subequations}%
785
- \lthtmldisplayZ
786
- \lthtmlcheckvsize\clearpage}
787
-
788
- {\newpage\clearpage
789
- \setcounter{equation}{4}
790
- \lthtmldisplayA{subequations3389}%
791
- \setcounter{equation}{3}
792
- \begin{subequations}\begin{align}
793
82
  & \DP{\overline{u}}{t}
794
83
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
795
84
  + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
796
85
  + \overline{w}\DP{\overline{u}}{z^*}
797
86
  - f\overline{v}
798
87
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
799
88
  + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
800
89
  - \overline{X}
801
90
  \\
802
91
  & \qquad
803
92
  = - \DP{u'}{t}
804
93
  - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
805
94
  - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
806
95
  - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
807
96
  & \qquad \qquad
808
97
  - \frac{\overline{v}}{a}\DP{u'}{\phi}
809
98
  - \frac{v'}{a}\DP{\overline{u}}{\phi}
810
99
  - \frac{v'}{a}\DP{u'}{\phi}
811
100
  - \overline{w}\DP{u'}{z^*}
812
101
  - w'\DP{\overline{u}}{z^*}
813
102
  - w'\DP{u'}{z^*}
814
103
  + fv'\notag\\
815
104
  & \qquad \qquad
816
105
  + \frac{\tan\phi}{a} \overline{u} v'
817
106
  + \frac{\tan\phi}{a} u' \overline{v}
818
107
  + \frac{\tan\phi}{a} u'v'
819
108
  - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
820
109
  + X',\\
821
110
  & \DP{\overline{v}}{t}
822
111
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
823
112
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
824
113
  + \overline{w}\DP{\overline{v}}{z^*}
825
114
  + f\overline{u}
826
115
  + \frac{\tan\phi}{a}(\overline{u})^2
827
116
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
828
117
  - \overline{Y}
829
118
  \notag\\
830
119
  & \qquad
831
120
  = - \DP{v'}{t}
832
121
  - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
833
122
  - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
834
123
  - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
835
124
  & \qquad \qquad
836
125
  - \frac{\overline{v}}{a}\DP{v'}{\phi}
837
126
  - \frac{v'}{a}\DP{\overline{v}}{\phi}
838
127
  - \frac{v'}{a}\DP{v'}{\phi}
839
128
  - \overline{w}\DP{v'}{z^*}
840
129
  - w'\DP{\overline{v}}{z^*}
841
130
  - w'\DP{v'}{z^*}
842
131
  - fu'\notag\\
843
132
  & \qquad \qquad
844
133
  - 2\frac{\tan\phi}{a}\overline{u}u'
845
134
  - \frac{\tan\phi}{a}(u')^2
846
135
  - \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
847
136
  + Y',\\
848
137
  & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
849
138
  = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
850
139
  & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
851
140
  + \DP{}{\phi}(\overline{v}\cos\phi)\right]
852
141
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
853
142
  \notag\\
854
143
  & \qquad
855
144
  = - \Dinv{a\cos\phi}\left[
856
145
  \DP{u'}{\lambda}
857
146
  + \DP{}{\phi}(v'\cos\phi)
858
147
  \right]
859
148
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
860
149
  & \DP{\overline{\theta}}{t}
861
150
  + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
862
151
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
863
152
  + \overline{w}\DP{\overline{\theta}}{z^*}
864
153
  - \overline{Q}
865
154
  \notag\\
866
155
  & \qquad
867
156
  = - \DP{\theta'}{t}
868
157
  - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
869
158
  - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
870
159
  - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
871
160
  \notag \\
872
161
  & \qquad \qquad
873
162
  - \frac{\overline{v}}{a}\DP{\theta'}{\phi}
874
163
  - \frac{v'}{a}\DP{\overline{\theta}}{\phi}
875
164
  - \frac{v'}{a}\DP{\theta'}{\phi}
876
165
  - \overline{w}\DP{\theta'}{z^*}
877
166
  - w'\DP{\overline{\theta}}{z^*}
878
167
  - w'\DP{\theta'}{z^*}
879
168
  + Q'
880
169
  \end{align}\end{subequations}%
881
- \lthtmldisplayZ
882
- \lthtmlcheckvsize\clearpage}
883
-
884
- {\newpage\clearpage
885
- \setcounter{equation}{5}
886
- \lthtmldisplayA{subequations3391}%
887
- \setcounter{equation}{4}
888
- \begin{subequations}\begin{align}
889
170
  & \DP{\overline{u}}{t}
890
171
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
891
172
  + \overline{w}\DP{\overline{u}}{z^*}
892
173
  - f\overline{v}
893
174
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
894
175
  - \overline{X}
895
176
  \\
896
177
  & \qquad
897
178
  = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
898
179
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
899
180
  - \overline{w'\DP{u'}{z^*}}
900
181
  + \frac{\tan\phi}{a}\overline{u'v'},\\
901
182
  & \DP{\overline{v}}{t}
902
183
  + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
903
184
  + \overline{w} \DP{\overline{v}}{z^*}
904
185
  + f \overline{u}
905
186
  + \frac{\tan \phi}{a} (\overline{u})^2
906
187
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
907
188
  - \overline{Y}
908
189
  \notag\\
909
190
  & \qquad
910
191
  = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
911
192
  - \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
912
193
  - \overline{w'\DP{v'}{z^*}}
913
194
  - \frac{\tan \phi}{a} \overline{u'^2},\\
914
195
  & \DP{\overline{\Phi}}{z^*}
915
196
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
916
197
  & \Dinv{a\cos\phi}
917
198
  \left[
918
199
  \DP{}{\phi}(\overline{v}\cos\phi)
919
200
  \right]
920
201
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
921
202
  = 0,\\
922
203
  & \DP{\overline{\theta}}{t}
923
204
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
924
205
  + \overline{w}\DP{\overline{\theta}}{z^*}
925
206
  - \overline{Q} =
926
207
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
927
208
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
928
209
  - \overline{w'\DP{\theta'}{z^*}}
929
210
  \end{align}\end{subequations}%
930
- \lthtmldisplayZ
931
- \lthtmlcheckvsize\clearpage}
932
-
933
- {\newpage\clearpage
934
- \lthtmlinlinemathA{tex2html_wrap_indisplay3394}%
935
- $\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
936
- + \DP{}{\phi}(v'\cos\phi)\right]
937
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
938
- = 0$%
939
- \lthtmlindisplaymathZ
940
- \lthtmlcheckvsize\clearpage}
941
-
942
- {\newpage\clearpage
943
- \lthtmlinlinemathA{tex2html_wrap_inline3396}%
944
- $ u'$%
945
- \lthtmlinlinemathZ
946
- \lthtmlcheckvsize\clearpage}
947
-
948
- {\newpage\clearpage
949
- \lthtmlinlinemathA{tex2html_wrap_indisplay3399}%
950
- $\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
951
- + \Dinv{a} \overline{ u' \DP{v'}{\phi} }
952
- - \frac{\tan \phi}{a} \overline{ u' v' }
953
- + \overline{ u' \DP{w'}{z^*} }
954
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
955
- = 0$%
956
- \lthtmlindisplaymathZ
957
- \lthtmlcheckvsize\clearpage}
958
-
959
- {\newpage\clearpage
960
- \lthtmlinlinemathA{tex2html_wrap_indisplay3400}%
961
- $\displaystyle \DP{\overline{u}}{t}$%
962
- \lthtmlindisplaymathZ
963
- \lthtmlcheckvsize\clearpage}
964
-
965
- {\newpage\clearpage
966
- \lthtmlinlinemathA{tex2html_wrap_indisplay3401}%
967
- $\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
968
211
  + \overline{w}\DP{\overline{u}}{z^*}
969
212
  - f\overline{v}
970
213
  - \frac{\tan\phi}{a}\overline{u}\overline{v}
971
214
  - \overline{X} \notag$%
972
- \lthtmlindisplaymathZ
973
- \lthtmlcheckvsize\clearpage}
974
-
975
- {\newpage\clearpage
976
- \lthtmlinlinemathA{tex2html_wrap_indisplay3402}%
977
- $\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
978
215
  - \Dinv{a}\overline{v'\DP{u'}{\phi}}
979
216
  - \overline{w'\DP{u'}{z^*}}
980
217
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
981
218
  + \frac{2\tan\phi}{a}\overline{u'v'}
982
219
  - \overline{u'\DP{w'}{z^*}}
983
220
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
984
- \lthtmlindisplaymathZ
985
- \lthtmlcheckvsize\clearpage}
986
-
987
- {\newpage\clearpage
988
- \lthtmlinlinemathA{tex2html_wrap_indisplay3403}%
989
- $\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$%
990
- \lthtmlindisplaymathZ
991
- \lthtmlcheckvsize\clearpage}
992
-
993
- {\newpage\clearpage
994
- \lthtmlinlinemathA{tex2html_wrap_indisplay3404}%
995
- $\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
996
221
  = 0,$%
997
- \lthtmlindisplaymathZ
998
- \lthtmlcheckvsize\clearpage}
999
-
1000
- {\newpage\clearpage
1001
- \lthtmlinlinemathA{tex2html_wrap_indisplay3405}%
1002
- $\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
1003
222
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
1004
223
  + \frac{2\tan\phi}{a}\overline{u'v'}$%
1005
- \lthtmlindisplaymathZ
1006
- \lthtmlcheckvsize\clearpage}
1007
-
1008
- {\newpage\clearpage
1009
- \lthtmlinlinemathA{tex2html_wrap_indisplay3406}%
1010
- $\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$%
1011
- \lthtmlindisplaymathZ
1012
- \lthtmlcheckvsize\clearpage}
1013
-
1014
- {\newpage\clearpage
1015
- \lthtmlinlinemathA{tex2html_wrap_indisplay3407}%
1016
- $\displaystyle - \overline{w'\DP{u'}{z^*}}
1017
224
  - \overline{u'\DP{w'}{z^*}}
1018
225
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$%
1019
- \lthtmlindisplaymathZ
1020
- \lthtmlcheckvsize\clearpage}
1021
-
1022
- {\newpage\clearpage
1023
- \lthtmlinlinemathA{tex2html_wrap_indisplay3408}%
1024
- $\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1025
- \lthtmlindisplaymathZ
1026
- \lthtmlcheckvsize\clearpage}
1027
-
1028
- {\newpage\clearpage
1029
- \lthtmlinlinemathA{tex2html_wrap_indisplay3409}%
1030
- $\displaystyle \DP{\overline{u}}{t}
1031
226
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
1032
227
  + \overline{w}\DP{\overline{u}}{z^*}
1033
228
  - f\overline{v}
1034
229
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
1035
230
  - \overline{X}
1036
231
  \notag$%
1037
- \lthtmlindisplaymathZ
1038
- \lthtmlcheckvsize\clearpage}
1039
-
1040
- {\newpage\clearpage
1041
- \lthtmlinlinemathA{tex2html_wrap_indisplay3410}%
1042
- $\displaystyle \qquad
1043
232
  = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
1044
233
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$%
1045
- \lthtmlindisplaymathZ
1046
- \lthtmlcheckvsize\clearpage}
1047
-
1048
- {\newpage\clearpage
1049
- \lthtmlinlinemathA{tex2html_wrap_inline3412}%
1050
- $ v'$%
1051
- \lthtmlinlinemathZ
1052
- \lthtmlcheckvsize\clearpage}
1053
-
1054
- {\newpage\clearpage
1055
- \lthtmlinlinemathA{tex2html_wrap_indisplay3415}%
1056
- $\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
1057
- + \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1058
- + \frac{\tan \phi}{a} \overline{ v'^2 }
1059
- + \overline{ v' \DP{w'}{z^*} }
1060
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
1061
- = 0$%
1062
- \lthtmlindisplaymathZ
1063
- \lthtmlcheckvsize\clearpage}
1064
-
1065
- {\newpage\clearpage
1066
- \lthtmlinlinemathA{tex2html_wrap_indisplay3416}%
1067
- $\displaystyle \DP{\overline{v}}{t}
1068
234
  + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
1069
235
  + \overline{w} \DP{\overline{v}}{z^*}
1070
236
  + f \overline{u}
1071
237
  + \frac{\tan\phi}{a} (\overline{u})^2
1072
238
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1073
239
  - \overline{Y}
1074
240
  \notag$%
1075
- \lthtmlindisplaymathZ
1076
- \lthtmlcheckvsize\clearpage}
1077
-
1078
- {\newpage\clearpage
1079
- \lthtmlinlinemathA{tex2html_wrap_indisplay3417}%
1080
- $\displaystyle \qquad
1081
241
  = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
1082
242
  - \Dinv{a}\overline{{v'}\DP{v'}{\phi}}
1083
243
  - \overline{w'\DP{v'}{z^*}}
1084
244
  - \frac{\tan\phi}{a} \overline{u'^2}
1085
245
  \notag$%
1086
- \lthtmlindisplaymathZ
1087
- \lthtmlcheckvsize\clearpage}
1088
-
1089
- {\newpage\clearpage
1090
- \lthtmlinlinemathA{tex2html_wrap_indisplay3418}%
1091
- $\displaystyle \qquad \qquad
1092
246
  - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
1093
247
  - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1094
248
  + \frac{\tan \phi}{a} \overline{ v'^2 }
1095
249
  - \overline{ v' \DP{w'}{z^*} }
1096
250
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1097
- \lthtmlindisplaymathZ
1098
- \lthtmlcheckvsize\clearpage}
1099
-
1100
- {\newpage\clearpage
1101
- \lthtmlinlinemathA{tex2html_wrap_indisplay3421}%
1102
- $\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
1103
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$%
1104
- \lthtmlindisplaymathZ
1105
- \lthtmlcheckvsize\clearpage}
1106
-
1107
- {\newpage\clearpage
1108
- \lthtmlinlinemathA{tex2html_wrap_indisplay3425}%
1109
- $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
1110
- = 0,$%
1111
- \lthtmlindisplaymathZ
1112
- \lthtmlcheckvsize\clearpage}
1113
-
1114
- {\newpage\clearpage
1115
- \lthtmlinlinemathA{tex2html_wrap_indisplay3427}%
1116
- $\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1117
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
1118
- + \frac{\tan \phi}{a} \overline{ v'^2 }$%
1119
- \lthtmlindisplaymathZ
1120
- \lthtmlcheckvsize\clearpage}
1121
-
1122
- {\newpage\clearpage
1123
- \lthtmlinlinemathA{tex2html_wrap_indisplay3431}%
1124
- $\displaystyle - \Dinv{a \cos \phi}
1125
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$%
1126
- \lthtmlindisplaymathZ
1127
- \lthtmlcheckvsize\clearpage}
1128
-
1129
- {\newpage\clearpage
1130
- \lthtmlinlinemathA{tex2html_wrap_indisplay3433}%
1131
- $\displaystyle - \overline{w'\DP{v'}{z^*}}
1132
- - \overline{ v' \DP{w'}{z^*} }
1133
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$%
1134
- \lthtmlindisplaymathZ
1135
- \lthtmlcheckvsize\clearpage}
1136
-
1137
- {\newpage\clearpage
1138
- \lthtmlinlinemathA{tex2html_wrap_indisplay3437}%
1139
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1140
- \lthtmlindisplaymathZ
1141
- \lthtmlcheckvsize\clearpage}
1142
-
1143
- {\newpage\clearpage
1144
- \lthtmlinlinemathA{tex2html_wrap_indisplay3439}%
1145
- $\displaystyle \qquad
1146
251
  = - \Dinv{a \cos \phi}
1147
252
  \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
1148
253
  - \frac{\tan\phi}{a} \overline{u'^2}
1149
254
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$%
1150
- \lthtmlindisplaymathZ
1151
- \lthtmlcheckvsize\clearpage}
1152
-
1153
- {\newpage\clearpage
1154
- \lthtmlinlinemathA{tex2html_wrap_inline3441}%
1155
- $ \theta'$%
1156
- \lthtmlinlinemathZ
1157
- \lthtmlcheckvsize\clearpage}
1158
-
1159
- {\newpage\clearpage
1160
- \lthtmlinlinemathA{tex2html_wrap_indisplay3444}%
1161
- $\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
1162
- + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1163
- - \frac{\tan \phi}{a} \overline{ \theta' v' }
1164
- + \overline{ \theta' \DP{w'}{z^*} }
1165
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
1166
- = 0$%
1167
- \lthtmlindisplaymathZ
1168
- \lthtmlcheckvsize\clearpage}
1169
-
1170
- {\newpage\clearpage
1171
- \lthtmlinlinemathA{tex2html_wrap_indisplay3445}%
1172
- $\displaystyle \DP{\overline{\theta}}{t}
1173
255
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1174
256
  + \overline{w}\DP{\overline{\theta}}{z^*}
1175
257
  - \overline{Q}
1176
258
  \notag$%
1177
- \lthtmlindisplaymathZ
1178
- \lthtmlcheckvsize\clearpage}
1179
-
1180
- {\newpage\clearpage
1181
- \lthtmlinlinemathA{tex2html_wrap_indisplay3446}%
1182
- $\displaystyle \qquad =
1183
259
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
1184
260
  - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
1185
261
  - \overline{w'\DP{\theta'}{z^*}}
1186
262
  \notag$%
1187
- \lthtmlindisplaymathZ
1188
- \lthtmlcheckvsize\clearpage}
1189
-
1190
- {\newpage\clearpage
1191
- \lthtmlinlinemathA{tex2html_wrap_indisplay3447}%
1192
- $\displaystyle \qquad \qquad
1193
263
  - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
1194
264
  - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1195
265
  + \frac{\tan \phi}{a} \overline{ \theta' v' }
1196
266
  - \overline{ \theta' \DP{w'}{z^*} }
1197
267
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1198
- \lthtmlindisplaymathZ
1199
- \lthtmlcheckvsize\clearpage}
1200
-
1201
- {\newpage\clearpage
1202
- \lthtmlinlinemathA{tex2html_wrap_indisplay3450}%
1203
- $\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
1204
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$%
1205
- \lthtmlindisplaymathZ
1206
- \lthtmlcheckvsize\clearpage}
1207
-
1208
- {\newpage\clearpage
1209
- \lthtmlinlinemathA{tex2html_wrap_indisplay3454}%
1210
- $\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
1211
- = 0,$%
1212
- \lthtmlindisplaymathZ
1213
- \lthtmlcheckvsize\clearpage}
1214
-
1215
- {\newpage\clearpage
1216
- \lthtmlinlinemathA{tex2html_wrap_indisplay3456}%
1217
- $\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
1218
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
1219
- + \frac{\tan \phi}{a} \overline{ \theta' v' }$%
1220
- \lthtmlindisplaymathZ
1221
- \lthtmlcheckvsize\clearpage}
1222
-
1223
- {\newpage\clearpage
1224
- \lthtmlinlinemathA{tex2html_wrap_indisplay3460}%
1225
- $\displaystyle - \Dinv{a \cos \phi}
1226
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$%
1227
- \lthtmlindisplaymathZ
1228
- \lthtmlcheckvsize\clearpage}
1229
-
1230
- {\newpage\clearpage
1231
- \lthtmlinlinemathA{tex2html_wrap_indisplay3462}%
1232
- $\displaystyle - \overline{w'\DP{\theta'}{z^*}}
1233
- - \overline{ \theta' \DP{w'}{z^*} }
1234
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$%
1235
- \lthtmlindisplaymathZ
1236
- \lthtmlcheckvsize\clearpage}
1237
-
1238
- {\newpage\clearpage
1239
- \lthtmlinlinemathA{tex2html_wrap_indisplay3466}%
1240
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1241
- \lthtmlindisplaymathZ
1242
- \lthtmlcheckvsize\clearpage}
1243
-
1244
- {\newpage\clearpage
1245
- \lthtmlinlinemathA{tex2html_wrap_indisplay3467}%
1246
- $\displaystyle \DP{\overline{\theta}}{t}
1247
268
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1248
269
  + \overline{w}\DP{\overline{\theta}}{z^*}
1249
270
  - \overline{Q}
1250
271
  = - \Dinv{a \cos \phi}
1251
272
  \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
1252
273
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$%
1253
- \lthtmlindisplaymathZ
1254
- \lthtmlcheckvsize\clearpage}
1255
-
1256
- {\newpage\clearpage
1257
- \setcounter{equation}{11}
1258
- \lthtmldisplayA{subequations3469}%
1259
- \setcounter{equation}{10}
1260
- \begin{subequations}\begin{align}
1261
274
  \DP{\overline{u}}{t}
1262
275
  & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
1263
276
  + \overline{w} \DP{\overline{u}}{z^*}
1264
277
  - f\overline{v}
1265
278
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
1266
279
  - \overline{X}
1267
280
  \\
1268
281
  & \qquad
1269
282
  = - \Dinv{a\cos^2\phi}
1270
283
  \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1271
284
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
1272
285
  \DP{\overline{v}}{t}
1273
286
  & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
1274
287
  + \overline{w} \DP{\overline{v}}{z^*}
1275
288
  + f \overline{u}
1276
289
  + \frac{\tan\phi}{a} (\overline{u})^2
1277
290
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
1278
291
  - \overline{Y}
1279
292
  \notag\\
1280
293
  & \qquad
1281
294
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
1282
295
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
1283
296
  - \overline{u'^2}\frac{\tan\phi}{a},
1284
297
  \end{align}
1285
298
  \begin{align}
1286
299
  \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
1287
300
  \end{align}
1288
301
  \begin{align}
1289
302
  \Dinv{a\cos\phi}&
1290
303
  \DP{}{\phi}(\overline{v}\cos\phi)
1291
304
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
1292
305
  = 0,
1293
306
  \end{align}
1294
307
  \begin{align}
1295
308
  \DP{\overline{\theta}}{t}
1296
309
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
1297
310
  + \overline{w}\DP{\overline{\theta}}{z^*}
1298
311
  - \overline{Q} =
1299
312
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
1300
313
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
1301
314
  \end{align}\end{subequations}%
1302
- \lthtmldisplayZ
1303
- \lthtmlcheckvsize\clearpage}
1304
-
1305
- \stepcounter{section}
1306
- {\newpage\clearpage
1307
- \setcounter{equation}{12}
1308
- \lthtmldisplayA{subequations3474}%
1309
- \setcounter{equation}{11}
1310
- \begin{subequations}\begin{align}
1311
315
  \overline{v}^*
1312
316
  & =
1313
317
  \overline{v}
1314
318
  - \Dinv{\rho_0} \DP{}{z^*}
1315
319
  \left( \rho_0
1316
320
  \frac{\overline{v'\theta'}}
1317
321
  {\overline{\DP{\theta}{z^*}}}
1318
322
  \right)
1319
323
  \\
1320
324
  \overline{w}^*
1321
325
  & = \overline{w}
1322
326
  + \Dinv{a \cos\phi}
1323
327
  \DP{}{\phi}
1324
328
  \left( \cos \phi
1325
329
  \frac{\overline{v'\theta'}}
1326
330
  {\overline{\DP{\theta}{z^*}}}
1327
331
  \right)
1328
332
  \end{align}\end{subequations}%
1329
- \lthtmldisplayZ
1330
- \lthtmlcheckvsize\clearpage}
1331
-
1332
- {\newpage\clearpage
1333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3477}%
1334
- $\displaystyle {F_\phi}$%
1335
- \lthtmlindisplaymathZ
1336
- \lthtmlcheckvsize\clearpage}
1337
-
1338
- {\newpage\clearpage
1339
- \lthtmlinlinemathA{tex2html_wrap_indisplay3481}%
1340
- $\displaystyle \rho_0 a
1341
- \cos \phi \left(\DP{\overline{u}}{\overline{z^*}}
1342
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1343
- \overline{u'v'}\right)$%
1344
- \lthtmlindisplaymathZ
1345
- \lthtmlcheckvsize\clearpage}
1346
-
1347
- {\newpage\clearpage
1348
- \lthtmlinlinemathA{tex2html_wrap_indisplay3483}%
1349
- $\displaystyle {F_z^*}$%
1350
- \lthtmlindisplaymathZ
1351
- \lthtmlcheckvsize\clearpage}
1352
-
1353
- {\newpage\clearpage
1354
- \lthtmlinlinemathA{tex2html_wrap_indisplay3487}%
1355
- $\displaystyle \rho_0 a
1356
- \cos \phi \left(\left[ f - \frac{\DP{\overline{u}\cos \phi}{\phi}}{a\cos\phi} \right]
1357
- \frac{\overline{v'\theta'}}{\DP{\overline{\theta}}{z^*}} -
1358
- \overline{u'w'}\right)$%
1359
- \lthtmlindisplaymathZ
1360
- \lthtmlcheckvsize\clearpage}
1361
-
1362
- {\newpage\clearpage
1363
- \lthtmlinlinemathA{tex2html_wrap_indisplay3488}%
1364
- $\displaystyle \Dinv{a \cos \phi}
1365
333
  \DP{}{\phi}\left[
1366
334
  \left\{
1367
335
  \overline{v}^*
1368
336
  + \Dinv{\rho_0} \DP{}{z^*}
1369
337
  \left( \rho_0
1370
338
  \frac{\overline{v'\theta'}}
1371
339
  {\overline{\DP{\theta}{z^*}}}
1372
340
  \right)
1373
341
  \right\}
1374
342
  \cos\phi \right]$%
1375
- \lthtmlindisplaymathZ
1376
- \lthtmlcheckvsize\clearpage}
1377
-
1378
- {\newpage\clearpage
1379
- \lthtmlinlinemathA{tex2html_wrap_indisplay3489}%
1380
- $\displaystyle \qquad
1381
343
  + \Dinv{\rho_0}
1382
344
  \DP{}{z^*}
1383
345
  \left[ \rho_0
1384
346
  \left\{
1385
347
  \overline{w}^*
1386
348
  - \Dinv{a \cos\phi}
1387
349
  \DP{}{\phi}
1388
350
  \left( \cos \phi
1389
351
  \frac{\overline{v'\theta'}}
1390
352
  {\overline{\DP{\theta}{z^*}}}
1391
353
  \right)
1392
354
  \right\}
1393
355
  \right]
1394
356
  = 0,$%
1395
- \lthtmlindisplaymathZ
1396
- \lthtmlcheckvsize\clearpage}
1397
-
1398
- {\newpage\clearpage
1399
- \lthtmlinlinemathA{tex2html_wrap_indisplay3490}%
1400
- $\displaystyle \Dinv{a \cos \phi}
1401
357
  \DP{}{\phi}
1402
358
  \left(
1403
359
  \overline{v}^* \cos\phi
1404
360
  \right)
1405
361
  + \Dinv{\rho_0}
1406
362
  \DP{}{z^*}
1407
363
  \left( \rho_0 \overline{w}^* \right)$%
1408
- \lthtmlindisplaymathZ
1409
- \lthtmlcheckvsize\clearpage}
1410
-
1411
- {\newpage\clearpage
1412
- \lthtmlinlinemathA{tex2html_wrap_indisplay3491}%
1413
- $\displaystyle \qquad
1414
364
  + \Dinv{a \cos \phi}
1415
365
  \DP{}{\phi}
1416
366
  \left\{
1417
367
  \Dinv{\rho_0} \DP{}{z^*}
1418
368
  \left( \rho_0
1419
369
  \frac{\overline{v'\theta'}}
1420
370
  {\overline{\DP{\theta}{z^*}}}
1421
371
  \right) \cos\phi
1422
372
  \right\}
1423
373
  - \Dinv{\rho_0}
1424
374
  \DP{}{z^*}
1425
375
  \left\{
1426
376
  \rho_0 \Dinv{a \cos\phi}
1427
377
  \DP{}{\phi}
1428
378
  \left( \cos \phi
1429
379
  \frac{\overline{v'\theta'}}
1430
380
  {\overline{\DP{\theta}{z^*}}}
1431
381
  \right)
1432
382
  \right\}
1433
383
  = 0.$%
1434
- \lthtmlindisplaymathZ
1435
- \lthtmlcheckvsize\clearpage}
1436
-
1437
- {\newpage\clearpage
1438
- \lthtmlinlinemathA{tex2html_wrap_indisplay3492}%
1439
- $\displaystyle \qquad
1440
384
  \Dinv{a \cos \phi}
1441
385
  \DP{}{\phi}
1442
386
  \left\{
1443
387
  \Dinv{\rho_0} \DP{}{z^*}
1444
388
  \left( \rho_0
1445
389
  \frac{\overline{v'\theta'}}
1446
390
  {\overline{\DP{\theta}{z^*}}}
1447
391
  \right) \cos\phi
1448
392
  \right\}
1449
393
  - \Dinv{\rho_0}
1450
394
  \DP{}{z^*}
1451
395
  \left\{
1452
396
  \rho_0 \Dinv{a \cos\phi}
1453
397
  \DP{}{\phi}
1454
398
  \left( \cos \phi
1455
399
  \frac{\overline{v'\theta'}}
1456
400
  {\overline{\DP{\theta}{z^*}}}
1457
401
  \right)
1458
402
  \right\}$%
1459
- \lthtmlindisplaymathZ
1460
- \lthtmlcheckvsize\clearpage}
1461
-
1462
- {\newpage\clearpage
1463
- \lthtmlinlinemathA{tex2html_wrap_indisplay3493}%
1464
- $\displaystyle =
1465
403
  \Dinv{a \cos \phi}
1466
404
  \left[
1467
405
  \DP{}{\phi}
1468
406
  \left\{
1469
407
  \Dinv{\rho_0} \DP{}{z^*}
1470
408
  \left( \rho_0
1471
409
  \frac{\overline{v'\theta'}}
1472
410
  {\overline{\DP{\theta}{z^*}}}
1473
411
  \right) \cos\phi
1474
412
  \right\}
1475
413
  - \Dinv{\rho_0}
1476
414
  \DP{}{z^*}
1477
415
  \left\{
1478
416
  \rho_0
1479
417
  \DP{}{\phi}
1480
418
  \left( \cos \phi
1481
419
  \frac{\overline{v'\theta'}}
1482
420
  {\overline{\DP{\theta}{z^*}}}
1483
421
  \right)
1484
422
  \right\}
1485
423
  \right]$%
1486
- \lthtmlindisplaymathZ
1487
- \lthtmlcheckvsize\clearpage}
1488
-
1489
- {\newpage\clearpage
1490
- \lthtmlinlinemathA{tex2html_wrap_indisplay3494}%
1491
- $\displaystyle =
1492
424
  \Dinv{a \cos \phi}
1493
425
  \left[
1494
426
  \Dinv{\rho_0}
1495
427
  \DP{}{\phi}
1496
428
  \left\{
1497
429
  \DP{}{z^*}
1498
430
  \left( \rho_0
1499
431
  \frac{\overline{v'\theta'}}
1500
432
  {\overline{\DP{\theta}{z^*}}}
1501
433
  \cos\phi
1502
434
  \right)
1503
435
  \right\}
1504
436
  - \Dinv{\rho_0}
1505
437
  \DP{}{z^*}
1506
438
  \left\{
1507
439
  \DP{}{\phi}
1508
440
  \left(\rho_0 \cos \phi
1509
441
  \frac{\overline{v'\theta'}}
1510
442
  {\overline{\DP{\theta}{z^*}}}
1511
443
  \right)
1512
444
  \right\}
1513
445
  \right]$%
1514
- \lthtmlindisplaymathZ
1515
- \lthtmlcheckvsize\clearpage}
1516
-
1517
- {\newpage\clearpage
1518
- \lthtmlinlinemathA{tex2html_wrap_indisplay3495}%
1519
- $\displaystyle = 0.$%
1520
- \lthtmlindisplaymathZ
1521
- \lthtmlcheckvsize\clearpage}
1522
-
1523
- {\newpage\clearpage
1524
- \lthtmlinlinemathA{tex2html_wrap_indisplay3498}%
1525
- $\displaystyle \Dinv{a \cos \phi}
1526
- \DP{}{\phi}
1527
- \left(
1528
- \overline{v}^* \cos\phi
1529
- \right)
1530
- + \Dinv{\rho_0}
1531
- \DP{}{z^*}
1532
- \left( \rho_0 \overline{w}^* \right) = 0.$%
1533
- \lthtmlindisplaymathZ
1534
- \lthtmlcheckvsize\clearpage}
1535
-
1536
- {\newpage\clearpage
1537
- \lthtmlinlinemathA{tex2html_wrap_indisplay3502}%
1538
- $\displaystyle + \Dinv{a}
1539
446
  \left[
1540
447
  \overline{v}^*
1541
448
  + \Dinv{\rho_0} \DP{}{z^*}
1542
449
  \left( \rho_0
1543
450
  \frac{\overline{v'\theta'}}
1544
451
  {\overline{\DP{\theta}{z^*}}}
1545
452
  \right)
1546
453
  \right]
1547
454
  \DP{\overline{u}}{\phi}
1548
455
  + \left[
1549
456
  \overline{w}^*
1550
457
  - \Dinv{a \cos\phi}
1551
458
  \DP{}{\phi}
1552
459
  \left( \cos \phi
1553
460
  \frac{\overline{v'\theta'}}
1554
461
  {\overline{\DP{\theta}{z^*}}}
1555
462
  \right)
1556
463
  \right]
1557
464
  \DP{\overline{u}}{z^*}$%
1558
- \lthtmlindisplaymathZ
1559
- \lthtmlcheckvsize\clearpage}
1560
-
1561
- {\newpage\clearpage
1562
- \lthtmlinlinemathA{tex2html_wrap_indisplay3503}%
1563
- $\displaystyle \qquad \qquad
1564
465
  - f
1565
466
  \left[
1566
467
  \overline{v}^*
1567
468
  + \Dinv{\rho_0} \DP{}{z^*}
1568
469
  \left( \rho_0
1569
470
  \frac{\overline{v'\theta'}}
1570
471
  {\overline{\DP{\theta}{z^*}}}
1571
472
  \right)
1572
473
  \right]
1573
474
  - \frac{\tan \phi}{a} \overline{u}
1574
475
  \left[
1575
476
  \overline{v}^*
1576
477
  + \Dinv{\rho_0} \DP{}{z^*}
1577
478
  \left( \rho_0
1578
479
  \frac{\overline{v'\theta'}}
1579
480
  {\overline{\DP{\theta}{z^*}}}
1580
481
  \right)
1581
482
  \right]
1582
483
  - \overline{X}$%
1583
- \lthtmlindisplaymathZ
1584
- \lthtmlcheckvsize\clearpage}
1585
-
1586
- {\newpage\clearpage
1587
- \lthtmlinlinemathA{tex2html_wrap_indisplay3504}%
1588
- $\displaystyle \qquad
1589
484
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1590
485
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'}),$%
1591
- \lthtmlindisplaymathZ
1592
- \lthtmlcheckvsize\clearpage}
1593
-
1594
- {\newpage\clearpage
1595
- \lthtmlinlinemathA{tex2html_wrap_indisplay3506}%
1596
- $\displaystyle + \frac{\overline{v}^*}{a} \DP{\overline{u}}{\phi}
1597
486
  + \overline{w}^* \DP{\overline{u}}{z^*}
1598
487
  - f \overline{v}^*
1599
488
  - \frac{\tan \phi}{a} \overline{u} \ \overline{v}^*
1600
489
  - \overline{X}$%
1601
- \lthtmlindisplaymathZ
1602
- \lthtmlcheckvsize\clearpage}
1603
-
1604
- {\newpage\clearpage
1605
- \lthtmlinlinemathA{tex2html_wrap_indisplay3507}%
1606
- $\displaystyle \qquad
1607
490
  = - \Dinv{a\cos^2\phi} \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
1608
491
  + \Dinv{a \cos\phi}
1609
492
  \DP{}{\phi}
1610
493
  \left( \cos \phi
1611
494
  \frac{\overline{v'\theta'}}
1612
495
  {\overline{\DP{\theta}{z^*}}}
1613
496
  \right) \DP{\overline{u}}{z^*}$%
1614
- \lthtmlindisplaymathZ
1615
- \lthtmlcheckvsize\clearpage}
1616
-
1617
- {\newpage\clearpage
1618
- \lthtmlinlinemathA{tex2html_wrap_indisplay3508}%
1619
- $\displaystyle \qquad \qquad
1620
497
  + f \Dinv{\rho_0} \DP{}{z^*}
1621
498
  \left( \rho_0
1622
499
  \frac{\overline{v'\theta'}}
1623
500
  {\overline{\DP{\theta}{z^*}}}
1624
501
  \right)
1625
502
  - \Dinv{\rho_0} \DP{}{z^*} (\rho_0\overline{w'u'})$%
1626
- \lthtmlindisplaymathZ
1627
- \lthtmlcheckvsize\clearpage}
1628
-
1629
- {\newpage\clearpage
1630
- \lthtmlinlinemathA{tex2html_wrap_indisplay3509}%
1631
- $\displaystyle \qquad \qquad
1632
503
  - \Dinv{\rho_0 a} \DP{}{z^*}
1633
504
  \left( \rho_0
1634
505
  \frac{\overline{v'\theta'}}
1635
506
  {\overline{\DP{\theta}{z^*}}}
1636
507
  \right)
1637
508
  \DP{\overline{u}}{\phi}
1638
509
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1639
510
  \left( \rho_0
1640
511
  \frac{\overline{v'\theta'}}
1641
512
  {\overline{\DP{\theta}{z^*}}}
1642
513
  \right),$%
1643
- \lthtmlindisplaymathZ
1644
- \lthtmlcheckvsize\clearpage}
1645
-
1646
- {\newpage\clearpage
1647
- \lthtmlinlinemathA{tex2html_wrap_indisplay3511}%
1648
- $\displaystyle + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
1649
514
  \left( \overline{u} \cos \phi \right)
1650
515
  + \overline{w}^* \DP{\overline{u}}{z^*}
1651
516
  - f \overline{v}^*
1652
517
  - \overline{X}$%
1653
- \lthtmlindisplaymathZ
1654
- \lthtmlcheckvsize\clearpage}
1655
-
1656
- {\newpage\clearpage
1657
- \lthtmlinlinemathA{tex2html_wrap_indisplay3512}%
1658
- $\displaystyle \qquad
1659
518
  = - \Dinv{\rho_0 a^2 \cos^2 \phi}
1660
519
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1661
520
  + \Dinv{a \cos\phi}
1662
521
  \DP{}{\phi}
1663
522
  \left( \cos \phi
1664
523
  \frac{\overline{v'\theta'}}
1665
524
  {\overline{\DP{\theta}{z^*}}}
1666
525
  \right) \DP{\overline{u}}{z^*}$%
1667
- \lthtmlindisplaymathZ
1668
- \lthtmlcheckvsize\clearpage}
1669
-
1670
- {\newpage\clearpage
1671
- \lthtmlinlinemathA{tex2html_wrap_indisplay3513}%
1672
- $\displaystyle \qquad \qquad
1673
526
  + \frac{1}{\rho_0 a \cos \phi}
1674
527
  \DP{}{z^*}
1675
528
  \left( f \rho_0 a \cos \phi
1676
529
  \frac{\overline{v'\theta'}}
1677
530
  {\overline{\DP{\theta}{z^*}}}
1678
531
  \right)
1679
532
  - \frac{1}{\rho_0 a \cos \phi}
1680
533
  \DP{}{z^*} (\rho_0 a \cos \phi \overline{w'u'})$%
1681
- \lthtmlindisplaymathZ
1682
- \lthtmlcheckvsize\clearpage}
1683
-
1684
- {\newpage\clearpage
1685
- \lthtmlinlinemathA{tex2html_wrap_indisplay3514}%
1686
- $\displaystyle \qquad \qquad
1687
534
  - \Dinv{\rho_0 a} \DP{}{z^*}
1688
535
  \left( \rho_0
1689
536
  \frac{\overline{v'\theta'}}
1690
537
  {\overline{\DP{\theta}{z^*}}}
1691
538
  \right)
1692
539
  \DP{\overline{u}}{\phi}
1693
540
  + \frac{\tan \phi}{a} \overline{u} \Dinv{\rho_0} \DP{}{z^*}
1694
541
  \left( \rho_0
1695
542
  \frac{\overline{v'\theta'}}
1696
543
  {\overline{\DP{\theta}{z^*}}}
1697
544
  \right)$%
1698
- \lthtmlindisplaymathZ
1699
- \lthtmlcheckvsize\clearpage}
1700
-
1701
- {\newpage\clearpage
1702
- \lthtmlinlinemathA{tex2html_wrap_indisplay3515}%
1703
- $\displaystyle - \Dinv{\rho_0 a^2 \cos^2 \phi}
1704
545
  \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1705
546
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1706
547
  \rho_0 a \cos \phi
1707
548
  \DP{\overline{u}}{z^*}
1708
549
  \DP{}{\phi}
1709
550
  \left( \cos \phi
1710
551
  \frac{\overline{v'\theta'}}
1711
552
  {\overline{\DP{\theta}{z^*}}}
1712
553
  \right)$%
1713
- \lthtmlindisplaymathZ
1714
- \lthtmlcheckvsize\clearpage}
1715
-
1716
- {\newpage\clearpage
1717
- \lthtmlinlinemathA{tex2html_wrap_indisplay3517}%
1718
- $\displaystyle \qquad \qquad
1719
554
  - \Dinv{\rho_0 a} \DP{}{z^*}
1720
555
  \left( \rho_0
1721
556
  \frac{\overline{v'\theta'}}
1722
557
  {\overline{\DP{\theta}{z^*}}}
1723
558
  \DP{\overline{u}}{\phi}
1724
559
  \right)
1725
560
  + \Dinv{\rho_0 a}
1726
561
  \rho_0
1727
562
  \frac{\overline{v'\theta'}}
1728
563
  {\overline{\DP{\theta}{z^*}}}
1729
564
  \DP{}{z^*}
1730
565
  \left(
1731
566
  \DP{\overline{u}}{\phi}
1732
567
  \right)$%
1733
- \lthtmlindisplaymathZ
1734
- \lthtmlcheckvsize\clearpage}
1735
-
1736
- {\newpage\clearpage
1737
- \lthtmlinlinemathA{tex2html_wrap_indisplay3518}%
1738
- $\displaystyle \qquad \qquad
1739
568
  + \frac{\tan \phi}{\rho_0 a}
1740
569
  \DP{}{z^*}
1741
570
  \left( \overline{u} \rho_0
1742
571
  \frac{\overline{v'\theta'}}
1743
572
  {\overline{\DP{\theta}{z^*}}}
1744
573
  \right)
1745
574
  - \frac{\tan \phi}{\rho_0 a}
1746
575
  \rho_0
1747
576
  \frac{\overline{v'\theta'}}
1748
577
  {\overline{\DP{\theta}{z^*}}}
1749
578
  \DP{}{z^*}
1750
579
  \left( \overline{u}
1751
580
  \right)$%
1752
- \lthtmlindisplaymathZ
1753
- \lthtmlcheckvsize\clearpage}
1754
-
1755
- {\newpage\clearpage
1756
- \lthtmlinlinemathA{tex2html_wrap_indisplay3519}%
1757
- $\displaystyle =
1758
581
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1759
582
  \left[
1760
583
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1761
584
  + \rho_0 a \cos \phi
1762
585
  \DP{\overline{u}}{z^*}
1763
586
  \DP{}{\phi}
1764
587
  \left( \cos \phi
1765
588
  \frac{\overline{v'\theta'}}
1766
589
  {\overline{\DP{\theta}{z^*}}}
1767
590
  \right)
1768
591
  \right]$%
1769
- \lthtmlindisplaymathZ
1770
- \lthtmlcheckvsize\clearpage}
1771
-
1772
- {\newpage\clearpage
1773
- \lthtmlinlinemathA{tex2html_wrap_indisplay3520}%
1774
- $\displaystyle \qquad
1775
592
  + \Dinv{\rho_0 a}
1776
593
  \rho_0
1777
594
  \frac{\overline{v'\theta'}}
1778
595
  {\overline{\DP{\theta}{z^*}}}
1779
596
  \DP{}{z^*}
1780
597
  \left(
1781
598
  \DP{\overline{u}}{\phi}
1782
599
  \right)
1783
600
  - \frac{\tan \phi}{\rho_0 a}
1784
601
  \rho_0
1785
602
  \frac{\overline{v'\theta'}}
1786
603
  {\overline{\DP{\theta}{z^*}}}
1787
604
  \DP{\overline{u}}{z^*}$%
1788
- \lthtmlindisplaymathZ
1789
- \lthtmlcheckvsize\clearpage}
1790
-
1791
- {\newpage\clearpage
1792
- \lthtmlinlinemathA{tex2html_wrap_indisplay3521}%
1793
- $\displaystyle \qquad
1794
605
  + \frac{1}{\rho_0 a \cos \phi}
1795
606
  \DP{}{z^*}
1796
607
  \left[
1797
608
  \left( f \rho_0 a \cos \phi
1798
609
  \frac{\overline{v'\theta'}}
1799
610
  {\overline{\DP{\theta}{z^*}}}
1800
611
  \right)
1801
612
  - \rho_0 a \cos \phi \overline{w'u'}
1802
613
  \right]$%
1803
- \lthtmlindisplaymathZ
1804
- \lthtmlcheckvsize\clearpage}
1805
-
1806
- {\newpage\clearpage
1807
- \lthtmlinlinemathA{tex2html_wrap_indisplay3522}%
1808
- $\displaystyle \qquad
1809
614
  - \Dinv{\rho_0 a} \DP{}{z^*}
1810
615
  \left( \rho_0
1811
616
  \frac{\overline{v'\theta'}}
1812
617
  {\overline{\DP{\theta}{z^*}}}
1813
618
  \DP{\overline{u}}{\phi}
1814
619
  \right)
1815
620
  + \frac{\tan \phi}{\rho_0 a}
1816
621
  \DP{}{z^*}
1817
622
  \left( \overline{u} \rho_0
1818
623
  \frac{\overline{v'\theta'}}
1819
624
  {\overline{\DP{\theta}{z^*}}}
1820
625
  \right)$%
1821
- \lthtmlindisplaymathZ
1822
- \lthtmlcheckvsize\clearpage}
1823
-
1824
- {\newpage\clearpage
1825
- \lthtmlinlinemathA{tex2html_wrap_indisplay3524}%
1826
- $\displaystyle \qquad
1827
626
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1828
627
  \left[
1829
628
  \rho_0 a \cos^2 \phi
1830
629
  \frac{\overline{v'\theta'}}
1831
630
  {\overline{\DP{\theta}{z^*}}}
1832
631
  \DP{}{z^*}
1833
632
  \left(
1834
633
  \DP{\overline{u}}{\phi}
1835
634
  \right)
1836
635
  - \rho_0 a \cos^2 \phi \tan \phi
1837
636
  \frac{\overline{v'\theta'}}
1838
637
  {\overline{\DP{\theta}{z^*}}}
1839
638
  \DP{\overline{u}}{z^*}
1840
639
  \right]$%
1841
- \lthtmlindisplaymathZ
1842
- \lthtmlcheckvsize\clearpage}
1843
-
1844
- {\newpage\clearpage
1845
- \lthtmlinlinemathA{tex2html_wrap_indisplay3526}%
1846
- $\displaystyle \qquad
1847
640
  + \Dinv{\rho_0 a \cos \phi}
1848
641
  \left[
1849
642
  - \cos \phi
1850
643
  \DP{}{z^*}
1851
644
  \left( \rho_0
1852
645
  \frac{\overline{v'\theta'}}
1853
646
  {\overline{\DP{\theta}{z^*}}}
1854
647
  \DP{\overline{u}}{\phi}
1855
648
  \right)
1856
649
  + \cos \phi \tan \phi
1857
650
  \DP{}{z^*}
1858
651
  \left( \overline{u} \rho_0
1859
652
  \frac{\overline{v'\theta'}}
1860
653
  {\overline{\DP{\theta}{z^*}}}
1861
654
  \right)
1862
655
  \right]$%
1863
- \lthtmlindisplaymathZ
1864
- \lthtmlcheckvsize\clearpage}
1865
-
1866
- {\newpage\clearpage
1867
- \lthtmlinlinemathA{tex2html_wrap_indisplay3529}%
1868
- $\displaystyle \qquad
1869
656
  + \frac{1}{\rho_0 a \cos \phi}
1870
657
  \DP{}{z^*}
1871
658
  \left[
1872
659
  f \rho_0 a \cos \phi
1873
660
  \frac{\overline{v'\theta'}}
1874
661
  {\overline{\DP{\theta}{z^*}}}
1875
662
  - \rho_0 a \cos \phi \overline{w'u'}
1876
663
  \right]$%
1877
- \lthtmlindisplaymathZ
1878
- \lthtmlcheckvsize\clearpage}
1879
-
1880
- {\newpage\clearpage
1881
- \lthtmlinlinemathA{tex2html_wrap_indisplay3530}%
1882
- $\displaystyle \qquad
1883
664
  + \Dinv{\rho_0 a \cos \phi}
1884
665
  \DP{}{z^*}
1885
666
  \left[
1886
667
  - \rho_0 \cos \phi
1887
668
  \frac{\overline{v'\theta'}}
1888
669
  {\overline{\DP{\theta}{z^*}}}
1889
670
  \DP{\overline{u}}{\phi}
1890
671
  + \sin \phi \overline{u} \rho_0
1891
672
  \frac{\overline{v'\theta'}}
1892
673
  {\overline{\DP{\theta}{z^*}}}
1893
674
  \right]$%
1894
- \lthtmlindisplaymathZ
1895
- \lthtmlcheckvsize\clearpage}
1896
-
1897
- {\newpage\clearpage
1898
- \lthtmlinlinemathA{tex2html_wrap_indisplay3531}%
1899
- $\displaystyle \Dinv{\rho_0 a^2 \cos^2 \phi}
1900
675
  \left[
1901
676
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1902
677
  + \rho_0 a \cos \phi
1903
678
  \DP{\overline{u}}{z^*}
1904
679
  \DP{}{\phi}
1905
680
  \left( \cos \phi
1906
681
  \frac{\overline{v'\theta'}}
1907
682
  {\overline{\DP{\theta}{z^*}}}
1908
683
  \right)
1909
684
  \right]$%
1910
- \lthtmlindisplaymathZ
1911
- \lthtmlcheckvsize\clearpage}
1912
-
1913
- {\newpage\clearpage
1914
- \lthtmlinlinemathA{tex2html_wrap_indisplay3533}%
1915
- $\displaystyle =
1916
685
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1917
686
  \left[
1918
687
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1919
688
  \right]$%
1920
- \lthtmlindisplaymathZ
1921
- \lthtmlcheckvsize\clearpage}
1922
-
1923
- {\newpage\clearpage
1924
- \lthtmlinlinemathA{tex2html_wrap_indisplay3534}%
1925
- $\displaystyle \qquad
1926
689
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1927
690
  \left[
1928
691
  \rho_0 a \cos^2 \phi
1929
692
  \frac{\overline{v'\theta'}}
1930
693
  {\overline{\DP{\theta}{z^*}}}
1931
694
  \DP{}{\phi}
1932
695
  \left(
1933
696
  \DP{\overline{u}}{z^*}
1934
697
  \right)
1935
698
  + \DP{\overline{u}}{z^*}
1936
699
  \DP{}{\phi}
1937
700
  \left(\rho_0 a \cos^2 \phi
1938
701
  \frac{\overline{v'\theta'}}
1939
702
  {\overline{\DP{\theta}{z^*}}}
1940
703
  \right)
1941
704
  \right]$%
1942
- \lthtmlindisplaymathZ
1943
- \lthtmlcheckvsize\clearpage}
1944
-
1945
- {\newpage\clearpage
1946
- \lthtmlinlinemathA{tex2html_wrap_indisplay3535}%
1947
- $\displaystyle =
1948
705
  \Dinv{\rho_0 a^2 \cos^2 \phi}
1949
706
  \left[
1950
707
  - \DP{}{\phi} (\rho_0 a \overline{v'u'} \cos^2 \phi)
1951
708
  \right]
1952
709
  + \Dinv{\rho_0 a^2 \cos^2 \phi}
1953
710
  \left[
1954
711
  \DP{}{\phi}
1955
712
  \left(\rho_0 a \cos^2 \phi
1956
713
  \frac{\overline{v'\theta'}}
1957
714
  {\overline{\DP{\theta}{z^*}}}
1958
715
  \DP{\overline{u}}{z^*}
1959
716
  \right)
1960
717
  \right]$%
1961
- \lthtmlindisplaymathZ
1962
- \lthtmlcheckvsize\clearpage}
1963
-
1964
- {\newpage\clearpage
1965
- \lthtmlinlinemathA{tex2html_wrap_indisplay3536}%
1966
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1967
718
  \DP{}{\phi}
1968
719
  \left[
1969
720
  - \rho_0 a \overline{v'u'} \cos^2 \phi
1970
721
  + \rho_0 a \cos^2 \phi
1971
722
  \frac{\overline{v'\theta'}}
1972
723
  {\overline{\DP{\theta}{z^*}}}
1973
724
  \DP{\overline{u}}{z^*}
1974
725
  \right]$%
1975
- \lthtmlindisplaymathZ
1976
- \lthtmlcheckvsize\clearpage}
1977
-
1978
- {\newpage\clearpage
1979
- \lthtmlinlinemathA{tex2html_wrap_indisplay3537}%
1980
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1981
726
  \DP{}{\phi}
1982
727
  \left[
1983
728
  \rho_0 a \cos^2 \phi
1984
729
  \left\{
1985
730
  \DP{\overline{u}}{z^*}
1986
731
  \frac{\overline{v'\theta'}}
1987
732
  {\overline{\DP{\theta}{z^*}}}
1988
733
  - \overline{v'u'}
1989
734
  \right\}
1990
735
  \right]$%
1991
- \lthtmlindisplaymathZ
1992
- \lthtmlcheckvsize\clearpage}
1993
-
1994
- {\newpage\clearpage
1995
- \lthtmlinlinemathA{tex2html_wrap_indisplay3538}%
1996
- $\displaystyle = \Dinv{\rho_0 a^2 \cos^2 \phi}
1997
736
  \DP{}{\phi}
1998
737
  \left(
1999
738
  \cos \phi F^{*}_{\phi}
2000
739
  \right)$%
2001
- \lthtmlindisplaymathZ
2002
- \lthtmlcheckvsize\clearpage}
2003
-
2004
- {\newpage\clearpage
2005
- \lthtmlinlinemathA{tex2html_wrap_indisplay3539}%
2006
- $\displaystyle \frac{1}{\rho_0 a \cos \phi}
2007
740
  \DP{}{z^*}
2008
741
  \left[
2009
742
  f \rho_0 a \cos \phi
2010
743
  \frac{\overline{v'\theta'}}
2011
744
  {\overline{\DP{\theta}{z^*}}}
2012
745
  - \rho_0 a \cos \phi \overline{w'u'}
2013
746
  \right]
2014
747
  + \Dinv{\rho_0 a \cos \phi}
2015
748
  \DP{}{z^*}
2016
749
  \left[
2017
750
  - \rho_0 \cos \phi
2018
751
  \frac{\overline{v'\theta'}}
2019
752
  {\overline{\DP{\theta}{z^*}}}
2020
753
  \DP{\overline{u}}{\phi}
2021
754
  + \sin \phi \overline{u} \rho_0
2022
755
  \frac{\overline{v'\theta'}}
2023
756
  {\overline{\DP{\theta}{z^*}}}
2024
757
  \right]$%
2025
- \lthtmlindisplaymathZ
2026
- \lthtmlcheckvsize\clearpage}
2027
-
2028
- {\newpage\clearpage
2029
- \lthtmlinlinemathA{tex2html_wrap_indisplay3540}%
2030
- $\displaystyle =
2031
758
  \frac{1}{\rho_0 a \cos \phi}
2032
759
  \DP{}{z^*}
2033
760
  \left[
2034
761
  \rho_0 a \cos \phi
2035
762
  \left\{
2036
763
  f \frac{\overline{v'\theta'}}
2037
764
  {\overline{\DP{\theta}{z^*}}}
2038
765
  - \overline{w'u'}
2039
766
  - \frac{\overline{v'\theta'}}
2040
767
  {a \overline{\DP{\theta}{z^*}}}
2041
768
  \DP{\overline{u}}{\phi}
2042
769
  + \sin \phi \overline{u}
2043
770
  \frac{\overline{v'\theta'}}
2044
771
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
2045
772
  \right\}
2046
773
  \right]$%
2047
- \lthtmlindisplaymathZ
2048
- \lthtmlcheckvsize\clearpage}
2049
-
2050
- {\newpage\clearpage
2051
- \lthtmlinlinemathA{tex2html_wrap_indisplay3541}%
2052
- $\displaystyle =
2053
774
  \frac{1}{\rho_0 a \cos \phi}
2054
775
  \DP{}{z^*}
2055
776
  \left[
2056
777
  \rho_0 a \cos \phi
2057
778
  \left\{
2058
779
  f \frac{\overline{v'\theta'}}
2059
780
  {\overline{\DP{\theta}{z^*}}}
2060
781
  - \left(
2061
782
  \cos \phi
2062
783
  \DP{\overline{u}}{\phi}
2063
784
  - \sin \phi \overline{u}
2064
785
  \right)
2065
786
  \frac{\overline{v'\theta'}}
2066
787
  {a \cos \phi \overline{\DP{\theta}{z^*}}}
2067
788
  - \overline{w'u'}
2068
789
  \right\}
2069
790
  \right]$%
2070
- \lthtmlindisplaymathZ
2071
- \lthtmlcheckvsize\clearpage}
2072
-
2073
- {\newpage\clearpage
2074
- \lthtmlinlinemathA{tex2html_wrap_indisplay3543}%
2075
- $\displaystyle =
2076
791
  \frac{1}{\rho_0 a \cos \phi}
2077
792
  \DP{}{z^*}
2078
793
  \left[
2079
794
  \rho_0 a \cos \phi
2080
795
  \left\{
2081
796
  \left( f
2082
797
  - \frac{\DP{(\overline{u} \cos \phi)}{\phi}}
2083
798
  {a \cos \phi}
2084
799
  \right)
2085
800
  \frac{\overline{v'\theta'}}
2086
801
  {\overline{\DP{\theta}{z^*}}}
2087
802
  - \overline{w'u'}
2088
803
  \right\}
2089
804
  \right]$%
2090
- \lthtmlindisplaymathZ
2091
- \lthtmlcheckvsize\clearpage}
2092
-
2093
- {\newpage\clearpage
2094
- \lthtmlinlinemathA{tex2html_wrap_indisplay3544}%
2095
- $\displaystyle = \frac{1}{\rho_0 a \cos \phi}
2096
805
  \DP{F^{*}_{z}}{z^*}$%
2097
- \lthtmlindisplaymathZ
2098
- \lthtmlcheckvsize\clearpage}
2099
-
2100
- {\newpage\clearpage
2101
- \lthtmlinlinemathA{tex2html_wrap_indisplay3545}%
2102
- $\displaystyle \DP{\overline{u}}{t}
2103
806
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
2104
807
  \left( \overline{u} \cos \phi \right)
2105
808
  + \overline{w}^* \DP{\overline{u}}{z^*}
2106
809
  - f \overline{v}^*
2107
810
  - \overline{X}
2108
811
  = \Dinv{\rho_0 a^2 \cos^2 \phi}
2109
812
  \DP{}{\phi}
2110
813
  \left(
2111
814
  \cos \phi F^{*}_{\phi}
2112
815
  \right)
2113
816
  + \frac{1}{\rho_0 a \cos \phi}
2114
817
  \DP{F^{*}_{z}}{z^*},
2115
818
  \nonumber$%
2116
- \lthtmlindisplaymathZ
2117
- \lthtmlcheckvsize\clearpage}
2118
-
2119
- {\newpage\clearpage
2120
- \lthtmlinlinemathA{tex2html_wrap_indisplay3546}%
2121
- $\displaystyle \DP{\overline{u}}{t}
2122
819
  + \frac{\overline{v}^*}{a \cos \phi} \DP{}{\phi}
2123
820
  \left( \overline{u} \cos \phi \right)
2124
821
  + \overline{w}^* \DP{\overline{u}}{z^*}
2125
822
  - f \overline{v}^*
2126
823
  - \overline{X}
2127
824
  = \Dinv{\rho_0 a \cos \phi} \Ddiv{\Dvect{F}}.$%
2128
- \lthtmlindisplaymathZ
2129
- \lthtmlcheckvsize\clearpage}
2130
-
2131
- {\newpage\clearpage
2132
- \lthtmlinlinemathA{tex2html_wrap_indisplay3547}%
2133
- $\displaystyle \Ddiv{\Dvect{F}}
2134
825
  = \Dinv{a \cos \phi } \DP{(\cos \phi F_{\phi})}{\phi} + \DP{F_{z^{*}}}{z^*}$%
2135
- \lthtmlindisplaymathZ
2136
- \lthtmlcheckvsize\clearpage}
2137
-
2138
- {\newpage\clearpage
2139
- \lthtmlinlinemathA{tex2html_wrap_indisplay3548}%
2140
- $\displaystyle \DP{\overline{\theta}}{t}
2141
826
  + \frac{1}{a}
2142
827
  \left[
2143
828
  \overline{v}^*
2144
829
  + \Dinv{\rho_0} \DP{}{z^*}
2145
830
  \left( \rho_0
2146
831
  \frac{\overline{v'\theta'}}
2147
832
  {\overline{\DP{\theta}{z^*}}}
2148
833
  \right)
2149
834
  \right]
2150
835
  \DP{\overline{\theta}}{\phi}
2151
836
  + \left[
2152
837
  \overline{w}^*
2153
838
  - \Dinv{a \cos\phi}
2154
839
  \DP{}{\phi}
2155
840
  \left( \cos \phi
2156
841
  \frac{\overline{v'\theta'}}
2157
842
  {\overline{\DP{\theta}{z^*}}}
2158
843
  \right)
2159
844
  \right]
2160
845
  \DP{\overline{\theta}}{z^*}
2161
846
  - \overline{Q}$%
2162
- \lthtmlindisplaymathZ
2163
- \lthtmlcheckvsize\clearpage}
2164
-
2165
- {\newpage\clearpage
2166
- \lthtmlinlinemathA{tex2html_wrap_indisplay3549}%
2167
- $\displaystyle \qquad
2168
847
  =
2169
848
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2170
849
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}),$%
2171
- \lthtmlindisplaymathZ
2172
- \lthtmlcheckvsize\clearpage}
2173
-
2174
- {\newpage\clearpage
2175
- \lthtmlinlinemathA{tex2html_wrap_indisplay3550}%
2176
- $\displaystyle \DP{\overline{\theta}}{t}
2177
850
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
2178
851
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
2179
852
  - \overline{Q}$%
2180
- \lthtmlindisplaymathZ
2181
- \lthtmlcheckvsize\clearpage}
2182
-
2183
- {\newpage\clearpage
2184
- \lthtmlinlinemathA{tex2html_wrap_indisplay3551}%
2185
- $\displaystyle \qquad
2186
853
  = - \Dinv{\rho_0 a} \DP{}{z^*}
2187
854
  \left( \rho_0
2188
855
  \frac{\overline{v'\theta'}}
2189
856
  {\overline{\DP{\theta}{z^*}}}
2190
857
  \right) \DP{\overline{\theta}}{\phi}
2191
858
  + \Dinv{a \cos\phi}
2192
859
  \DP{}{\phi}
2193
860
  \left( \cos \phi
2194
861
  \frac{\overline{v'\theta'}}
2195
862
  {\overline{\DP{\theta}{z^*}}}
2196
863
  \right) \DP{\overline{\theta}}{z^*}$%
2197
- \lthtmlindisplaymathZ
2198
- \lthtmlcheckvsize\clearpage}
2199
-
2200
- {\newpage\clearpage
2201
- \lthtmlinlinemathA{tex2html_wrap_indisplay3552}%
2202
- $\displaystyle \qquad \qquad
2203
864
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2204
865
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2205
- \lthtmlindisplaymathZ
2206
- \lthtmlcheckvsize\clearpage}
2207
-
2208
- {\newpage\clearpage
2209
- \lthtmlinlinemathA{tex2html_wrap_indisplay3553}%
2210
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2211
866
  \left( \rho_0
2212
867
  \frac{\overline{v'\theta'}}
2213
868
  {a \overline{\DP{\theta}{z^*}}}
2214
869
  \right) \DP{\overline{\theta}}{\phi}
2215
870
  + \Dinv{a \cos\phi}
2216
871
  \DP{}{\phi}
2217
872
  \left( \cos \phi
2218
873
  \frac{\overline{v'\theta'}}
2219
874
  {\overline{\DP{\theta}{z^*}}}
2220
875
  \right) \DP{\overline{\theta}}{z^*}$%
2221
- \lthtmlindisplaymathZ
2222
- \lthtmlcheckvsize\clearpage}
2223
-
2224
- {\newpage\clearpage
2225
- \lthtmlinlinemathA{tex2html_wrap_indisplay3554}%
2226
- $\displaystyle \qquad
2227
876
  - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
2228
877
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2229
- \lthtmlindisplaymathZ
2230
- \lthtmlcheckvsize\clearpage}
2231
-
2232
- {\newpage\clearpage
2233
- \lthtmlinlinemathA{tex2html_wrap_indisplay3556}%
2234
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2235
878
  \left( \rho_0
2236
879
  \frac{\overline{v'\theta'}}
2237
880
  {a \overline{\DP{\theta}{z^*}}}
2238
881
  \DP{\overline{\theta}}{\phi}
2239
882
  \right)
2240
883
  + \frac{\overline{v'\theta'}}
2241
884
  {a \overline{\DP{\theta}{z^*}}}
2242
885
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}$%
2243
- \lthtmlindisplaymathZ
2244
- \lthtmlcheckvsize\clearpage}
2245
-
2246
- {\newpage\clearpage
2247
- \lthtmlinlinemathA{tex2html_wrap_indisplay3557}%
2248
- $\displaystyle \qquad
2249
886
  + \Dinv{a \cos\phi}
2250
887
  \left[
2251
888
  \DP{}{\phi} \left( \cos \phi \overline{v'\theta'} \right)
2252
889
  \frac{1}{\overline{\DP{\theta}{z^*}}}
2253
890
  + \cos \phi \overline{v'\theta'}
2254
891
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2255
892
  \right] \DP{\overline{\theta}}{z^*}$%
2256
- \lthtmlindisplaymathZ
2257
- \lthtmlcheckvsize\clearpage}
2258
-
2259
- {\newpage\clearpage
2260
- \lthtmlinlinemathA{tex2html_wrap_indisplay3560}%
2261
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2262
893
  \left( \rho_0
2263
894
  \frac{\overline{v'\theta'}}
2264
895
  {a \overline{\DP{\theta}{z^*}}}
2265
896
  \DP{\overline{\theta}}{\phi}
2266
897
  \right)
2267
898
  + \frac{\overline{v'\theta'}}
2268
899
  {a \overline{\DP{\theta}{z^*}}}
2269
900
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
2270
901
  + \Dinv{a}
2271
902
  \overline{v'\theta'}
2272
903
  \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2273
904
  \DP{\overline{\theta}}{z^*}
2274
905
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'})$%
2275
- \lthtmlindisplaymathZ
2276
- \lthtmlcheckvsize\clearpage}
2277
-
2278
- {\newpage\clearpage
2279
- \lthtmlinlinemathA{tex2html_wrap_indisplay3562}%
2280
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2281
906
  \left[ \rho_0
2282
907
  \frac{\overline{v'\theta'}}
2283
908
  {a \overline{\DP{\theta}{z^*}}}
2284
909
  \DP{\overline{\theta}}{\phi}
2285
910
  + \rho_0\overline{w'\theta'}
2286
911
  \right]
2287
912
  + \frac{\overline{v'\theta'}}{a}
2288
913
  \left[
2289
914
  \frac{1}
2290
915
  {\overline{\DP{\theta}{z^*}}}
2291
916
  \DP{}{z^*}\DP{\overline{\theta}}{\phi}
2292
917
  + \DP{}{\phi} \left( \overline{\DP{\theta}{z^*}} \right)^{-1}
2293
918
  \DP{\overline{\theta}}{z^*}
2294
919
  \right]$%
2295
- \lthtmlindisplaymathZ
2296
- \lthtmlcheckvsize\clearpage}
2297
-
2298
- {\newpage\clearpage
2299
- \lthtmlinlinemathA{tex2html_wrap_indisplay3564}%
2300
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2301
920
  \left[ \rho_0
2302
921
  \left(
2303
922
  \frac{\overline{v'\theta'}}
2304
923
  {a \overline{\DP{\theta}{z^*}}}
2305
924
  \DP{\overline{\theta}}{\phi}
2306
925
  + \overline{w'\theta'}
2307
926
  \right)
2308
927
  \right]
2309
928
  + \frac{\overline{v'\theta'}}{a}
2310
929
  \DP{}{\phi}
2311
930
  \left(
2312
931
  \frac{ \DP{\overline{\theta}}{z^*} }
2313
932
  { \overline{\DP{\theta}{z^*}} }
2314
933
  \right)$%
2315
- \lthtmlindisplaymathZ
2316
- \lthtmlcheckvsize\clearpage}
2317
-
2318
- {\newpage\clearpage
2319
- \lthtmlinlinemathA{tex2html_wrap_indisplay3566}%
2320
- $\displaystyle - \Dinv{\rho_0} \DP{}{z^*}
2321
934
  \left[ \rho_0
2322
935
  \left(
2323
936
  \frac{\overline{v'\theta'}}
2324
937
  {a \overline{\DP{\theta}{z^*}}}
2325
938
  \DP{\overline{\theta}}{\phi}
2326
939
  + \overline{w'\theta'}
2327
940
  \right)
2328
941
  \right].$%
2329
- \lthtmlindisplaymathZ
2330
- \lthtmlcheckvsize\clearpage}
2331
-
2332
- {\newpage\clearpage
2333
- \lthtmlinlinemathA{tex2html_wrap_indisplay3567}%
2334
- $\displaystyle \DP{\overline{\theta}}{t}
2335
942
  + \frac{\overline{v}^*}{a} \DP{\overline{\theta}}{\phi}
2336
943
  + \overline{w}^* \DP{\overline{\theta}}{z^*}
2337
944
  - \overline{Q}
2338
945
  =
2339
946
  - \Dinv{\rho_0} \DP{}{z^*}
2340
947
  \left[ \rho_0
2341
948
  \left(
2342
949
  \frac{\overline{v'\theta'}}
2343
950
  {a \overline{\DP{\theta}{z^*}}}
2344
951
  \DP{\overline{\theta}}{\phi}
2345
952
  + \overline{w'\theta'}
2346
953
  \right)
2347
954
  \right].$%
2348
- \lthtmlindisplaymathZ
2349
- \lthtmlcheckvsize\clearpage}
2350
-
2351
- {\newpage\clearpage
2352
- \lthtmlinlinemathA{tex2html_wrap_inline3569}%
2353
- $ v$%
2354
- \lthtmlinlinemathZ
2355
- \lthtmlcheckvsize\clearpage}
2356
-
2357
- {\newpage\clearpage
2358
- \lthtmlinlinemathA{tex2html_wrap_indisplay3570}%
2359
- $\displaystyle \DP{}{t}
2360
955
  \left[
2361
956
  \overline{v}^*
2362
957
  + \Dinv{\rho_0} \DP{}{z^*}
2363
958
  \left( \rho_0
2364
959
  \frac{\overline{v'\theta'}}
2365
960
  {\overline{\DP{\theta}{z^*}}}
2366
961
  \right)
2367
962
  \right]
2368
963
  + \frac{1}{a}
2369
964
  \left[
2370
965
  \overline{v}^*
2371
966
  + \Dinv{\rho_0} \DP{}{z^*}
2372
967
  \left( \rho_0
2373
968
  \frac{\overline{v'\theta'}}
2374
969
  {\overline{\DP{\theta}{z^*}}}
2375
970
  \right)
2376
971
  \right]
2377
972
  \DP{}{\phi}
2378
973
  \left[
2379
974
  \overline{v}^*
2380
975
  + \Dinv{\rho_0} \DP{}{z^*}
2381
976
  \left( \rho_0
2382
977
  \frac{\overline{v'\theta'}}
2383
978
  {\overline{\DP{\theta}{z^*}}}
2384
979
  \right)
2385
980
  \right]$%
2386
- \lthtmlindisplaymathZ
2387
- \lthtmlcheckvsize\clearpage}
2388
-
2389
- {\newpage\clearpage
2390
- \lthtmlinlinemathA{tex2html_wrap_indisplay3571}%
2391
- $\displaystyle \qquad \qquad
2392
981
  + \left[
2393
982
  \overline{w}^*
2394
983
  - \Dinv{a \cos\phi}
2395
984
  \DP{}{\phi}
2396
985
  \left( \cos \phi
2397
986
  \frac{\overline{v'\theta'}}
2398
987
  {\overline{\DP{\theta}{z^*}}}
2399
988
  \right)
2400
989
  \right]
2401
990
  \DP{}{z^*}
2402
991
  \left[
2403
992
  \overline{v}^*
2404
993
  + \Dinv{\rho_0} \DP{}{z^*}
2405
994
  \left( \rho_0
2406
995
  \frac{\overline{v'\theta'}}
2407
996
  {\overline{\DP{\theta}{z^*}}}
2408
997
  \right)
2409
998
  \right]$%
2410
- \lthtmlindisplaymathZ
2411
- \lthtmlcheckvsize\clearpage}
2412
-
2413
- {\newpage\clearpage
2414
- \lthtmlinlinemathA{tex2html_wrap_indisplay3572}%
2415
- $\displaystyle \qquad \qquad
2416
999
  + f \overline{u}
2417
1000
  + \frac{\tan\phi}{a} (\overline{u})^2
2418
1001
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
2419
1002
  - \overline{Y}$%
2420
- \lthtmlindisplaymathZ
2421
- \lthtmlcheckvsize\clearpage}
2422
-
2423
- {\newpage\clearpage
2424
- \lthtmlinlinemathA{tex2html_wrap_indisplay3573}%
2425
- $\displaystyle \qquad
2426
1003
  = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
2427
1004
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
2428
1005
  - \overline{u'^2}\frac{\tan\phi}{a},$%
2429
- \lthtmlindisplaymathZ
2430
- \lthtmlcheckvsize\clearpage}
2431
-
2432
- {\newpage\clearpage
2433
- \lthtmlinlinemathA{tex2html_wrap_indisplay3574}%
2434
- $\displaystyle f \overline{u}
2435
1006
  + \frac{\tan\phi}{a} (\overline{u})^2
2436
1007
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}$%
2437
- \lthtmlindisplaymathZ
2438
- \lthtmlcheckvsize\clearpage}
2439
-
2440
- {\newpage\clearpage
2441
- \lthtmlinlinemathA{tex2html_wrap_indisplay3575}%
2442
- $\displaystyle \qquad
2443
1008
  = - \DP{}{t}
2444
1009
  \left[
2445
1010
  \overline{v}^*
2446
1011
  + \Dinv{\rho_0} \DP{}{z^*}
2447
1012
  \left( \rho_0
2448
1013
  \frac{\overline{v'\theta'}}
2449
1014
  {\overline{\DP{\theta}{z^*}}}
2450
1015
  \right)
2451
1016
  \right]
2452
1017
  - \frac{1}{a}
2453
1018
  \left[
2454
1019
  \overline{v}^*
2455
1020
  + \Dinv{\rho_0} \DP{}{z^*}
2456
1021
  \left( \rho_0
2457
1022
  \frac{\overline{v'\theta'}}
2458
1023
  {\overline{\DP{\theta}{z^*}}}
2459
1024
  \right)
2460
1025
  \right]
2461
1026
  \DP{}{\phi}
2462
1027
  \left[
2463
1028
  \overline{v}^*
2464
1029
  + \Dinv{\rho_0} \DP{}{z^*}
2465
1030
  \left( \rho_0
2466
1031
  \frac{\overline{v'\theta'}}
2467
1032
  {\overline{\DP{\theta}{z^*}}}
2468
1033
  \right)
2469
1034
  \right]$%
2470
- \lthtmlindisplaymathZ
2471
- \lthtmlcheckvsize\clearpage}
2472
-
2473
- {\newpage\clearpage
2474
- \lthtmlinlinemathA{tex2html_wrap_indisplay3576}%
2475
- $\displaystyle \qquad \qquad
2476
1035
  - \left[
2477
1036
  \overline{w}^*
2478
1037
  - \Dinv{a \cos\phi}
2479
1038
  \DP{}{\phi}
2480
1039
  \left( \cos \phi
2481
1040
  \frac{\overline{v'\theta'}}
2482
1041
  {\overline{\DP{\theta}{z^*}}}
2483
1042
  \right)
2484
1043
  \right]
2485
1044
  \DP{}{z^*}
2486
1045
  \left[
2487
1046
  \overline{v}^*
2488
1047
  + \Dinv{\rho_0} \DP{}{z^*}
2489
1048
  \left( \rho_0
2490
1049
  \frac{\overline{v'\theta'}}
2491
1050
  {\overline{\DP{\theta}{z^*}}}
2492
1051
  \right)
2493
1052
  \right]$%
2494
- \lthtmlindisplaymathZ
2495
- \lthtmlcheckvsize\clearpage}
2496
-
2497
- {\newpage\clearpage
2498
- \lthtmlinlinemathA{tex2html_wrap_indisplay3577}%
2499
- $\displaystyle \qquad \qquad
2500
1053
  - \Dinv{a\cos\phi} \DP{}{\phi}(\overline{v'^2} \cos \phi)
2501
1054
  - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{v' w'})
2502
1055
  - \overline{u'^2} \frac{\tan\phi}{a}
2503
1056
  + \overline{Y}$%
2504
- \lthtmlindisplaymathZ
2505
- \lthtmlcheckvsize\clearpage}
2506
-
2507
- {\newpage\clearpage
2508
- \lthtmlinlinemathA{tex2html_wrap_inline3579}%
2509
- $ G$%
2510
- \lthtmlinlinemathZ
2511
- \lthtmlcheckvsize\clearpage}
2512
-
2513
- {\newpage\clearpage
2514
- \lthtmlinlinemathA{tex2html_wrap_indisplay3582}%
2515
- $\displaystyle \overline{u}
2516
1057
  \left( f + \frac{\tan\phi}{a} \overline{u} \right)
2517
1058
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
2518
1059
  = G.$%
2519
- \lthtmlindisplaymathZ
2520
- \lthtmlcheckvsize\clearpage}
2521
-
2522
- {\newpage\clearpage
2523
- \setcounter{equation}{17}
2524
- \lthtmldisplayA{subequations3584}%
2525
- \setcounter{equation}{16}
2526
- \begin{subequations}\begin{align}&
2527
1060
  \DP{\overline{u}}{t}
2528
1061
  + \overline{v}^*
2529
1062
  \left[
2530
1063
  \Dinv{a\cos\phi}\DP{}{\phi}(\overline{u}\cos\phi) - f
2531
1064
  \right]
2532
1065
  + \overline{w}^*\DP{\overline{u}}{z^*}
2533
1066
  - \overline{X}
2534
1067
  = \Dinv{\rho_0 a \cos\phi}\Ddiv\Dvect{F}, \\&
2535
1068
  \overline{u}
2536
1069
  \left( f + \overline{u}\frac{\tan\phi}{a} \right)
2537
1070
  + \Dinv{a}\DP{\overline{\Phi}}{\phi}
2538
1071
  = G.
2539
1072
  \end{align}
2540
1073
  \begin{align}
2541
1074
  \DP{\overline{\Phi}}{z^*}
2542
1075
  - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
2543
1076
  = 0.
2544
1077
  \end{align}
2545
1078
  \begin{align}
2546
1079
  \Dinv{a\cos\phi}&\left[
2547
1080
  \DP{}{\phi}(\overline{v}^*\cos\phi)\right]
2548
1081
  + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w}^*)
2549
1082
  = 0.
2550
1083
  \end{align}
2551
1084
  \begin{align}
2552
1085
  \DP{\overline{\theta}}{t}
2553
1086
  + \frac{\overline{v}^*}{a}\DP{\overline{\theta}}{\phi}
2554
1087
  + \overline{w}^*\DP{\overline{\theta}}{z^*}
2555
1088
  - \overline{Q} =
2556
1089
  - \Dinv{\rho_0}\DP{}{z^*}
2557
1090
  \left[\rho_0
2558
1091
  \left(
2559
1092
  \overline{v'\theta'}\frac{\DP{\overline{\theta}}{\phi}}
2560
1093
  {a\DP{\overline{\theta}}{z^*}} + \overline{w'\theta'}
2561
1094
  \right)
2562
1095
  \right].
2563
1096
  \end{align}\end{subequations}%
2564
- \lthtmldisplayZ
2565
- \lthtmlcheckvsize\clearpage}
2566
-
2567
-
2568
- \end{document}