gphys 1.1.1 → 1.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/ChangeLog +221 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +18 -30
- data/README +23 -26
- data/README.md +29 -0
- data/Rakefile +1 -56
- data/bin/gpaop +2 -1
- data/bin/gpcut +3 -2
- data/bin/gpedit +6 -2
- data/bin/gpmath +3 -2
- data/bin/gpmaxmin +3 -2
- data/bin/gpprint +2 -1
- data/bin/gpvect +28 -5
- data/bin/gpview +43 -5
- data/extconf.rb +5 -6
- data/gphys.gemspec +34 -0
- data/interpo.c +63 -24
- data/lib/gphys.rb +2 -0
- data/lib/numru/dclext.rb +2636 -0
- data/lib/numru/derivative.rb +53 -12
- data/lib/numru/ganalysis/eof.rb +4 -0
- data/lib/numru/ganalysis/histogram.rb +73 -5
- data/lib/numru/ganalysis/met.rb +163 -2
- data/lib/numru/ganalysis/planet.rb +230 -20
- data/lib/numru/ggraph.rb +147 -2247
- data/lib/numru/gphys/assoccoords.rb +19 -3
- data/lib/numru/gphys/axis.rb +1 -1
- data/lib/numru/gphys/coordmapping.rb +2 -2
- data/lib/numru/gphys/derivative.rb +56 -13
- data/lib/numru/gphys/gphys.rb +17 -1
- data/lib/numru/gphys/gphys_grads_io.rb +6 -5
- data/lib/numru/gphys/gphys_grib_io.rb +6 -6
- data/lib/numru/gphys/gphys_io.rb +25 -6
- data/lib/numru/gphys/grads_gridded.rb +31 -29
- data/lib/numru/gphys/grib.rb +13 -9
- data/lib/numru/gphys/interpolate.rb +153 -29
- data/lib/numru/gphys/unumeric.rb +29 -6
- data/lib/numru/gphys/varray.rb +9 -0
- data/lib/numru/gphys/varraygrib.rb +70 -8
- data/lib/version.rb +3 -0
- metadata +247 -531
- data/doc/attribute.html +0 -19
- data/doc/attributenetcdf.html +0 -15
- data/doc/axis.html +0 -376
- data/doc/coordmapping.html +0 -111
- data/doc/coordtransform.html +0 -36
- data/doc/derivative/gphys-derivative.html +0 -80
- data/doc/derivative/index.html +0 -21
- data/doc/derivative/index.rd +0 -14
- data/doc/derivative/math-doc/document/document.css +0 -30
- data/doc/derivative/math-doc/document/document.html +0 -57
- data/doc/derivative/math-doc/document/images.aux +0 -1
- data/doc/derivative/math-doc/document/images.log +0 -385
- data/doc/derivative/math-doc/document/images.pl +0 -186
- data/doc/derivative/math-doc/document/images.tex +0 -364
- data/doc/derivative/math-doc/document/img1.png +0 -0
- data/doc/derivative/math-doc/document/img10.png +0 -0
- data/doc/derivative/math-doc/document/img11.png +0 -0
- data/doc/derivative/math-doc/document/img12.png +0 -0
- data/doc/derivative/math-doc/document/img13.png +0 -0
- data/doc/derivative/math-doc/document/img14.png +0 -0
- data/doc/derivative/math-doc/document/img15.png +0 -0
- data/doc/derivative/math-doc/document/img16.png +0 -0
- data/doc/derivative/math-doc/document/img17.png +0 -0
- data/doc/derivative/math-doc/document/img18.png +0 -0
- data/doc/derivative/math-doc/document/img19.png +0 -0
- data/doc/derivative/math-doc/document/img2.png +0 -0
- data/doc/derivative/math-doc/document/img20.png +0 -0
- data/doc/derivative/math-doc/document/img21.png +0 -0
- data/doc/derivative/math-doc/document/img22.png +0 -0
- data/doc/derivative/math-doc/document/img23.png +0 -0
- data/doc/derivative/math-doc/document/img24.png +0 -0
- data/doc/derivative/math-doc/document/img25.png +0 -0
- data/doc/derivative/math-doc/document/img26.png +0 -0
- data/doc/derivative/math-doc/document/img27.png +0 -0
- data/doc/derivative/math-doc/document/img28.png +0 -0
- data/doc/derivative/math-doc/document/img29.png +0 -0
- data/doc/derivative/math-doc/document/img3.png +0 -0
- data/doc/derivative/math-doc/document/img30.png +0 -0
- data/doc/derivative/math-doc/document/img4.png +0 -0
- data/doc/derivative/math-doc/document/img5.png +0 -0
- data/doc/derivative/math-doc/document/img6.png +0 -0
- data/doc/derivative/math-doc/document/img7.png +0 -0
- data/doc/derivative/math-doc/document/img8.png +0 -0
- data/doc/derivative/math-doc/document/img9.png +0 -0
- data/doc/derivative/math-doc/document/index.html +0 -57
- data/doc/derivative/math-doc/document/labels.pl +0 -13
- data/doc/derivative/math-doc/document/next.png +0 -0
- data/doc/derivative/math-doc/document/next_g.png +0 -0
- data/doc/derivative/math-doc/document/node1.html +0 -238
- data/doc/derivative/math-doc/document/node2.html +0 -75
- data/doc/derivative/math-doc/document/prev.png +0 -0
- data/doc/derivative/math-doc/document/prev_g.png +0 -0
- data/doc/derivative/math-doc/document/up.png +0 -0
- data/doc/derivative/math-doc/document/up_g.png +0 -0
- data/doc/derivative/math-doc/document.pdf +0 -0
- data/doc/derivative/math-doc/document.tex +0 -158
- data/doc/derivative/numru-derivative.html +0 -129
- data/doc/ep_flux/ep_flux.html +0 -469
- data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
- data/doc/ep_flux/index.html +0 -31
- data/doc/ep_flux/index.rd +0 -24
- data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
- data/doc/ep_flux/math-doc/document/contents.png +0 -0
- data/doc/ep_flux/math-doc/document/crossref.png +0 -0
- data/doc/ep_flux/math-doc/document/document.css +0 -30
- data/doc/ep_flux/math-doc/document/document.html +0 -101
- data/doc/ep_flux/math-doc/document/images.aux +0 -1
- data/doc/ep_flux/math-doc/document/images.log +0 -1375
- data/doc/ep_flux/math-doc/document/images.pl +0 -1328
- data/doc/ep_flux/math-doc/document/images.tex +0 -1471
- data/doc/ep_flux/math-doc/document/img1.png +0 -0
- data/doc/ep_flux/math-doc/document/img10.png +0 -0
- data/doc/ep_flux/math-doc/document/img100.png +0 -0
- data/doc/ep_flux/math-doc/document/img101.png +0 -0
- data/doc/ep_flux/math-doc/document/img102.png +0 -0
- data/doc/ep_flux/math-doc/document/img103.png +0 -0
- data/doc/ep_flux/math-doc/document/img104.png +0 -0
- data/doc/ep_flux/math-doc/document/img105.png +0 -0
- data/doc/ep_flux/math-doc/document/img106.png +0 -0
- data/doc/ep_flux/math-doc/document/img107.png +0 -0
- data/doc/ep_flux/math-doc/document/img108.png +0 -0
- data/doc/ep_flux/math-doc/document/img109.png +0 -0
- data/doc/ep_flux/math-doc/document/img11.png +0 -0
- data/doc/ep_flux/math-doc/document/img110.png +0 -0
- data/doc/ep_flux/math-doc/document/img111.png +0 -0
- data/doc/ep_flux/math-doc/document/img112.png +0 -0
- data/doc/ep_flux/math-doc/document/img113.png +0 -0
- data/doc/ep_flux/math-doc/document/img114.png +0 -0
- data/doc/ep_flux/math-doc/document/img115.png +0 -0
- data/doc/ep_flux/math-doc/document/img116.png +0 -0
- data/doc/ep_flux/math-doc/document/img117.png +0 -0
- data/doc/ep_flux/math-doc/document/img118.png +0 -0
- data/doc/ep_flux/math-doc/document/img119.png +0 -0
- data/doc/ep_flux/math-doc/document/img12.png +0 -0
- data/doc/ep_flux/math-doc/document/img120.png +0 -0
- data/doc/ep_flux/math-doc/document/img121.png +0 -0
- data/doc/ep_flux/math-doc/document/img122.png +0 -0
- data/doc/ep_flux/math-doc/document/img123.png +0 -0
- data/doc/ep_flux/math-doc/document/img124.png +0 -0
- data/doc/ep_flux/math-doc/document/img125.png +0 -0
- data/doc/ep_flux/math-doc/document/img126.png +0 -0
- data/doc/ep_flux/math-doc/document/img127.png +0 -0
- data/doc/ep_flux/math-doc/document/img128.png +0 -0
- data/doc/ep_flux/math-doc/document/img129.png +0 -0
- data/doc/ep_flux/math-doc/document/img13.png +0 -0
- data/doc/ep_flux/math-doc/document/img130.png +0 -0
- data/doc/ep_flux/math-doc/document/img131.png +0 -0
- data/doc/ep_flux/math-doc/document/img132.png +0 -0
- data/doc/ep_flux/math-doc/document/img133.png +0 -0
- data/doc/ep_flux/math-doc/document/img134.png +0 -0
- data/doc/ep_flux/math-doc/document/img135.png +0 -0
- data/doc/ep_flux/math-doc/document/img136.png +0 -0
- data/doc/ep_flux/math-doc/document/img137.png +0 -0
- data/doc/ep_flux/math-doc/document/img138.png +0 -0
- data/doc/ep_flux/math-doc/document/img139.png +0 -0
- data/doc/ep_flux/math-doc/document/img14.png +0 -0
- data/doc/ep_flux/math-doc/document/img140.png +0 -0
- data/doc/ep_flux/math-doc/document/img141.png +0 -0
- data/doc/ep_flux/math-doc/document/img142.png +0 -0
- data/doc/ep_flux/math-doc/document/img143.png +0 -0
- data/doc/ep_flux/math-doc/document/img144.png +0 -0
- data/doc/ep_flux/math-doc/document/img145.png +0 -0
- data/doc/ep_flux/math-doc/document/img146.png +0 -0
- data/doc/ep_flux/math-doc/document/img147.png +0 -0
- data/doc/ep_flux/math-doc/document/img148.png +0 -0
- data/doc/ep_flux/math-doc/document/img149.png +0 -0
- data/doc/ep_flux/math-doc/document/img15.png +0 -0
- data/doc/ep_flux/math-doc/document/img150.png +0 -0
- data/doc/ep_flux/math-doc/document/img151.png +0 -0
- data/doc/ep_flux/math-doc/document/img152.png +0 -0
- data/doc/ep_flux/math-doc/document/img153.png +0 -0
- data/doc/ep_flux/math-doc/document/img154.png +0 -0
- data/doc/ep_flux/math-doc/document/img155.png +0 -0
- data/doc/ep_flux/math-doc/document/img156.png +0 -0
- data/doc/ep_flux/math-doc/document/img157.png +0 -0
- data/doc/ep_flux/math-doc/document/img158.png +0 -0
- data/doc/ep_flux/math-doc/document/img159.png +0 -0
- data/doc/ep_flux/math-doc/document/img16.png +0 -0
- data/doc/ep_flux/math-doc/document/img160.png +0 -0
- data/doc/ep_flux/math-doc/document/img161.png +0 -0
- data/doc/ep_flux/math-doc/document/img162.png +0 -0
- data/doc/ep_flux/math-doc/document/img163.png +0 -0
- data/doc/ep_flux/math-doc/document/img164.png +0 -0
- data/doc/ep_flux/math-doc/document/img165.png +0 -0
- data/doc/ep_flux/math-doc/document/img166.png +0 -0
- data/doc/ep_flux/math-doc/document/img167.png +0 -0
- data/doc/ep_flux/math-doc/document/img168.png +0 -0
- data/doc/ep_flux/math-doc/document/img169.png +0 -0
- data/doc/ep_flux/math-doc/document/img17.png +0 -0
- data/doc/ep_flux/math-doc/document/img170.png +0 -0
- data/doc/ep_flux/math-doc/document/img171.png +0 -0
- data/doc/ep_flux/math-doc/document/img172.png +0 -0
- data/doc/ep_flux/math-doc/document/img173.png +0 -0
- data/doc/ep_flux/math-doc/document/img174.png +0 -0
- data/doc/ep_flux/math-doc/document/img175.png +0 -0
- data/doc/ep_flux/math-doc/document/img176.png +0 -0
- data/doc/ep_flux/math-doc/document/img177.png +0 -0
- data/doc/ep_flux/math-doc/document/img178.png +0 -0
- data/doc/ep_flux/math-doc/document/img179.png +0 -0
- data/doc/ep_flux/math-doc/document/img18.png +0 -0
- data/doc/ep_flux/math-doc/document/img180.png +0 -0
- data/doc/ep_flux/math-doc/document/img181.png +0 -0
- data/doc/ep_flux/math-doc/document/img182.png +0 -0
- data/doc/ep_flux/math-doc/document/img183.png +0 -0
- data/doc/ep_flux/math-doc/document/img184.png +0 -0
- data/doc/ep_flux/math-doc/document/img185.png +0 -0
- data/doc/ep_flux/math-doc/document/img186.png +0 -0
- data/doc/ep_flux/math-doc/document/img187.png +0 -0
- data/doc/ep_flux/math-doc/document/img188.png +0 -0
- data/doc/ep_flux/math-doc/document/img189.png +0 -0
- data/doc/ep_flux/math-doc/document/img19.png +0 -0
- data/doc/ep_flux/math-doc/document/img190.png +0 -0
- data/doc/ep_flux/math-doc/document/img191.png +0 -0
- data/doc/ep_flux/math-doc/document/img192.png +0 -0
- data/doc/ep_flux/math-doc/document/img193.png +0 -0
- data/doc/ep_flux/math-doc/document/img194.png +0 -0
- data/doc/ep_flux/math-doc/document/img195.png +0 -0
- data/doc/ep_flux/math-doc/document/img196.png +0 -0
- data/doc/ep_flux/math-doc/document/img197.png +0 -0
- data/doc/ep_flux/math-doc/document/img198.png +0 -0
- data/doc/ep_flux/math-doc/document/img199.png +0 -0
- data/doc/ep_flux/math-doc/document/img2.png +0 -0
- data/doc/ep_flux/math-doc/document/img20.png +0 -0
- data/doc/ep_flux/math-doc/document/img200.png +0 -0
- data/doc/ep_flux/math-doc/document/img21.png +0 -0
- data/doc/ep_flux/math-doc/document/img22.png +0 -0
- data/doc/ep_flux/math-doc/document/img23.png +0 -0
- data/doc/ep_flux/math-doc/document/img24.png +0 -0
- data/doc/ep_flux/math-doc/document/img25.png +0 -0
- data/doc/ep_flux/math-doc/document/img26.png +0 -0
- data/doc/ep_flux/math-doc/document/img27.png +0 -0
- data/doc/ep_flux/math-doc/document/img28.png +0 -0
- data/doc/ep_flux/math-doc/document/img29.png +0 -0
- data/doc/ep_flux/math-doc/document/img3.png +0 -0
- data/doc/ep_flux/math-doc/document/img30.png +0 -0
- data/doc/ep_flux/math-doc/document/img31.png +0 -0
- data/doc/ep_flux/math-doc/document/img32.png +0 -0
- data/doc/ep_flux/math-doc/document/img33.png +0 -0
- data/doc/ep_flux/math-doc/document/img34.png +0 -0
- data/doc/ep_flux/math-doc/document/img35.png +0 -0
- data/doc/ep_flux/math-doc/document/img36.png +0 -0
- data/doc/ep_flux/math-doc/document/img37.png +0 -0
- data/doc/ep_flux/math-doc/document/img38.png +0 -0
- data/doc/ep_flux/math-doc/document/img39.png +0 -0
- data/doc/ep_flux/math-doc/document/img4.png +0 -0
- data/doc/ep_flux/math-doc/document/img40.png +0 -0
- data/doc/ep_flux/math-doc/document/img41.png +0 -0
- data/doc/ep_flux/math-doc/document/img42.png +0 -0
- data/doc/ep_flux/math-doc/document/img43.png +0 -0
- data/doc/ep_flux/math-doc/document/img44.png +0 -0
- data/doc/ep_flux/math-doc/document/img45.png +0 -0
- data/doc/ep_flux/math-doc/document/img46.png +0 -0
- data/doc/ep_flux/math-doc/document/img47.png +0 -0
- data/doc/ep_flux/math-doc/document/img48.png +0 -0
- data/doc/ep_flux/math-doc/document/img49.png +0 -0
- data/doc/ep_flux/math-doc/document/img5.png +0 -0
- data/doc/ep_flux/math-doc/document/img50.png +0 -0
- data/doc/ep_flux/math-doc/document/img51.png +0 -0
- data/doc/ep_flux/math-doc/document/img52.png +0 -0
- data/doc/ep_flux/math-doc/document/img53.png +0 -0
- data/doc/ep_flux/math-doc/document/img54.png +0 -0
- data/doc/ep_flux/math-doc/document/img55.png +0 -0
- data/doc/ep_flux/math-doc/document/img56.png +0 -0
- data/doc/ep_flux/math-doc/document/img57.png +0 -0
- data/doc/ep_flux/math-doc/document/img58.png +0 -0
- data/doc/ep_flux/math-doc/document/img59.png +0 -0
- data/doc/ep_flux/math-doc/document/img6.png +0 -0
- data/doc/ep_flux/math-doc/document/img60.png +0 -0
- data/doc/ep_flux/math-doc/document/img61.png +0 -0
- data/doc/ep_flux/math-doc/document/img62.png +0 -0
- data/doc/ep_flux/math-doc/document/img63.png +0 -0
- data/doc/ep_flux/math-doc/document/img64.png +0 -0
- data/doc/ep_flux/math-doc/document/img65.png +0 -0
- data/doc/ep_flux/math-doc/document/img66.png +0 -0
- data/doc/ep_flux/math-doc/document/img67.png +0 -0
- data/doc/ep_flux/math-doc/document/img68.png +0 -0
- data/doc/ep_flux/math-doc/document/img69.png +0 -0
- data/doc/ep_flux/math-doc/document/img7.png +0 -0
- data/doc/ep_flux/math-doc/document/img70.png +0 -0
- data/doc/ep_flux/math-doc/document/img71.png +0 -0
- data/doc/ep_flux/math-doc/document/img72.png +0 -0
- data/doc/ep_flux/math-doc/document/img73.png +0 -0
- data/doc/ep_flux/math-doc/document/img74.png +0 -0
- data/doc/ep_flux/math-doc/document/img75.png +0 -0
- data/doc/ep_flux/math-doc/document/img76.png +0 -0
- data/doc/ep_flux/math-doc/document/img77.png +0 -0
- data/doc/ep_flux/math-doc/document/img78.png +0 -0
- data/doc/ep_flux/math-doc/document/img79.png +0 -0
- data/doc/ep_flux/math-doc/document/img8.png +0 -0
- data/doc/ep_flux/math-doc/document/img80.png +0 -0
- data/doc/ep_flux/math-doc/document/img81.png +0 -0
- data/doc/ep_flux/math-doc/document/img82.png +0 -0
- data/doc/ep_flux/math-doc/document/img83.png +0 -0
- data/doc/ep_flux/math-doc/document/img84.png +0 -0
- data/doc/ep_flux/math-doc/document/img85.png +0 -0
- data/doc/ep_flux/math-doc/document/img86.png +0 -0
- data/doc/ep_flux/math-doc/document/img87.png +0 -0
- data/doc/ep_flux/math-doc/document/img88.png +0 -0
- data/doc/ep_flux/math-doc/document/img89.png +0 -0
- data/doc/ep_flux/math-doc/document/img9.png +0 -0
- data/doc/ep_flux/math-doc/document/img90.png +0 -0
- data/doc/ep_flux/math-doc/document/img91.png +0 -0
- data/doc/ep_flux/math-doc/document/img92.png +0 -0
- data/doc/ep_flux/math-doc/document/img93.png +0 -0
- data/doc/ep_flux/math-doc/document/img94.png +0 -0
- data/doc/ep_flux/math-doc/document/img95.png +0 -0
- data/doc/ep_flux/math-doc/document/img96.png +0 -0
- data/doc/ep_flux/math-doc/document/img97.png +0 -0
- data/doc/ep_flux/math-doc/document/img98.png +0 -0
- data/doc/ep_flux/math-doc/document/img99.png +0 -0
- data/doc/ep_flux/math-doc/document/index.html +0 -101
- data/doc/ep_flux/math-doc/document/internals.pl +0 -258
- data/doc/ep_flux/math-doc/document/labels.pl +0 -265
- data/doc/ep_flux/math-doc/document/next.png +0 -0
- data/doc/ep_flux/math-doc/document/next_g.png +0 -0
- data/doc/ep_flux/math-doc/document/node1.html +0 -104
- data/doc/ep_flux/math-doc/document/node10.html +0 -164
- data/doc/ep_flux/math-doc/document/node11.html +0 -86
- data/doc/ep_flux/math-doc/document/node12.html +0 -166
- data/doc/ep_flux/math-doc/document/node13.html +0 -897
- data/doc/ep_flux/math-doc/document/node14.html +0 -1065
- data/doc/ep_flux/math-doc/document/node15.html +0 -72
- data/doc/ep_flux/math-doc/document/node16.html +0 -81
- data/doc/ep_flux/math-doc/document/node2.html +0 -82
- data/doc/ep_flux/math-doc/document/node3.html +0 -91
- data/doc/ep_flux/math-doc/document/node4.html +0 -149
- data/doc/ep_flux/math-doc/document/node5.html +0 -330
- data/doc/ep_flux/math-doc/document/node6.html +0 -99
- data/doc/ep_flux/math-doc/document/node7.html +0 -98
- data/doc/ep_flux/math-doc/document/node8.html +0 -83
- data/doc/ep_flux/math-doc/document/node9.html +0 -140
- data/doc/ep_flux/math-doc/document/prev.png +0 -0
- data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
- data/doc/ep_flux/math-doc/document/up.png +0 -0
- data/doc/ep_flux/math-doc/document/up_g.png +0 -0
- data/doc/ep_flux/math-doc/document.pdf +0 -0
- data/doc/ep_flux/math-doc/document.tex +0 -2018
- data/doc/gdir.html +0 -412
- data/doc/gdir_client.html +0 -16
- data/doc/gdir_connect_ftp-like.html +0 -61
- data/doc/gdir_server.html +0 -45
- data/doc/ggraph.html +0 -1615
- data/doc/gpcat.html +0 -44
- data/doc/gpcut.html +0 -41
- data/doc/gphys.html +0 -532
- data/doc/gphys_fft.html +0 -324
- data/doc/gphys_grads_io.html +0 -69
- data/doc/gphys_grib_io.html +0 -82
- data/doc/gphys_io.html +0 -120
- data/doc/gphys_io_common.html +0 -18
- data/doc/gphys_netcdf_io.html +0 -283
- data/doc/gplist.html +0 -24
- data/doc/gpmath.html +0 -51
- data/doc/gpmaxmin.html +0 -31
- data/doc/gpprint.html +0 -34
- data/doc/gpview.html +0 -270
- data/doc/grads2nc_with_gphys.html +0 -21
- data/doc/grads_gridded.html +0 -307
- data/doc/grib.html +0 -144
- data/doc/grid.html +0 -212
- data/doc/index.html +0 -133
- data/doc/index.rd +0 -127
- data/doc/netcdf_convention.html +0 -136
- data/doc/unumeric.html +0 -176
- data/doc/update +0 -64
- data/doc/varray.html +0 -299
- data/doc/varraycomposite.html +0 -67
@@ -1,897 +0,0 @@
|
|
1
|
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
2
|
-
|
3
|
-
<!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
|
4
|
-
patched version by: Kenshi Muto, Debian Project.
|
5
|
-
LaTeX2HTML 2K.1beta (1.48),
|
6
|
-
original version by: Nikos Drakos, CBLU, University of Leeds
|
7
|
-
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
8
|
-
* with significant contributions from:
|
9
|
-
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
10
|
-
<HTML>
|
11
|
-
<HEAD>
|
12
|
-
<TITLE>$B%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
|
13
|
-
<META NAME="description" CONTENT="$B%*%$%i!<J?6QJ}Dx<07O(B">
|
14
|
-
<META NAME="keywords" CONTENT="document">
|
15
|
-
<META NAME="resource-type" CONTENT="document">
|
16
|
-
<META NAME="distribution" CONTENT="global">
|
17
|
-
|
18
|
-
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
|
19
|
-
<META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
|
20
|
-
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
21
|
-
|
22
|
-
<LINK REL="STYLESHEET" HREF="document.css">
|
23
|
-
|
24
|
-
<LINK REL="next" HREF="node14.html">
|
25
|
-
<LINK REL="previous" HREF="node12.html">
|
26
|
-
<LINK REL="up" HREF="node11.html">
|
27
|
-
<LINK REL="next" HREF="node14.html">
|
28
|
-
</HEAD>
|
29
|
-
|
30
|
-
<BODY >
|
31
|
-
<!--Navigation Panel-->
|
32
|
-
<A NAME="tex2html196"
|
33
|
-
HREF="node14.html">
|
34
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
35
|
-
<A NAME="tex2html192"
|
36
|
-
HREF="node11.html">
|
37
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
38
|
-
<A NAME="tex2html186"
|
39
|
-
HREF="node12.html">
|
40
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
41
|
-
<A NAME="tex2html194"
|
42
|
-
HREF="node1.html">
|
43
|
-
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
44
|
-
<BR>
|
45
|
-
<B> :</B> <A NAME="tex2html197"
|
46
|
-
HREF="node14.html">$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
|
47
|
-
<B> :</B> <A NAME="tex2html193"
|
48
|
-
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
49
|
-
<B> :</B> <A NAME="tex2html187"
|
50
|
-
HREF="node12.html">$B5eLL>e$NBP?t05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B</A>
|
51
|
-
  <B> <A NAME="tex2html195"
|
52
|
-
HREF="node1.html">$BL\<!(B</A></B>
|
53
|
-
<BR>
|
54
|
-
<BR>
|
55
|
-
<!--End of Navigation Panel-->
|
56
|
-
|
57
|
-
<H1><A NAME="SECTION004200000000000000000">
|
58
|
-
$B%*%$%i!<J?6QJ}Dx<07O(B</A>
|
59
|
-
</H1>
|
60
|
-
|
61
|
-
$B$"$kJ*M}NL(B <IMG
|
62
|
-
WIDTH="19" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
|
63
|
-
SRC="img75.png"
|
64
|
-
ALT="$ A$"> $B$K$D$$$F(B, <!-- MATH
|
65
|
-
$\phi, z^*, t$
|
66
|
-
-->
|
67
|
-
<IMG
|
68
|
-
WIDTH="56" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
69
|
-
SRC="img76.png"
|
70
|
-
ALT="$ \phi, z^*, t$"> $B$r8GDj$7$F(B
|
71
|
-
$BEl@>J}8~$K$H$C$?J?6Q(B
|
72
|
-
<BR>
|
73
|
-
<DIV ALIGN="CENTER"><A NAME="eq:euler_mean"></A><!-- MATH
|
74
|
-
\begin{eqnarray}
|
75
|
-
\overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda
|
76
|
-
\end{eqnarray}
|
77
|
-
-->
|
78
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
79
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
80
|
-
WIDTH="299" HEIGHT="66" ALIGN="MIDDLE" BORDER="0"
|
81
|
-
SRC="img77.png"
|
82
|
-
ALT="$\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$"></TD>
|
83
|
-
<TD> </TD>
|
84
|
-
<TD> </TD>
|
85
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
86
|
-
(A.2)</TD></TR>
|
87
|
-
</TABLE></DIV>
|
88
|
-
<BR CLEAR="ALL"><P></P>
|
89
|
-
$B$r%*%$%i!<J?6Q$H8F$V(B.
|
90
|
-
$B%*%$%i!<J?6Q$+$i$N$:$l$r(B <IMG
|
91
|
-
WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
|
92
|
-
SRC="img78.png"
|
93
|
-
ALT="$ A'$"> $B$H$9$k$H(B
|
94
|
-
<BR>
|
95
|
-
<DIV ALIGN="CENTER"><A NAME="eq:euler_eddy"></A><!-- MATH
|
96
|
-
\begin{eqnarray}
|
97
|
-
A' = A - \overline{A}
|
98
|
-
\end{eqnarray}
|
99
|
-
-->
|
100
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
101
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
102
|
-
WIDTH="100" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
|
103
|
-
SRC="img79.png"
|
104
|
-
ALT="$\displaystyle A' = A - \overline{A}$"></TD>
|
105
|
-
<TD> </TD>
|
106
|
-
<TD> </TD>
|
107
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
108
|
-
(A.3)</TD></TR>
|
109
|
-
</TABLE></DIV>
|
110
|
-
<BR CLEAR="ALL"><P></P>
|
111
|
-
$B$G$"$k(B.
|
112
|
-
$BDj5A$K$h$j(B,
|
113
|
-
<!-- MATH
|
114
|
-
$\overline{A'}=0$
|
115
|
-
-->
|
116
|
-
<IMG
|
117
|
-
WIDTH="58" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
|
118
|
-
SRC="img80.png"
|
119
|
-
ALT="$ \overline{A'}=0$">, <!-- MATH
|
120
|
-
$\partial \overline{A}/\partial\lambda = 0$
|
121
|
-
-->
|
122
|
-
<IMG
|
123
|
-
WIDTH="95" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
|
124
|
-
SRC="img81.png"
|
125
|
-
ALT="$ \partial \overline{A}/\partial\lambda = 0$">
|
126
|
-
$B$H$J$k(B.
|
127
|
-
|
128
|
-
(<A HREF="node12.html#eq:pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $BCf$N3FNL$r%*%$%i!<J?6Q$H$=$3$+$i$N$:$l$KJ,$1$F=q$/$H(B
|
129
|
-
|
130
|
-
<DIV ALIGN="CENTER"><A NAME="eq:exp_pe"></A><A NAME="eq:exp_pe_momentum_x"></A><A NAME="eq:exp_pe_momentum_y"></A><A NAME="eq:exp_pe_momentum_z^*"></A><A NAME="eq:exp_pe_continuity"></A><A NAME="eq:exp_pe_thermal"></A><!-- MATH
|
131
|
-
\begin{subequations}
|
132
|
-
\begin{align}
|
133
|
-
& \DP{}{t}(\overline{u} + u')
|
134
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
|
135
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
|
136
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \notag\\
|
137
|
-
& \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
|
138
|
-
+ \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
|
139
|
-
& \DP{}{t}(\overline{v} + v')
|
140
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
|
141
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
|
142
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
|
143
|
-
& \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
|
144
|
-
+ \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
|
145
|
-
Y',
|
146
|
-
\\
|
147
|
-
& \DP{}{z^*}(\overline{\Phi} + \Phi')
|
148
|
-
= \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
|
149
|
-
& \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
|
150
|
-
+ \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
|
151
|
-
+ \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
|
152
|
-
& \DP{}{t}(\overline{\theta} + \theta')
|
153
|
-
+ \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
|
154
|
-
+ \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
|
155
|
-
+ (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
|
156
|
-
& \qquad = \overline{Q} + Q'
|
157
|
-
\end{align}
|
158
|
-
\end{subequations}
|
159
|
-
-->
|
160
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
161
|
-
<TR VALIGN="MIDDLE">
|
162
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
163
|
-
WIDTH="607" HEIGHT="501" ALIGN="BOTTOM" BORDER="0"
|
164
|
-
SRC="img82.png"
|
165
|
-
ALT="\begin{subequations}\begin{align}
|
166
|
& \DP{}{t}(\overline{u} + u')
|
167
1
|
+ \frac{\over...
|
168
|
-
... \theta')\notag\\
|
169
2
|
& \qquad = \overline{Q} + Q'
|
170
3
|
\end{align}\end{subequations}"></TD></TR>
|
171
|
-
</TABLE></DIV>
|
172
|
-
<BR CLEAR="ALL">
|
173
|
-
$B$H$J$k(B.
|
174
|
-
$B>e5-$rJQ7A$7$F(B, $B:8JU$KJ?6QNL$HJ?6QNLF1;N$N@Q$N9`$r(B,
|
175
|
-
$B1&JU$K$=$l0J30$N9`$r$^$H$a$k$H(B
|
176
|
-
|
177
|
-
<DIV ALIGN="CENTER"><A NAME="eq:exp2_pe"></A><A NAME="eq:exp2_pe_momentum_x"></A><A NAME="eq:exp2_pe_momentum_y"></A><A NAME="eq:exp2_pe_momentum_z^*"></A><A NAME="eq:exp2_pe_continuity"></A><A NAME="eq:exp2_pe_thermal"></A><!-- MATH
|
178
|
-
\begin{subequations}
|
179
|
-
\begin{align}
|
180
|
-
& \DP{\overline{u}}{t}
|
181
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
182
|
-
+ \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
|
183
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
184
|
-
- f\overline{v}
|
185
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
186
|
-
+ \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
|
187
|
-
- \overline{X}
|
188
|
-
\notag\\
|
189
|
-
& \qquad
|
190
|
-
= - \DP{u'}{t}
|
191
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
|
192
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
|
193
|
-
- \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
|
194
|
-
& \qquad \qquad
|
195
|
-
- \frac{\overline{v}}{a}\DP{u'}{\phi}
|
196
|
-
- \frac{v'}{a}\DP{\overline{u}}{\phi}
|
197
|
-
- \frac{v'}{a}\DP{u'}{\phi}
|
198
|
-
- \overline{w}\DP{u'}{z^*}
|
199
|
-
- w'\DP{\overline{u}}{z^*}
|
200
|
-
- w'\DP{u'}{z^*}
|
201
|
-
+ fv'\notag\\
|
202
|
-
& \qquad \qquad
|
203
|
-
+ \frac{\tan\phi}{a} \overline{u} v'
|
204
|
-
+ \frac{\tan\phi}{a} u' \overline{v}
|
205
|
-
+ \frac{\tan\phi}{a} u'v'
|
206
|
-
- \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
|
207
|
-
+ X',\\
|
208
|
-
& \DP{\overline{v}}{t}
|
209
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
210
|
-
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
211
|
-
+ \overline{w}\DP{\overline{v}}{z^*}
|
212
|
-
+ f\overline{u}
|
213
|
-
+ \frac{\tan\phi}{a}(\overline{u})^2
|
214
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
215
|
-
- \overline{Y}
|
216
|
-
\notag\\
|
217
|
-
& \qquad
|
218
|
-
= - \DP{v'}{t}
|
219
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
|
220
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
|
221
|
-
- \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
|
222
|
-
& \qquad \qquad
|
223
|
-
- \frac{\overline{v}}{a}\DP{v'}{\phi}
|
224
|
-
- \frac{v'}{a}\DP{\overline{v}}{\phi}
|
225
|
-
- \frac{v'}{a}\DP{v'}{\phi}
|
226
|
-
- \overline{w}\DP{v'}{z^*}
|
227
|
-
- w'\DP{\overline{v}}{z^*}
|
228
|
-
- w'\DP{v'}{z^*}
|
229
|
-
- fu'\notag\\
|
230
|
-
& \qquad \qquad
|
231
|
-
- 2\frac{\tan\phi}{a}\overline{u}u'
|
232
|
-
- \frac{\tan\phi}{a}(u')^2
|
233
|
-
- \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
|
234
|
-
+ Y',\\
|
235
|
-
& \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
|
236
|
-
= - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
|
237
|
-
& \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
|
238
|
-
+ \DP{}{\phi}(\overline{v}\cos\phi)\right]
|
239
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
240
|
-
\notag\\
|
241
|
-
& \qquad
|
242
|
-
= - \Dinv{a\cos\phi}\left[
|
243
|
-
\DP{u'}{\lambda}
|
244
|
-
+ \DP{}{\phi}(v'\cos\phi)
|
245
|
-
\right]
|
246
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
|
247
|
-
& \DP{\overline{\theta}}{t}
|
248
|
-
+ \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
249
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
250
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
251
|
-
- \overline{Q}
|
252
|
-
\notag\\
|
253
|
-
& \qquad
|
254
|
-
= - \DP{\theta'}{t}
|
255
|
-
- \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
|
256
|
-
- \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
|
257
|
-
- \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
|
258
|
-
\notag \\
|
259
|
-
& \qquad \qquad
|
260
|
-
- \frac{\overline{v}}{a}\DP{\theta'}{\phi}
|
261
|
-
- \frac{v'}{a}\DP{\overline{\theta}}{\phi}
|
262
|
-
- \frac{v'}{a}\DP{\theta'}{\phi}
|
263
|
-
- \overline{w}\DP{\theta'}{z^*}
|
264
|
-
- w'\DP{\overline{\theta}}{z^*}
|
265
|
-
- w'\DP{\theta'}{z^*}
|
266
|
-
+ Q'
|
267
|
-
\end{align}
|
268
|
-
\end{subequations}
|
269
|
-
-->
|
270
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
271
|
-
<TR VALIGN="MIDDLE">
|
272
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
273
|
-
WIDTH="556" HEIGHT="805" ALIGN="BOTTOM" BORDER="0"
|
274
|
-
SRC="img83.png"
|
275
|
-
ALT="\begin{subequations}\begin{align}
|
276
4
|
& \DP{\overline{u}}{t}
|
277
5
|
+ \frac{\overline{u}}...
|
278
|
-
...erline{\theta}}{z^*}
|
279
6
|
- w'\DP{\theta'}{z^*}
|
280
7
|
+ Q'
|
281
8
|
\end{align}\end{subequations}"></TD></TR>
|
282
|
-
</TABLE></DIV>
|
283
|
-
<BR CLEAR="ALL">
|
284
|
-
$B$H=q$1$k(B.
|
285
|
-
(<A HREF="node13.html#eq:exp2_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r%*%$%i!<J?6Q$9$k$H(B,
|
286
|
-
|
287
|
-
<DIV ALIGN="CENTER"><A NAME="eq:euler_mean_pe"></A><A NAME="eq:euler_mean_pe_momentum_x"></A><A NAME="eq:euler_mean_pe_momentum_y"></A><A NAME="eq:euler_mean_pe_momentum_z^*"></A><A NAME="eq:euler_mean_pe_continuity"></A><A NAME="eq:euler_mean_pe_thermal"></A><!-- MATH
|
288
|
-
\begin{subequations}
|
289
|
-
\begin{align}
|
290
|
-
& \DP{\overline{u}}{t}
|
291
|
-
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
292
|
-
+ \overline{w}\DP{\overline{u}}{z^*}
|
293
|
-
- f\overline{v}
|
294
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
295
|
-
- \overline{X}
|
296
|
-
\notag\\
|
297
|
-
& \qquad
|
298
|
-
= - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
|
299
|
-
- \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
300
|
-
- \overline{w'\DP{u'}{z^*}}
|
301
|
-
+ \frac{\tan\phi}{a}\overline{u'v'},\\
|
302
|
-
& \DP{\overline{v}}{t}
|
303
|
-
+ \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
|
304
|
-
+ \overline{w} \DP{\overline{v}}{z^*}
|
305
|
-
+ f \overline{u}
|
306
|
-
+ \frac{\tan \phi}{a} (\overline{u})^2
|
307
|
-
+ \Dinv{a}\DP{\overline{\Phi}}{\phi}
|
308
|
-
- \overline{Y}
|
309
|
-
\notag\\
|
310
|
-
& \qquad
|
311
|
-
= - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
|
312
|
-
- \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
|
313
|
-
- \overline{w'\DP{v'}{z^*}}
|
314
|
-
- \frac{\tan \phi}{a} \overline{u'^2},\\
|
315
|
-
& \DP{\overline{\Phi}}{z^*}
|
316
|
-
- \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
|
317
|
-
& \Dinv{a\cos\phi}
|
318
|
-
\left[
|
319
|
-
\DP{}{\phi}(\overline{v}\cos\phi)
|
320
|
-
\right]
|
321
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
322
|
-
= 0,\\
|
323
|
-
& \DP{\overline{\theta}}{t}
|
324
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
325
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
326
|
-
- \overline{Q} =
|
327
|
-
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
328
|
-
- \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
|
329
|
-
- \overline{w'\DP{\theta'}{z^*}}
|
330
|
-
\end{align}
|
331
|
-
\end{subequations}
|
332
|
-
-->
|
333
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
334
|
-
<TR VALIGN="MIDDLE">
|
335
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
336
|
-
WIDTH="555" HEIGHT="390" ALIGN="BOTTOM" BORDER="0"
|
337
|
-
SRC="img84.png"
|
338
|
-
ALT="\begin{subequations}\begin{align}
|
339
9
|
& \DP{\overline{u}}{t}
|
340
10
|
+ \Dinv{a}\overline{v...
|
341
|
-
...\theta'}{\phi}}
|
342
11
|
- \overline{w'\DP{\theta'}{z^*}}
|
343
12
|
\end{align}\end{subequations}"></TD></TR>
|
344
|
-
</TABLE></DIV>
|
345
|
-
<BR CLEAR="ALL">
|
346
|
-
$B$H$J$k(B.
|
347
|
-
$B$3$3$G(B (<A HREF="node13.html#eq:exp2_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node13.html#eq:euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>)
|
348
|
-
$B$+$iEl@>J?6Q$+$i$N$:$l$K4X$9$kO"B3$N<0(B
|
349
|
-
<BR>
|
350
|
-
<DIV ALIGN="CENTER"><A NAME="eq:euler_eddy_pe_continuity"></A><!-- MATH
|
351
|
-
\begin{eqnarray}
|
352
|
-
\Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
|
353
|
-
+ \DP{}{\phi}(v'\cos\phi)\right]
|
354
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
|
355
|
-
= 0
|
356
|
-
\end{eqnarray}
|
357
|
-
-->
|
358
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
359
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
360
|
-
WIDTH="397" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
|
361
|
-
SRC="img85.png"
|
362
|
-
ALT="$\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
|
363
|
-
+ \DP{}{\phi}(v'\cos\phi)\right]
|
364
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
|
365
|
-
= 0$"></TD>
|
366
|
-
<TD> </TD>
|
367
|
-
<TD> </TD>
|
368
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
369
|
-
(A.7)</TD></TR>
|
370
|
-
</TABLE></DIV>
|
371
|
-
<BR CLEAR="ALL"><P></P>
|
372
|
-
$B$,F@$i$l$k(B.
|
373
|
-
|
374
|
-
<BR>
|
375
|
-
<BR>
|
376
|
-
|
377
|
-
(<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r;H$C$F(B
|
378
|
-
(<A HREF="node13.html#eq:euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rJQ7A$9$k(B.
|
379
|
-
(<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
|
380
|
-
WIDTH="20" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
|
381
|
-
SRC="img86.png"
|
382
|
-
ALT="$ u'$"> $B$r$+$1$F(B
|
383
|
-
$B%*%$%i!<J?6Q$r$H$k$H(B
|
384
|
-
<BR>
|
385
|
-
<DIV ALIGN="CENTER">
|
386
|
-
<!-- MATH
|
387
|
-
\begin{eqnarray}
|
388
|
-
\Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
|
389
|
-
+ \Dinv{a} \overline{ u' \DP{v'}{\phi} }
|
390
|
-
- \frac{\tan \phi}{a} \overline{ u' v' }
|
391
|
-
+ \overline{ u' \DP{w'}{z^*} }
|
392
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
|
393
|
-
= 0
|
394
|
-
\end{eqnarray}
|
395
|
-
-->
|
396
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
397
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
398
|
-
WIDTH="503" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
399
|
-
SRC="img87.png"
|
400
|
-
ALT="$\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
|
401
|
-
+ \Dinv{a} \ove...
|
402
|
-
...line{ u' \DP{w'}{z^*} }
|
403
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
|
404
|
-
= 0$"></TD>
|
405
|
-
<TD> </TD>
|
406
|
-
<TD> </TD>
|
407
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
408
|
-
(A.8)</TD></TR>
|
409
|
-
</TABLE></DIV>
|
410
|
-
<BR CLEAR="ALL"><P></P>
|
411
|
-
$B$3$l$r(B (<A HREF="node13.html#eq:euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
|
412
|
-
<P></P>
|
413
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
414
|
-
<TR VALIGN="MIDDLE">
|
415
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
416
|
-
WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
417
|
-
SRC="img88.png"
|
418
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
|
419
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
420
|
-
WIDTH="312" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
421
|
-
SRC="img89.png"
|
422
|
-
ALT="$\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
|
423
13
|
+ \overline{w}\DP{...
|
424
|
-
...erline{v}
|
425
14
|
- \frac{\tan\phi}{a}\overline{u}\overline{v}
|
426
15
|
- \overline{X} \notag$"></TD>
|
427
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
428
|
-
</TD></TR>
|
429
|
-
<TR VALIGN="MIDDLE">
|
430
|
-
<TD> </TD>
|
431
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
432
|
-
WIDTH="671" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
|
433
|
-
SRC="img90.png"
|
434
|
-
ALT="$\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
|
435
16
|
- \Dinv{a}...
|
436
|
-
...
|
437
17
|
- \overline{u'\DP{w'}{z^*}}
|
438
18
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$"></TD>
|
439
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
440
|
-
</TD></TR>
|
441
|
-
</TABLE></DIV>
|
442
|
-
<BR CLEAR="ALL"><P></P>
|
443
|
-
$B$3$3$G(B
|
444
|
-
<P></P>
|
445
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
446
|
-
<TR VALIGN="MIDDLE">
|
447
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
448
|
-
WIDTH="121" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
449
|
-
SRC="img91.png"
|
450
|
-
ALT="$\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$"></TD>
|
451
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
452
|
-
WIDTH="188" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
|
453
|
-
SRC="img92.png"
|
454
|
-
ALT="$\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
|
455
19
|
= 0,$"></TD>
|
456
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
457
|
-
</TD></TR>
|
458
|
-
<TR VALIGN="MIDDLE">
|
459
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
460
|
-
WIDTH="270" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
461
|
-
SRC="img93.png"
|
462
|
-
ALT="$\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
|
463
20
|
- \Dinv{a}\overline{u'\DP{v'}{\phi}}
|
464
21
|
+ \frac{2\tan\phi}{a}\overline{u'v'}$"></TD>
|
465
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
466
|
-
WIDTH="229" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
467
|
-
SRC="img94.png"
|
468
|
-
ALT="$\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$"></TD>
|
469
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
470
|
-
</TD></TR>
|
471
|
-
<TR VALIGN="MIDDLE">
|
472
|
-
<TD NOWRAP ALIGN="RIGHT"><IMG
|
473
|
-
WIDTH="253" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
474
|
-
SRC="img95.png"
|
475
|
-
ALT="$\displaystyle - \overline{w'\DP{u'}{z^*}}
|
476
22
|
- \overline{u'\DP{w'}{z^*}}
|
477
23
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$"></TD>
|
478
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
479
|
-
WIDTH="158" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
480
|
-
SRC="img96.png"
|
481
|
-
ALT="$\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$"></TD>
|
482
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
483
|
-
</TD></TR>
|
484
|
-
</TABLE></DIV>
|
485
|
-
<BR CLEAR="ALL"><P></P>
|
486
|
-
$B$rMQ$$$k$H(B,
|
487
|
-
<P></P>
|
488
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
489
|
-
<TR VALIGN="MIDDLE">
|
490
|
-
<TD> </TD>
|
491
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
492
|
-
WIDTH="353" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
493
|
-
SRC="img97.png"
|
494
|
-
ALT="$\displaystyle \DP{\overline{u}}{t}
|
495
24
|
+ \Dinv{a}\overline{v}\DP{\overline{u}}{\ph...
|
496
|
-
...e{v}
|
497
25
|
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
498
26
|
- \overline{X}
|
499
27
|
\notag$"></TD>
|
500
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
501
|
-
</TD></TR>
|
502
|
-
<TR VALIGN="MIDDLE">
|
503
|
-
<TD> </TD>
|
504
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
505
|
-
WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
506
|
-
SRC="img98.png"
|
507
|
-
ALT="$\displaystyle \qquad
|
508
28
|
= - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
|
509
29
|
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$"></TD>
|
510
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
511
|
-
</TD></TR>
|
512
|
-
</TABLE></DIV>
|
513
|
-
<BR CLEAR="ALL"><P></P>
|
514
|
-
$B$H=q$/$3$H$,$G$-$k(B.
|
515
|
-
(<A HREF="node13.html#eq:euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K4X$7$F$bF1MM$K(B,
|
516
|
-
(<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
|
517
|
-
WIDTH="19" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
|
518
|
-
SRC="img99.png"
|
519
|
-
ALT="$ v'$"> $B$r$+$1$F(B
|
520
|
-
$B%*%$%i!<J?6Q$r$H$C$?<0(B
|
521
|
-
<BR>
|
522
|
-
<DIV ALIGN="CENTER">
|
523
|
-
<!-- MATH
|
524
|
-
\begin{eqnarray}
|
525
|
-
\Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
|
526
|
-
+ \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
527
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
528
|
-
+ \overline{ v' \DP{w'}{z^*} }
|
529
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
530
|
-
= 0
|
531
|
-
\end{eqnarray}
|
532
|
-
-->
|
533
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
534
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
535
|
-
WIDTH="490" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
536
|
-
SRC="img100.png"
|
537
|
-
ALT="$\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
|
538
|
-
+ \Dinv{a} \o...
|
539
|
-
...line{ v' \DP{w'}{z^*} }
|
540
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
541
|
-
= 0$"></TD>
|
542
|
-
<TD> </TD>
|
543
|
-
<TD> </TD>
|
544
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
545
|
-
(A.9)</TD></TR>
|
546
|
-
</TABLE></DIV>
|
547
|
-
<BR CLEAR="ALL"><P></P>
|
548
|
-
$B$r(B (<A HREF="node13.html#eq:euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
|
549
|
-
<P></P>
|
550
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
551
|
-
<TR VALIGN="MIDDLE">
|
552
|
-
<TD> </TD>
|
553
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
554
|
-
WIDTH="412" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
555
|
-
SRC="img101.png"
|
556
|
-
ALT="$\displaystyle \DP{\overline{v}}{t}
|
557
30
|
+ \frac{\overline{v}}{a} \DP{\overline{v}}{...
|
558
|
-
...(\overline{u})^2
|
559
31
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
560
32
|
- \overline{Y}
|
561
33
|
\notag$"></TD>
|
562
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
563
|
-
</TD></TR>
|
564
|
-
<TR VALIGN="MIDDLE">
|
565
|
-
<TD> </TD>
|
566
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
567
|
-
WIDTH="423" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
568
|
-
SRC="img102.png"
|
569
|
-
ALT="$\displaystyle \qquad
|
570
34
|
= - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
571
35
|
- \Din...
|
572
|
-
...hi}}
|
573
36
|
- \overline{w'\DP{v'}{z^*}}
|
574
37
|
- \frac{\tan\phi}{a} \overline{u'^2}
|
575
38
|
\notag$"></TD>
|
576
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
577
|
-
</TD></TR>
|
578
|
-
<TR VALIGN="MIDDLE">
|
579
|
-
<TD> </TD>
|
580
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
581
|
-
WIDTH="546" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
582
|
-
SRC="img103.png"
|
583
|
-
ALT="$\displaystyle \qquad \qquad
|
584
39
|
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}...
|
585
|
-
...verline{ v' \DP{w'}{z^*} }
|
586
40
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$"></TD>
|
587
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
588
|
-
</TD></TR>
|
589
|
-
</TABLE></DIV>
|
590
|
-
<BR CLEAR="ALL"><P></P>
|
591
|
-
$B$,F@$i$l$k(B.
|
592
|
-
$B$3$3$G(B
|
593
|
-
<BR>
|
594
|
-
<DIV ALIGN="CENTER">
|
595
|
-
<!-- MATH
|
596
|
-
\begin{eqnarray}
|
597
|
-
- \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
598
|
-
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
|
599
|
-
& = & - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
|
600
|
-
= 0, \nonumber \\
|
601
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
602
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
603
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }
|
604
|
-
& = &
|
605
|
-
- \Dinv{a \cos \phi}
|
606
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
|
607
|
-
\nonumber \\
|
608
|
-
- \overline{w'\DP{v'}{z^*}}
|
609
|
-
- \overline{ v' \DP{w'}{z^*} }
|
610
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
|
611
|
-
& = &
|
612
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
|
613
|
-
\end{eqnarray}
|
614
|
-
-->
|
615
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
616
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
617
|
-
WIDTH="245" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
618
|
-
SRC="img104.png"
|
619
|
-
ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
|
620
|
-
- \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$"></TD>
|
621
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
622
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
623
|
-
SRC="img5.png"
|
624
|
-
ALT="$\displaystyle =$"></TD>
|
625
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
626
|
-
WIDTH="175" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
|
627
|
-
SRC="img105.png"
|
628
|
-
ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
|
629
|
-
= 0,$"></TD>
|
630
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
631
|
-
</TD></TR>
|
632
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
633
|
-
WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
634
|
-
SRC="img106.png"
|
635
|
-
ALT="$\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
636
|
-
- \Dinv{a} \overline{ v' \DP{v'}{\phi} }
|
637
|
-
+ \frac{\tan \phi}{a} \overline{ v'^2 }$"></TD>
|
638
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
639
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
640
|
-
SRC="img5.png"
|
641
|
-
ALT="$\displaystyle =$"></TD>
|
642
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
643
|
-
WIDTH="188" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
644
|
-
SRC="img107.png"
|
645
|
-
ALT="$\displaystyle - \Dinv{a \cos \phi}
|
646
|
-
\DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$"></TD>
|
647
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
648
|
-
</TD></TR>
|
649
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
650
|
-
WIDTH="251" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
651
|
-
SRC="img108.png"
|
652
|
-
ALT="$\displaystyle - \overline{w'\DP{v'}{z^*}}
|
653
|
-
- \overline{ v' \DP{w'}{z^*} }
|
654
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$"></TD>
|
655
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
656
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
657
|
-
SRC="img5.png"
|
658
|
-
ALT="$\displaystyle =$"></TD>
|
659
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
660
|
-
WIDTH="144" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
661
|
-
SRC="img109.png"
|
662
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$"></TD>
|
663
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
664
|
-
(A.10)</TD></TR>
|
665
|
-
</TABLE></DIV>
|
666
|
-
<BR CLEAR="ALL"><P></P>
|
667
|
-
$B$rMQ$$$k$H(B
|
668
|
-
<P></P>
|
669
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
670
|
-
<TR VALIGN="MIDDLE">
|
671
|
-
<TD> </TD>
|
672
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
673
|
-
WIDTH="412" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
674
|
-
SRC="img101.png"
|
675
|
-
ALT="$\displaystyle \DP{\overline{v}}{t}
|
676
41
|
+ \frac{\overline{v}}{a} \DP{\overline{v}}{...
|
677
|
-
...(\overline{u})^2
|
678
42
|
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
679
43
|
- \overline{Y}
|
680
44
|
\notag$"></TD>
|
681
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
682
|
-
</TD></TR>
|
683
|
-
<TR VALIGN="MIDDLE">
|
684
|
-
<TD> </TD>
|
685
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
686
|
-
WIDTH="483" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
687
|
-
SRC="img110.png"
|
688
|
-
ALT="$\displaystyle \qquad
|
689
45
|
= - \Dinv{a \cos \phi}
|
690
46
|
\DP{}{\phi} \left( \cos \phi \o...
|
691
|
-
...line{u'^2}
|
692
47
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$"></TD>
|
693
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
694
|
-
</TD></TR>
|
695
|
-
</TABLE></DIV>
|
696
|
-
<BR CLEAR="ALL"><P></P>
|
697
|
-
$B$H=q$/$3$H$,$G$-$k(B.
|
698
|
-
(<A HREF="node13.html#eq:euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K$D$$$F$bF1MM$K(B,
|
699
|
-
(<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
|
700
|
-
WIDTH="18" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
|
701
|
-
SRC="img111.png"
|
702
|
-
ALT="$ \theta'$"> $B$r$+$1$F(B
|
703
|
-
$B%*%$%i!<J?6Q$r$H$C$?<0(B
|
704
|
-
<BR>
|
705
|
-
<DIV ALIGN="CENTER">
|
706
|
-
<!-- MATH
|
707
|
-
\begin{eqnarray}
|
708
|
-
\Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
709
|
-
+ \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
710
|
-
- \frac{\tan \phi}{a} \overline{ \theta' v' }
|
711
|
-
+ \overline{ \theta' \DP{w'}{z^*} }
|
712
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
713
|
-
= 0
|
714
|
-
\end{eqnarray}
|
715
|
-
-->
|
716
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
717
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
718
|
-
WIDTH="495" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
719
|
-
SRC="img112.png"
|
720
|
-
ALT="$\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
721
|
-
+ \Dinv{a}...
|
722
|
-
...ta' \DP{w'}{z^*} }
|
723
|
-
+ \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
724
|
-
= 0$"></TD>
|
725
|
-
<TD> </TD>
|
726
|
-
<TD> </TD>
|
727
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
728
|
-
(A.11)</TD></TR>
|
729
|
-
</TABLE></DIV>
|
730
|
-
<BR CLEAR="ALL"><P></P>
|
731
|
-
$B$r(B (<A HREF="node13.html#eq:euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
|
732
|
-
<P></P>
|
733
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
734
|
-
<TR VALIGN="MIDDLE">
|
735
|
-
<TD> </TD>
|
736
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
737
|
-
WIDTH="200" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
738
|
-
SRC="img113.png"
|
739
|
-
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
740
48
|
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
741
49
|
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
742
50
|
- \overline{Q}
|
743
51
|
\notag$"></TD>
|
744
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
745
|
-
</TD></TR>
|
746
|
-
<TR VALIGN="MIDDLE">
|
747
|
-
<TD> </TD>
|
748
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
749
|
-
WIDTH="332" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
750
|
-
SRC="img114.png"
|
751
|
-
ALT="$\displaystyle \qquad =
|
752
52
|
- \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
|
753
53
|
...
|
754
|
-
...inv{a}\overline{v'\DP{\theta'}{\phi}}
|
755
54
|
- \overline{w'\DP{\theta'}{z^*}}
|
756
55
|
\notag$"></TD>
|
757
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
758
|
-
</TD></TR>
|
759
|
-
<TR VALIGN="MIDDLE">
|
760
|
-
<TD> </TD>
|
761
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
762
|
-
WIDTH="551" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
763
|
-
SRC="img115.png"
|
764
|
-
ALT="$\displaystyle \qquad \qquad
|
765
56
|
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\la...
|
766
|
-
...theta' \DP{w'}{z^*} }
|
767
57
|
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$"></TD>
|
768
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
769
|
-
</TD></TR>
|
770
|
-
</TABLE></DIV>
|
771
|
-
<BR CLEAR="ALL"><P></P>
|
772
|
-
$B$,F@$i$l$k(B.
|
773
|
-
$B$3$3$G(B
|
774
|
-
<BR>
|
775
|
-
<DIV ALIGN="CENTER">
|
776
|
-
<!-- MATH
|
777
|
-
\begin{eqnarray}
|
778
|
-
- \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
|
779
|
-
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
|
780
|
-
& = & - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
|
781
|
-
= 0, \nonumber \\
|
782
|
-
- \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
|
783
|
-
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
784
|
-
+ \frac{\tan \phi}{a} \overline{ \theta' v' }
|
785
|
-
& = &
|
786
|
-
- \Dinv{a \cos \phi}
|
787
|
-
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
|
788
|
-
\nonumber \\
|
789
|
-
- \overline{w'\DP{\theta'}{z^*}}
|
790
|
-
- \overline{ \theta' \DP{w'}{z^*} }
|
791
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
|
792
|
-
& = &
|
793
|
-
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
|
794
|
-
\nonumber
|
795
|
-
\end{eqnarray}
|
796
|
-
-->
|
797
|
-
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
|
798
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
799
|
-
WIDTH="244" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
800
|
-
SRC="img116.png"
|
801
|
-
ALT="$\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
|
802
|
-
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$"></TD>
|
803
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
804
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
805
|
-
SRC="img5.png"
|
806
|
-
ALT="$\displaystyle =$"></TD>
|
807
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
808
|
-
WIDTH="174" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
|
809
|
-
SRC="img117.png"
|
810
|
-
ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
|
811
|
-
= 0,$"></TD>
|
812
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
813
|
-
</TD></TR>
|
814
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
815
|
-
WIDTH="253" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
816
|
-
SRC="img118.png"
|
817
|
-
ALT="$\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
|
818
|
-
- \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
|
819
|
-
+ \frac{\tan \phi}{a} \overline{ \theta' v' }$"></TD>
|
820
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
821
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
822
|
-
SRC="img5.png"
|
823
|
-
ALT="$\displaystyle =$"></TD>
|
824
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
825
|
-
WIDTH="190" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
826
|
-
SRC="img119.png"
|
827
|
-
ALT="$\displaystyle - \Dinv{a \cos \phi}
|
828
|
-
\DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$"></TD>
|
829
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
830
|
-
</TD></TR>
|
831
|
-
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
|
832
|
-
WIDTH="251" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
833
|
-
SRC="img120.png"
|
834
|
-
ALT="$\displaystyle - \overline{w'\DP{\theta'}{z^*}}
|
835
|
-
- \overline{ \theta' \DP{w'}{z^*} }
|
836
|
-
- \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$"></TD>
|
837
|
-
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
|
838
|
-
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
|
839
|
-
SRC="img5.png"
|
840
|
-
ALT="$\displaystyle =$"></TD>
|
841
|
-
<TD ALIGN="LEFT" NOWRAP><IMG
|
842
|
-
WIDTH="143" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
|
843
|
-
SRC="img121.png"
|
844
|
-
ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$"></TD>
|
845
|
-
<TD WIDTH=10 ALIGN="RIGHT">
|
846
|
-
</TD></TR>
|
847
|
-
</TABLE></DIV>
|
848
|
-
<BR CLEAR="ALL"><P></P>
|
849
|
-
$B$rMQ$$$k$H(B
|
850
|
-
<P></P>
|
851
|
-
<DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
852
|
-
<TR VALIGN="MIDDLE">
|
853
|
-
<TD> </TD>
|
854
|
-
<TD NOWRAP ALIGN="LEFT"><IMG
|
855
|
-
WIDTH="558" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
856
|
-
SRC="img122.png"
|
857
|
-
ALT="$\displaystyle \DP{\overline{\theta}}{t}
|
858
58
|
+ \frac{\overline{v}}{a}\DP{\overline{...
|
859
|
-
...ight)
|
860
59
|
- \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$"></TD>
|
861
|
-
<TD NOWRAP WIDTH="10" ALIGN="RIGHT">
|
862
|
-
</TD></TR>
|
863
|
-
</TABLE></DIV>
|
864
|
-
<BR CLEAR="ALL"><P></P>
|
865
|
-
$B$H$J$k(B.
|
866
|
-
|
867
|
-
<BR>
|
868
|
-
<BR>
|
869
|
-
|
870
|
-
$B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$B%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
|
871
|
-
<TABLE BORDER="1"><TR><TD>
|
872
|
-
|
873
|
-
<DIV ALIGN="CENTER"><A NAME="eq:new_euler_mean_pe"></A><A NAME="eq:new_euler_mean_pe_momentum_x"></A><A NAME="eq:new_euler_mean_pe_momentum_y"></A><A NAME="eq:new_euler_mean_pe_momentum_z^*"></A><A NAME="eq:new_euler_mean_pe_continuity"></A><A NAME="eq:new_euler_mean_pe_thermal"></A><!-- MATH
|
874
|
-
\begin{subequations}
|
875
|
-
\begin{align}
|
876
|
-
\DP{\overline{u}}{t}
|
877
|
-
& + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
|
878
|
-
+ \overline{w} \DP{\overline{u}}{z^*}
|
879
|
-
- f\overline{v}
|
880
|
-
- \frac{\tan\phi}{a} \overline{u} \ \overline{v}
|
881
|
-
- \overline{X}
|
882
|
-
\notag\\
|
883
|
-
& \qquad
|
884
|
-
= - \Dinv{a\cos^2\phi}
|
885
|
-
\DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
|
886
|
-
- \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
|
887
|
-
\DP{\overline{v}}{t}
|
888
|
-
& + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
|
889
|
-
+ \overline{w} \DP{\overline{v}}{z^*}
|
890
|
-
+ f \overline{u}
|
891
|
-
+ \frac{\tan\phi}{a} (\overline{u})^2
|
892
|
-
+ \Dinv{a} \DP{\overline{\Phi}}{\phi}
|
893
|
-
- \overline{Y}
|
894
|
-
\notag\\
|
895
|
-
& \qquad
|
896
|
-
= - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
|
897
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
|
898
|
-
- \overline{u'^2}\frac{\tan\phi}{a},
|
899
|
-
\end{align}
|
900
|
-
\begin{align}
|
901
|
-
\DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
|
902
|
-
\end{align}
|
903
|
-
\begin{align}
|
904
|
-
\Dinv{a\cos\phi}&
|
905
|
-
\DP{}{\phi}(\overline{v}\cos\phi)
|
906
|
-
+ \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
|
907
|
-
= 0,
|
908
|
-
\end{align}
|
909
|
-
\begin{align}
|
910
|
-
\DP{\overline{\theta}}{t}
|
911
|
-
+ \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
|
912
|
-
+ \overline{w}\DP{\overline{\theta}}{z^*}
|
913
|
-
- \overline{Q} =
|
914
|
-
- \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
|
915
|
-
- \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
|
916
|
-
\end{align}
|
917
|
-
\end{subequations}
|
918
|
-
-->
|
919
|
-
<TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
|
920
|
-
<TR VALIGN="MIDDLE">
|
921
|
-
<TD NOWRAP ALIGN="CENTER"><IMG
|
922
|
-
WIDTH="555" HEIGHT="393" ALIGN="BOTTOM" BORDER="0"
|
923
|
-
SRC="img123.png"
|
924
|
-
ALT="\begin{subequations}\begin{align}
|
925
60
|
\DP{\overline{u}}{t}
|
926
61
|
& + \Dinv{a}\overline{v...
|
927
|
-
...nv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
|
928
62
|
\end{align}\end{subequations}"></TD></TR>
|
929
|
-
</TABLE></DIV>
|
930
|
-
<BR CLEAR="ALL">
|
931
|
-
</TD></TR></TABLE><HR>
|
932
|
-
<!--Navigation Panel-->
|
933
|
-
<A NAME="tex2html196"
|
934
|
-
HREF="node14.html">
|
935
|
-
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
|
936
|
-
<A NAME="tex2html192"
|
937
|
-
HREF="node11.html">
|
938
|
-
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
|
939
|
-
<A NAME="tex2html186"
|
940
|
-
HREF="node12.html">
|
941
|
-
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
|
942
|
-
<A NAME="tex2html194"
|
943
|
-
HREF="node1.html">
|
944
|
-
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
|
945
|
-
<BR>
|
946
|
-
<B> :</B> <A NAME="tex2html197"
|
947
|
-
HREF="node14.html">$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
|
948
|
-
<B> :</B> <A NAME="tex2html193"
|
949
|
-
HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
|
950
|
-
<B> :</B> <A NAME="tex2html187"
|
951
|
-
HREF="node12.html">$B5eLL>e$NBP?t05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B</A>
|
952
|
-
  <B> <A NAME="tex2html195"
|
953
|
-
HREF="node1.html">$BL\<!(B</A></B>
|
954
|
-
<!--End of Navigation Panel-->
|
955
|
-
<ADDRESS>
|
956
|
-
Tsukahara Daisuke
|
957
|
-
$BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
|
958
|
-
</ADDRESS>
|
959
|
-
</BODY>
|
960
|
-
</HTML>
|