gphys 1.1.1 → 1.2.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. data/.gitignore +17 -0
  2. data/ChangeLog +221 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +18 -30
  5. data/README +23 -26
  6. data/README.md +29 -0
  7. data/Rakefile +1 -56
  8. data/bin/gpaop +2 -1
  9. data/bin/gpcut +3 -2
  10. data/bin/gpedit +6 -2
  11. data/bin/gpmath +3 -2
  12. data/bin/gpmaxmin +3 -2
  13. data/bin/gpprint +2 -1
  14. data/bin/gpvect +28 -5
  15. data/bin/gpview +43 -5
  16. data/extconf.rb +5 -6
  17. data/gphys.gemspec +34 -0
  18. data/interpo.c +63 -24
  19. data/lib/gphys.rb +2 -0
  20. data/lib/numru/dclext.rb +2636 -0
  21. data/lib/numru/derivative.rb +53 -12
  22. data/lib/numru/ganalysis/eof.rb +4 -0
  23. data/lib/numru/ganalysis/histogram.rb +73 -5
  24. data/lib/numru/ganalysis/met.rb +163 -2
  25. data/lib/numru/ganalysis/planet.rb +230 -20
  26. data/lib/numru/ggraph.rb +147 -2247
  27. data/lib/numru/gphys/assoccoords.rb +19 -3
  28. data/lib/numru/gphys/axis.rb +1 -1
  29. data/lib/numru/gphys/coordmapping.rb +2 -2
  30. data/lib/numru/gphys/derivative.rb +56 -13
  31. data/lib/numru/gphys/gphys.rb +17 -1
  32. data/lib/numru/gphys/gphys_grads_io.rb +6 -5
  33. data/lib/numru/gphys/gphys_grib_io.rb +6 -6
  34. data/lib/numru/gphys/gphys_io.rb +25 -6
  35. data/lib/numru/gphys/grads_gridded.rb +31 -29
  36. data/lib/numru/gphys/grib.rb +13 -9
  37. data/lib/numru/gphys/interpolate.rb +153 -29
  38. data/lib/numru/gphys/unumeric.rb +29 -6
  39. data/lib/numru/gphys/varray.rb +9 -0
  40. data/lib/numru/gphys/varraygrib.rb +70 -8
  41. data/lib/version.rb +3 -0
  42. metadata +247 -531
  43. data/doc/attribute.html +0 -19
  44. data/doc/attributenetcdf.html +0 -15
  45. data/doc/axis.html +0 -376
  46. data/doc/coordmapping.html +0 -111
  47. data/doc/coordtransform.html +0 -36
  48. data/doc/derivative/gphys-derivative.html +0 -80
  49. data/doc/derivative/index.html +0 -21
  50. data/doc/derivative/index.rd +0 -14
  51. data/doc/derivative/math-doc/document/document.css +0 -30
  52. data/doc/derivative/math-doc/document/document.html +0 -57
  53. data/doc/derivative/math-doc/document/images.aux +0 -1
  54. data/doc/derivative/math-doc/document/images.log +0 -385
  55. data/doc/derivative/math-doc/document/images.pl +0 -186
  56. data/doc/derivative/math-doc/document/images.tex +0 -364
  57. data/doc/derivative/math-doc/document/img1.png +0 -0
  58. data/doc/derivative/math-doc/document/img10.png +0 -0
  59. data/doc/derivative/math-doc/document/img11.png +0 -0
  60. data/doc/derivative/math-doc/document/img12.png +0 -0
  61. data/doc/derivative/math-doc/document/img13.png +0 -0
  62. data/doc/derivative/math-doc/document/img14.png +0 -0
  63. data/doc/derivative/math-doc/document/img15.png +0 -0
  64. data/doc/derivative/math-doc/document/img16.png +0 -0
  65. data/doc/derivative/math-doc/document/img17.png +0 -0
  66. data/doc/derivative/math-doc/document/img18.png +0 -0
  67. data/doc/derivative/math-doc/document/img19.png +0 -0
  68. data/doc/derivative/math-doc/document/img2.png +0 -0
  69. data/doc/derivative/math-doc/document/img20.png +0 -0
  70. data/doc/derivative/math-doc/document/img21.png +0 -0
  71. data/doc/derivative/math-doc/document/img22.png +0 -0
  72. data/doc/derivative/math-doc/document/img23.png +0 -0
  73. data/doc/derivative/math-doc/document/img24.png +0 -0
  74. data/doc/derivative/math-doc/document/img25.png +0 -0
  75. data/doc/derivative/math-doc/document/img26.png +0 -0
  76. data/doc/derivative/math-doc/document/img27.png +0 -0
  77. data/doc/derivative/math-doc/document/img28.png +0 -0
  78. data/doc/derivative/math-doc/document/img29.png +0 -0
  79. data/doc/derivative/math-doc/document/img3.png +0 -0
  80. data/doc/derivative/math-doc/document/img30.png +0 -0
  81. data/doc/derivative/math-doc/document/img4.png +0 -0
  82. data/doc/derivative/math-doc/document/img5.png +0 -0
  83. data/doc/derivative/math-doc/document/img6.png +0 -0
  84. data/doc/derivative/math-doc/document/img7.png +0 -0
  85. data/doc/derivative/math-doc/document/img8.png +0 -0
  86. data/doc/derivative/math-doc/document/img9.png +0 -0
  87. data/doc/derivative/math-doc/document/index.html +0 -57
  88. data/doc/derivative/math-doc/document/labels.pl +0 -13
  89. data/doc/derivative/math-doc/document/next.png +0 -0
  90. data/doc/derivative/math-doc/document/next_g.png +0 -0
  91. data/doc/derivative/math-doc/document/node1.html +0 -238
  92. data/doc/derivative/math-doc/document/node2.html +0 -75
  93. data/doc/derivative/math-doc/document/prev.png +0 -0
  94. data/doc/derivative/math-doc/document/prev_g.png +0 -0
  95. data/doc/derivative/math-doc/document/up.png +0 -0
  96. data/doc/derivative/math-doc/document/up_g.png +0 -0
  97. data/doc/derivative/math-doc/document.pdf +0 -0
  98. data/doc/derivative/math-doc/document.tex +0 -158
  99. data/doc/derivative/numru-derivative.html +0 -129
  100. data/doc/ep_flux/ep_flux.html +0 -469
  101. data/doc/ep_flux/ggraph_on_merdional_section.html +0 -71
  102. data/doc/ep_flux/index.html +0 -31
  103. data/doc/ep_flux/index.rd +0 -24
  104. data/doc/ep_flux/math-doc/document/WARNINGS +0 -1
  105. data/doc/ep_flux/math-doc/document/contents.png +0 -0
  106. data/doc/ep_flux/math-doc/document/crossref.png +0 -0
  107. data/doc/ep_flux/math-doc/document/document.css +0 -30
  108. data/doc/ep_flux/math-doc/document/document.html +0 -101
  109. data/doc/ep_flux/math-doc/document/images.aux +0 -1
  110. data/doc/ep_flux/math-doc/document/images.log +0 -1375
  111. data/doc/ep_flux/math-doc/document/images.pl +0 -1328
  112. data/doc/ep_flux/math-doc/document/images.tex +0 -1471
  113. data/doc/ep_flux/math-doc/document/img1.png +0 -0
  114. data/doc/ep_flux/math-doc/document/img10.png +0 -0
  115. data/doc/ep_flux/math-doc/document/img100.png +0 -0
  116. data/doc/ep_flux/math-doc/document/img101.png +0 -0
  117. data/doc/ep_flux/math-doc/document/img102.png +0 -0
  118. data/doc/ep_flux/math-doc/document/img103.png +0 -0
  119. data/doc/ep_flux/math-doc/document/img104.png +0 -0
  120. data/doc/ep_flux/math-doc/document/img105.png +0 -0
  121. data/doc/ep_flux/math-doc/document/img106.png +0 -0
  122. data/doc/ep_flux/math-doc/document/img107.png +0 -0
  123. data/doc/ep_flux/math-doc/document/img108.png +0 -0
  124. data/doc/ep_flux/math-doc/document/img109.png +0 -0
  125. data/doc/ep_flux/math-doc/document/img11.png +0 -0
  126. data/doc/ep_flux/math-doc/document/img110.png +0 -0
  127. data/doc/ep_flux/math-doc/document/img111.png +0 -0
  128. data/doc/ep_flux/math-doc/document/img112.png +0 -0
  129. data/doc/ep_flux/math-doc/document/img113.png +0 -0
  130. data/doc/ep_flux/math-doc/document/img114.png +0 -0
  131. data/doc/ep_flux/math-doc/document/img115.png +0 -0
  132. data/doc/ep_flux/math-doc/document/img116.png +0 -0
  133. data/doc/ep_flux/math-doc/document/img117.png +0 -0
  134. data/doc/ep_flux/math-doc/document/img118.png +0 -0
  135. data/doc/ep_flux/math-doc/document/img119.png +0 -0
  136. data/doc/ep_flux/math-doc/document/img12.png +0 -0
  137. data/doc/ep_flux/math-doc/document/img120.png +0 -0
  138. data/doc/ep_flux/math-doc/document/img121.png +0 -0
  139. data/doc/ep_flux/math-doc/document/img122.png +0 -0
  140. data/doc/ep_flux/math-doc/document/img123.png +0 -0
  141. data/doc/ep_flux/math-doc/document/img124.png +0 -0
  142. data/doc/ep_flux/math-doc/document/img125.png +0 -0
  143. data/doc/ep_flux/math-doc/document/img126.png +0 -0
  144. data/doc/ep_flux/math-doc/document/img127.png +0 -0
  145. data/doc/ep_flux/math-doc/document/img128.png +0 -0
  146. data/doc/ep_flux/math-doc/document/img129.png +0 -0
  147. data/doc/ep_flux/math-doc/document/img13.png +0 -0
  148. data/doc/ep_flux/math-doc/document/img130.png +0 -0
  149. data/doc/ep_flux/math-doc/document/img131.png +0 -0
  150. data/doc/ep_flux/math-doc/document/img132.png +0 -0
  151. data/doc/ep_flux/math-doc/document/img133.png +0 -0
  152. data/doc/ep_flux/math-doc/document/img134.png +0 -0
  153. data/doc/ep_flux/math-doc/document/img135.png +0 -0
  154. data/doc/ep_flux/math-doc/document/img136.png +0 -0
  155. data/doc/ep_flux/math-doc/document/img137.png +0 -0
  156. data/doc/ep_flux/math-doc/document/img138.png +0 -0
  157. data/doc/ep_flux/math-doc/document/img139.png +0 -0
  158. data/doc/ep_flux/math-doc/document/img14.png +0 -0
  159. data/doc/ep_flux/math-doc/document/img140.png +0 -0
  160. data/doc/ep_flux/math-doc/document/img141.png +0 -0
  161. data/doc/ep_flux/math-doc/document/img142.png +0 -0
  162. data/doc/ep_flux/math-doc/document/img143.png +0 -0
  163. data/doc/ep_flux/math-doc/document/img144.png +0 -0
  164. data/doc/ep_flux/math-doc/document/img145.png +0 -0
  165. data/doc/ep_flux/math-doc/document/img146.png +0 -0
  166. data/doc/ep_flux/math-doc/document/img147.png +0 -0
  167. data/doc/ep_flux/math-doc/document/img148.png +0 -0
  168. data/doc/ep_flux/math-doc/document/img149.png +0 -0
  169. data/doc/ep_flux/math-doc/document/img15.png +0 -0
  170. data/doc/ep_flux/math-doc/document/img150.png +0 -0
  171. data/doc/ep_flux/math-doc/document/img151.png +0 -0
  172. data/doc/ep_flux/math-doc/document/img152.png +0 -0
  173. data/doc/ep_flux/math-doc/document/img153.png +0 -0
  174. data/doc/ep_flux/math-doc/document/img154.png +0 -0
  175. data/doc/ep_flux/math-doc/document/img155.png +0 -0
  176. data/doc/ep_flux/math-doc/document/img156.png +0 -0
  177. data/doc/ep_flux/math-doc/document/img157.png +0 -0
  178. data/doc/ep_flux/math-doc/document/img158.png +0 -0
  179. data/doc/ep_flux/math-doc/document/img159.png +0 -0
  180. data/doc/ep_flux/math-doc/document/img16.png +0 -0
  181. data/doc/ep_flux/math-doc/document/img160.png +0 -0
  182. data/doc/ep_flux/math-doc/document/img161.png +0 -0
  183. data/doc/ep_flux/math-doc/document/img162.png +0 -0
  184. data/doc/ep_flux/math-doc/document/img163.png +0 -0
  185. data/doc/ep_flux/math-doc/document/img164.png +0 -0
  186. data/doc/ep_flux/math-doc/document/img165.png +0 -0
  187. data/doc/ep_flux/math-doc/document/img166.png +0 -0
  188. data/doc/ep_flux/math-doc/document/img167.png +0 -0
  189. data/doc/ep_flux/math-doc/document/img168.png +0 -0
  190. data/doc/ep_flux/math-doc/document/img169.png +0 -0
  191. data/doc/ep_flux/math-doc/document/img17.png +0 -0
  192. data/doc/ep_flux/math-doc/document/img170.png +0 -0
  193. data/doc/ep_flux/math-doc/document/img171.png +0 -0
  194. data/doc/ep_flux/math-doc/document/img172.png +0 -0
  195. data/doc/ep_flux/math-doc/document/img173.png +0 -0
  196. data/doc/ep_flux/math-doc/document/img174.png +0 -0
  197. data/doc/ep_flux/math-doc/document/img175.png +0 -0
  198. data/doc/ep_flux/math-doc/document/img176.png +0 -0
  199. data/doc/ep_flux/math-doc/document/img177.png +0 -0
  200. data/doc/ep_flux/math-doc/document/img178.png +0 -0
  201. data/doc/ep_flux/math-doc/document/img179.png +0 -0
  202. data/doc/ep_flux/math-doc/document/img18.png +0 -0
  203. data/doc/ep_flux/math-doc/document/img180.png +0 -0
  204. data/doc/ep_flux/math-doc/document/img181.png +0 -0
  205. data/doc/ep_flux/math-doc/document/img182.png +0 -0
  206. data/doc/ep_flux/math-doc/document/img183.png +0 -0
  207. data/doc/ep_flux/math-doc/document/img184.png +0 -0
  208. data/doc/ep_flux/math-doc/document/img185.png +0 -0
  209. data/doc/ep_flux/math-doc/document/img186.png +0 -0
  210. data/doc/ep_flux/math-doc/document/img187.png +0 -0
  211. data/doc/ep_flux/math-doc/document/img188.png +0 -0
  212. data/doc/ep_flux/math-doc/document/img189.png +0 -0
  213. data/doc/ep_flux/math-doc/document/img19.png +0 -0
  214. data/doc/ep_flux/math-doc/document/img190.png +0 -0
  215. data/doc/ep_flux/math-doc/document/img191.png +0 -0
  216. data/doc/ep_flux/math-doc/document/img192.png +0 -0
  217. data/doc/ep_flux/math-doc/document/img193.png +0 -0
  218. data/doc/ep_flux/math-doc/document/img194.png +0 -0
  219. data/doc/ep_flux/math-doc/document/img195.png +0 -0
  220. data/doc/ep_flux/math-doc/document/img196.png +0 -0
  221. data/doc/ep_flux/math-doc/document/img197.png +0 -0
  222. data/doc/ep_flux/math-doc/document/img198.png +0 -0
  223. data/doc/ep_flux/math-doc/document/img199.png +0 -0
  224. data/doc/ep_flux/math-doc/document/img2.png +0 -0
  225. data/doc/ep_flux/math-doc/document/img20.png +0 -0
  226. data/doc/ep_flux/math-doc/document/img200.png +0 -0
  227. data/doc/ep_flux/math-doc/document/img21.png +0 -0
  228. data/doc/ep_flux/math-doc/document/img22.png +0 -0
  229. data/doc/ep_flux/math-doc/document/img23.png +0 -0
  230. data/doc/ep_flux/math-doc/document/img24.png +0 -0
  231. data/doc/ep_flux/math-doc/document/img25.png +0 -0
  232. data/doc/ep_flux/math-doc/document/img26.png +0 -0
  233. data/doc/ep_flux/math-doc/document/img27.png +0 -0
  234. data/doc/ep_flux/math-doc/document/img28.png +0 -0
  235. data/doc/ep_flux/math-doc/document/img29.png +0 -0
  236. data/doc/ep_flux/math-doc/document/img3.png +0 -0
  237. data/doc/ep_flux/math-doc/document/img30.png +0 -0
  238. data/doc/ep_flux/math-doc/document/img31.png +0 -0
  239. data/doc/ep_flux/math-doc/document/img32.png +0 -0
  240. data/doc/ep_flux/math-doc/document/img33.png +0 -0
  241. data/doc/ep_flux/math-doc/document/img34.png +0 -0
  242. data/doc/ep_flux/math-doc/document/img35.png +0 -0
  243. data/doc/ep_flux/math-doc/document/img36.png +0 -0
  244. data/doc/ep_flux/math-doc/document/img37.png +0 -0
  245. data/doc/ep_flux/math-doc/document/img38.png +0 -0
  246. data/doc/ep_flux/math-doc/document/img39.png +0 -0
  247. data/doc/ep_flux/math-doc/document/img4.png +0 -0
  248. data/doc/ep_flux/math-doc/document/img40.png +0 -0
  249. data/doc/ep_flux/math-doc/document/img41.png +0 -0
  250. data/doc/ep_flux/math-doc/document/img42.png +0 -0
  251. data/doc/ep_flux/math-doc/document/img43.png +0 -0
  252. data/doc/ep_flux/math-doc/document/img44.png +0 -0
  253. data/doc/ep_flux/math-doc/document/img45.png +0 -0
  254. data/doc/ep_flux/math-doc/document/img46.png +0 -0
  255. data/doc/ep_flux/math-doc/document/img47.png +0 -0
  256. data/doc/ep_flux/math-doc/document/img48.png +0 -0
  257. data/doc/ep_flux/math-doc/document/img49.png +0 -0
  258. data/doc/ep_flux/math-doc/document/img5.png +0 -0
  259. data/doc/ep_flux/math-doc/document/img50.png +0 -0
  260. data/doc/ep_flux/math-doc/document/img51.png +0 -0
  261. data/doc/ep_flux/math-doc/document/img52.png +0 -0
  262. data/doc/ep_flux/math-doc/document/img53.png +0 -0
  263. data/doc/ep_flux/math-doc/document/img54.png +0 -0
  264. data/doc/ep_flux/math-doc/document/img55.png +0 -0
  265. data/doc/ep_flux/math-doc/document/img56.png +0 -0
  266. data/doc/ep_flux/math-doc/document/img57.png +0 -0
  267. data/doc/ep_flux/math-doc/document/img58.png +0 -0
  268. data/doc/ep_flux/math-doc/document/img59.png +0 -0
  269. data/doc/ep_flux/math-doc/document/img6.png +0 -0
  270. data/doc/ep_flux/math-doc/document/img60.png +0 -0
  271. data/doc/ep_flux/math-doc/document/img61.png +0 -0
  272. data/doc/ep_flux/math-doc/document/img62.png +0 -0
  273. data/doc/ep_flux/math-doc/document/img63.png +0 -0
  274. data/doc/ep_flux/math-doc/document/img64.png +0 -0
  275. data/doc/ep_flux/math-doc/document/img65.png +0 -0
  276. data/doc/ep_flux/math-doc/document/img66.png +0 -0
  277. data/doc/ep_flux/math-doc/document/img67.png +0 -0
  278. data/doc/ep_flux/math-doc/document/img68.png +0 -0
  279. data/doc/ep_flux/math-doc/document/img69.png +0 -0
  280. data/doc/ep_flux/math-doc/document/img7.png +0 -0
  281. data/doc/ep_flux/math-doc/document/img70.png +0 -0
  282. data/doc/ep_flux/math-doc/document/img71.png +0 -0
  283. data/doc/ep_flux/math-doc/document/img72.png +0 -0
  284. data/doc/ep_flux/math-doc/document/img73.png +0 -0
  285. data/doc/ep_flux/math-doc/document/img74.png +0 -0
  286. data/doc/ep_flux/math-doc/document/img75.png +0 -0
  287. data/doc/ep_flux/math-doc/document/img76.png +0 -0
  288. data/doc/ep_flux/math-doc/document/img77.png +0 -0
  289. data/doc/ep_flux/math-doc/document/img78.png +0 -0
  290. data/doc/ep_flux/math-doc/document/img79.png +0 -0
  291. data/doc/ep_flux/math-doc/document/img8.png +0 -0
  292. data/doc/ep_flux/math-doc/document/img80.png +0 -0
  293. data/doc/ep_flux/math-doc/document/img81.png +0 -0
  294. data/doc/ep_flux/math-doc/document/img82.png +0 -0
  295. data/doc/ep_flux/math-doc/document/img83.png +0 -0
  296. data/doc/ep_flux/math-doc/document/img84.png +0 -0
  297. data/doc/ep_flux/math-doc/document/img85.png +0 -0
  298. data/doc/ep_flux/math-doc/document/img86.png +0 -0
  299. data/doc/ep_flux/math-doc/document/img87.png +0 -0
  300. data/doc/ep_flux/math-doc/document/img88.png +0 -0
  301. data/doc/ep_flux/math-doc/document/img89.png +0 -0
  302. data/doc/ep_flux/math-doc/document/img9.png +0 -0
  303. data/doc/ep_flux/math-doc/document/img90.png +0 -0
  304. data/doc/ep_flux/math-doc/document/img91.png +0 -0
  305. data/doc/ep_flux/math-doc/document/img92.png +0 -0
  306. data/doc/ep_flux/math-doc/document/img93.png +0 -0
  307. data/doc/ep_flux/math-doc/document/img94.png +0 -0
  308. data/doc/ep_flux/math-doc/document/img95.png +0 -0
  309. data/doc/ep_flux/math-doc/document/img96.png +0 -0
  310. data/doc/ep_flux/math-doc/document/img97.png +0 -0
  311. data/doc/ep_flux/math-doc/document/img98.png +0 -0
  312. data/doc/ep_flux/math-doc/document/img99.png +0 -0
  313. data/doc/ep_flux/math-doc/document/index.html +0 -101
  314. data/doc/ep_flux/math-doc/document/internals.pl +0 -258
  315. data/doc/ep_flux/math-doc/document/labels.pl +0 -265
  316. data/doc/ep_flux/math-doc/document/next.png +0 -0
  317. data/doc/ep_flux/math-doc/document/next_g.png +0 -0
  318. data/doc/ep_flux/math-doc/document/node1.html +0 -104
  319. data/doc/ep_flux/math-doc/document/node10.html +0 -164
  320. data/doc/ep_flux/math-doc/document/node11.html +0 -86
  321. data/doc/ep_flux/math-doc/document/node12.html +0 -166
  322. data/doc/ep_flux/math-doc/document/node13.html +0 -897
  323. data/doc/ep_flux/math-doc/document/node14.html +0 -1065
  324. data/doc/ep_flux/math-doc/document/node15.html +0 -72
  325. data/doc/ep_flux/math-doc/document/node16.html +0 -81
  326. data/doc/ep_flux/math-doc/document/node2.html +0 -82
  327. data/doc/ep_flux/math-doc/document/node3.html +0 -91
  328. data/doc/ep_flux/math-doc/document/node4.html +0 -149
  329. data/doc/ep_flux/math-doc/document/node5.html +0 -330
  330. data/doc/ep_flux/math-doc/document/node6.html +0 -99
  331. data/doc/ep_flux/math-doc/document/node7.html +0 -98
  332. data/doc/ep_flux/math-doc/document/node8.html +0 -83
  333. data/doc/ep_flux/math-doc/document/node9.html +0 -140
  334. data/doc/ep_flux/math-doc/document/prev.png +0 -0
  335. data/doc/ep_flux/math-doc/document/prev_g.png +0 -0
  336. data/doc/ep_flux/math-doc/document/up.png +0 -0
  337. data/doc/ep_flux/math-doc/document/up_g.png +0 -0
  338. data/doc/ep_flux/math-doc/document.pdf +0 -0
  339. data/doc/ep_flux/math-doc/document.tex +0 -2018
  340. data/doc/gdir.html +0 -412
  341. data/doc/gdir_client.html +0 -16
  342. data/doc/gdir_connect_ftp-like.html +0 -61
  343. data/doc/gdir_server.html +0 -45
  344. data/doc/ggraph.html +0 -1615
  345. data/doc/gpcat.html +0 -44
  346. data/doc/gpcut.html +0 -41
  347. data/doc/gphys.html +0 -532
  348. data/doc/gphys_fft.html +0 -324
  349. data/doc/gphys_grads_io.html +0 -69
  350. data/doc/gphys_grib_io.html +0 -82
  351. data/doc/gphys_io.html +0 -120
  352. data/doc/gphys_io_common.html +0 -18
  353. data/doc/gphys_netcdf_io.html +0 -283
  354. data/doc/gplist.html +0 -24
  355. data/doc/gpmath.html +0 -51
  356. data/doc/gpmaxmin.html +0 -31
  357. data/doc/gpprint.html +0 -34
  358. data/doc/gpview.html +0 -270
  359. data/doc/grads2nc_with_gphys.html +0 -21
  360. data/doc/grads_gridded.html +0 -307
  361. data/doc/grib.html +0 -144
  362. data/doc/grid.html +0 -212
  363. data/doc/index.html +0 -133
  364. data/doc/index.rd +0 -127
  365. data/doc/netcdf_convention.html +0 -136
  366. data/doc/unumeric.html +0 -176
  367. data/doc/update +0 -64
  368. data/doc/varray.html +0 -299
  369. data/doc/varraycomposite.html +0 -67
@@ -1,897 +0,0 @@
1
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2
-
3
- <!--Converted with jLaTeX2HTML 2K.1beta (1.48) JA patch-1.4
4
- patched version by: Kenshi Muto, Debian Project.
5
- LaTeX2HTML 2K.1beta (1.48),
6
- original version by: Nikos Drakos, CBLU, University of Leeds
7
- * revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
8
- * with significant contributions from:
9
- Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
10
- <HTML>
11
- <HEAD>
12
- <TITLE>$B%*%$%i!<J?6QJ}Dx<07O(B</TITLE>
13
- <META NAME="description" CONTENT="$B%*%$%i!<J?6QJ}Dx<07O(B">
14
- <META NAME="keywords" CONTENT="document">
15
- <META NAME="resource-type" CONTENT="document">
16
- <META NAME="distribution" CONTENT="global">
17
-
18
- <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022-jp">
19
- <META NAME="Generator" CONTENT="jLaTeX2HTML v2K.1beta JA patch-1.4">
20
- <META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
21
-
22
- <LINK REL="STYLESHEET" HREF="document.css">
23
-
24
- <LINK REL="next" HREF="node14.html">
25
- <LINK REL="previous" HREF="node12.html">
26
- <LINK REL="up" HREF="node11.html">
27
- <LINK REL="next" HREF="node14.html">
28
- </HEAD>
29
-
30
- <BODY >
31
- <!--Navigation Panel-->
32
- <A NAME="tex2html196"
33
- HREF="node14.html">
34
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
35
- <A NAME="tex2html192"
36
- HREF="node11.html">
37
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
38
- <A NAME="tex2html186"
39
- HREF="node12.html">
40
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
41
- <A NAME="tex2html194"
42
- HREF="node1.html">
43
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
44
- <BR>
45
- <B> :</B> <A NAME="tex2html197"
46
- HREF="node14.html">$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
47
- <B> :</B> <A NAME="tex2html193"
48
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
49
- <B> :</B> <A NAME="tex2html187"
50
- HREF="node12.html">$B5eLL>e$NBP?t05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B</A>
51
- &nbsp <B> <A NAME="tex2html195"
52
- HREF="node1.html">$BL\<!(B</A></B>
53
- <BR>
54
- <BR>
55
- <!--End of Navigation Panel-->
56
-
57
- <H1><A NAME="SECTION004200000000000000000">
58
- $B%*%$%i!<J?6QJ}Dx<07O(B</A>
59
- </H1>
60
-
61
- $B$"$kJ*M}NL(B <IMG
62
- WIDTH="19" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
63
- SRC="img75.png"
64
- ALT="$ A$"> $B$K$D$$$F(B, <!-- MATH
65
- $\phi, z^*, t$
66
- -->
67
- <IMG
68
- WIDTH="56" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
69
- SRC="img76.png"
70
- ALT="$ \phi, z^*, t$"> $B$r8GDj$7$F(B
71
- $BEl@>J}8~$K$H$C$?J?6Q(B
72
- <BR>
73
- <DIV ALIGN="CENTER"><A NAME="eq:euler_mean"></A><!-- MATH
74
- \begin{eqnarray}
75
- \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda
76
- \end{eqnarray}
77
- -->
78
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
79
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
80
- WIDTH="299" HEIGHT="66" ALIGN="MIDDLE" BORDER="0"
81
- SRC="img77.png"
82
- ALT="$\displaystyle \overline{A}(\phi, z^*, t) \equiv \Dinv{2\pi}\int_0^{2\pi} A(\lambda, \phi, z^*, t) \Dd \lambda$"></TD>
83
- <TD>&nbsp;</TD>
84
- <TD>&nbsp;</TD>
85
- <TD WIDTH=10 ALIGN="RIGHT">
86
- (A.2)</TD></TR>
87
- </TABLE></DIV>
88
- <BR CLEAR="ALL"><P></P>
89
- $B$r%*%$%i!<J?6Q$H8F$V(B.
90
- $B%*%$%i!<J?6Q$+$i$N$:$l$r(B <IMG
91
- WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
92
- SRC="img78.png"
93
- ALT="$ A'$"> $B$H$9$k$H(B
94
- <BR>
95
- <DIV ALIGN="CENTER"><A NAME="eq:euler_eddy"></A><!-- MATH
96
- \begin{eqnarray}
97
- A' = A - \overline{A}
98
- \end{eqnarray}
99
- -->
100
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
101
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
102
- WIDTH="100" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
103
- SRC="img79.png"
104
- ALT="$\displaystyle A' = A - \overline{A}$"></TD>
105
- <TD>&nbsp;</TD>
106
- <TD>&nbsp;</TD>
107
- <TD WIDTH=10 ALIGN="RIGHT">
108
- (A.3)</TD></TR>
109
- </TABLE></DIV>
110
- <BR CLEAR="ALL"><P></P>
111
- $B$G$"$k(B.
112
- $BDj5A$K$h$j(B,
113
- <!-- MATH
114
- $\overline{A'}=0$
115
- -->
116
- <IMG
117
- WIDTH="58" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
118
- SRC="img80.png"
119
- ALT="$ \overline{A'}=0$">, <!-- MATH
120
- $\partial \overline{A}/\partial\lambda = 0$
121
- -->
122
- <IMG
123
- WIDTH="95" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
124
- SRC="img81.png"
125
- ALT="$ \partial \overline{A}/\partial\lambda = 0$">
126
- $B$H$J$k(B.
127
-
128
- (<A HREF="node12.html#eq:pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $BCf$N3FNL$r%*%$%i!<J?6Q$H$=$3$+$i$N$:$l$KJ,$1$F=q$/$H(B
129
-
130
- <DIV ALIGN="CENTER"><A NAME="eq:exp_pe"></A><A NAME="eq:exp_pe_momentum_x"></A><A NAME="eq:exp_pe_momentum_y"></A><A NAME="eq:exp_pe_momentum_z^*"></A><A NAME="eq:exp_pe_continuity"></A><A NAME="eq:exp_pe_thermal"></A><!-- MATH
131
- \begin{subequations}
132
- \begin{align}
133
- & \DP{}{t}(\overline{u} + u')
134
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{u} + u')
135
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{u} + u')
136
- + (\overline{w} + w')\DP{}{z^*}(\overline{u} + u') \notag\\
137
- & \qquad - \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{v} + v')
138
- + \Dinv{a\cos\phi}\DP{}{\lambda}(\overline{\Phi} + \Phi') = \overline{X} + X',\\
139
- & \DP{}{t}(\overline{v} + v')
140
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{v} + v')
141
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{v} + v')
142
- + (\overline{w} + w')\DP{}{z^*}(\overline{v} + v')\notag\\
143
- & \qquad + \left[f + \frac{\tan\phi}{a}(\overline{u} + u')\right](\overline{u} + u')
144
- + \Dinv{a}\DP{}{\phi}(\overline{\Phi} + \Phi') = \overline{Y} +
145
- Y',
146
- \\
147
- & \DP{}{z^*}(\overline{\Phi} + \Phi')
148
- = \frac{Re^{-\kappa z^*/H}}{H}(\overline{\theta} + \theta'),\\
149
- & \Dinv{a\cos\phi} \left[\DP{}{\lambda}(\overline{u} + u')
150
- + \DP{}{\phi}\{(\overline{v} + v')\cos\phi\}\right]
151
- + \Dinv{\rho_0}\DP{}{z^*}[\rho_0 (\overline{w} + w')] = 0,\\
152
- & \DP{}{t}(\overline{\theta} + \theta')
153
- + \frac{\overline{u} + u'}{a\cos\phi}\DP{}{\lambda}(\overline{\theta} + \theta')
154
- + \frac{\overline{v} + v'}{a}\DP{}{\phi}(\overline{\theta} + \theta')
155
- + (\overline{w} + w')\DP{}{z^*}(\overline{\theta} + \theta')\notag\\
156
- & \qquad = \overline{Q} + Q'
157
- \end{align}
158
- \end{subequations}
159
- -->
160
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
161
- <TR VALIGN="MIDDLE">
162
- <TD NOWRAP ALIGN="CENTER"><IMG
163
- WIDTH="607" HEIGHT="501" ALIGN="BOTTOM" BORDER="0"
164
- SRC="img82.png"
165
- ALT="\begin{subequations}\begin{align}
166
  &amp; \DP{}{t}(\overline{u} + u')
167
1
  + \frac{\over...
168
- ... \theta')\notag\\
169
2
  &amp; \qquad = \overline{Q} + Q'
170
3
  \end{align}\end{subequations}"></TD></TR>
171
- </TABLE></DIV>
172
- <BR CLEAR="ALL">
173
- $B$H$J$k(B.
174
- $B>e5-$rJQ7A$7$F(B, $B:8JU$KJ?6QNL$HJ?6QNLF1;N$N@Q$N9`$r(B,
175
- $B1&JU$K$=$l0J30$N9`$r$^$H$a$k$H(B
176
-
177
- <DIV ALIGN="CENTER"><A NAME="eq:exp2_pe"></A><A NAME="eq:exp2_pe_momentum_x"></A><A NAME="eq:exp2_pe_momentum_y"></A><A NAME="eq:exp2_pe_momentum_z^*"></A><A NAME="eq:exp2_pe_continuity"></A><A NAME="eq:exp2_pe_thermal"></A><!-- MATH
178
- \begin{subequations}
179
- \begin{align}
180
- & \DP{\overline{u}}{t}
181
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{u}}{\lambda}
182
- + \frac{\overline{v}}{a}\DP{\overline{u}}{\phi}
183
- + \overline{w}\DP{\overline{u}}{z^*}
184
- - f\overline{v}
185
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
186
- + \Dinv{a\cos\phi}\DP{\overline{\Phi}}{\lambda}
187
- - \overline{X}
188
- \notag\\
189
- & \qquad
190
- = - \DP{u'}{t}
191
- - \frac{\overline{u}}{a\cos\phi}\DP{u'}{\lambda}
192
- - \frac{u'}{a\cos\phi}\DP{\overline{u}}{\lambda}
193
- - \frac{u'}{a\cos\phi}\DP{u'}{\lambda} \notag\\
194
- & \qquad \qquad
195
- - \frac{\overline{v}}{a}\DP{u'}{\phi}
196
- - \frac{v'}{a}\DP{\overline{u}}{\phi}
197
- - \frac{v'}{a}\DP{u'}{\phi}
198
- - \overline{w}\DP{u'}{z^*}
199
- - w'\DP{\overline{u}}{z^*}
200
- - w'\DP{u'}{z^*}
201
- + fv'\notag\\
202
- & \qquad \qquad
203
- + \frac{\tan\phi}{a} \overline{u} v'
204
- + \frac{\tan\phi}{a} u' \overline{v}
205
- + \frac{\tan\phi}{a} u'v'
206
- - \Dinv{a\cos\phi}\DP{\Phi'}{\lambda}
207
- + X',\\
208
- & \DP{\overline{v}}{t}
209
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{v}}{\lambda}
210
- + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
211
- + \overline{w}\DP{\overline{v}}{z^*}
212
- + f\overline{u}
213
- + \frac{\tan\phi}{a}(\overline{u})^2
214
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
215
- - \overline{Y}
216
- \notag\\
217
- & \qquad
218
- = - \DP{v'}{t}
219
- - \frac{\overline{u}}{a\cos\phi}\DP{v'}{\lambda}
220
- - \frac{u'}{a\cos\phi}\DP{\overline{v}}{\lambda}
221
- - \frac{u'}{a\cos\phi}\DP{v'}{\lambda}\notag\\
222
- & \qquad \qquad
223
- - \frac{\overline{v}}{a}\DP{v'}{\phi}
224
- - \frac{v'}{a}\DP{\overline{v}}{\phi}
225
- - \frac{v'}{a}\DP{v'}{\phi}
226
- - \overline{w}\DP{v'}{z^*}
227
- - w'\DP{\overline{v}}{z^*}
228
- - w'\DP{v'}{z^*}
229
- - fu'\notag\\
230
- & \qquad \qquad
231
- - 2\frac{\tan\phi}{a}\overline{u}u'
232
- - \frac{\tan\phi}{a}(u')^2
233
- - \Dinv{a\cos\phi}\DP{\Phi'}{\phi}
234
- + Y',\\
235
- & \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta}
236
- = - \DP{\Phi'}{z^*} + \frac{Re^{-\kappa z^*/H}}{H}\theta',\\
237
- & \Dinv{a\cos\phi} \left[\DP{\overline{u}}{\lambda}
238
- + \DP{}{\phi}(\overline{v}\cos\phi)\right]
239
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
240
- \notag\\
241
- & \qquad
242
- = - \Dinv{a\cos\phi}\left[
243
- \DP{u'}{\lambda}
244
- + \DP{}{\phi}(v'\cos\phi)
245
- \right]
246
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w') ,\\
247
- & \DP{\overline{\theta}}{t}
248
- + \frac{\overline{u}}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
249
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
250
- + \overline{w}\DP{\overline{\theta}}{z^*}
251
- - \overline{Q}
252
- \notag\\
253
- & \qquad
254
- = - \DP{\theta'}{t}
255
- - \frac{\overline{u}}{a\cos\phi}\DP{\theta'}{\lambda}
256
- - \frac{u'}{a\cos\phi}\DP{\overline{\theta}}{\lambda}
257
- - \frac{u'}{a\cos\phi}\DP{\theta'}{\lambda}
258
- \notag \\
259
- & \qquad \qquad
260
- - \frac{\overline{v}}{a}\DP{\theta'}{\phi}
261
- - \frac{v'}{a}\DP{\overline{\theta}}{\phi}
262
- - \frac{v'}{a}\DP{\theta'}{\phi}
263
- - \overline{w}\DP{\theta'}{z^*}
264
- - w'\DP{\overline{\theta}}{z^*}
265
- - w'\DP{\theta'}{z^*}
266
- + Q'
267
- \end{align}
268
- \end{subequations}
269
- -->
270
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
271
- <TR VALIGN="MIDDLE">
272
- <TD NOWRAP ALIGN="CENTER"><IMG
273
- WIDTH="556" HEIGHT="805" ALIGN="BOTTOM" BORDER="0"
274
- SRC="img83.png"
275
- ALT="\begin{subequations}\begin{align}
276
4
  &amp; \DP{\overline{u}}{t}
277
5
  + \frac{\overline{u}}...
278
- ...erline{\theta}}{z^*}
279
6
  - w'\DP{\theta'}{z^*}
280
7
  + Q'
281
8
  \end{align}\end{subequations}"></TD></TR>
282
- </TABLE></DIV>
283
- <BR CLEAR="ALL">
284
- $B$H=q$1$k(B.
285
- (<A HREF="node13.html#eq:exp2_pe"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r%*%$%i!<J?6Q$9$k$H(B,
286
-
287
- <DIV ALIGN="CENTER"><A NAME="eq:euler_mean_pe"></A><A NAME="eq:euler_mean_pe_momentum_x"></A><A NAME="eq:euler_mean_pe_momentum_y"></A><A NAME="eq:euler_mean_pe_momentum_z^*"></A><A NAME="eq:euler_mean_pe_continuity"></A><A NAME="eq:euler_mean_pe_thermal"></A><!-- MATH
288
- \begin{subequations}
289
- \begin{align}
290
- & \DP{\overline{u}}{t}
291
- + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
292
- + \overline{w}\DP{\overline{u}}{z^*}
293
- - f\overline{v}
294
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
295
- - \overline{X}
296
- \notag\\
297
- & \qquad
298
- = - \Dinv{a\cos\phi}\overline{u'\DP{u'}{\lambda}}
299
- - \Dinv{a}\overline{v'\DP{u'}{\phi}}
300
- - \overline{w'\DP{u'}{z^*}}
301
- + \frac{\tan\phi}{a}\overline{u'v'},\\
302
- & \DP{\overline{v}}{t}
303
- + \frac{\overline{v}}{a}\DP{\overline{v}}{\phi}
304
- + \overline{w} \DP{\overline{v}}{z^*}
305
- + f \overline{u}
306
- + \frac{\tan \phi}{a} (\overline{u})^2
307
- + \Dinv{a}\DP{\overline{\Phi}}{\phi}
308
- - \overline{Y}
309
- \notag\\
310
- & \qquad
311
- = - \Dinv{a \cos \phi} \overline{ u' \DP{v'}{\lambda} }
312
- - \Dinv{a} \overline{{v'}\DP{v'}{\phi}}
313
- - \overline{w'\DP{v'}{z^*}}
314
- - \frac{\tan \phi}{a} \overline{u'^2},\\
315
- & \DP{\overline{\Phi}}{z^*}
316
- - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,\\
317
- & \Dinv{a\cos\phi}
318
- \left[
319
- \DP{}{\phi}(\overline{v}\cos\phi)
320
- \right]
321
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
322
- = 0,\\
323
- & \DP{\overline{\theta}}{t}
324
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
325
- + \overline{w}\DP{\overline{\theta}}{z^*}
326
- - \overline{Q} =
327
- - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
328
- - \Dinv{a}\overline{v'\DP{\theta'}{\phi}}
329
- - \overline{w'\DP{\theta'}{z^*}}
330
- \end{align}
331
- \end{subequations}
332
- -->
333
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
334
- <TR VALIGN="MIDDLE">
335
- <TD NOWRAP ALIGN="CENTER"><IMG
336
- WIDTH="555" HEIGHT="390" ALIGN="BOTTOM" BORDER="0"
337
- SRC="img84.png"
338
- ALT="\begin{subequations}\begin{align}
339
9
  &amp; \DP{\overline{u}}{t}
340
10
  + \Dinv{a}\overline{v...
341
- ...\theta'}{\phi}}
342
11
  - \overline{w'\DP{\theta'}{z^*}}
343
12
  \end{align}\end{subequations}"></TD></TR>
344
- </TABLE></DIV>
345
- <BR CLEAR="ALL">
346
- $B$H$J$k(B.
347
- $B$3$3$G(B (<A HREF="node13.html#eq:exp2_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>), (<A HREF="node13.html#eq:euler_mean_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>)
348
- $B$+$iEl@>J?6Q$+$i$N$:$l$K4X$9$kO"B3$N<0(B
349
- <BR>
350
- <DIV ALIGN="CENTER"><A NAME="eq:euler_eddy_pe_continuity"></A><!-- MATH
351
- \begin{eqnarray}
352
- \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
353
- + \DP{}{\phi}(v'\cos\phi)\right]
354
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
355
- = 0
356
- \end{eqnarray}
357
- -->
358
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
359
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
360
- WIDTH="397" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
361
- SRC="img85.png"
362
- ALT="$\displaystyle \Dinv{a\cos\phi}\left[\DP{u'}{\lambda}
363
- + \DP{}{\phi}(v'\cos\phi)\right]
364
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 w')
365
- = 0$"></TD>
366
- <TD>&nbsp;</TD>
367
- <TD>&nbsp;</TD>
368
- <TD WIDTH=10 ALIGN="RIGHT">
369
- (A.7)</TD></TR>
370
- </TABLE></DIV>
371
- <BR CLEAR="ALL"><P></P>
372
- $B$,F@$i$l$k(B.
373
-
374
- <BR>
375
- <BR>
376
-
377
- (<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$r;H$C$F(B
378
- (<A HREF="node13.html#eq:euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$rJQ7A$9$k(B.
379
- (<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
380
- WIDTH="20" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
381
- SRC="img86.png"
382
- ALT="$ u'$"> $B$r$+$1$F(B
383
- $B%*%$%i!<J?6Q$r$H$k$H(B
384
- <BR>
385
- <DIV ALIGN="CENTER">
386
- <!-- MATH
387
- \begin{eqnarray}
388
- \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
389
- + \Dinv{a} \overline{ u' \DP{v'}{\phi} }
390
- - \frac{\tan \phi}{a} \overline{ u' v' }
391
- + \overline{ u' \DP{w'}{z^*} }
392
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
393
- = 0
394
- \end{eqnarray}
395
- -->
396
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
397
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
398
- WIDTH="503" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
399
- SRC="img87.png"
400
- ALT="$\displaystyle \Dinv{a \cos \phi} \overline{u' \DP{u'}{\lambda}}
401
- + \Dinv{a} \ove...
402
- ...line{ u' \DP{w'}{z^*} }
403
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ u' w' }
404
- = 0$"></TD>
405
- <TD>&nbsp;</TD>
406
- <TD>&nbsp;</TD>
407
- <TD WIDTH=10 ALIGN="RIGHT">
408
- (A.8)</TD></TR>
409
- </TABLE></DIV>
410
- <BR CLEAR="ALL"><P></P>
411
- $B$3$l$r(B (<A HREF="node13.html#eq:euler_mean_pe_momentum_x"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
412
- <P></P>
413
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
414
- <TR VALIGN="MIDDLE">
415
- <TD NOWRAP ALIGN="RIGHT"><IMG
416
- WIDTH="31" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
417
- SRC="img88.png"
418
- ALT="$\displaystyle \DP{\overline{u}}{t}$"></TD>
419
- <TD NOWRAP ALIGN="LEFT"><IMG
420
- WIDTH="312" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
421
- SRC="img89.png"
422
- ALT="$\displaystyle + \Dinv{a}\overline{v}\DP{\overline{u}}{\phi}
423
13
  + \overline{w}\DP{...
424
- ...erline{v}
425
14
  - \frac{\tan\phi}{a}\overline{u}\overline{v}
426
15
  - \overline{X} \notag$"></TD>
427
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
428
- &nbsp;&nbsp;&nbsp;</TD></TR>
429
- <TR VALIGN="MIDDLE">
430
- <TD>&nbsp;</TD>
431
- <TD NOWRAP ALIGN="LEFT"><IMG
432
- WIDTH="671" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
433
- SRC="img90.png"
434
- ALT="$\displaystyle = - \frac{2}{a\cos\phi} \overline{u'\DP{u'}{\lambda}}
435
16
  - \Dinv{a}...
436
- ...
437
17
  - \overline{u'\DP{w'}{z^*}}
438
18
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$"></TD>
439
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
440
- &nbsp;&nbsp;&nbsp;</TD></TR>
441
- </TABLE></DIV>
442
- <BR CLEAR="ALL"><P></P>
443
- $B$3$3$G(B
444
- <P></P>
445
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
446
- <TR VALIGN="MIDDLE">
447
- <TD NOWRAP ALIGN="RIGHT"><IMG
448
- WIDTH="121" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
449
- SRC="img91.png"
450
- ALT="$\displaystyle - \frac{2}{a\cos\phi} \overline{ u' \DP{u'}{\lambda} }$"></TD>
451
- <TD NOWRAP ALIGN="LEFT"><IMG
452
- WIDTH="188" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
453
- SRC="img92.png"
454
- ALT="$\displaystyle = - \Dinv{a\cos\phi}\overline{\DP{(u')^2}{\lambda}}
455
19
  = 0,$"></TD>
456
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
457
- &nbsp;&nbsp;&nbsp;</TD></TR>
458
- <TR VALIGN="MIDDLE">
459
- <TD NOWRAP ALIGN="RIGHT"><IMG
460
- WIDTH="270" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
461
- SRC="img93.png"
462
- ALT="$\displaystyle - \Dinv{a}\overline{v'\DP{u'}{\phi}}
463
20
  - \Dinv{a}\overline{u'\DP{v'}{\phi}}
464
21
  + \frac{2\tan\phi}{a}\overline{u'v'}$"></TD>
465
- <TD NOWRAP ALIGN="LEFT"><IMG
466
- WIDTH="229" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
467
- SRC="img94.png"
468
- ALT="$\displaystyle = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi),$"></TD>
469
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
470
- &nbsp;&nbsp;&nbsp;</TD></TR>
471
- <TR VALIGN="MIDDLE">
472
- <TD NOWRAP ALIGN="RIGHT"><IMG
473
- WIDTH="253" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
474
- SRC="img95.png"
475
- ALT="$\displaystyle - \overline{w'\DP{u'}{z^*}}
476
22
  - \overline{u'\DP{w'}{z^*}}
477
23
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{u'w'}$"></TD>
478
- <TD NOWRAP ALIGN="LEFT"><IMG
479
- WIDTH="158" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
480
- SRC="img96.png"
481
- ALT="$\displaystyle = - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$"></TD>
482
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
483
- &nbsp;&nbsp;&nbsp;</TD></TR>
484
- </TABLE></DIV>
485
- <BR CLEAR="ALL"><P></P>
486
- $B$rMQ$$$k$H(B,
487
- <P></P>
488
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
489
- <TR VALIGN="MIDDLE">
490
- <TD>&nbsp;</TD>
491
- <TD NOWRAP ALIGN="LEFT"><IMG
492
- WIDTH="353" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
493
- SRC="img97.png"
494
- ALT="$\displaystyle \DP{\overline{u}}{t}
495
24
  + \Dinv{a}\overline{v}\DP{\overline{u}}{\ph...
496
- ...e{v}
497
25
  - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
498
26
  - \overline{X}
499
27
  \notag$"></TD>
500
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
501
- &nbsp;&nbsp;&nbsp;</TD></TR>
502
- <TR VALIGN="MIDDLE">
503
- <TD>&nbsp;</TD>
504
- <TD NOWRAP ALIGN="LEFT"><IMG
505
- WIDTH="403" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
506
- SRC="img98.png"
507
- ALT="$\displaystyle \qquad
508
28
  = - \Dinv{a\cos^2\phi}\DP{}{\phi}(\overline{v'u'}\cos^2\phi)
509
29
  - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'u'})$"></TD>
510
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
511
- &nbsp;&nbsp;&nbsp;</TD></TR>
512
- </TABLE></DIV>
513
- <BR CLEAR="ALL"><P></P>
514
- $B$H=q$/$3$H$,$G$-$k(B.
515
- (<A HREF="node13.html#eq:euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K4X$7$F$bF1MM$K(B,
516
- (<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
517
- WIDTH="19" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
518
- SRC="img99.png"
519
- ALT="$ v'$"> $B$r$+$1$F(B
520
- $B%*%$%i!<J?6Q$r$H$C$?<0(B
521
- <BR>
522
- <DIV ALIGN="CENTER">
523
- <!-- MATH
524
- \begin{eqnarray}
525
- \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
526
- + \Dinv{a} \overline{ v' \DP{v'}{\phi} }
527
- + \frac{\tan \phi}{a} \overline{ v'^2 }
528
- + \overline{ v' \DP{w'}{z^*} }
529
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
530
- = 0
531
- \end{eqnarray}
532
- -->
533
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
534
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
535
- WIDTH="490" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
536
- SRC="img100.png"
537
- ALT="$\displaystyle \Dinv{a \cos \phi} \overline{ v' \DP{u'}{\lambda} }
538
- + \Dinv{a} \o...
539
- ...line{ v' \DP{w'}{z^*} }
540
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
541
- = 0$"></TD>
542
- <TD>&nbsp;</TD>
543
- <TD>&nbsp;</TD>
544
- <TD WIDTH=10 ALIGN="RIGHT">
545
- (A.9)</TD></TR>
546
- </TABLE></DIV>
547
- <BR CLEAR="ALL"><P></P>
548
- $B$r(B (<A HREF="node13.html#eq:euler_mean_pe_momentum_y"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
549
- <P></P>
550
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
551
- <TR VALIGN="MIDDLE">
552
- <TD>&nbsp;</TD>
553
- <TD NOWRAP ALIGN="LEFT"><IMG
554
- WIDTH="412" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
555
- SRC="img101.png"
556
- ALT="$\displaystyle \DP{\overline{v}}{t}
557
30
  + \frac{\overline{v}}{a} \DP{\overline{v}}{...
558
- ...(\overline{u})^2
559
31
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
560
32
  - \overline{Y}
561
33
  \notag$"></TD>
562
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
563
- &nbsp;&nbsp;&nbsp;</TD></TR>
564
- <TR VALIGN="MIDDLE">
565
- <TD>&nbsp;</TD>
566
- <TD NOWRAP ALIGN="LEFT"><IMG
567
- WIDTH="423" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
568
- SRC="img102.png"
569
- ALT="$\displaystyle \qquad
570
34
  = - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
571
35
  - \Din...
572
- ...hi}}
573
36
  - \overline{w'\DP{v'}{z^*}}
574
37
  - \frac{\tan\phi}{a} \overline{u'^2}
575
38
  \notag$"></TD>
576
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
577
- &nbsp;&nbsp;&nbsp;</TD></TR>
578
- <TR VALIGN="MIDDLE">
579
- <TD>&nbsp;</TD>
580
- <TD NOWRAP ALIGN="LEFT"><IMG
581
- WIDTH="546" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
582
- SRC="img103.png"
583
- ALT="$\displaystyle \qquad \qquad
584
39
  - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}...
585
- ...verline{ v' \DP{w'}{z^*} }
586
40
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$"></TD>
587
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
588
- &nbsp;&nbsp;&nbsp;</TD></TR>
589
- </TABLE></DIV>
590
- <BR CLEAR="ALL"><P></P>
591
- $B$,F@$i$l$k(B.
592
- $B$3$3$G(B
593
- <BR>
594
- <DIV ALIGN="CENTER">
595
- <!-- MATH
596
- \begin{eqnarray}
597
- - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
598
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}
599
- & = & - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
600
- = 0, \nonumber \\
601
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
602
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
603
- + \frac{\tan \phi}{a} \overline{ v'^2 }
604
- & = &
605
- - \Dinv{a \cos \phi}
606
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)
607
- \nonumber \\
608
- - \overline{w'\DP{v'}{z^*}}
609
- - \overline{ v' \DP{w'}{z^*} }
610
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }
611
- & = &
612
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)
613
- \end{eqnarray}
614
- -->
615
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
616
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
617
- WIDTH="245" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
618
- SRC="img104.png"
619
- ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{u'\DP{v'}{\lambda}}
620
- - \Dinv{a \cos \phi} \overline{v' \DP{u'}{\lambda}}$"></TD>
621
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
622
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
623
- SRC="img5.png"
624
- ALT="$\displaystyle =$"></TD>
625
- <TD ALIGN="LEFT" NOWRAP><IMG
626
- WIDTH="175" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
627
- SRC="img105.png"
628
- ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' v')}{\lambda}}
629
- = 0,$"></TD>
630
- <TD WIDTH=10 ALIGN="RIGHT">
631
- &nbsp;</TD></TR>
632
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
633
- WIDTH="247" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
634
- SRC="img106.png"
635
- ALT="$\displaystyle - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
636
- - \Dinv{a} \overline{ v' \DP{v'}{\phi} }
637
- + \frac{\tan \phi}{a} \overline{ v'^2 }$"></TD>
638
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
639
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
640
- SRC="img5.png"
641
- ALT="$\displaystyle =$"></TD>
642
- <TD ALIGN="LEFT" NOWRAP><IMG
643
- WIDTH="188" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
644
- SRC="img107.png"
645
- ALT="$\displaystyle - \Dinv{a \cos \phi}
646
- \DP{}{\phi} \left( \cos \phi \overline{v'^2} \right)$"></TD>
647
- <TD WIDTH=10 ALIGN="RIGHT">
648
- &nbsp;</TD></TR>
649
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
650
- WIDTH="251" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
651
- SRC="img108.png"
652
- ALT="$\displaystyle - \overline{w'\DP{v'}{z^*}}
653
- - \overline{ v' \DP{w'}{z^*} }
654
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ v' w' }$"></TD>
655
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
656
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
657
- SRC="img5.png"
658
- ALT="$\displaystyle =$"></TD>
659
- <TD ALIGN="LEFT" NOWRAP><IMG
660
- WIDTH="144" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
661
- SRC="img109.png"
662
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$"></TD>
663
- <TD WIDTH=10 ALIGN="RIGHT">
664
- (A.10)</TD></TR>
665
- </TABLE></DIV>
666
- <BR CLEAR="ALL"><P></P>
667
- $B$rMQ$$$k$H(B
668
- <P></P>
669
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
670
- <TR VALIGN="MIDDLE">
671
- <TD>&nbsp;</TD>
672
- <TD NOWRAP ALIGN="LEFT"><IMG
673
- WIDTH="412" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
674
- SRC="img101.png"
675
- ALT="$\displaystyle \DP{\overline{v}}{t}
676
41
  + \frac{\overline{v}}{a} \DP{\overline{v}}{...
677
- ...(\overline{u})^2
678
42
  + \Dinv{a} \DP{\overline{\Phi}}{\phi}
679
43
  - \overline{Y}
680
44
  \notag$"></TD>
681
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
682
- &nbsp;&nbsp;&nbsp;</TD></TR>
683
- <TR VALIGN="MIDDLE">
684
- <TD>&nbsp;</TD>
685
- <TD NOWRAP ALIGN="LEFT"><IMG
686
- WIDTH="483" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
687
- SRC="img110.png"
688
- ALT="$\displaystyle \qquad
689
45
  = - \Dinv{a \cos \phi}
690
46
  \DP{}{\phi} \left( \cos \phi \o...
691
- ...line{u'^2}
692
47
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ v' w' } \right)$"></TD>
693
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
694
- &nbsp;&nbsp;&nbsp;</TD></TR>
695
- </TABLE></DIV>
696
- <BR CLEAR="ALL"><P></P>
697
- $B$H=q$/$3$H$,$G$-$k(B.
698
- (<A HREF="node13.html#eq:euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K$D$$$F$bF1MM$K(B,
699
- (<A HREF="node13.html#eq:euler_eddy_pe_continuity"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K(B <IMG
700
- WIDTH="18" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
701
- SRC="img111.png"
702
- ALT="$ \theta'$"> $B$r$+$1$F(B
703
- $B%*%$%i!<J?6Q$r$H$C$?<0(B
704
- <BR>
705
- <DIV ALIGN="CENTER">
706
- <!-- MATH
707
- \begin{eqnarray}
708
- \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
709
- + \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
710
- - \frac{\tan \phi}{a} \overline{ \theta' v' }
711
- + \overline{ \theta' \DP{w'}{z^*} }
712
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
713
- = 0
714
- \end{eqnarray}
715
- -->
716
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
717
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
718
- WIDTH="495" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
719
- SRC="img112.png"
720
- ALT="$\displaystyle \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
721
- + \Dinv{a}...
722
- ...ta' \DP{w'}{z^*} }
723
- + \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
724
- = 0$"></TD>
725
- <TD>&nbsp;</TD>
726
- <TD>&nbsp;</TD>
727
- <TD WIDTH=10 ALIGN="RIGHT">
728
- (A.11)</TD></TR>
729
- </TABLE></DIV>
730
- <BR CLEAR="ALL"><P></P>
731
- $B$r(B (<A HREF="node13.html#eq:euler_mean_pe_thermal"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]" SRC="crossref.png"></A>) $B$K2C$($k$H(B
732
- <P></P>
733
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
734
- <TR VALIGN="MIDDLE">
735
- <TD>&nbsp;</TD>
736
- <TD NOWRAP ALIGN="LEFT"><IMG
737
- WIDTH="200" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
738
- SRC="img113.png"
739
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
740
48
  + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
741
49
  + \overline{w}\DP{\overline{\theta}}{z^*}
742
50
  - \overline{Q}
743
51
  \notag$"></TD>
744
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
745
- &nbsp;&nbsp;&nbsp;</TD></TR>
746
- <TR VALIGN="MIDDLE">
747
- <TD>&nbsp;</TD>
748
- <TD NOWRAP ALIGN="LEFT"><IMG
749
- WIDTH="332" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
750
- SRC="img114.png"
751
- ALT="$\displaystyle \qquad =
752
52
  - \Dinv{a\cos\phi}\overline{u'\DP{\theta'}{\lambda}}
753
53
  ...
754
- ...inv{a}\overline{v'\DP{\theta'}{\phi}}
755
54
  - \overline{w'\DP{\theta'}{z^*}}
756
55
  \notag$"></TD>
757
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
758
- &nbsp;&nbsp;&nbsp;</TD></TR>
759
- <TR VALIGN="MIDDLE">
760
- <TD>&nbsp;</TD>
761
- <TD NOWRAP ALIGN="LEFT"><IMG
762
- WIDTH="551" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
763
- SRC="img115.png"
764
- ALT="$\displaystyle \qquad \qquad
765
56
  - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\la...
766
- ...theta' \DP{w'}{z^*} }
767
57
  - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$"></TD>
768
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
769
- &nbsp;&nbsp;&nbsp;</TD></TR>
770
- </TABLE></DIV>
771
- <BR CLEAR="ALL"><P></P>
772
- $B$,F@$i$l$k(B.
773
- $B$3$3$G(B
774
- <BR>
775
- <DIV ALIGN="CENTER">
776
- <!-- MATH
777
- \begin{eqnarray}
778
- - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
779
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}
780
- & = & - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
781
- = 0, \nonumber \\
782
- - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
783
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
784
- + \frac{\tan \phi}{a} \overline{ \theta' v' }
785
- & = &
786
- - \Dinv{a \cos \phi}
787
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)
788
- \nonumber \\
789
- - \overline{w'\DP{\theta'}{z^*}}
790
- - \overline{ \theta' \DP{w'}{z^*} }
791
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }
792
- & = &
793
- - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)
794
- \nonumber
795
- \end{eqnarray}
796
- -->
797
- <TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
798
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
799
- WIDTH="244" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
800
- SRC="img116.png"
801
- ALT="$\displaystyle - \Dinv{a \cos \phi}\overline{u' \DP{\theta'}{\lambda}}
802
- - \Dinv{a \cos \phi} \overline{\theta' \DP{u'}{\lambda}}$"></TD>
803
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
804
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
805
- SRC="img5.png"
806
- ALT="$\displaystyle =$"></TD>
807
- <TD ALIGN="LEFT" NOWRAP><IMG
808
- WIDTH="174" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
809
- SRC="img117.png"
810
- ALT="$\displaystyle - \Dinv{a\cos\phi}\overline{\DP{(u' \theta')}{\lambda}}
811
- = 0,$"></TD>
812
- <TD WIDTH=10 ALIGN="RIGHT">
813
- &nbsp;</TD></TR>
814
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
815
- WIDTH="253" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
816
- SRC="img118.png"
817
- ALT="$\displaystyle - \Dinv{a} \overline{ v' \DP{\theta'}{\phi} }
818
- - \Dinv{a} \overline{ \theta' \DP{v'}{\phi} }
819
- + \frac{\tan \phi}{a} \overline{ \theta' v' }$"></TD>
820
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
821
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
822
- SRC="img5.png"
823
- ALT="$\displaystyle =$"></TD>
824
- <TD ALIGN="LEFT" NOWRAP><IMG
825
- WIDTH="190" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
826
- SRC="img119.png"
827
- ALT="$\displaystyle - \Dinv{a \cos \phi}
828
- \DP{}{\phi} \left( \cos \phi \overline{v' \theta'} \right)$"></TD>
829
- <TD WIDTH=10 ALIGN="RIGHT">
830
- &nbsp;</TD></TR>
831
- <TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
832
- WIDTH="251" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
833
- SRC="img120.png"
834
- ALT="$\displaystyle - \overline{w'\DP{\theta'}{z^*}}
835
- - \overline{ \theta' \DP{w'}{z^*} }
836
- - \Dinv{\rho_0} \DP{\rho_0}{z^*} \overline{ \theta' w' }$"></TD>
837
- <TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
838
- WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
839
- SRC="img5.png"
840
- ALT="$\displaystyle =$"></TD>
841
- <TD ALIGN="LEFT" NOWRAP><IMG
842
- WIDTH="143" HEIGHT="60" ALIGN="MIDDLE" BORDER="0"
843
- SRC="img121.png"
844
- ALT="$\displaystyle - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$"></TD>
845
- <TD WIDTH=10 ALIGN="RIGHT">
846
- &nbsp;</TD></TR>
847
- </TABLE></DIV>
848
- <BR CLEAR="ALL"><P></P>
849
- $B$rMQ$$$k$H(B
850
- <P></P>
851
- <DIV ALIGN="CENTER"><TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
852
- <TR VALIGN="MIDDLE">
853
- <TD>&nbsp;</TD>
854
- <TD NOWRAP ALIGN="LEFT"><IMG
855
- WIDTH="558" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
856
- SRC="img122.png"
857
- ALT="$\displaystyle \DP{\overline{\theta}}{t}
858
58
  + \frac{\overline{v}}{a}\DP{\overline{...
859
- ...ight)
860
59
  - \Dinv{\rho_0} \DP{}{z^*} \left( \rho_0 \overline{ w' \theta' } \right)$"></TD>
861
- <TD NOWRAP WIDTH="10" ALIGN="RIGHT">
862
- &nbsp;&nbsp;&nbsp;</TD></TR>
863
- </TABLE></DIV>
864
- <BR CLEAR="ALL"><P></P>
865
- $B$H$J$k(B.
866
-
867
- <BR>
868
- <BR>
869
-
870
- $B0J>e$r$^$H$a$k$H(B, $B0J2<$N(B<B>$B%*%$%i!<J?6QJ}Dx<0(B</B>$B$,F@$i$l$k(B.
871
- <TABLE BORDER="1"><TR><TD>
872
-
873
- <DIV ALIGN="CENTER"><A NAME="eq:new_euler_mean_pe"></A><A NAME="eq:new_euler_mean_pe_momentum_x"></A><A NAME="eq:new_euler_mean_pe_momentum_y"></A><A NAME="eq:new_euler_mean_pe_momentum_z^*"></A><A NAME="eq:new_euler_mean_pe_continuity"></A><A NAME="eq:new_euler_mean_pe_thermal"></A><!-- MATH
874
- \begin{subequations}
875
- \begin{align}
876
- \DP{\overline{u}}{t}
877
- & + \Dinv{a}\overline{v} \DP{\overline{u}}{\phi}
878
- + \overline{w} \DP{\overline{u}}{z^*}
879
- - f\overline{v}
880
- - \frac{\tan\phi}{a} \overline{u} \ \overline{v}
881
- - \overline{X}
882
- \notag\\
883
- & \qquad
884
- = - \Dinv{a\cos^2\phi}
885
- \DP{}{\phi} (\overline{v'u'} \cos^2 \phi)
886
- - \Dinv{\rho_0} \DP{}{z^*}(\rho_0\overline{w'u'}),\\
887
- \DP{\overline{v}}{t}
888
- & + \frac{\overline{v}}{a} \DP{\overline{v}}{\phi}
889
- + \overline{w} \DP{\overline{v}}{z^*}
890
- + f \overline{u}
891
- + \frac{\tan\phi}{a} (\overline{u})^2
892
- + \Dinv{a} \DP{\overline{\Phi}}{\phi}
893
- - \overline{Y}
894
- \notag\\
895
- & \qquad
896
- = - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'^2} \cos\phi)
897
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{v' w'})
898
- - \overline{u'^2}\frac{\tan\phi}{a},
899
- \end{align}
900
- \begin{align}
901
- \DP{\overline{\Phi}}{z^*} - \frac{Re^{-\kappa z^*/H}}{H}\overline{\theta} = 0,
902
- \end{align}
903
- \begin{align}
904
- \Dinv{a\cos\phi}&
905
- \DP{}{\phi}(\overline{v}\cos\phi)
906
- + \Dinv{\rho_0}\DP{}{z^*}(\rho_0 \overline{w})
907
- = 0,
908
- \end{align}
909
- \begin{align}
910
- \DP{\overline{\theta}}{t}
911
- + \frac{\overline{v}}{a}\DP{\overline{\theta}}{\phi}
912
- + \overline{w}\DP{\overline{\theta}}{z^*}
913
- - \overline{Q} =
914
- - \Dinv{a\cos\phi}\DP{}{\phi}(\overline{v'\theta'}\cos\phi)
915
- - \Dinv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
916
- \end{align}
917
- \end{subequations}
918
- -->
919
- <TABLE CELLPADDING="0" WIDTH="100%" ALIGN="CENTER">
920
- <TR VALIGN="MIDDLE">
921
- <TD NOWRAP ALIGN="CENTER"><IMG
922
- WIDTH="555" HEIGHT="393" ALIGN="BOTTOM" BORDER="0"
923
- SRC="img123.png"
924
- ALT="\begin{subequations}\begin{align}
925
60
  \DP{\overline{u}}{t}
926
61
  &amp; + \Dinv{a}\overline{v...
927
- ...nv{\rho_0}\DP{}{z^*}(\rho_0\overline{w'\theta'}).
928
62
  \end{align}\end{subequations}"></TD></TR>
929
- </TABLE></DIV>
930
- <BR CLEAR="ALL">
931
- </TD></TR></TABLE><HR>
932
- <!--Navigation Panel-->
933
- <A NAME="tex2html196"
934
- HREF="node14.html">
935
- <IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
936
- <A NAME="tex2html192"
937
- HREF="node11.html">
938
- <IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
939
- <A NAME="tex2html186"
940
- HREF="node12.html">
941
- <IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
942
- <A NAME="tex2html194"
943
- HREF="node1.html">
944
- <IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
945
- <BR>
946
- <B> :</B> <A NAME="tex2html197"
947
- HREF="node14.html">$BJQ7A%*%$%i!<J?6QJ}Dx<07O(B</A>
948
- <B> :</B> <A NAME="tex2html193"
949
- HREF="node11.html">$B%W%j%_%F%#%VJ}Dx<07O$HJQ7A%*%$%i!<J?6Q$NI|=,(B</A>
950
- <B> :</B> <A NAME="tex2html187"
951
- HREF="node12.html">$B5eLL>e$NBP?t05NO:BI87O$K$*$1$k%W%j%_%F%#%VJ}Dx<0(B</A>
952
- &nbsp <B> <A NAME="tex2html195"
953
- HREF="node1.html">$BL\<!(B</A></B>
954
- <!--End of Navigation Panel-->
955
- <ADDRESS>
956
- Tsukahara Daisuke
957
- $BJ?@.(B17$BG/(B2$B7n(B19$BF|(B
958
- </ADDRESS>
959
- </BODY>
960
- </HTML>