xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
File without changes
|
|
@@ -0,0 +1,395 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
from math import sqrt
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.distributed as distributed
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
import torchaudio
|
|
9
|
+
from einops import rearrange
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def default(val, d):
|
|
13
|
+
return val if val is not None else d
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def eval_decorator(fn):
|
|
17
|
+
def inner(model, *args, **kwargs):
|
|
18
|
+
was_training = model.training
|
|
19
|
+
model.eval()
|
|
20
|
+
out = fn(model, *args, **kwargs)
|
|
21
|
+
model.train(was_training)
|
|
22
|
+
return out
|
|
23
|
+
|
|
24
|
+
return inner
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def dvae_wav_to_mel(
|
|
28
|
+
wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu")
|
|
29
|
+
):
|
|
30
|
+
mel_stft = torchaudio.transforms.MelSpectrogram(
|
|
31
|
+
n_fft=1024,
|
|
32
|
+
hop_length=256,
|
|
33
|
+
win_length=1024,
|
|
34
|
+
power=2,
|
|
35
|
+
normalized=False,
|
|
36
|
+
sample_rate=22050,
|
|
37
|
+
f_min=0,
|
|
38
|
+
f_max=8000,
|
|
39
|
+
n_mels=80,
|
|
40
|
+
norm="slaney",
|
|
41
|
+
).to(device)
|
|
42
|
+
wav = wav.to(device)
|
|
43
|
+
mel = mel_stft(wav)
|
|
44
|
+
mel = torch.log(torch.clamp(mel, min=1e-5))
|
|
45
|
+
if mel_norms is None:
|
|
46
|
+
mel_norms = torch.load(mel_norms_file, map_location=device)
|
|
47
|
+
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
|
|
48
|
+
return mel
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class Quantize(nn.Module):
|
|
52
|
+
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False):
|
|
53
|
+
super().__init__()
|
|
54
|
+
|
|
55
|
+
self.dim = dim
|
|
56
|
+
self.n_embed = n_embed
|
|
57
|
+
self.decay = decay
|
|
58
|
+
self.eps = eps
|
|
59
|
+
|
|
60
|
+
self.balancing_heuristic = balancing_heuristic
|
|
61
|
+
self.codes = None
|
|
62
|
+
self.max_codes = 64000
|
|
63
|
+
self.codes_full = False
|
|
64
|
+
self.new_return_order = new_return_order
|
|
65
|
+
|
|
66
|
+
embed = torch.randn(dim, n_embed)
|
|
67
|
+
self.register_buffer("embed", embed)
|
|
68
|
+
self.register_buffer("cluster_size", torch.zeros(n_embed))
|
|
69
|
+
self.register_buffer("embed_avg", embed.clone())
|
|
70
|
+
|
|
71
|
+
def forward(self, input, return_soft_codes=False):
|
|
72
|
+
if self.balancing_heuristic and self.codes_full:
|
|
73
|
+
h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes)
|
|
74
|
+
mask = torch.logical_or(h > 0.9, h < 0.01).unsqueeze(1)
|
|
75
|
+
ep = self.embed.permute(1, 0)
|
|
76
|
+
ea = self.embed_avg.permute(1, 0)
|
|
77
|
+
rand_embed = torch.randn_like(ep) * mask
|
|
78
|
+
self.embed = (ep * ~mask + rand_embed).permute(1, 0)
|
|
79
|
+
self.embed_avg = (ea * ~mask + rand_embed).permute(1, 0)
|
|
80
|
+
self.cluster_size = self.cluster_size * ~mask.squeeze()
|
|
81
|
+
if torch.any(mask):
|
|
82
|
+
print(f"Reset {torch.sum(mask)} embedding codes.")
|
|
83
|
+
self.codes = None
|
|
84
|
+
self.codes_full = False
|
|
85
|
+
|
|
86
|
+
flatten = input.reshape(-1, self.dim)
|
|
87
|
+
dist = flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True)
|
|
88
|
+
soft_codes = -dist
|
|
89
|
+
_, embed_ind = soft_codes.max(1)
|
|
90
|
+
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
|
|
91
|
+
embed_ind = embed_ind.view(*input.shape[:-1])
|
|
92
|
+
quantize = self.embed_code(embed_ind)
|
|
93
|
+
|
|
94
|
+
if self.balancing_heuristic:
|
|
95
|
+
if self.codes is None:
|
|
96
|
+
self.codes = embed_ind.flatten()
|
|
97
|
+
else:
|
|
98
|
+
self.codes = torch.cat([self.codes, embed_ind.flatten()])
|
|
99
|
+
if len(self.codes) > self.max_codes:
|
|
100
|
+
self.codes = self.codes[-self.max_codes :]
|
|
101
|
+
self.codes_full = True
|
|
102
|
+
|
|
103
|
+
if self.training:
|
|
104
|
+
embed_onehot_sum = embed_onehot.sum(0)
|
|
105
|
+
embed_sum = flatten.transpose(0, 1) @ embed_onehot
|
|
106
|
+
|
|
107
|
+
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
|
108
|
+
distributed.all_reduce(embed_onehot_sum)
|
|
109
|
+
distributed.all_reduce(embed_sum)
|
|
110
|
+
|
|
111
|
+
self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay)
|
|
112
|
+
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
|
|
113
|
+
n = self.cluster_size.sum()
|
|
114
|
+
cluster_size = (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
|
|
115
|
+
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
|
|
116
|
+
self.embed.data.copy_(embed_normalized)
|
|
117
|
+
|
|
118
|
+
diff = (quantize.detach() - input).pow(2).mean()
|
|
119
|
+
quantize = input + (quantize - input).detach()
|
|
120
|
+
|
|
121
|
+
if return_soft_codes:
|
|
122
|
+
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,))
|
|
123
|
+
elif self.new_return_order:
|
|
124
|
+
return quantize, embed_ind, diff
|
|
125
|
+
else:
|
|
126
|
+
return quantize, diff, embed_ind
|
|
127
|
+
|
|
128
|
+
def embed_code(self, embed_id):
|
|
129
|
+
return F.embedding(embed_id, self.embed.transpose(0, 1))
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
|
|
133
|
+
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
|
134
|
+
# values with the specified expected variance.
|
|
135
|
+
class DiscretizationLoss(nn.Module):
|
|
136
|
+
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
|
137
|
+
super().__init__()
|
|
138
|
+
self.discrete_bins = discrete_bins
|
|
139
|
+
self.dim = dim
|
|
140
|
+
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
|
141
|
+
if store_past > 0:
|
|
142
|
+
self.record_past = True
|
|
143
|
+
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device="cpu"))
|
|
144
|
+
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device="cpu"))
|
|
145
|
+
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
|
146
|
+
else:
|
|
147
|
+
self.record_past = False
|
|
148
|
+
|
|
149
|
+
def forward(self, x):
|
|
150
|
+
other_dims = set(range(len(x.shape))) - set([self.dim])
|
|
151
|
+
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
|
152
|
+
averaged = averaged - averaged.mean()
|
|
153
|
+
|
|
154
|
+
if self.record_past:
|
|
155
|
+
acc_count = self.accumulator.shape[0]
|
|
156
|
+
avg = averaged.detach().clone()
|
|
157
|
+
if self.accumulator_filled > 0:
|
|
158
|
+
averaged = torch.mean(self.accumulator, dim=0) * (acc_count - 1) / acc_count + averaged / acc_count
|
|
159
|
+
|
|
160
|
+
# Also push averaged into the accumulator.
|
|
161
|
+
self.accumulator[self.accumulator_index] = avg
|
|
162
|
+
self.accumulator_index += 1
|
|
163
|
+
if self.accumulator_index >= acc_count:
|
|
164
|
+
self.accumulator_index *= 0
|
|
165
|
+
if self.accumulator_filled <= 0:
|
|
166
|
+
self.accumulator_filled += 1
|
|
167
|
+
|
|
168
|
+
return torch.sum(-self.dist.log_prob(averaged))
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
class ResBlock(nn.Module):
|
|
172
|
+
def __init__(self, chan, conv, activation):
|
|
173
|
+
super().__init__()
|
|
174
|
+
self.net = nn.Sequential(
|
|
175
|
+
conv(chan, chan, 3, padding=1),
|
|
176
|
+
activation(),
|
|
177
|
+
conv(chan, chan, 3, padding=1),
|
|
178
|
+
activation(),
|
|
179
|
+
conv(chan, chan, 1),
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
def forward(self, x):
|
|
183
|
+
return self.net(x) + x
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
class UpsampledConv(nn.Module):
|
|
187
|
+
def __init__(self, conv, *args, **kwargs):
|
|
188
|
+
super().__init__()
|
|
189
|
+
assert "stride" in kwargs.keys()
|
|
190
|
+
self.stride = kwargs["stride"]
|
|
191
|
+
del kwargs["stride"]
|
|
192
|
+
self.conv = conv(*args, **kwargs)
|
|
193
|
+
|
|
194
|
+
def forward(self, x):
|
|
195
|
+
up = nn.functional.interpolate(x, scale_factor=self.stride, mode="nearest")
|
|
196
|
+
return self.conv(up)
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
# DiscreteVAE partially derived from lucidrains DALLE implementation
|
|
200
|
+
# Credit: https://github.com/lucidrains/DALLE-pytorch
|
|
201
|
+
class DiscreteVAE(nn.Module):
|
|
202
|
+
def __init__(
|
|
203
|
+
self,
|
|
204
|
+
positional_dims=2,
|
|
205
|
+
num_tokens=512,
|
|
206
|
+
codebook_dim=512,
|
|
207
|
+
num_layers=3,
|
|
208
|
+
num_resnet_blocks=0,
|
|
209
|
+
hidden_dim=64,
|
|
210
|
+
channels=3,
|
|
211
|
+
stride=2,
|
|
212
|
+
kernel_size=4,
|
|
213
|
+
use_transposed_convs=True,
|
|
214
|
+
encoder_norm=False,
|
|
215
|
+
activation="relu",
|
|
216
|
+
smooth_l1_loss=False,
|
|
217
|
+
straight_through=False,
|
|
218
|
+
normalization=None, # ((0.5,) * 3, (0.5,) * 3),
|
|
219
|
+
record_codes=False,
|
|
220
|
+
discretization_loss_averaging_steps=100,
|
|
221
|
+
lr_quantizer_args={},
|
|
222
|
+
):
|
|
223
|
+
super().__init__()
|
|
224
|
+
has_resblocks = num_resnet_blocks > 0
|
|
225
|
+
|
|
226
|
+
self.num_tokens = num_tokens
|
|
227
|
+
self.num_layers = num_layers
|
|
228
|
+
self.straight_through = straight_through
|
|
229
|
+
self.positional_dims = positional_dims
|
|
230
|
+
self.discrete_loss = DiscretizationLoss(
|
|
231
|
+
num_tokens, 2, 1 / (num_tokens * 2), discretization_loss_averaging_steps
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
|
235
|
+
if positional_dims == 2:
|
|
236
|
+
conv = nn.Conv2d
|
|
237
|
+
conv_transpose = nn.ConvTranspose2d
|
|
238
|
+
else:
|
|
239
|
+
conv = nn.Conv1d
|
|
240
|
+
conv_transpose = nn.ConvTranspose1d
|
|
241
|
+
if not use_transposed_convs:
|
|
242
|
+
conv_transpose = functools.partial(UpsampledConv, conv)
|
|
243
|
+
|
|
244
|
+
if activation == "relu":
|
|
245
|
+
act = nn.ReLU
|
|
246
|
+
elif activation == "silu":
|
|
247
|
+
act = nn.SiLU
|
|
248
|
+
else:
|
|
249
|
+
assert NotImplementedError()
|
|
250
|
+
|
|
251
|
+
enc_layers = []
|
|
252
|
+
dec_layers = []
|
|
253
|
+
|
|
254
|
+
if num_layers > 0:
|
|
255
|
+
enc_chans = [hidden_dim * 2**i for i in range(num_layers)]
|
|
256
|
+
dec_chans = list(reversed(enc_chans))
|
|
257
|
+
|
|
258
|
+
enc_chans = [channels, *enc_chans]
|
|
259
|
+
|
|
260
|
+
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
|
|
261
|
+
dec_chans = [dec_init_chan, *dec_chans]
|
|
262
|
+
|
|
263
|
+
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
|
|
264
|
+
|
|
265
|
+
pad = (kernel_size - 1) // 2
|
|
266
|
+
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
|
|
267
|
+
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act()))
|
|
268
|
+
if encoder_norm:
|
|
269
|
+
enc_layers.append(nn.GroupNorm(8, enc_out))
|
|
270
|
+
dec_layers.append(
|
|
271
|
+
nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride=stride, padding=pad), act())
|
|
272
|
+
)
|
|
273
|
+
dec_out_chans = dec_chans[-1]
|
|
274
|
+
innermost_dim = dec_chans[0]
|
|
275
|
+
else:
|
|
276
|
+
enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act()))
|
|
277
|
+
dec_out_chans = hidden_dim
|
|
278
|
+
innermost_dim = hidden_dim
|
|
279
|
+
|
|
280
|
+
for _ in range(num_resnet_blocks):
|
|
281
|
+
dec_layers.insert(0, ResBlock(innermost_dim, conv, act))
|
|
282
|
+
enc_layers.append(ResBlock(innermost_dim, conv, act))
|
|
283
|
+
|
|
284
|
+
if num_resnet_blocks > 0:
|
|
285
|
+
dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1))
|
|
286
|
+
|
|
287
|
+
enc_layers.append(conv(innermost_dim, codebook_dim, 1))
|
|
288
|
+
dec_layers.append(conv(dec_out_chans, channels, 1))
|
|
289
|
+
|
|
290
|
+
self.encoder = nn.Sequential(*enc_layers)
|
|
291
|
+
self.decoder = nn.Sequential(*dec_layers)
|
|
292
|
+
|
|
293
|
+
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
|
|
294
|
+
self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True)
|
|
295
|
+
|
|
296
|
+
# take care of normalization within class
|
|
297
|
+
self.normalization = normalization
|
|
298
|
+
self.record_codes = record_codes
|
|
299
|
+
if record_codes:
|
|
300
|
+
self.codes = torch.zeros((1228800,), dtype=torch.long)
|
|
301
|
+
self.code_ind = 0
|
|
302
|
+
self.total_codes = 0
|
|
303
|
+
self.internal_step = 0
|
|
304
|
+
|
|
305
|
+
def norm(self, images):
|
|
306
|
+
if not self.normalization is not None:
|
|
307
|
+
return images
|
|
308
|
+
|
|
309
|
+
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
|
|
310
|
+
arrange = "c -> () c () ()" if self.positional_dims == 2 else "c -> () c ()"
|
|
311
|
+
means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
|
|
312
|
+
images = images.clone()
|
|
313
|
+
images.sub_(means).div_(stds)
|
|
314
|
+
return images
|
|
315
|
+
|
|
316
|
+
def get_debug_values(self, step, __):
|
|
317
|
+
if self.record_codes and self.total_codes > 0:
|
|
318
|
+
# Report annealing schedule
|
|
319
|
+
return {"histogram_codes": self.codes[: self.total_codes]}
|
|
320
|
+
else:
|
|
321
|
+
return {}
|
|
322
|
+
|
|
323
|
+
@torch.no_grad()
|
|
324
|
+
@eval_decorator
|
|
325
|
+
def get_codebook_indices(self, images):
|
|
326
|
+
img = self.norm(images)
|
|
327
|
+
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
|
|
328
|
+
sampled, codes, _ = self.codebook(logits)
|
|
329
|
+
self.log_codes(codes)
|
|
330
|
+
return codes
|
|
331
|
+
|
|
332
|
+
def decode(self, img_seq):
|
|
333
|
+
self.log_codes(img_seq)
|
|
334
|
+
if hasattr(self.codebook, "embed_code"):
|
|
335
|
+
image_embeds = self.codebook.embed_code(img_seq)
|
|
336
|
+
else:
|
|
337
|
+
image_embeds = F.embedding(img_seq, self.codebook.codebook)
|
|
338
|
+
b, n, d = image_embeds.shape
|
|
339
|
+
|
|
340
|
+
kwargs = {}
|
|
341
|
+
if self.positional_dims == 1:
|
|
342
|
+
arrange = "b n d -> b d n"
|
|
343
|
+
else:
|
|
344
|
+
h = w = int(sqrt(n))
|
|
345
|
+
arrange = "b (h w) d -> b d h w"
|
|
346
|
+
kwargs = {"h": h, "w": w}
|
|
347
|
+
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
|
348
|
+
images = [image_embeds]
|
|
349
|
+
for layer in self.decoder:
|
|
350
|
+
images.append(layer(images[-1]))
|
|
351
|
+
return images[-1], images[-2]
|
|
352
|
+
|
|
353
|
+
def infer(self, img):
|
|
354
|
+
img = self.norm(img)
|
|
355
|
+
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
|
|
356
|
+
sampled, codes, commitment_loss = self.codebook(logits)
|
|
357
|
+
return self.decode(codes)
|
|
358
|
+
|
|
359
|
+
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
|
360
|
+
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
|
361
|
+
# more lossy (but useful for determining network performance).
|
|
362
|
+
def forward(self, img):
|
|
363
|
+
img = self.norm(img)
|
|
364
|
+
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
|
|
365
|
+
sampled, codes, commitment_loss = self.codebook(logits)
|
|
366
|
+
sampled = sampled.permute((0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1))
|
|
367
|
+
|
|
368
|
+
if self.training:
|
|
369
|
+
out = sampled
|
|
370
|
+
for d in self.decoder:
|
|
371
|
+
out = d(out)
|
|
372
|
+
self.log_codes(codes)
|
|
373
|
+
else:
|
|
374
|
+
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
|
375
|
+
out, _ = self.decode(codes)
|
|
376
|
+
|
|
377
|
+
# reconstruction loss
|
|
378
|
+
out = out[..., :img.shape[-1]]
|
|
379
|
+
recon_loss = self.loss_fn(img, out, reduction="mean")
|
|
380
|
+
ssim_loss = torch.zeros(size=(1,)).cuda()
|
|
381
|
+
|
|
382
|
+
return recon_loss, ssim_loss, commitment_loss, out
|
|
383
|
+
|
|
384
|
+
def log_codes(self, codes):
|
|
385
|
+
# This is so we can debug the distribution of codes being learned.
|
|
386
|
+
if self.record_codes and self.internal_step % 10 == 0:
|
|
387
|
+
codes = codes.flatten()
|
|
388
|
+
l = codes.shape[0]
|
|
389
|
+
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
|
390
|
+
self.codes[i : i + l] = codes.cpu()
|
|
391
|
+
self.code_ind = self.code_ind + l
|
|
392
|
+
if self.code_ind >= self.codes.shape[0]:
|
|
393
|
+
self.code_ind = 0
|
|
394
|
+
self.total_codes += 1
|
|
395
|
+
self.internal_step += 1
|
xinference/types.py
CHANGED
|
@@ -351,6 +351,11 @@ class ModelAndPrompt(BaseModel):
|
|
|
351
351
|
prompt: str
|
|
352
352
|
|
|
353
353
|
|
|
354
|
+
class ModelAndMessages(BaseModel):
|
|
355
|
+
model: str
|
|
356
|
+
messages: List[Dict[str, Any]]
|
|
357
|
+
|
|
358
|
+
|
|
354
359
|
class CreateCompletionTorch(BaseModel):
|
|
355
360
|
echo: bool = echo_field
|
|
356
361
|
max_tokens: Optional[int] = max_tokens_field
|
|
@@ -371,7 +376,6 @@ class CreateCompletionTorch(BaseModel):
|
|
|
371
376
|
# This type is for openai API compatibility
|
|
372
377
|
CreateCompletionOpenAI: BaseModel
|
|
373
378
|
|
|
374
|
-
|
|
375
379
|
from openai.types.completion_create_params import CompletionCreateParamsNonStreaming
|
|
376
380
|
|
|
377
381
|
CreateCompletionOpenAI = create_model_from_typeddict(
|
|
@@ -395,7 +399,6 @@ class CreateChatModel(BaseModel):
|
|
|
395
399
|
# Currently, chat calls generates, so the params share the same one.
|
|
396
400
|
CreateChatCompletionTorch = CreateCompletionTorch
|
|
397
401
|
|
|
398
|
-
|
|
399
402
|
from ._compat import CreateChatCompletionOpenAI
|
|
400
403
|
|
|
401
404
|
|
|
@@ -462,3 +465,103 @@ class PeftModelConfig:
|
|
|
462
465
|
image_lora_load_kwargs=data.get("image_lora_load_kwargs"),
|
|
463
466
|
image_lora_fuse_kwargs=data.get("image_lora_fuse_kwargs"),
|
|
464
467
|
)
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
# This type is for Anthropic API compatibility
|
|
471
|
+
ANTHROPIC_AVAILABLE = False
|
|
472
|
+
|
|
473
|
+
try:
|
|
474
|
+
from anthropic.types import ContentBlock, Usage
|
|
475
|
+
|
|
476
|
+
ANTHROPIC_AVAILABLE = True
|
|
477
|
+
except ImportError:
|
|
478
|
+
ContentBlock = None
|
|
479
|
+
Usage = None
|
|
480
|
+
|
|
481
|
+
# Use TYPE_CHECKING to avoid runtime issues with mypy
|
|
482
|
+
from typing import TYPE_CHECKING
|
|
483
|
+
|
|
484
|
+
if TYPE_CHECKING:
|
|
485
|
+
# For type checking, define the types as if Anthropic is available
|
|
486
|
+
from anthropic.types import ContentBlock as ContentBlock_
|
|
487
|
+
from anthropic.types import Usage as Usage_
|
|
488
|
+
|
|
489
|
+
class AnthropicMessage(TypedDict):
|
|
490
|
+
id: str
|
|
491
|
+
type: str
|
|
492
|
+
role: str
|
|
493
|
+
content: List[ContentBlock_]
|
|
494
|
+
model: str
|
|
495
|
+
stop_reason: str
|
|
496
|
+
stop_sequence: str
|
|
497
|
+
usage: Usage_
|
|
498
|
+
container: Dict[str, Any]
|
|
499
|
+
|
|
500
|
+
class MessageCreateParams(TypedDict):
|
|
501
|
+
model: str
|
|
502
|
+
messages: List[Dict[str, Any]]
|
|
503
|
+
max_tokens: int
|
|
504
|
+
stream: NotRequired[bool]
|
|
505
|
+
temperature: NotRequired[float]
|
|
506
|
+
top_p: NotRequired[float]
|
|
507
|
+
top_k: NotRequired[int]
|
|
508
|
+
stop_sequences: NotRequired[List[str]]
|
|
509
|
+
metadata: NotRequired[Dict[str, Any]]
|
|
510
|
+
tools: NotRequired[List[Dict[str, Any]]]
|
|
511
|
+
tool_choice: NotRequired[Union[str, Dict[str, Any]]]
|
|
512
|
+
|
|
513
|
+
CreateMessageAnthropic: BaseModel
|
|
514
|
+
|
|
515
|
+
class CreateMessage(
|
|
516
|
+
ModelAndMessages,
|
|
517
|
+
):
|
|
518
|
+
pass
|
|
519
|
+
|
|
520
|
+
else:
|
|
521
|
+
# Runtime definitions
|
|
522
|
+
if ANTHROPIC_AVAILABLE:
|
|
523
|
+
|
|
524
|
+
class AnthropicMessage(TypedDict):
|
|
525
|
+
id: str
|
|
526
|
+
type: str
|
|
527
|
+
role: str
|
|
528
|
+
content: List[ContentBlock]
|
|
529
|
+
model: str
|
|
530
|
+
stop_reason: str
|
|
531
|
+
stop_sequence: str
|
|
532
|
+
usage: Usage
|
|
533
|
+
container: Dict[str, Any]
|
|
534
|
+
|
|
535
|
+
class MessageCreateParams(TypedDict):
|
|
536
|
+
model: str
|
|
537
|
+
messages: List[Dict[str, Any]]
|
|
538
|
+
max_tokens: int
|
|
539
|
+
stream: NotRequired[bool]
|
|
540
|
+
temperature: NotRequired[float]
|
|
541
|
+
top_p: NotRequired[float]
|
|
542
|
+
top_k: NotRequired[int]
|
|
543
|
+
stop_sequences: NotRequired[List[str]]
|
|
544
|
+
metadata: NotRequired[Dict[str, Any]]
|
|
545
|
+
tools: NotRequired[List[Dict[str, Any]]]
|
|
546
|
+
tool_choice: NotRequired[Union[str, Dict[str, Any]]]
|
|
547
|
+
|
|
548
|
+
CreateMessageAnthropic: BaseModel = create_model_from_typeddict(
|
|
549
|
+
MessageCreateParams,
|
|
550
|
+
)
|
|
551
|
+
CreateMessageAnthropic = fix_forward_ref(CreateMessageAnthropic)
|
|
552
|
+
|
|
553
|
+
class CreateMessage(CreateMessageAnthropic):
|
|
554
|
+
pass
|
|
555
|
+
|
|
556
|
+
else:
|
|
557
|
+
# Define dummy types when Anthropic is not available
|
|
558
|
+
class AnthropicMessage:
|
|
559
|
+
pass
|
|
560
|
+
|
|
561
|
+
class MessageCreateParams:
|
|
562
|
+
pass
|
|
563
|
+
|
|
564
|
+
CreateMessageAnthropic = None
|
|
565
|
+
|
|
566
|
+
class CreateMessage:
|
|
567
|
+
pass
|
|
@@ -217,7 +217,7 @@ class MediaInterface:
|
|
|
217
217
|
def image_generate_image(
|
|
218
218
|
prompt: str,
|
|
219
219
|
negative_prompt: str,
|
|
220
|
-
|
|
220
|
+
images: Optional[List[PIL.Image.Image]],
|
|
221
221
|
n: int,
|
|
222
222
|
size_width: int,
|
|
223
223
|
size_height: int,
|
|
@@ -250,8 +250,21 @@ class MediaInterface:
|
|
|
250
250
|
kwargs["strength"] = strength
|
|
251
251
|
sampler_name = None if sampler_name == "default" else sampler_name
|
|
252
252
|
|
|
253
|
-
|
|
254
|
-
|
|
253
|
+
# Handle single image or multiple images
|
|
254
|
+
if images is None:
|
|
255
|
+
raise ValueError("Please upload at least one image")
|
|
256
|
+
|
|
257
|
+
# Process uploaded files to get PIL images
|
|
258
|
+
processed_images = process_uploaded_files(images)
|
|
259
|
+
if processed_images is None:
|
|
260
|
+
raise ValueError("Please upload at least one image")
|
|
261
|
+
|
|
262
|
+
# Convert all images to bytes
|
|
263
|
+
image_bytes_list = []
|
|
264
|
+
for img in processed_images:
|
|
265
|
+
bio = io.BytesIO()
|
|
266
|
+
img.save(bio, format="png")
|
|
267
|
+
image_bytes_list.append(bio.getvalue())
|
|
255
268
|
|
|
256
269
|
response = None
|
|
257
270
|
exc = None
|
|
@@ -265,7 +278,7 @@ class MediaInterface:
|
|
|
265
278
|
prompt=prompt,
|
|
266
279
|
negative_prompt=negative_prompt,
|
|
267
280
|
n=n,
|
|
268
|
-
image=
|
|
281
|
+
image=image_bytes_list,
|
|
269
282
|
size=size,
|
|
270
283
|
response_format="b64_json",
|
|
271
284
|
num_inference_steps=num_inference_steps,
|
|
@@ -300,7 +313,7 @@ class MediaInterface:
|
|
|
300
313
|
|
|
301
314
|
return images
|
|
302
315
|
|
|
303
|
-
with gr.Blocks() as
|
|
316
|
+
with gr.Blocks() as image2image_interface:
|
|
304
317
|
with gr.Column():
|
|
305
318
|
with gr.Row():
|
|
306
319
|
with gr.Column(scale=10):
|
|
@@ -341,16 +354,61 @@ class MediaInterface:
|
|
|
341
354
|
|
|
342
355
|
with gr.Row():
|
|
343
356
|
with gr.Column(scale=1):
|
|
344
|
-
|
|
357
|
+
gr.Markdown("### Upload Images")
|
|
358
|
+
gr.Markdown(
|
|
359
|
+
"*Multiple images supported for image-to-image generation*"
|
|
360
|
+
)
|
|
361
|
+
uploaded_images = gr.File(
|
|
362
|
+
file_count="multiple",
|
|
363
|
+
file_types=["image"],
|
|
364
|
+
label="Upload Images",
|
|
365
|
+
)
|
|
366
|
+
image_preview = gr.Gallery(label="Image Preview", height=300)
|
|
345
367
|
with gr.Column(scale=1):
|
|
346
368
|
output_gallery = gr.Gallery()
|
|
347
369
|
|
|
370
|
+
# Function to handle file uploads and convert to PIL images
|
|
371
|
+
def process_uploaded_files(files):
|
|
372
|
+
if files is None:
|
|
373
|
+
return None
|
|
374
|
+
|
|
375
|
+
images = []
|
|
376
|
+
for file_info in files:
|
|
377
|
+
if isinstance(file_info, dict) and "name" in file_info:
|
|
378
|
+
# Handle file info format from gradio
|
|
379
|
+
file_path = file_info["name"]
|
|
380
|
+
try:
|
|
381
|
+
img = PIL.Image.open(file_path)
|
|
382
|
+
images.append(img)
|
|
383
|
+
except Exception as e:
|
|
384
|
+
logger.warning(f"Failed to load image {file_path}: {e}")
|
|
385
|
+
elif hasattr(file_info, "name"):
|
|
386
|
+
# Handle file object
|
|
387
|
+
try:
|
|
388
|
+
img = PIL.Image.open(file_info.name)
|
|
389
|
+
images.append(img)
|
|
390
|
+
except Exception as e:
|
|
391
|
+
logger.warning(
|
|
392
|
+
f"Failed to load image {file_info.name}: {e}"
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
return images if images else None
|
|
396
|
+
|
|
397
|
+
# Update gallery when files are uploaded
|
|
398
|
+
def update_gallery(files):
|
|
399
|
+
images = process_uploaded_files(files)
|
|
400
|
+
return images if images else []
|
|
401
|
+
|
|
402
|
+
uploaded_images.change(
|
|
403
|
+
update_gallery, inputs=[uploaded_images], outputs=[image_preview]
|
|
404
|
+
)
|
|
405
|
+
|
|
348
406
|
generate_button.click(
|
|
349
407
|
image_generate_image,
|
|
350
408
|
inputs=[
|
|
351
409
|
prompt,
|
|
352
410
|
negative_prompt,
|
|
353
|
-
|
|
411
|
+
uploaded_images,
|
|
354
412
|
n,
|
|
355
413
|
size_width,
|
|
356
414
|
size_height,
|
|
@@ -362,7 +420,7 @@ class MediaInterface:
|
|
|
362
420
|
],
|
|
363
421
|
outputs=output_gallery,
|
|
364
422
|
)
|
|
365
|
-
return
|
|
423
|
+
return image2image_interface
|
|
366
424
|
|
|
367
425
|
def inpainting_interface(self) -> "gr.Blocks":
|
|
368
426
|
from ...model.image.stable_diffusion.core import SAMPLING_METHODS
|
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
{
|
|
2
2
|
"files": {
|
|
3
|
-
"main.css": "./static/css/main.
|
|
4
|
-
"main.js": "./static/js/main.
|
|
3
|
+
"main.css": "./static/css/main.5ea97072.css",
|
|
4
|
+
"main.js": "./static/js/main.d192c4f3.js",
|
|
5
5
|
"static/media/icon.webp": "./static/media/icon.4603d52c63041e5dfbfd.webp",
|
|
6
6
|
"index.html": "./index.html",
|
|
7
|
-
"main.
|
|
8
|
-
"main.
|
|
7
|
+
"main.5ea97072.css.map": "./static/css/main.5ea97072.css.map",
|
|
8
|
+
"main.d192c4f3.js.map": "./static/js/main.d192c4f3.js.map"
|
|
9
9
|
},
|
|
10
10
|
"entrypoints": [
|
|
11
|
-
"static/css/main.
|
|
12
|
-
"static/js/main.
|
|
11
|
+
"static/css/main.5ea97072.css",
|
|
12
|
+
"static/js/main.d192c4f3.js"
|
|
13
13
|
]
|
|
14
14
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.
|
|
1
|
+
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.d192c4f3.js"></script><link href="./static/css/main.5ea97072.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>
|
|
@@ -0,0 +1,2 @@
|
|
|
1
|
+
.container{border-radius:20px!important;cursor:pointer;display:block}.container,.descriptionCard{height:300px;position:relative;width:300px}.descriptionCard{border-radius:20px;flex-direction:column;left:-1px;padding:20px;top:-1px}.cardTitle,.descriptionCard{display:flex;justify-content:space-between}.iconButtonBox{align-items:center;display:flex}.drawerCard{display:flex;flex-direction:column;min-height:100%;min-width:350px;overflow-y:scroll;padding:20px 80px 100px;position:relative;width:60vw}.pasteText{color:#1976d2;cursor:pointer;font-size:18px!important;margin-inline:10px}.pasteText:hover{color:#1976d2b3}.copyToCommandLine{color:#1976d2;cursor:pointer;font-size:16px!important}.copyToCommandLine:hover{color:#1976d2b3}.css-1be5mm1-MuiLinearProgress-root-MuiMobileStepper-progress,.css-r5rjnf-MuiLinearProgress-root-MuiMobileStepper-progress{width:100%!important}.pathBox{cursor:pointer;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;width:160px}.pathBox2{width:300px}.empty{color:#555;font-size:20px;left:50%;position:absolute;top:30%;-webkit-transform:translate(-50%);transform:translate(-50%)}.deleteDialog{align-items:center;display:flex}.warningIcon{color:#ed6c02;margin-right:10px}.textHighlight .MuiInputBase-input,.textHighlight .MuiSelect-select{color:#1976d2}.formBox{max-height:80vh;max-width:50vw;min-width:50vw;overflow:auto;padding:40px 20px 0 0;position:relative;transition:all .4s ease-in-out}.broaden{max-width:100%;min-width:100%;padding-right:0}.show-json{align-items:center;display:flex;right:60px;top:90px}.icon,.show-json{position:absolute}.icon{cursor:pointer;margin-left:20px;right:-40px}.icon:hover{color:#1976d2}.arrow{font-size:24px!important}.jsonBox{min-height:80vh;position:relative;transition:all .4s ease-in-out;width:100%}.hide{overflow:hidden;-webkit-transform:translate(30vw);transform:translate(30vw);width:0}.checkboxWrapper{align-items:center;display:flex;flex-wrap:wrap;width:100%}.jsonBox-header{align-items:center;display:flex;justify-content:space-between}.jsonBox-title{font-weight:700;line-height:40px}.textarea{background-color:initial;border:1px solid #ddd;border-radius:5px;color:#666;height:calc(100% - 40px);padding:5px 10px;resize:none;width:100%}.addBtn{margin-left:20px!important}.item{border:1px solid #ddd;border-radius:10px;margin:10px 50px 0;overflow:hidden;padding:20px;position:relative}.item:hover .deleteBtn{-webkit-transform:translateX(-50px);transform:translateX(-50px)}.deleteBtn{background-color:#1976d2;border-radius:25px;height:50px;line-height:70px;position:absolute;right:20px;text-align:center;top:calc(50% - 25px);-webkit-transform:translateX(80px);transform:translateX(80px);transition:all .3s ease-in-out;width:50px}.deleteBtn:hover{box-shadow:0 0 10px #aaa;cursor:pointer}.deleteIcon{color:#fff;font-size:28px!important}.chat_template_box{align-items:start;display:flex;gap:10px}.chat_template_test{width:30%}.chat_template_test_mainBox{border:1px solid #ccc;border-radius:4px;height:137px;overflow:scroll;padding:10px}.chat_template_test_tip{color:rgba(0,0,0,.6);font-size:10px;margin:4px 14px 0}.test_res_box{border:1px solid #ddd;border-radius:4px;margin-top:5px;min-height:55px;padding:10px}.css-19qh8xo-MuiInputBase-input-MuiOutlinedInput-input.Mui-disabled{-webkit-text-fill-color:#000!important}
|
|
2
|
+
/*# sourceMappingURL=main.5ea97072.css.map*/
|