xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1247 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from collections import namedtuple
|
|
3
|
+
from functools import partial
|
|
4
|
+
from inspect import isfunction
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
from einops import rearrange, repeat
|
|
9
|
+
from torch import einsum, nn
|
|
10
|
+
|
|
11
|
+
DEFAULT_DIM_HEAD = 64
|
|
12
|
+
|
|
13
|
+
Intermediates = namedtuple('Intermediates', [
|
|
14
|
+
'pre_softmax_attn',
|
|
15
|
+
'post_softmax_attn'
|
|
16
|
+
])
|
|
17
|
+
|
|
18
|
+
LayerIntermediates = namedtuple('Intermediates', [
|
|
19
|
+
'hiddens',
|
|
20
|
+
'attn_intermediates',
|
|
21
|
+
'past_key_values',
|
|
22
|
+
])
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
# helpers
|
|
26
|
+
|
|
27
|
+
def exists(val):
|
|
28
|
+
return val is not None
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def default(val, d):
|
|
32
|
+
if exists(val):
|
|
33
|
+
return val
|
|
34
|
+
return d() if isfunction(d) else d
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def cast_tuple(val, depth):
|
|
38
|
+
return val if isinstance(val, tuple) else (val,) * depth
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class always():
|
|
42
|
+
def __init__(self, val):
|
|
43
|
+
self.val = val
|
|
44
|
+
|
|
45
|
+
def __call__(self, *args, **kwargs):
|
|
46
|
+
return self.val
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class not_equals():
|
|
50
|
+
def __init__(self, val):
|
|
51
|
+
self.val = val
|
|
52
|
+
|
|
53
|
+
def __call__(self, x, *args, **kwargs):
|
|
54
|
+
return x != self.val
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
class equals():
|
|
58
|
+
def __init__(self, val):
|
|
59
|
+
self.val = val
|
|
60
|
+
|
|
61
|
+
def __call__(self, x, *args, **kwargs):
|
|
62
|
+
return x == self.val
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def max_neg_value(tensor):
|
|
66
|
+
return -torch.finfo(tensor.dtype).max
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def l2norm(t):
|
|
70
|
+
return F.normalize(t, p=2, dim=-1)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
# init helpers
|
|
74
|
+
|
|
75
|
+
def init_zero_(layer):
|
|
76
|
+
nn.init.constant_(layer.weight, 0.)
|
|
77
|
+
if exists(layer.bias):
|
|
78
|
+
nn.init.constant_(layer.bias, 0.)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# keyword argument helpers
|
|
82
|
+
|
|
83
|
+
def pick_and_pop(keys, d):
|
|
84
|
+
values = list(map(lambda key: d.pop(key), keys))
|
|
85
|
+
return dict(zip(keys, values))
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def group_dict_by_key(cond, d):
|
|
89
|
+
return_val = [dict(), dict()]
|
|
90
|
+
for key in d.keys():
|
|
91
|
+
match = bool(cond(key))
|
|
92
|
+
ind = int(not match)
|
|
93
|
+
return_val[ind][key] = d[key]
|
|
94
|
+
return (*return_val,)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def string_begins_with(prefix, str):
|
|
98
|
+
return str.startswith(prefix)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def group_by_key_prefix(prefix, d):
|
|
102
|
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def groupby_prefix_and_trim(prefix, d):
|
|
106
|
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
107
|
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
|
108
|
+
return kwargs_without_prefix, kwargs
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
# activations
|
|
112
|
+
|
|
113
|
+
class ReluSquared(nn.Module):
|
|
114
|
+
def forward(self, x):
|
|
115
|
+
return F.relu(x) ** 2
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
# positional embeddings
|
|
119
|
+
|
|
120
|
+
class AbsolutePositionalEmbedding(nn.Module):
|
|
121
|
+
def __init__(self, dim, max_seq_len):
|
|
122
|
+
super().__init__()
|
|
123
|
+
self.scale = dim ** -0.5
|
|
124
|
+
self.emb = nn.Embedding(max_seq_len, dim)
|
|
125
|
+
|
|
126
|
+
def forward(self, x):
|
|
127
|
+
n = torch.arange(x.shape[1], device=x.device)
|
|
128
|
+
pos_emb = self.emb(n)
|
|
129
|
+
pos_emb = rearrange(pos_emb, 'n d -> () n d')
|
|
130
|
+
return pos_emb * self.scale
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
class FixedPositionalEmbedding(nn.Module):
|
|
134
|
+
def __init__(self, dim):
|
|
135
|
+
super().__init__()
|
|
136
|
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
|
137
|
+
self.register_buffer('inv_freq', inv_freq)
|
|
138
|
+
|
|
139
|
+
def forward(self, x, seq_dim=1, offset=0):
|
|
140
|
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
|
141
|
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
|
142
|
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
|
143
|
+
return rearrange(emb, 'n d -> () n d')
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
class RelativePositionBias(nn.Module):
|
|
147
|
+
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
|
|
148
|
+
super().__init__()
|
|
149
|
+
self.scale = scale
|
|
150
|
+
self.causal = causal
|
|
151
|
+
self.num_buckets = num_buckets
|
|
152
|
+
self.max_distance = max_distance
|
|
153
|
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
|
154
|
+
|
|
155
|
+
@staticmethod
|
|
156
|
+
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
|
|
157
|
+
ret = 0
|
|
158
|
+
n = -relative_position
|
|
159
|
+
if not causal:
|
|
160
|
+
num_buckets //= 2
|
|
161
|
+
ret += (n < 0).long() * num_buckets
|
|
162
|
+
n = torch.abs(n)
|
|
163
|
+
else:
|
|
164
|
+
n = torch.max(n, torch.zeros_like(n))
|
|
165
|
+
|
|
166
|
+
max_exact = num_buckets // 2
|
|
167
|
+
is_small = n < max_exact
|
|
168
|
+
|
|
169
|
+
val_if_large = max_exact + (
|
|
170
|
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
|
171
|
+
).long()
|
|
172
|
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
|
173
|
+
|
|
174
|
+
ret += torch.where(is_small, n, val_if_large)
|
|
175
|
+
return ret
|
|
176
|
+
|
|
177
|
+
def forward(self, qk_dots):
|
|
178
|
+
i, j, device = *qk_dots.shape[-2:], qk_dots.device
|
|
179
|
+
q_pos = torch.arange(i, dtype=torch.long, device=device)
|
|
180
|
+
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
|
181
|
+
rel_pos = k_pos[None, :] - q_pos[:, None]
|
|
182
|
+
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
|
|
183
|
+
max_distance=self.max_distance)
|
|
184
|
+
values = self.relative_attention_bias(rp_bucket)
|
|
185
|
+
bias = rearrange(values, 'i j h -> () h i j')
|
|
186
|
+
return qk_dots + (bias * self.scale)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
class AlibiPositionalBias(nn.Module):
|
|
190
|
+
def __init__(self, heads, **kwargs):
|
|
191
|
+
super().__init__()
|
|
192
|
+
self.heads = heads
|
|
193
|
+
slopes = torch.Tensor(self._get_slopes(heads))
|
|
194
|
+
slopes = rearrange(slopes, 'h -> () h () ()')
|
|
195
|
+
self.register_buffer('slopes', slopes, persistent=False)
|
|
196
|
+
self.register_buffer('bias', None, persistent=False)
|
|
197
|
+
|
|
198
|
+
@staticmethod
|
|
199
|
+
def _get_slopes(heads):
|
|
200
|
+
def get_slopes_power_of_2(n):
|
|
201
|
+
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
|
202
|
+
ratio = start
|
|
203
|
+
return [start * ratio ** i for i in range(n)]
|
|
204
|
+
|
|
205
|
+
if math.log2(heads).is_integer():
|
|
206
|
+
return get_slopes_power_of_2(heads)
|
|
207
|
+
|
|
208
|
+
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
|
|
209
|
+
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
|
|
210
|
+
:heads - closest_power_of_2]
|
|
211
|
+
|
|
212
|
+
def forward(self, qk_dots):
|
|
213
|
+
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
|
|
214
|
+
|
|
215
|
+
if exists(self.bias) and self.bias.shape[-1] >= j:
|
|
216
|
+
return qk_dots + self.bias[..., :j]
|
|
217
|
+
|
|
218
|
+
bias = torch.arange(j, device=device)
|
|
219
|
+
bias = rearrange(bias, 'j -> () () () j')
|
|
220
|
+
bias = bias * self.slopes
|
|
221
|
+
|
|
222
|
+
num_heads_unalibied = h - bias.shape[1]
|
|
223
|
+
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied))
|
|
224
|
+
|
|
225
|
+
self.register_buffer('bias', bias, persistent=False)
|
|
226
|
+
return qk_dots + self.bias
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
class LearnedAlibiPositionalBias(AlibiPositionalBias):
|
|
230
|
+
def __init__(self, heads, bidirectional=False):
|
|
231
|
+
super().__init__(heads)
|
|
232
|
+
los_slopes = torch.log(self.slopes)
|
|
233
|
+
self.learned_logslopes = nn.Parameter(los_slopes)
|
|
234
|
+
|
|
235
|
+
self.bidirectional = bidirectional
|
|
236
|
+
if self.bidirectional:
|
|
237
|
+
self.learned_logslopes_future = nn.Parameter(los_slopes)
|
|
238
|
+
|
|
239
|
+
def forward(self, qk_dots):
|
|
240
|
+
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device
|
|
241
|
+
|
|
242
|
+
def get_slopes(param):
|
|
243
|
+
return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1]))
|
|
244
|
+
|
|
245
|
+
if exists(self.bias) and self.bias.shape[-1] >= j:
|
|
246
|
+
bias = self.bias[..., :i, :j]
|
|
247
|
+
else:
|
|
248
|
+
i_arange = torch.arange(i, device=device)
|
|
249
|
+
j_arange = torch.arange(j, device=device)
|
|
250
|
+
bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1')
|
|
251
|
+
self.register_buffer('bias', bias, persistent=False)
|
|
252
|
+
|
|
253
|
+
if self.bidirectional:
|
|
254
|
+
past_slopes = get_slopes(self.learned_logslopes)
|
|
255
|
+
future_slopes = get_slopes(self.learned_logslopes_future)
|
|
256
|
+
bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes)
|
|
257
|
+
else:
|
|
258
|
+
slopes = get_slopes(self.learned_logslopes)
|
|
259
|
+
bias = bias * slopes
|
|
260
|
+
|
|
261
|
+
return qk_dots + bias
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
class RotaryEmbedding(nn.Module):
|
|
265
|
+
def __init__(self, dim):
|
|
266
|
+
super().__init__()
|
|
267
|
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
|
268
|
+
self.register_buffer('inv_freq', inv_freq)
|
|
269
|
+
|
|
270
|
+
def forward(self, max_seq_len, device):
|
|
271
|
+
t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq)
|
|
272
|
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
|
273
|
+
emb = torch.cat((freqs, freqs), dim=-1)
|
|
274
|
+
return rearrange(emb, 'n d -> () () n d')
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
def rotate_half(x):
|
|
278
|
+
x = rearrange(x, '... (j d) -> ... j d', j=2)
|
|
279
|
+
x1, x2 = x.unbind(dim=-2)
|
|
280
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
def apply_rotary_pos_emb(t, freqs):
|
|
284
|
+
seq_len = t.shape[-2]
|
|
285
|
+
freqs = freqs[:, :, -seq_len:]
|
|
286
|
+
return (t * freqs.cos()) + (rotate_half(t) * freqs.sin())
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
# norms
|
|
290
|
+
|
|
291
|
+
class Scale(nn.Module):
|
|
292
|
+
def __init__(self, value, fn):
|
|
293
|
+
super().__init__()
|
|
294
|
+
self.value = value
|
|
295
|
+
self.fn = fn
|
|
296
|
+
|
|
297
|
+
def forward(self, x, **kwargs):
|
|
298
|
+
out = self.fn(x, **kwargs)
|
|
299
|
+
scale_fn = lambda t: t * self.value
|
|
300
|
+
|
|
301
|
+
if not isinstance(out, tuple):
|
|
302
|
+
return scale_fn(out)
|
|
303
|
+
|
|
304
|
+
return (scale_fn(out[0]), *out[1:])
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
class Rezero(nn.Module):
|
|
308
|
+
def __init__(self, fn):
|
|
309
|
+
super().__init__()
|
|
310
|
+
self.fn = fn
|
|
311
|
+
self.g = nn.Parameter(torch.zeros(1))
|
|
312
|
+
|
|
313
|
+
def forward(self, x, **kwargs):
|
|
314
|
+
out = self.fn(x, **kwargs)
|
|
315
|
+
rezero_fn = lambda t: t * self.g
|
|
316
|
+
|
|
317
|
+
if not isinstance(out, tuple):
|
|
318
|
+
return rezero_fn(out)
|
|
319
|
+
|
|
320
|
+
return (rezero_fn(out[0]), *out[1:])
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
class ScaleNorm(nn.Module):
|
|
324
|
+
def __init__(self, dim, eps=1e-5):
|
|
325
|
+
super().__init__()
|
|
326
|
+
self.scale = dim ** -0.5
|
|
327
|
+
self.eps = eps
|
|
328
|
+
self.g = nn.Parameter(torch.ones(1))
|
|
329
|
+
|
|
330
|
+
def forward(self, x):
|
|
331
|
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
|
332
|
+
return x / norm.clamp(min=self.eps) * self.g
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
class RMSNorm(nn.Module):
|
|
336
|
+
def __init__(self, dim, eps=1e-8):
|
|
337
|
+
super().__init__()
|
|
338
|
+
self.scale = dim ** -0.5
|
|
339
|
+
self.eps = eps
|
|
340
|
+
self.g = nn.Parameter(torch.ones(dim))
|
|
341
|
+
|
|
342
|
+
def forward(self, x):
|
|
343
|
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
|
344
|
+
return x / norm.clamp(min=self.eps) * self.g
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
class RMSScaleShiftNorm(nn.Module):
|
|
348
|
+
def __init__(self, dim, eps=1e-8):
|
|
349
|
+
super().__init__()
|
|
350
|
+
self.scale = dim ** -0.5
|
|
351
|
+
self.eps = eps
|
|
352
|
+
self.g = nn.Parameter(torch.ones(dim))
|
|
353
|
+
self.scale_shift_process = nn.Linear(dim * 2, dim * 2)
|
|
354
|
+
|
|
355
|
+
def forward(self, x, norm_scale_shift_inp):
|
|
356
|
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
|
357
|
+
norm = x / norm.clamp(min=self.eps) * self.g
|
|
358
|
+
|
|
359
|
+
ss_emb = self.scale_shift_process(norm_scale_shift_inp)
|
|
360
|
+
scale, shift = torch.chunk(ss_emb, 2, dim=1)
|
|
361
|
+
h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
362
|
+
return h
|
|
363
|
+
|
|
364
|
+
|
|
365
|
+
# residual and residual gates
|
|
366
|
+
|
|
367
|
+
class Residual(nn.Module):
|
|
368
|
+
def __init__(self, dim, scale_residual=False):
|
|
369
|
+
super().__init__()
|
|
370
|
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
|
371
|
+
|
|
372
|
+
def forward(self, x, residual):
|
|
373
|
+
if exists(self.residual_scale):
|
|
374
|
+
residual = residual * self.residual_scale
|
|
375
|
+
|
|
376
|
+
return x + residual
|
|
377
|
+
|
|
378
|
+
|
|
379
|
+
class GRUGating(nn.Module):
|
|
380
|
+
def __init__(self, dim, scale_residual=False):
|
|
381
|
+
super().__init__()
|
|
382
|
+
self.gru = nn.GRUCell(dim, dim)
|
|
383
|
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
|
384
|
+
|
|
385
|
+
def forward(self, x, residual):
|
|
386
|
+
if exists(self.residual_scale):
|
|
387
|
+
residual = residual * self.residual_scale
|
|
388
|
+
|
|
389
|
+
gated_output = self.gru(
|
|
390
|
+
rearrange(x, 'b n d -> (b n) d'),
|
|
391
|
+
rearrange(residual, 'b n d -> (b n) d')
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
return gated_output.reshape_as(x)
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
# token shifting
|
|
398
|
+
|
|
399
|
+
def shift(t, amount, mask=None):
|
|
400
|
+
if amount == 0:
|
|
401
|
+
return t
|
|
402
|
+
|
|
403
|
+
if exists(mask):
|
|
404
|
+
t = t.masked_fill(~mask[..., None], 0.)
|
|
405
|
+
|
|
406
|
+
return F.pad(t, (0, 0, amount, -amount), value=0.)
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
class ShiftTokens(nn.Module):
|
|
410
|
+
def __init__(self, shifts, fn):
|
|
411
|
+
super().__init__()
|
|
412
|
+
self.fn = fn
|
|
413
|
+
self.shifts = tuple(shifts)
|
|
414
|
+
|
|
415
|
+
def forward(self, x, **kwargs):
|
|
416
|
+
mask = kwargs.get('mask', None)
|
|
417
|
+
shifts = self.shifts
|
|
418
|
+
segments = len(shifts)
|
|
419
|
+
feats_per_shift = x.shape[-1] // segments
|
|
420
|
+
splitted = x.split(feats_per_shift, dim=-1)
|
|
421
|
+
segments_to_shift, rest = splitted[:segments], splitted[segments:]
|
|
422
|
+
segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts)))
|
|
423
|
+
x = torch.cat((*segments_to_shift, *rest), dim=-1)
|
|
424
|
+
return self.fn(x, **kwargs)
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+
# feedforward
|
|
428
|
+
|
|
429
|
+
class GLU(nn.Module):
|
|
430
|
+
def __init__(self, dim_in, dim_out, activation):
|
|
431
|
+
super().__init__()
|
|
432
|
+
self.act = activation
|
|
433
|
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
434
|
+
|
|
435
|
+
def forward(self, x):
|
|
436
|
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
437
|
+
return x * self.act(gate)
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
class FeedForward(nn.Module):
|
|
441
|
+
def __init__(
|
|
442
|
+
self,
|
|
443
|
+
dim,
|
|
444
|
+
dim_out=None,
|
|
445
|
+
mult=4,
|
|
446
|
+
glu=False,
|
|
447
|
+
relu_squared=False,
|
|
448
|
+
post_act_ln=False,
|
|
449
|
+
dropout=0.,
|
|
450
|
+
zero_init_output=False
|
|
451
|
+
):
|
|
452
|
+
super().__init__()
|
|
453
|
+
inner_dim = int(dim * mult)
|
|
454
|
+
dim_out = default(dim_out, dim)
|
|
455
|
+
activation = ReluSquared() if relu_squared else nn.GELU()
|
|
456
|
+
|
|
457
|
+
project_in = nn.Sequential(
|
|
458
|
+
nn.Linear(dim, inner_dim),
|
|
459
|
+
activation
|
|
460
|
+
) if not glu else GLU(dim, inner_dim, activation)
|
|
461
|
+
|
|
462
|
+
self.net = nn.Sequential(
|
|
463
|
+
project_in,
|
|
464
|
+
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(),
|
|
465
|
+
nn.Dropout(dropout),
|
|
466
|
+
nn.Linear(inner_dim, dim_out)
|
|
467
|
+
)
|
|
468
|
+
|
|
469
|
+
# init last linear layer to 0
|
|
470
|
+
if zero_init_output:
|
|
471
|
+
init_zero_(self.net[-1])
|
|
472
|
+
|
|
473
|
+
def forward(self, x):
|
|
474
|
+
return self.net(x)
|
|
475
|
+
|
|
476
|
+
|
|
477
|
+
# attention.
|
|
478
|
+
|
|
479
|
+
class Attention(nn.Module):
|
|
480
|
+
def __init__(
|
|
481
|
+
self,
|
|
482
|
+
dim,
|
|
483
|
+
dim_head=DEFAULT_DIM_HEAD,
|
|
484
|
+
heads=8,
|
|
485
|
+
causal=False,
|
|
486
|
+
talking_heads=False,
|
|
487
|
+
head_scale=False,
|
|
488
|
+
collab_heads=False,
|
|
489
|
+
collab_compression=.3,
|
|
490
|
+
sparse_topk=None,
|
|
491
|
+
use_entmax15=False,
|
|
492
|
+
num_mem_kv=0,
|
|
493
|
+
dropout=0.,
|
|
494
|
+
on_attn=False,
|
|
495
|
+
gate_values=False,
|
|
496
|
+
zero_init_output=False,
|
|
497
|
+
max_attend_past=None,
|
|
498
|
+
qk_norm=False,
|
|
499
|
+
scale_init_value=None,
|
|
500
|
+
rel_pos_bias=False,
|
|
501
|
+
rel_pos_num_buckets=32,
|
|
502
|
+
rel_pos_max_distance=128,
|
|
503
|
+
):
|
|
504
|
+
super().__init__()
|
|
505
|
+
self.scale = dim_head ** -0.5
|
|
506
|
+
|
|
507
|
+
self.heads = heads
|
|
508
|
+
self.causal = causal
|
|
509
|
+
self.max_attend_past = max_attend_past
|
|
510
|
+
|
|
511
|
+
qk_dim = v_dim = dim_head * heads
|
|
512
|
+
|
|
513
|
+
# collaborative heads
|
|
514
|
+
self.collab_heads = collab_heads
|
|
515
|
+
if self.collab_heads:
|
|
516
|
+
qk_dim = int(collab_compression * qk_dim)
|
|
517
|
+
self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim))
|
|
518
|
+
|
|
519
|
+
self.to_q = nn.Linear(dim, qk_dim, bias=False)
|
|
520
|
+
self.to_k = nn.Linear(dim, qk_dim, bias=False)
|
|
521
|
+
self.to_v = nn.Linear(dim, v_dim, bias=False)
|
|
522
|
+
|
|
523
|
+
self.dropout = nn.Dropout(dropout)
|
|
524
|
+
|
|
525
|
+
# add GLU gating for aggregated values, from alphafold2
|
|
526
|
+
self.to_v_gate = None
|
|
527
|
+
if gate_values:
|
|
528
|
+
self.to_v_gate = nn.Linear(dim, v_dim)
|
|
529
|
+
nn.init.constant_(self.to_v_gate.weight, 0)
|
|
530
|
+
nn.init.constant_(self.to_v_gate.bias, 1)
|
|
531
|
+
|
|
532
|
+
# cosine sim attention
|
|
533
|
+
self.qk_norm = qk_norm
|
|
534
|
+
if qk_norm:
|
|
535
|
+
scale_init_value = default(scale_init_value,
|
|
536
|
+
-3) # if not provided, initialize as though it were sequence length of 1024
|
|
537
|
+
self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value)
|
|
538
|
+
|
|
539
|
+
# talking heads
|
|
540
|
+
self.talking_heads = talking_heads
|
|
541
|
+
if talking_heads:
|
|
542
|
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
|
543
|
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
|
544
|
+
|
|
545
|
+
# head scaling
|
|
546
|
+
self.head_scale = head_scale
|
|
547
|
+
if head_scale:
|
|
548
|
+
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
|
|
549
|
+
|
|
550
|
+
# explicit topk sparse attention
|
|
551
|
+
self.sparse_topk = sparse_topk
|
|
552
|
+
|
|
553
|
+
# entmax
|
|
554
|
+
self.attn_fn = F.softmax
|
|
555
|
+
|
|
556
|
+
# add memory key / values
|
|
557
|
+
self.num_mem_kv = num_mem_kv
|
|
558
|
+
if num_mem_kv > 0:
|
|
559
|
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
|
560
|
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
|
561
|
+
|
|
562
|
+
# attention on attention
|
|
563
|
+
self.attn_on_attn = on_attn
|
|
564
|
+
self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim)
|
|
565
|
+
|
|
566
|
+
self.rel_pos_bias = rel_pos_bias
|
|
567
|
+
if rel_pos_bias:
|
|
568
|
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
|
569
|
+
self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads,
|
|
570
|
+
num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance)
|
|
571
|
+
|
|
572
|
+
# init output projection 0
|
|
573
|
+
if zero_init_output:
|
|
574
|
+
init_zero_(self.to_out)
|
|
575
|
+
|
|
576
|
+
def forward(
|
|
577
|
+
self,
|
|
578
|
+
x,
|
|
579
|
+
context=None,
|
|
580
|
+
mask=None,
|
|
581
|
+
context_mask=None,
|
|
582
|
+
attn_mask=None,
|
|
583
|
+
sinusoidal_emb=None,
|
|
584
|
+
rotary_pos_emb=None,
|
|
585
|
+
prev_attn=None,
|
|
586
|
+
mem=None,
|
|
587
|
+
layer_past=None,
|
|
588
|
+
):
|
|
589
|
+
b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists(
|
|
590
|
+
context)
|
|
591
|
+
kv_input = default(context, x)
|
|
592
|
+
|
|
593
|
+
q_input = x
|
|
594
|
+
k_input = kv_input
|
|
595
|
+
v_input = kv_input
|
|
596
|
+
|
|
597
|
+
if exists(mem):
|
|
598
|
+
k_input = torch.cat((mem, k_input), dim=-2)
|
|
599
|
+
v_input = torch.cat((mem, v_input), dim=-2)
|
|
600
|
+
|
|
601
|
+
if exists(sinusoidal_emb):
|
|
602
|
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
|
603
|
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
|
604
|
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
|
605
|
+
k_input = k_input + sinusoidal_emb(k_input)
|
|
606
|
+
|
|
607
|
+
q = self.to_q(q_input)
|
|
608
|
+
k = self.to_k(k_input)
|
|
609
|
+
v = self.to_v(v_input)
|
|
610
|
+
|
|
611
|
+
if not collab_heads:
|
|
612
|
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
|
613
|
+
else:
|
|
614
|
+
q = einsum('b i d, h d -> b h i d', q, self.collab_mixing)
|
|
615
|
+
k = rearrange(k, 'b n d -> b () n d')
|
|
616
|
+
v = rearrange(v, 'b n (h d) -> b h n d', h=h)
|
|
617
|
+
|
|
618
|
+
if layer_past is not None:
|
|
619
|
+
past_key, past_value = layer_past
|
|
620
|
+
k = torch.cat([past_key, k], dim=-2)
|
|
621
|
+
v = torch.cat([past_value, v], dim=-2)
|
|
622
|
+
k_cache = k
|
|
623
|
+
v_cache = v
|
|
624
|
+
|
|
625
|
+
if exists(rotary_pos_emb) and not has_context:
|
|
626
|
+
l = rotary_pos_emb.shape[-1]
|
|
627
|
+
(ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
|
|
628
|
+
ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl))
|
|
629
|
+
q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr)))
|
|
630
|
+
|
|
631
|
+
input_mask = None
|
|
632
|
+
if any(map(exists, (mask, context_mask))):
|
|
633
|
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
|
634
|
+
k_mask = q_mask if not exists(context) else context_mask
|
|
635
|
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
|
636
|
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
|
637
|
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
|
638
|
+
input_mask = q_mask * k_mask
|
|
639
|
+
|
|
640
|
+
if self.num_mem_kv > 0:
|
|
641
|
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
|
642
|
+
k = torch.cat((mem_k, k), dim=-2)
|
|
643
|
+
v = torch.cat((mem_v, v), dim=-2)
|
|
644
|
+
if exists(input_mask):
|
|
645
|
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
|
646
|
+
|
|
647
|
+
if collab_heads:
|
|
648
|
+
k = k.expand(-1, h, -1, -1)
|
|
649
|
+
|
|
650
|
+
if self.qk_norm:
|
|
651
|
+
q, k = map(l2norm, (q, k))
|
|
652
|
+
scale = 1 / (self.scale.exp().clamp(min=1e-2))
|
|
653
|
+
|
|
654
|
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale
|
|
655
|
+
mask_value = max_neg_value(dots)
|
|
656
|
+
|
|
657
|
+
if exists(prev_attn):
|
|
658
|
+
dots = dots + prev_attn
|
|
659
|
+
|
|
660
|
+
pre_softmax_attn = dots.clone()
|
|
661
|
+
|
|
662
|
+
if talking_heads:
|
|
663
|
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
|
664
|
+
|
|
665
|
+
if self.rel_pos_bias:
|
|
666
|
+
dots = self.rel_pos(dots)
|
|
667
|
+
|
|
668
|
+
if exists(input_mask):
|
|
669
|
+
dots.masked_fill_(~input_mask, mask_value)
|
|
670
|
+
del input_mask
|
|
671
|
+
|
|
672
|
+
if exists(attn_mask):
|
|
673
|
+
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
|
|
674
|
+
if attn_mask.ndim == 2:
|
|
675
|
+
attn_mask = rearrange(attn_mask, 'i j -> () () i j')
|
|
676
|
+
elif attn_mask.ndim == 3:
|
|
677
|
+
attn_mask = rearrange(attn_mask, 'h i j -> () h i j')
|
|
678
|
+
dots.masked_fill_(~attn_mask, mask_value)
|
|
679
|
+
|
|
680
|
+
if exists(self.max_attend_past):
|
|
681
|
+
i, j = dots.shape[-2:]
|
|
682
|
+
range_q = torch.arange(j - i, j, device=device)
|
|
683
|
+
range_k = torch.arange(j, device=device)
|
|
684
|
+
dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j')
|
|
685
|
+
mask = dist > self.max_attend_past
|
|
686
|
+
dots.masked_fill_(mask, mask_value)
|
|
687
|
+
del mask
|
|
688
|
+
|
|
689
|
+
if self.causal:
|
|
690
|
+
i, j = dots.shape[-2:]
|
|
691
|
+
r = torch.arange(i, device=device)
|
|
692
|
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
|
693
|
+
mask = F.pad(mask, (j - i, 0), value=False)
|
|
694
|
+
dots.masked_fill_(mask, mask_value)
|
|
695
|
+
del mask
|
|
696
|
+
|
|
697
|
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
|
698
|
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
|
699
|
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
|
700
|
+
mask = dots < vk
|
|
701
|
+
dots.masked_fill_(mask, mask_value)
|
|
702
|
+
del mask
|
|
703
|
+
|
|
704
|
+
attn = self.attn_fn(dots, dim=-1)
|
|
705
|
+
post_softmax_attn = attn.clone()
|
|
706
|
+
|
|
707
|
+
attn = self.dropout(attn)
|
|
708
|
+
|
|
709
|
+
if talking_heads:
|
|
710
|
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
|
711
|
+
|
|
712
|
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
713
|
+
|
|
714
|
+
if head_scale:
|
|
715
|
+
out = out * self.head_scale_params
|
|
716
|
+
|
|
717
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
718
|
+
|
|
719
|
+
if exists(self.to_v_gate):
|
|
720
|
+
gates = self.to_v_gate(x)
|
|
721
|
+
out = out * gates.sigmoid()
|
|
722
|
+
|
|
723
|
+
intermediates = Intermediates(
|
|
724
|
+
pre_softmax_attn=pre_softmax_attn,
|
|
725
|
+
post_softmax_attn=post_softmax_attn
|
|
726
|
+
)
|
|
727
|
+
|
|
728
|
+
return self.to_out(out), intermediates, k_cache, v_cache
|
|
729
|
+
|
|
730
|
+
|
|
731
|
+
class AttentionLayers(nn.Module):
|
|
732
|
+
def __init__(
|
|
733
|
+
self,
|
|
734
|
+
dim,
|
|
735
|
+
depth,
|
|
736
|
+
heads=8,
|
|
737
|
+
causal=False,
|
|
738
|
+
cross_attend=False,
|
|
739
|
+
only_cross=False,
|
|
740
|
+
use_scalenorm=False,
|
|
741
|
+
use_rms_scaleshift_norm=False,
|
|
742
|
+
use_rmsnorm=False,
|
|
743
|
+
use_rezero=False,
|
|
744
|
+
alibi_pos_bias=False,
|
|
745
|
+
alibi_num_heads=None,
|
|
746
|
+
alibi_learned=False,
|
|
747
|
+
position_infused_attn=False,
|
|
748
|
+
rotary_pos_emb=False,
|
|
749
|
+
rotary_emb_dim=None,
|
|
750
|
+
custom_layers=None,
|
|
751
|
+
sandwich_coef=None,
|
|
752
|
+
par_ratio=None,
|
|
753
|
+
residual_attn=False,
|
|
754
|
+
cross_residual_attn=False,
|
|
755
|
+
macaron=False,
|
|
756
|
+
pre_norm=True,
|
|
757
|
+
gate_residual=False,
|
|
758
|
+
scale_residual=False,
|
|
759
|
+
shift_tokens=0,
|
|
760
|
+
sandwich_norm=False,
|
|
761
|
+
use_qk_norm_attn=False,
|
|
762
|
+
qk_norm_attn_seq_len=None,
|
|
763
|
+
zero_init_branch_output=False,
|
|
764
|
+
**kwargs
|
|
765
|
+
):
|
|
766
|
+
super().__init__()
|
|
767
|
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
|
768
|
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
|
769
|
+
|
|
770
|
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
|
771
|
+
|
|
772
|
+
self.dim = dim
|
|
773
|
+
self.depth = depth
|
|
774
|
+
self.layers = nn.ModuleList([])
|
|
775
|
+
self.causal = causal
|
|
776
|
+
|
|
777
|
+
rel_pos_bias = 'rel_pos_bias' in attn_kwargs
|
|
778
|
+
self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb
|
|
779
|
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
|
780
|
+
|
|
781
|
+
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
|
|
782
|
+
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None
|
|
783
|
+
|
|
784
|
+
assert not (
|
|
785
|
+
alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
|
|
786
|
+
|
|
787
|
+
if alibi_pos_bias:
|
|
788
|
+
alibi_num_heads = default(alibi_num_heads, heads)
|
|
789
|
+
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
|
|
790
|
+
alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias
|
|
791
|
+
self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal)
|
|
792
|
+
else:
|
|
793
|
+
self.rel_pos = None
|
|
794
|
+
|
|
795
|
+
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
|
|
796
|
+
self.pre_norm = pre_norm
|
|
797
|
+
self.sandwich_norm = sandwich_norm
|
|
798
|
+
|
|
799
|
+
self.residual_attn = residual_attn
|
|
800
|
+
self.cross_residual_attn = cross_residual_attn
|
|
801
|
+
self.cross_attend = cross_attend
|
|
802
|
+
|
|
803
|
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
|
804
|
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
|
805
|
+
norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class
|
|
806
|
+
norm_fn = partial(norm_class, dim)
|
|
807
|
+
|
|
808
|
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
|
809
|
+
branch_fn = Rezero if use_rezero else None
|
|
810
|
+
|
|
811
|
+
if cross_attend and not only_cross:
|
|
812
|
+
default_block = ('a', 'c', 'f')
|
|
813
|
+
elif cross_attend and only_cross:
|
|
814
|
+
default_block = ('c', 'f')
|
|
815
|
+
else:
|
|
816
|
+
default_block = ('a', 'f')
|
|
817
|
+
|
|
818
|
+
if macaron:
|
|
819
|
+
default_block = ('f',) + default_block
|
|
820
|
+
|
|
821
|
+
# qk normalization
|
|
822
|
+
|
|
823
|
+
if use_qk_norm_attn:
|
|
824
|
+
attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists(
|
|
825
|
+
qk_norm_attn_seq_len) else None
|
|
826
|
+
attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value}
|
|
827
|
+
|
|
828
|
+
# zero init
|
|
829
|
+
|
|
830
|
+
if zero_init_branch_output:
|
|
831
|
+
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
|
|
832
|
+
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
|
|
833
|
+
|
|
834
|
+
# calculate layer block order
|
|
835
|
+
|
|
836
|
+
if exists(custom_layers):
|
|
837
|
+
layer_types = custom_layers
|
|
838
|
+
elif exists(par_ratio):
|
|
839
|
+
par_depth = depth * len(default_block)
|
|
840
|
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
|
841
|
+
default_block = tuple(filter(not_equals('f'), default_block))
|
|
842
|
+
par_attn = par_depth // par_ratio
|
|
843
|
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
|
844
|
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
|
845
|
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
|
846
|
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
|
847
|
+
par_head = par_block * par_attn
|
|
848
|
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
|
849
|
+
elif exists(sandwich_coef):
|
|
850
|
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
|
851
|
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
|
852
|
+
else:
|
|
853
|
+
layer_types = default_block * depth
|
|
854
|
+
|
|
855
|
+
self.layer_types = layer_types
|
|
856
|
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
|
857
|
+
|
|
858
|
+
# calculate token shifting
|
|
859
|
+
|
|
860
|
+
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
|
|
861
|
+
|
|
862
|
+
# iterate and construct layers
|
|
863
|
+
|
|
864
|
+
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
|
|
865
|
+
is_last_layer = ind == (len(self.layer_types) - 1)
|
|
866
|
+
|
|
867
|
+
if layer_type == 'a':
|
|
868
|
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
|
869
|
+
elif layer_type == 'c':
|
|
870
|
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
|
871
|
+
elif layer_type == 'f':
|
|
872
|
+
layer = FeedForward(dim, **ff_kwargs)
|
|
873
|
+
layer = layer if not macaron else Scale(0.5, layer)
|
|
874
|
+
else:
|
|
875
|
+
raise Exception(f'invalid layer type {layer_type}')
|
|
876
|
+
|
|
877
|
+
if layer_shift_tokens > 0:
|
|
878
|
+
shift_range_upper = layer_shift_tokens + 1
|
|
879
|
+
shift_range_lower = -layer_shift_tokens if not causal else 0
|
|
880
|
+
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
|
|
881
|
+
|
|
882
|
+
if exists(branch_fn):
|
|
883
|
+
layer = branch_fn(layer)
|
|
884
|
+
|
|
885
|
+
residual_fn = GRUGating if gate_residual else Residual
|
|
886
|
+
residual = residual_fn(dim, scale_residual=scale_residual)
|
|
887
|
+
|
|
888
|
+
layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c')
|
|
889
|
+
|
|
890
|
+
pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None
|
|
891
|
+
post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None
|
|
892
|
+
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None
|
|
893
|
+
|
|
894
|
+
norms = nn.ModuleList([
|
|
895
|
+
pre_branch_norm,
|
|
896
|
+
post_branch_norm,
|
|
897
|
+
post_main_norm
|
|
898
|
+
])
|
|
899
|
+
|
|
900
|
+
self.layers.append(nn.ModuleList([
|
|
901
|
+
norms,
|
|
902
|
+
layer,
|
|
903
|
+
residual
|
|
904
|
+
]))
|
|
905
|
+
|
|
906
|
+
def forward(
|
|
907
|
+
self,
|
|
908
|
+
x,
|
|
909
|
+
context=None,
|
|
910
|
+
full_context=None, # for passing a list of hidden states from an encoder
|
|
911
|
+
mask=None,
|
|
912
|
+
context_mask=None,
|
|
913
|
+
attn_mask=None,
|
|
914
|
+
mems=None,
|
|
915
|
+
return_hiddens=False,
|
|
916
|
+
norm_scale_shift_inp=None,
|
|
917
|
+
past_key_values=None,
|
|
918
|
+
expected_seq_len=None,
|
|
919
|
+
):
|
|
920
|
+
|
|
921
|
+
assert not (self.cross_attend ^ (exists(context) or exists(
|
|
922
|
+
full_context))), 'context must be passed in if cross_attend is set to True'
|
|
923
|
+
assert context is None or full_context is None, 'only one of full_context or context can be provided'
|
|
924
|
+
|
|
925
|
+
hiddens = []
|
|
926
|
+
intermediates = []
|
|
927
|
+
prev_attn = None
|
|
928
|
+
prev_cross_attn = None
|
|
929
|
+
|
|
930
|
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
|
931
|
+
norm_args = {}
|
|
932
|
+
if exists(norm_scale_shift_inp):
|
|
933
|
+
norm_args['norm_scale_shift_inp'] = norm_scale_shift_inp
|
|
934
|
+
|
|
935
|
+
rotary_pos_emb = None
|
|
936
|
+
if exists(self.rotary_pos_emb):
|
|
937
|
+
if not self.training and self.causal:
|
|
938
|
+
assert expected_seq_len is not None, "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`"
|
|
939
|
+
elif expected_seq_len is None:
|
|
940
|
+
expected_seq_len = 0
|
|
941
|
+
seq_len = x.shape[1]
|
|
942
|
+
if past_key_values is not None:
|
|
943
|
+
seq_len += past_key_values[0][0].shape[-2]
|
|
944
|
+
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len])
|
|
945
|
+
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)
|
|
946
|
+
|
|
947
|
+
present_key_values = []
|
|
948
|
+
cross_attn_count = 0
|
|
949
|
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
|
950
|
+
if layer_type == 'a':
|
|
951
|
+
layer_mem = mems.pop(0) if mems else None
|
|
952
|
+
|
|
953
|
+
residual = x
|
|
954
|
+
|
|
955
|
+
pre_branch_norm, post_branch_norm, post_main_norm = norm
|
|
956
|
+
|
|
957
|
+
if exists(pre_branch_norm):
|
|
958
|
+
x = pre_branch_norm(x, **norm_args)
|
|
959
|
+
|
|
960
|
+
if layer_type == 'a' or layer_type == 'c':
|
|
961
|
+
if past_key_values is not None:
|
|
962
|
+
layer_kv = past_key_values.pop(0)
|
|
963
|
+
layer_past = tuple(s.to(x.device) for s in layer_kv)
|
|
964
|
+
else:
|
|
965
|
+
layer_past = None
|
|
966
|
+
|
|
967
|
+
if layer_type == 'a':
|
|
968
|
+
out, inter, k, v = block(x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb,
|
|
969
|
+
prev_attn, layer_mem, layer_past)
|
|
970
|
+
elif layer_type == 'c':
|
|
971
|
+
if exists(full_context):
|
|
972
|
+
out, inter, k, v = block(x, full_context[cross_attn_count], mask, context_mask, None, None,
|
|
973
|
+
None, prev_attn, None, layer_past)
|
|
974
|
+
else:
|
|
975
|
+
out, inter, k, v = block(x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past)
|
|
976
|
+
elif layer_type == 'f':
|
|
977
|
+
out = block(x)
|
|
978
|
+
|
|
979
|
+
if layer_type == 'a' or layer_type == 'c' and present_key_values is not None:
|
|
980
|
+
present_key_values.append((k.detach(), v.detach()))
|
|
981
|
+
|
|
982
|
+
if exists(post_branch_norm):
|
|
983
|
+
out = post_branch_norm(out, **norm_args)
|
|
984
|
+
|
|
985
|
+
x = residual_fn(out, residual)
|
|
986
|
+
|
|
987
|
+
if layer_type in ('a', 'c'):
|
|
988
|
+
intermediates.append(inter)
|
|
989
|
+
|
|
990
|
+
if layer_type == 'a' and self.residual_attn:
|
|
991
|
+
prev_attn = inter.pre_softmax_attn
|
|
992
|
+
elif layer_type == 'c' and self.cross_residual_attn:
|
|
993
|
+
prev_cross_attn = inter.pre_softmax_attn
|
|
994
|
+
|
|
995
|
+
if exists(post_main_norm):
|
|
996
|
+
x = post_main_norm(x, **norm_args)
|
|
997
|
+
|
|
998
|
+
if layer_type == 'c':
|
|
999
|
+
cross_attn_count += 1
|
|
1000
|
+
|
|
1001
|
+
if layer_type == 'f':
|
|
1002
|
+
hiddens.append(x)
|
|
1003
|
+
|
|
1004
|
+
if return_hiddens:
|
|
1005
|
+
intermediates = LayerIntermediates(
|
|
1006
|
+
hiddens=hiddens,
|
|
1007
|
+
attn_intermediates=intermediates,
|
|
1008
|
+
past_key_values=present_key_values
|
|
1009
|
+
)
|
|
1010
|
+
|
|
1011
|
+
return x, intermediates
|
|
1012
|
+
|
|
1013
|
+
return x
|
|
1014
|
+
|
|
1015
|
+
|
|
1016
|
+
class Encoder(AttentionLayers):
|
|
1017
|
+
def __init__(self, **kwargs):
|
|
1018
|
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
|
1019
|
+
super().__init__(causal=False, **kwargs)
|
|
1020
|
+
|
|
1021
|
+
|
|
1022
|
+
class Decoder(AttentionLayers):
|
|
1023
|
+
def __init__(self, **kwargs):
|
|
1024
|
+
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
|
1025
|
+
super().__init__(causal=True, **kwargs)
|
|
1026
|
+
|
|
1027
|
+
|
|
1028
|
+
class CrossAttender(AttentionLayers):
|
|
1029
|
+
def __init__(self, **kwargs):
|
|
1030
|
+
super().__init__(cross_attend=True, only_cross=True, **kwargs)
|
|
1031
|
+
|
|
1032
|
+
|
|
1033
|
+
class ViTransformerWrapper(nn.Module):
|
|
1034
|
+
def __init__(
|
|
1035
|
+
self,
|
|
1036
|
+
*,
|
|
1037
|
+
image_size,
|
|
1038
|
+
patch_size,
|
|
1039
|
+
attn_layers,
|
|
1040
|
+
num_classes=None,
|
|
1041
|
+
dropout=0.,
|
|
1042
|
+
emb_dropout=0.
|
|
1043
|
+
):
|
|
1044
|
+
super().__init__()
|
|
1045
|
+
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
|
|
1046
|
+
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
|
|
1047
|
+
dim = attn_layers.dim
|
|
1048
|
+
num_patches = (image_size // patch_size) ** 2
|
|
1049
|
+
patch_dim = 3 * patch_size ** 2
|
|
1050
|
+
|
|
1051
|
+
self.patch_size = patch_size
|
|
1052
|
+
|
|
1053
|
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
|
1054
|
+
self.patch_to_embedding = nn.Linear(patch_dim, dim)
|
|
1055
|
+
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
|
1056
|
+
self.dropout = nn.Dropout(emb_dropout)
|
|
1057
|
+
|
|
1058
|
+
self.attn_layers = attn_layers
|
|
1059
|
+
self.norm = nn.LayerNorm(dim)
|
|
1060
|
+
self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None
|
|
1061
|
+
|
|
1062
|
+
def forward(
|
|
1063
|
+
self,
|
|
1064
|
+
img,
|
|
1065
|
+
return_embeddings=False
|
|
1066
|
+
):
|
|
1067
|
+
p = self.patch_size
|
|
1068
|
+
|
|
1069
|
+
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
|
|
1070
|
+
x = self.patch_to_embedding(x)
|
|
1071
|
+
b, n, _ = x.shape
|
|
1072
|
+
|
|
1073
|
+
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
|
|
1074
|
+
x = torch.cat((cls_tokens, x), dim=1)
|
|
1075
|
+
x = x + self.pos_embedding[:, :(n + 1)]
|
|
1076
|
+
x = self.dropout(x)
|
|
1077
|
+
|
|
1078
|
+
x = self.attn_layers(x)
|
|
1079
|
+
x = self.norm(x)
|
|
1080
|
+
|
|
1081
|
+
if not exists(self.mlp_head) or return_embeddings:
|
|
1082
|
+
return x
|
|
1083
|
+
|
|
1084
|
+
return self.mlp_head(x[:, 0])
|
|
1085
|
+
|
|
1086
|
+
|
|
1087
|
+
class TransformerWrapper(nn.Module):
|
|
1088
|
+
def __init__(
|
|
1089
|
+
self,
|
|
1090
|
+
*,
|
|
1091
|
+
num_tokens,
|
|
1092
|
+
max_seq_len,
|
|
1093
|
+
attn_layers,
|
|
1094
|
+
emb_dim=None,
|
|
1095
|
+
max_mem_len=0.,
|
|
1096
|
+
shift_mem_down=0,
|
|
1097
|
+
emb_dropout=0.,
|
|
1098
|
+
num_memory_tokens=None,
|
|
1099
|
+
tie_embedding=False,
|
|
1100
|
+
use_pos_emb=True
|
|
1101
|
+
):
|
|
1102
|
+
super().__init__()
|
|
1103
|
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
|
1104
|
+
|
|
1105
|
+
dim = attn_layers.dim
|
|
1106
|
+
emb_dim = default(emb_dim, dim)
|
|
1107
|
+
|
|
1108
|
+
self.max_seq_len = max_seq_len
|
|
1109
|
+
self.max_mem_len = max_mem_len
|
|
1110
|
+
self.shift_mem_down = shift_mem_down
|
|
1111
|
+
|
|
1112
|
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
|
1113
|
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
|
1114
|
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
|
1115
|
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
|
1116
|
+
|
|
1117
|
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
|
1118
|
+
self.attn_layers = attn_layers
|
|
1119
|
+
self.norm = nn.LayerNorm(dim)
|
|
1120
|
+
|
|
1121
|
+
self.init_()
|
|
1122
|
+
|
|
1123
|
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
|
1124
|
+
|
|
1125
|
+
# memory tokens (like [cls]) from Memory Transformers paper
|
|
1126
|
+
num_memory_tokens = default(num_memory_tokens, 0)
|
|
1127
|
+
self.num_memory_tokens = num_memory_tokens
|
|
1128
|
+
if num_memory_tokens > 0:
|
|
1129
|
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
|
1130
|
+
|
|
1131
|
+
def init_(self):
|
|
1132
|
+
nn.init.kaiming_normal_(self.token_emb.weight)
|
|
1133
|
+
|
|
1134
|
+
def forward(
|
|
1135
|
+
self,
|
|
1136
|
+
x,
|
|
1137
|
+
return_embeddings=False,
|
|
1138
|
+
mask=None,
|
|
1139
|
+
return_hiddens=False,
|
|
1140
|
+
return_attn=False,
|
|
1141
|
+
mems=None,
|
|
1142
|
+
use_cache=False,
|
|
1143
|
+
**kwargs
|
|
1144
|
+
):
|
|
1145
|
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
|
1146
|
+
x = self.token_emb(x)
|
|
1147
|
+
x = x + self.pos_emb(x)
|
|
1148
|
+
x = self.emb_dropout(x)
|
|
1149
|
+
|
|
1150
|
+
x = self.project_emb(x)
|
|
1151
|
+
|
|
1152
|
+
if num_mem > 0:
|
|
1153
|
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
|
1154
|
+
x = torch.cat((mem, x), dim=1)
|
|
1155
|
+
|
|
1156
|
+
# auto-handle masking after appending memory tokens
|
|
1157
|
+
if exists(mask):
|
|
1158
|
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
|
1159
|
+
|
|
1160
|
+
if self.shift_mem_down and exists(mems):
|
|
1161
|
+
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
|
|
1162
|
+
mems = [*mems_r, *mems_l]
|
|
1163
|
+
|
|
1164
|
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
|
1165
|
+
x = self.norm(x)
|
|
1166
|
+
|
|
1167
|
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
|
1168
|
+
|
|
1169
|
+
out = self.to_logits(x) if not return_embeddings else x
|
|
1170
|
+
|
|
1171
|
+
if return_hiddens:
|
|
1172
|
+
hiddens = intermediates.hiddens
|
|
1173
|
+
return out, hiddens
|
|
1174
|
+
|
|
1175
|
+
res = [out]
|
|
1176
|
+
if return_attn:
|
|
1177
|
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
|
1178
|
+
res.append(attn_maps)
|
|
1179
|
+
if use_cache:
|
|
1180
|
+
res.append(intermediates.past_key_values)
|
|
1181
|
+
|
|
1182
|
+
if len(res) > 1:
|
|
1183
|
+
return tuple(res)
|
|
1184
|
+
return res[0]
|
|
1185
|
+
|
|
1186
|
+
|
|
1187
|
+
class ContinuousTransformerWrapper(nn.Module):
|
|
1188
|
+
def __init__(
|
|
1189
|
+
self,
|
|
1190
|
+
*,
|
|
1191
|
+
max_seq_len,
|
|
1192
|
+
attn_layers,
|
|
1193
|
+
dim_in=None,
|
|
1194
|
+
dim_out=None,
|
|
1195
|
+
emb_dim=None,
|
|
1196
|
+
emb_dropout=0.,
|
|
1197
|
+
use_pos_emb=True
|
|
1198
|
+
):
|
|
1199
|
+
super().__init__()
|
|
1200
|
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
|
1201
|
+
|
|
1202
|
+
dim = attn_layers.dim
|
|
1203
|
+
|
|
1204
|
+
self.max_seq_len = max_seq_len
|
|
1205
|
+
|
|
1206
|
+
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if (
|
|
1207
|
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
|
1208
|
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
|
1209
|
+
|
|
1210
|
+
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
|
|
1211
|
+
|
|
1212
|
+
self.attn_layers = attn_layers
|
|
1213
|
+
self.norm = nn.LayerNorm(dim)
|
|
1214
|
+
|
|
1215
|
+
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
|
|
1216
|
+
|
|
1217
|
+
def forward(
|
|
1218
|
+
self,
|
|
1219
|
+
x,
|
|
1220
|
+
return_embeddings=False,
|
|
1221
|
+
mask=None,
|
|
1222
|
+
return_attn=False,
|
|
1223
|
+
mems=None,
|
|
1224
|
+
use_cache=False,
|
|
1225
|
+
**kwargs
|
|
1226
|
+
):
|
|
1227
|
+
b, n, _, device = *x.shape, x.device
|
|
1228
|
+
|
|
1229
|
+
x = self.project_in(x)
|
|
1230
|
+
x = x + self.pos_emb(x)
|
|
1231
|
+
x = self.emb_dropout(x)
|
|
1232
|
+
|
|
1233
|
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
|
1234
|
+
x = self.norm(x)
|
|
1235
|
+
|
|
1236
|
+
out = self.project_out(x) if not return_embeddings else x
|
|
1237
|
+
|
|
1238
|
+
res = [out]
|
|
1239
|
+
if return_attn:
|
|
1240
|
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
|
1241
|
+
res.append(attn_maps)
|
|
1242
|
+
if use_cache:
|
|
1243
|
+
res.append(intermediates.past_key_values)
|
|
1244
|
+
|
|
1245
|
+
if len(res) > 1:
|
|
1246
|
+
return tuple(res)
|
|
1247
|
+
return res[0]
|