xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (334) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +400 -3
  3. xinference/client/restful/async_restful_client.py +20 -3
  4. xinference/client/restful/restful_client.py +20 -3
  5. xinference/constants.py +2 -0
  6. xinference/core/supervisor.py +111 -49
  7. xinference/core/worker.py +10 -0
  8. xinference/deploy/cmdline.py +15 -0
  9. xinference/model/audio/core.py +26 -6
  10. xinference/model/audio/indextts2.py +166 -0
  11. xinference/model/audio/kokoro.py +1 -1
  12. xinference/model/audio/kokoro_zh.py +124 -0
  13. xinference/model/audio/model_spec.json +58 -1
  14. xinference/model/embedding/sentence_transformers/core.py +4 -4
  15. xinference/model/embedding/vllm/core.py +7 -1
  16. xinference/model/image/model_spec.json +71 -3
  17. xinference/model/image/stable_diffusion/core.py +13 -4
  18. xinference/model/llm/__init__.py +4 -0
  19. xinference/model/llm/core.py +10 -0
  20. xinference/model/llm/llama_cpp/core.py +1 -0
  21. xinference/model/llm/llm_family.json +503 -21
  22. xinference/model/llm/llm_family.py +1 -0
  23. xinference/model/llm/mlx/core.py +52 -33
  24. xinference/model/llm/sglang/core.py +32 -55
  25. xinference/model/llm/tool_parsers/__init__.py +58 -0
  26. xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
  27. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
  28. xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
  29. xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
  30. xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
  31. xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
  32. xinference/model/llm/transformers/core.py +1 -1
  33. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  34. xinference/model/llm/utils.py +138 -53
  35. xinference/model/llm/vllm/core.py +95 -78
  36. xinference/thirdparty/audiotools/__init__.py +10 -0
  37. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  38. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  39. xinference/thirdparty/audiotools/core/display.py +194 -0
  40. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  41. xinference/thirdparty/audiotools/core/effects.py +647 -0
  42. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  43. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  44. xinference/thirdparty/audiotools/core/playback.py +252 -0
  45. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  46. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  47. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  48. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  49. xinference/thirdparty/audiotools/core/util.py +671 -0
  50. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  51. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  52. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  53. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  54. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  55. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  56. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  57. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  58. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  59. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  60. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  61. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  62. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  63. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  64. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  65. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  66. xinference/thirdparty/audiotools/post.py +140 -0
  67. xinference/thirdparty/audiotools/preference.py +600 -0
  68. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  69. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  70. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  72. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  73. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  74. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  75. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  76. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  77. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  78. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  79. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  80. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  81. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  82. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  83. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  84. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  85. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  86. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  87. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  88. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  89. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  90. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  91. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  92. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  93. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  94. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  95. xinference/thirdparty/indextts/__init__.py +0 -0
  96. xinference/thirdparty/indextts/cli.py +65 -0
  97. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  98. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  99. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  100. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  101. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  102. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  103. xinference/thirdparty/indextts/gpt/model.py +713 -0
  104. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  105. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  106. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  107. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  108. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  109. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  110. xinference/thirdparty/indextts/infer.py +690 -0
  111. xinference/thirdparty/indextts/infer_v2.py +739 -0
  112. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  113. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  114. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  115. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  116. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  117. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  118. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  119. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  120. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  121. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  122. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  123. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  124. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  125. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  126. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  127. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  128. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  129. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  130. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  131. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  133. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  134. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  135. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  136. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  137. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  138. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  139. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  140. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  141. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  142. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  143. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  144. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  145. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  146. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  147. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  148. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  149. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  150. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  151. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  152. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  153. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  154. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  155. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  156. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  157. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  158. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  159. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  160. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  161. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  162. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  163. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  164. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  165. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  166. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  167. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  168. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  169. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  170. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  171. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  172. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  173. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  174. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  175. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  176. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  177. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  178. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  179. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  180. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  181. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  182. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  183. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  184. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  185. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  186. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  187. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  188. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  189. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  190. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  191. xinference/thirdparty/indextts/utils/common.py +121 -0
  192. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  193. xinference/thirdparty/indextts/utils/front.py +536 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  240. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  241. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  242. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  243. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  244. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  245. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  246. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  247. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  248. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  249. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  250. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  251. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  252. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  253. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  254. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  255. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  256. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  257. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  258. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  259. xinference/thirdparty/indextts/utils/utils.py +93 -0
  260. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  261. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  262. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  263. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  264. xinference/types.py +105 -2
  265. xinference/ui/gradio/media_interface.py +66 -8
  266. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  267. xinference/ui/web/ui/build/index.html +1 -1
  268. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  269. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  270. xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
  271. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
  272. xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
  273. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  274. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  275. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  276. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  277. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  278. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  279. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  280. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  281. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  282. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  283. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  284. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  285. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  286. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  287. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  288. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  289. xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
  290. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  291. xinference/ui/web/ui/package-lock.json +0 -34
  292. xinference/ui/web/ui/package.json +0 -1
  293. xinference/ui/web/ui/src/locales/en.json +9 -3
  294. xinference/ui/web/ui/src/locales/ja.json +9 -3
  295. xinference/ui/web/ui/src/locales/ko.json +9 -3
  296. xinference/ui/web/ui/src/locales/zh.json +9 -3
  297. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
  298. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
  299. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  300. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  301. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  302. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  303. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  304. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  305. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  306. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  307. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  308. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  309. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  310. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  311. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  312. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  313. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  314. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  315. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  316. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  317. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  318. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  319. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  320. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  321. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  322. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  323. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  324. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  325. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  326. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  327. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  328. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  329. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  330. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  331. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
  332. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
  333. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
  334. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,183 @@
1
+ import torch
2
+ import torch.utils.data
3
+ from librosa.filters import mel as librosa_mel_fn
4
+
5
+ MAX_WAV_VALUE = 32768.0
6
+
7
+
8
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
9
+ """
10
+ PARAMS
11
+ ------
12
+ C: compression factor
13
+ """
14
+ return torch.log(torch.clamp(x, min=clip_val) * C)
15
+
16
+
17
+ def dynamic_range_decompression_torch(x, C=1):
18
+ """
19
+ PARAMS
20
+ ------
21
+ C: compression factor used to compress
22
+ """
23
+ return torch.exp(x) / C
24
+
25
+
26
+ def spectral_normalize_torch(magnitudes):
27
+ output = dynamic_range_compression_torch(magnitudes)
28
+ return output
29
+
30
+
31
+ def spectral_de_normalize_torch(magnitudes):
32
+ output = dynamic_range_decompression_torch(magnitudes)
33
+ return output
34
+
35
+
36
+ mel_basis = {}
37
+ hann_window = {}
38
+
39
+
40
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
41
+ # if torch.min(y) < -1.1:
42
+ # print("min value is ", torch.min(y))
43
+ # if torch.max(y) > 1.1:
44
+ # print("max value is ", torch.max(y))
45
+
46
+ global hann_window
47
+ dtype_device = str(y.dtype) + "_" + str(y.device)
48
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
49
+ if wnsize_dtype_device not in hann_window:
50
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
51
+ dtype=y.dtype, device=y.device
52
+ )
53
+
54
+ y = torch.nn.functional.pad(
55
+ y.unsqueeze(1),
56
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
57
+ mode="reflect",
58
+ )
59
+ y = y.squeeze(1)
60
+
61
+ spec = torch.stft(
62
+ y,
63
+ n_fft,
64
+ hop_length=hop_size,
65
+ win_length=win_size,
66
+ window=hann_window[wnsize_dtype_device],
67
+ center=center,
68
+ pad_mode="reflect",
69
+ normalized=False,
70
+ onesided=True,
71
+ return_complex=False,
72
+ )
73
+
74
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
75
+ return spec
76
+
77
+
78
+ def spectrogram_torch_conv(y, n_fft, sampling_rate, hop_size, win_size, center=False):
79
+ # if torch.min(y) < -1.:
80
+ # print('min value is ', torch.min(y))
81
+ # if torch.max(y) > 1.:
82
+ # print('max value is ', torch.max(y))
83
+
84
+ global hann_window
85
+ dtype_device = str(y.dtype) + '_' + str(y.device)
86
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
87
+ if wnsize_dtype_device not in hann_window:
88
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
89
+
90
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
91
+
92
+ # ******************** original ************************#
93
+ # y = y.squeeze(1)
94
+ # spec1 = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
95
+ # center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
96
+
97
+ # ******************** ConvSTFT ************************#
98
+ freq_cutoff = n_fft // 2 + 1
99
+ fourier_basis = torch.view_as_real(torch.fft.fft(torch.eye(n_fft)))
100
+ forward_basis = fourier_basis[:freq_cutoff].permute(2, 0, 1).reshape(-1, 1, fourier_basis.shape[1])
101
+ forward_basis = forward_basis * torch.as_tensor(librosa.util.pad_center(torch.hann_window(win_size), size=n_fft)).float()
102
+
103
+ import torch.nn.functional as F
104
+
105
+ # if center:
106
+ # signal = F.pad(y[:, None, None, :], (n_fft // 2, n_fft // 2, 0, 0), mode = 'reflect').squeeze(1)
107
+ assert center is False
108
+
109
+ forward_transform_squared = F.conv1d(y, forward_basis.to(y.device), stride = hop_size)
110
+ spec2 = torch.stack([forward_transform_squared[:, :freq_cutoff, :], forward_transform_squared[:, freq_cutoff:, :]], dim = -1)
111
+
112
+
113
+ # ******************** Verification ************************#
114
+ spec1 = torch.stft(y.squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
115
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
116
+ assert torch.allclose(spec1, spec2, atol=1e-4)
117
+
118
+ spec = torch.sqrt(spec2.pow(2).sum(-1) + 1e-6)
119
+ return spec
120
+
121
+
122
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
123
+ global mel_basis
124
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
125
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
126
+ if fmax_dtype_device not in mel_basis:
127
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
128
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
129
+ dtype=spec.dtype, device=spec.device
130
+ )
131
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
132
+ spec = spectral_normalize_torch(spec)
133
+ return spec
134
+
135
+
136
+ def mel_spectrogram_torch(
137
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
138
+ ):
139
+ if torch.min(y) < -1.0:
140
+ print("min value is ", torch.min(y))
141
+ if torch.max(y) > 1.0:
142
+ print("max value is ", torch.max(y))
143
+
144
+ global mel_basis, hann_window
145
+ dtype_device = str(y.dtype) + "_" + str(y.device)
146
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
147
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
148
+ if fmax_dtype_device not in mel_basis:
149
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
150
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
151
+ dtype=y.dtype, device=y.device
152
+ )
153
+ if wnsize_dtype_device not in hann_window:
154
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
155
+ dtype=y.dtype, device=y.device
156
+ )
157
+
158
+ y = torch.nn.functional.pad(
159
+ y.unsqueeze(1),
160
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
161
+ mode="reflect",
162
+ )
163
+ y = y.squeeze(1)
164
+
165
+ spec = torch.stft(
166
+ y,
167
+ n_fft,
168
+ hop_length=hop_size,
169
+ win_length=win_size,
170
+ window=hann_window[wnsize_dtype_device],
171
+ center=center,
172
+ pad_mode="reflect",
173
+ normalized=False,
174
+ onesided=True,
175
+ return_complex=False,
176
+ )
177
+
178
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
179
+
180
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
181
+ spec = spectral_normalize_torch(spec)
182
+
183
+ return spec
@@ -0,0 +1,499 @@
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from . import commons
7
+ from . import modules
8
+ from . import attentions
9
+
10
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+
13
+ from .commons import init_weights, get_padding
14
+
15
+
16
+ class TextEncoder(nn.Module):
17
+ def __init__(self,
18
+ n_vocab,
19
+ out_channels,
20
+ hidden_channels,
21
+ filter_channels,
22
+ n_heads,
23
+ n_layers,
24
+ kernel_size,
25
+ p_dropout):
26
+ super().__init__()
27
+ self.n_vocab = n_vocab
28
+ self.out_channels = out_channels
29
+ self.hidden_channels = hidden_channels
30
+ self.filter_channels = filter_channels
31
+ self.n_heads = n_heads
32
+ self.n_layers = n_layers
33
+ self.kernel_size = kernel_size
34
+ self.p_dropout = p_dropout
35
+
36
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
37
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
38
+
39
+ self.encoder = attentions.Encoder(
40
+ hidden_channels,
41
+ filter_channels,
42
+ n_heads,
43
+ n_layers,
44
+ kernel_size,
45
+ p_dropout)
46
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
47
+
48
+ def forward(self, x, x_lengths):
49
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
50
+ x = torch.transpose(x, 1, -1) # [b, h, t]
51
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
52
+
53
+ x = self.encoder(x * x_mask, x_mask)
54
+ stats = self.proj(x) * x_mask
55
+
56
+ m, logs = torch.split(stats, self.out_channels, dim=1)
57
+ return x, m, logs, x_mask
58
+
59
+
60
+ class DurationPredictor(nn.Module):
61
+ def __init__(
62
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
63
+ ):
64
+ super().__init__()
65
+
66
+ self.in_channels = in_channels
67
+ self.filter_channels = filter_channels
68
+ self.kernel_size = kernel_size
69
+ self.p_dropout = p_dropout
70
+ self.gin_channels = gin_channels
71
+
72
+ self.drop = nn.Dropout(p_dropout)
73
+ self.conv_1 = nn.Conv1d(
74
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
75
+ )
76
+ self.norm_1 = modules.LayerNorm(filter_channels)
77
+ self.conv_2 = nn.Conv1d(
78
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
79
+ )
80
+ self.norm_2 = modules.LayerNorm(filter_channels)
81
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
82
+
83
+ if gin_channels != 0:
84
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
85
+
86
+ def forward(self, x, x_mask, g=None):
87
+ x = torch.detach(x)
88
+ if g is not None:
89
+ g = torch.detach(g)
90
+ x = x + self.cond(g)
91
+ x = self.conv_1(x * x_mask)
92
+ x = torch.relu(x)
93
+ x = self.norm_1(x)
94
+ x = self.drop(x)
95
+ x = self.conv_2(x * x_mask)
96
+ x = torch.relu(x)
97
+ x = self.norm_2(x)
98
+ x = self.drop(x)
99
+ x = self.proj(x * x_mask)
100
+ return x * x_mask
101
+
102
+ class StochasticDurationPredictor(nn.Module):
103
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
104
+ super().__init__()
105
+ filter_channels = in_channels # it needs to be removed from future version.
106
+ self.in_channels = in_channels
107
+ self.filter_channels = filter_channels
108
+ self.kernel_size = kernel_size
109
+ self.p_dropout = p_dropout
110
+ self.n_flows = n_flows
111
+ self.gin_channels = gin_channels
112
+
113
+ self.log_flow = modules.Log()
114
+ self.flows = nn.ModuleList()
115
+ self.flows.append(modules.ElementwiseAffine(2))
116
+ for i in range(n_flows):
117
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
118
+ self.flows.append(modules.Flip())
119
+
120
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
121
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
122
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
123
+ self.post_flows = nn.ModuleList()
124
+ self.post_flows.append(modules.ElementwiseAffine(2))
125
+ for i in range(4):
126
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
127
+ self.post_flows.append(modules.Flip())
128
+
129
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
130
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
131
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
132
+ if gin_channels != 0:
133
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
134
+
135
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
136
+ x = torch.detach(x)
137
+ x = self.pre(x)
138
+ if g is not None:
139
+ g = torch.detach(g)
140
+ x = x + self.cond(g)
141
+ x = self.convs(x, x_mask)
142
+ x = self.proj(x) * x_mask
143
+
144
+ if not reverse:
145
+ flows = self.flows
146
+ assert w is not None
147
+
148
+ logdet_tot_q = 0
149
+ h_w = self.post_pre(w)
150
+ h_w = self.post_convs(h_w, x_mask)
151
+ h_w = self.post_proj(h_w) * x_mask
152
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
153
+ z_q = e_q
154
+ for flow in self.post_flows:
155
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
156
+ logdet_tot_q += logdet_q
157
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
158
+ u = torch.sigmoid(z_u) * x_mask
159
+ z0 = (w - u) * x_mask
160
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
161
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
162
+
163
+ logdet_tot = 0
164
+ z0, logdet = self.log_flow(z0, x_mask)
165
+ logdet_tot += logdet
166
+ z = torch.cat([z0, z1], 1)
167
+ for flow in flows:
168
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
169
+ logdet_tot = logdet_tot + logdet
170
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
171
+ return nll + logq # [b]
172
+ else:
173
+ flows = list(reversed(self.flows))
174
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
175
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
176
+ for flow in flows:
177
+ z = flow(z, x_mask, g=x, reverse=reverse)
178
+ z0, z1 = torch.split(z, [1, 1], 1)
179
+ logw = z0
180
+ return logw
181
+
182
+ class PosteriorEncoder(nn.Module):
183
+ def __init__(
184
+ self,
185
+ in_channels,
186
+ out_channels,
187
+ hidden_channels,
188
+ kernel_size,
189
+ dilation_rate,
190
+ n_layers,
191
+ gin_channels=0,
192
+ ):
193
+ super().__init__()
194
+ self.in_channels = in_channels
195
+ self.out_channels = out_channels
196
+ self.hidden_channels = hidden_channels
197
+ self.kernel_size = kernel_size
198
+ self.dilation_rate = dilation_rate
199
+ self.n_layers = n_layers
200
+ self.gin_channels = gin_channels
201
+
202
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
203
+ self.enc = modules.WN(
204
+ hidden_channels,
205
+ kernel_size,
206
+ dilation_rate,
207
+ n_layers,
208
+ gin_channels=gin_channels,
209
+ )
210
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
211
+
212
+ def forward(self, x, x_lengths, g=None, tau=1.0):
213
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
214
+ x.dtype
215
+ )
216
+ x = self.pre(x) * x_mask
217
+ x = self.enc(x, x_mask, g=g)
218
+ stats = self.proj(x) * x_mask
219
+ m, logs = torch.split(stats, self.out_channels, dim=1)
220
+ z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
221
+ return z, m, logs, x_mask
222
+
223
+
224
+ class Generator(torch.nn.Module):
225
+ def __init__(
226
+ self,
227
+ initial_channel,
228
+ resblock,
229
+ resblock_kernel_sizes,
230
+ resblock_dilation_sizes,
231
+ upsample_rates,
232
+ upsample_initial_channel,
233
+ upsample_kernel_sizes,
234
+ gin_channels=0,
235
+ ):
236
+ super(Generator, self).__init__()
237
+ self.num_kernels = len(resblock_kernel_sizes)
238
+ self.num_upsamples = len(upsample_rates)
239
+ self.conv_pre = Conv1d(
240
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
241
+ )
242
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
243
+
244
+ self.ups = nn.ModuleList()
245
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
246
+ self.ups.append(
247
+ weight_norm(
248
+ ConvTranspose1d(
249
+ upsample_initial_channel // (2**i),
250
+ upsample_initial_channel // (2 ** (i + 1)),
251
+ k,
252
+ u,
253
+ padding=(k - u) // 2,
254
+ )
255
+ )
256
+ )
257
+
258
+ self.resblocks = nn.ModuleList()
259
+ for i in range(len(self.ups)):
260
+ ch = upsample_initial_channel // (2 ** (i + 1))
261
+ for j, (k, d) in enumerate(
262
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
263
+ ):
264
+ self.resblocks.append(resblock(ch, k, d))
265
+
266
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
267
+ self.ups.apply(init_weights)
268
+
269
+ if gin_channels != 0:
270
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
271
+
272
+ def forward(self, x, g=None):
273
+ x = self.conv_pre(x)
274
+ if g is not None:
275
+ x = x + self.cond(g)
276
+
277
+ for i in range(self.num_upsamples):
278
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
279
+ x = self.ups[i](x)
280
+ xs = None
281
+ for j in range(self.num_kernels):
282
+ if xs is None:
283
+ xs = self.resblocks[i * self.num_kernels + j](x)
284
+ else:
285
+ xs += self.resblocks[i * self.num_kernels + j](x)
286
+ x = xs / self.num_kernels
287
+ x = F.leaky_relu(x)
288
+ x = self.conv_post(x)
289
+ x = torch.tanh(x)
290
+
291
+ return x
292
+
293
+ def remove_weight_norm(self):
294
+ print("Removing weight norm...")
295
+ for layer in self.ups:
296
+ remove_weight_norm(layer)
297
+ for layer in self.resblocks:
298
+ layer.remove_weight_norm()
299
+
300
+
301
+ class ReferenceEncoder(nn.Module):
302
+ """
303
+ inputs --- [N, Ty/r, n_mels*r] mels
304
+ outputs --- [N, ref_enc_gru_size]
305
+ """
306
+
307
+ def __init__(self, spec_channels, gin_channels=0, layernorm=True):
308
+ super().__init__()
309
+ self.spec_channels = spec_channels
310
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
311
+ K = len(ref_enc_filters)
312
+ filters = [1] + ref_enc_filters
313
+ convs = [
314
+ weight_norm(
315
+ nn.Conv2d(
316
+ in_channels=filters[i],
317
+ out_channels=filters[i + 1],
318
+ kernel_size=(3, 3),
319
+ stride=(2, 2),
320
+ padding=(1, 1),
321
+ )
322
+ )
323
+ for i in range(K)
324
+ ]
325
+ self.convs = nn.ModuleList(convs)
326
+
327
+ out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
328
+ self.gru = nn.GRU(
329
+ input_size=ref_enc_filters[-1] * out_channels,
330
+ hidden_size=256 // 2,
331
+ batch_first=True,
332
+ )
333
+ self.proj = nn.Linear(128, gin_channels)
334
+ if layernorm:
335
+ self.layernorm = nn.LayerNorm(self.spec_channels)
336
+ else:
337
+ self.layernorm = None
338
+
339
+ def forward(self, inputs, mask=None):
340
+ N = inputs.size(0)
341
+
342
+ out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
343
+ if self.layernorm is not None:
344
+ out = self.layernorm(out)
345
+
346
+ for conv in self.convs:
347
+ out = conv(out)
348
+ # out = wn(out)
349
+ out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
350
+
351
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
352
+ T = out.size(1)
353
+ N = out.size(0)
354
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
355
+
356
+ self.gru.flatten_parameters()
357
+ memory, out = self.gru(out) # out --- [1, N, 128]
358
+
359
+ return self.proj(out.squeeze(0))
360
+
361
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
362
+ for i in range(n_convs):
363
+ L = (L - kernel_size + 2 * pad) // stride + 1
364
+ return L
365
+
366
+
367
+ class ResidualCouplingBlock(nn.Module):
368
+ def __init__(self,
369
+ channels,
370
+ hidden_channels,
371
+ kernel_size,
372
+ dilation_rate,
373
+ n_layers,
374
+ n_flows=4,
375
+ gin_channels=0):
376
+ super().__init__()
377
+ self.channels = channels
378
+ self.hidden_channels = hidden_channels
379
+ self.kernel_size = kernel_size
380
+ self.dilation_rate = dilation_rate
381
+ self.n_layers = n_layers
382
+ self.n_flows = n_flows
383
+ self.gin_channels = gin_channels
384
+
385
+ self.flows = nn.ModuleList()
386
+ for i in range(n_flows):
387
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
388
+ self.flows.append(modules.Flip())
389
+
390
+ def forward(self, x, x_mask, g=None, reverse=False):
391
+ if not reverse:
392
+ for flow in self.flows:
393
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
394
+ else:
395
+ for flow in reversed(self.flows):
396
+ x = flow(x, x_mask, g=g, reverse=reverse)
397
+ return x
398
+
399
+ class SynthesizerTrn(nn.Module):
400
+ """
401
+ Synthesizer for Training
402
+ """
403
+
404
+ def __init__(
405
+ self,
406
+ n_vocab,
407
+ spec_channels,
408
+ inter_channels,
409
+ hidden_channels,
410
+ filter_channels,
411
+ n_heads,
412
+ n_layers,
413
+ kernel_size,
414
+ p_dropout,
415
+ resblock,
416
+ resblock_kernel_sizes,
417
+ resblock_dilation_sizes,
418
+ upsample_rates,
419
+ upsample_initial_channel,
420
+ upsample_kernel_sizes,
421
+ n_speakers=256,
422
+ gin_channels=256,
423
+ zero_g=False,
424
+ **kwargs
425
+ ):
426
+ super().__init__()
427
+
428
+ self.dec = Generator(
429
+ inter_channels,
430
+ resblock,
431
+ resblock_kernel_sizes,
432
+ resblock_dilation_sizes,
433
+ upsample_rates,
434
+ upsample_initial_channel,
435
+ upsample_kernel_sizes,
436
+ gin_channels=gin_channels,
437
+ )
438
+ self.enc_q = PosteriorEncoder(
439
+ spec_channels,
440
+ inter_channels,
441
+ hidden_channels,
442
+ 5,
443
+ 1,
444
+ 16,
445
+ gin_channels=gin_channels,
446
+ )
447
+
448
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
449
+
450
+ self.n_speakers = n_speakers
451
+ if n_speakers == 0:
452
+ self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
453
+ else:
454
+ self.enc_p = TextEncoder(n_vocab,
455
+ inter_channels,
456
+ hidden_channels,
457
+ filter_channels,
458
+ n_heads,
459
+ n_layers,
460
+ kernel_size,
461
+ p_dropout)
462
+ self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
463
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
464
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
465
+ self.zero_g = zero_g
466
+
467
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., sdp_ratio=0.2, max_len=None):
468
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
469
+ if self.n_speakers > 0:
470
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
471
+ else:
472
+ g = None
473
+
474
+ logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * sdp_ratio \
475
+ + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
476
+
477
+ w = torch.exp(logw) * x_mask * length_scale
478
+ w_ceil = torch.ceil(w)
479
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
480
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
481
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
482
+ attn = commons.generate_path(w_ceil, attn_mask)
483
+
484
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
485
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
486
+
487
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
488
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
489
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
490
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
491
+
492
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
493
+ g_src = sid_src
494
+ g_tgt = sid_tgt
495
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src if not self.zero_g else torch.zeros_like(g_src), tau=tau)
496
+ z_p = self.flow(z, y_mask, g=g_src)
497
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
498
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt if not self.zero_g else torch.zeros_like(g_tgt))
499
+ return o_hat, y_mask, (z, z_p, z_hat)