xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (334) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +400 -3
  3. xinference/client/restful/async_restful_client.py +20 -3
  4. xinference/client/restful/restful_client.py +20 -3
  5. xinference/constants.py +2 -0
  6. xinference/core/supervisor.py +111 -49
  7. xinference/core/worker.py +10 -0
  8. xinference/deploy/cmdline.py +15 -0
  9. xinference/model/audio/core.py +26 -6
  10. xinference/model/audio/indextts2.py +166 -0
  11. xinference/model/audio/kokoro.py +1 -1
  12. xinference/model/audio/kokoro_zh.py +124 -0
  13. xinference/model/audio/model_spec.json +58 -1
  14. xinference/model/embedding/sentence_transformers/core.py +4 -4
  15. xinference/model/embedding/vllm/core.py +7 -1
  16. xinference/model/image/model_spec.json +71 -3
  17. xinference/model/image/stable_diffusion/core.py +13 -4
  18. xinference/model/llm/__init__.py +4 -0
  19. xinference/model/llm/core.py +10 -0
  20. xinference/model/llm/llama_cpp/core.py +1 -0
  21. xinference/model/llm/llm_family.json +503 -21
  22. xinference/model/llm/llm_family.py +1 -0
  23. xinference/model/llm/mlx/core.py +52 -33
  24. xinference/model/llm/sglang/core.py +32 -55
  25. xinference/model/llm/tool_parsers/__init__.py +58 -0
  26. xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
  27. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
  28. xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
  29. xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
  30. xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
  31. xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
  32. xinference/model/llm/transformers/core.py +1 -1
  33. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  34. xinference/model/llm/utils.py +138 -53
  35. xinference/model/llm/vllm/core.py +95 -78
  36. xinference/thirdparty/audiotools/__init__.py +10 -0
  37. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  38. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  39. xinference/thirdparty/audiotools/core/display.py +194 -0
  40. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  41. xinference/thirdparty/audiotools/core/effects.py +647 -0
  42. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  43. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  44. xinference/thirdparty/audiotools/core/playback.py +252 -0
  45. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  46. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  47. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  48. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  49. xinference/thirdparty/audiotools/core/util.py +671 -0
  50. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  51. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  52. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  53. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  54. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  55. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  56. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  57. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  58. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  59. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  60. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  61. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  62. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  63. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  64. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  65. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  66. xinference/thirdparty/audiotools/post.py +140 -0
  67. xinference/thirdparty/audiotools/preference.py +600 -0
  68. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  69. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  70. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  72. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  73. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  74. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  75. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  76. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  77. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  78. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  79. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  80. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  81. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  82. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  83. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  84. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  85. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  86. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  87. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  88. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  89. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  90. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  91. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  92. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  93. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  94. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  95. xinference/thirdparty/indextts/__init__.py +0 -0
  96. xinference/thirdparty/indextts/cli.py +65 -0
  97. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  98. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  99. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  100. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  101. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  102. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  103. xinference/thirdparty/indextts/gpt/model.py +713 -0
  104. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  105. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  106. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  107. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  108. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  109. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  110. xinference/thirdparty/indextts/infer.py +690 -0
  111. xinference/thirdparty/indextts/infer_v2.py +739 -0
  112. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  113. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  114. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  115. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  116. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  117. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  118. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  119. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  120. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  121. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  122. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  123. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  124. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  125. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  126. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  127. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  128. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  129. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  130. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  131. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  133. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  134. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  135. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  136. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  137. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  138. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  139. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  140. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  141. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  142. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  143. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  144. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  145. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  146. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  147. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  148. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  149. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  150. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  151. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  152. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  153. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  154. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  155. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  156. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  157. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  158. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  159. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  160. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  161. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  162. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  163. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  164. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  165. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  166. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  167. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  168. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  169. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  170. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  171. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  172. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  173. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  174. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  175. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  176. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  177. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  178. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  179. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  180. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  181. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  182. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  183. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  184. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  185. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  186. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  187. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  188. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  189. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  190. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  191. xinference/thirdparty/indextts/utils/common.py +121 -0
  192. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  193. xinference/thirdparty/indextts/utils/front.py +536 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  240. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  241. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  242. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  243. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  244. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  245. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  246. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  247. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  248. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  249. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  250. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  251. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  252. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  253. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  254. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  255. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  256. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  257. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  258. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  259. xinference/thirdparty/indextts/utils/utils.py +93 -0
  260. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  261. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  262. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  263. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  264. xinference/types.py +105 -2
  265. xinference/ui/gradio/media_interface.py +66 -8
  266. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  267. xinference/ui/web/ui/build/index.html +1 -1
  268. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  269. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  270. xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
  271. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
  272. xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
  273. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  274. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  275. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  276. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  277. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  278. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  279. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  280. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  281. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  282. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  283. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  284. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  285. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  286. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  287. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  288. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  289. xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
  290. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  291. xinference/ui/web/ui/package-lock.json +0 -34
  292. xinference/ui/web/ui/package.json +0 -1
  293. xinference/ui/web/ui/src/locales/en.json +9 -3
  294. xinference/ui/web/ui/src/locales/ja.json +9 -3
  295. xinference/ui/web/ui/src/locales/ko.json +9 -3
  296. xinference/ui/web/ui/src/locales/zh.json +9 -3
  297. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
  298. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
  299. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  300. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  301. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  302. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  303. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  304. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  305. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  306. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  307. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  308. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  309. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  310. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  311. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  312. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  313. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  314. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  315. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  316. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  317. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  318. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  319. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  320. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  321. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  322. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  323. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  324. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  325. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  326. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  327. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  328. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  329. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  330. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  331. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
  332. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
  333. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
  334. {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1222 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn, sin, pow
9
+ from torch.nn import Parameter
10
+ import torch.nn.functional as F
11
+ from torch.nn.utils import weight_norm
12
+ from .alias_free_torch import *
13
+ from .quantize import *
14
+ from einops import rearrange
15
+ from einops.layers.torch import Rearrange
16
+ from .transformer import TransformerEncoder
17
+ from .gradient_reversal import GradientReversal
18
+ from .melspec import MelSpectrogram
19
+
20
+
21
+ def init_weights(m):
22
+ if isinstance(m, nn.Conv1d):
23
+ nn.init.trunc_normal_(m.weight, std=0.02)
24
+ nn.init.constant_(m.bias, 0)
25
+
26
+
27
+ def WNConv1d(*args, **kwargs):
28
+ return weight_norm(nn.Conv1d(*args, **kwargs))
29
+
30
+
31
+ def WNConvTranspose1d(*args, **kwargs):
32
+ return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
33
+
34
+
35
+ class CNNLSTM(nn.Module):
36
+ def __init__(self, indim, outdim, head, global_pred=False):
37
+ super().__init__()
38
+ self.global_pred = global_pred
39
+ self.model = nn.Sequential(
40
+ ResidualUnit(indim, dilation=1),
41
+ ResidualUnit(indim, dilation=2),
42
+ ResidualUnit(indim, dilation=3),
43
+ Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
44
+ Rearrange("b c t -> b t c"),
45
+ )
46
+ self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
47
+
48
+ def forward(self, x):
49
+ # x: [B, C, T]
50
+ x = self.model(x)
51
+ if self.global_pred:
52
+ x = torch.mean(x, dim=1, keepdim=False)
53
+ outs = [head(x) for head in self.heads]
54
+ return outs
55
+
56
+
57
+ class SnakeBeta(nn.Module):
58
+ """
59
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
60
+ Shape:
61
+ - Input: (B, C, T)
62
+ - Output: (B, C, T), same shape as the input
63
+ Parameters:
64
+ - alpha - trainable parameter that controls frequency
65
+ - beta - trainable parameter that controls magnitude
66
+ References:
67
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
68
+ https://arxiv.org/abs/2006.08195
69
+ Examples:
70
+ >>> a1 = snakebeta(256)
71
+ >>> x = torch.randn(256)
72
+ >>> x = a1(x)
73
+ """
74
+
75
+ def __init__(
76
+ self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
77
+ ):
78
+ """
79
+ Initialization.
80
+ INPUT:
81
+ - in_features: shape of the input
82
+ - alpha - trainable parameter that controls frequency
83
+ - beta - trainable parameter that controls magnitude
84
+ alpha is initialized to 1 by default, higher values = higher-frequency.
85
+ beta is initialized to 1 by default, higher values = higher-magnitude.
86
+ alpha will be trained along with the rest of your model.
87
+ """
88
+ super(SnakeBeta, self).__init__()
89
+ self.in_features = in_features
90
+
91
+ # initialize alpha
92
+ self.alpha_logscale = alpha_logscale
93
+ if self.alpha_logscale: # log scale alphas initialized to zeros
94
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
95
+ self.beta = Parameter(torch.zeros(in_features) * alpha)
96
+ else: # linear scale alphas initialized to ones
97
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
98
+ self.beta = Parameter(torch.ones(in_features) * alpha)
99
+
100
+ self.alpha.requires_grad = alpha_trainable
101
+ self.beta.requires_grad = alpha_trainable
102
+
103
+ self.no_div_by_zero = 0.000000001
104
+
105
+ def forward(self, x):
106
+ """
107
+ Forward pass of the function.
108
+ Applies the function to the input elementwise.
109
+ SnakeBeta := x + 1/b * sin^2 (xa)
110
+ """
111
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
112
+ beta = self.beta.unsqueeze(0).unsqueeze(-1)
113
+ if self.alpha_logscale:
114
+ alpha = torch.exp(alpha)
115
+ beta = torch.exp(beta)
116
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
117
+
118
+ return x
119
+
120
+
121
+ class ResidualUnit(nn.Module):
122
+ def __init__(self, dim: int = 16, dilation: int = 1):
123
+ super().__init__()
124
+ pad = ((7 - 1) * dilation) // 2
125
+ self.block = nn.Sequential(
126
+ Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
127
+ WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
128
+ Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
129
+ WNConv1d(dim, dim, kernel_size=1),
130
+ )
131
+
132
+ def forward(self, x):
133
+ return x + self.block(x)
134
+
135
+
136
+ class EncoderBlock(nn.Module):
137
+ def __init__(self, dim: int = 16, stride: int = 1):
138
+ super().__init__()
139
+ self.block = nn.Sequential(
140
+ ResidualUnit(dim // 2, dilation=1),
141
+ ResidualUnit(dim // 2, dilation=3),
142
+ ResidualUnit(dim // 2, dilation=9),
143
+ Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)),
144
+ WNConv1d(
145
+ dim // 2,
146
+ dim,
147
+ kernel_size=2 * stride,
148
+ stride=stride,
149
+ padding=stride // 2 + stride % 2,
150
+ ),
151
+ )
152
+
153
+ def forward(self, x):
154
+ return self.block(x)
155
+
156
+
157
+ class FACodecEncoder(nn.Module):
158
+ def __init__(
159
+ self,
160
+ ngf=32,
161
+ up_ratios=(2, 4, 5, 5),
162
+ out_channels=1024,
163
+ ):
164
+ super().__init__()
165
+ self.hop_length = np.prod(up_ratios)
166
+ self.up_ratios = up_ratios
167
+
168
+ # Create first convolution
169
+ d_model = ngf
170
+ self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
171
+
172
+ # Create EncoderBlocks that double channels as they downsample by `stride`
173
+ for stride in up_ratios:
174
+ d_model *= 2
175
+ self.block += [EncoderBlock(d_model, stride=stride)]
176
+
177
+ # Create last convolution
178
+ self.block += [
179
+ Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
180
+ WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
181
+ ]
182
+
183
+ # Wrap black into nn.Sequential
184
+ self.block = nn.Sequential(*self.block)
185
+ self.enc_dim = d_model
186
+
187
+ self.reset_parameters()
188
+
189
+ def forward(self, x):
190
+ out = self.block(x)
191
+ return out
192
+
193
+ def inference(self, x):
194
+ return self.block(x)
195
+
196
+ def remove_weight_norm(self):
197
+ """Remove weight normalization module from all of the layers."""
198
+
199
+ def _remove_weight_norm(m):
200
+ try:
201
+ torch.nn.utils.remove_weight_norm(m)
202
+ except ValueError: # this module didn't have weight norm
203
+ return
204
+
205
+ self.apply(_remove_weight_norm)
206
+
207
+ def apply_weight_norm(self):
208
+ """Apply weight normalization module from all of the layers."""
209
+
210
+ def _apply_weight_norm(m):
211
+ if isinstance(m, nn.Conv1d):
212
+ torch.nn.utils.weight_norm(m)
213
+
214
+ self.apply(_apply_weight_norm)
215
+
216
+ def reset_parameters(self):
217
+ self.apply(init_weights)
218
+
219
+
220
+ class DecoderBlock(nn.Module):
221
+ def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
222
+ super().__init__()
223
+ self.block = nn.Sequential(
224
+ Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)),
225
+ WNConvTranspose1d(
226
+ input_dim,
227
+ output_dim,
228
+ kernel_size=2 * stride,
229
+ stride=stride,
230
+ padding=stride // 2 + stride % 2,
231
+ output_padding=stride % 2,
232
+ ),
233
+ ResidualUnit(output_dim, dilation=1),
234
+ ResidualUnit(output_dim, dilation=3),
235
+ ResidualUnit(output_dim, dilation=9),
236
+ )
237
+
238
+ def forward(self, x):
239
+ return self.block(x)
240
+
241
+
242
+ class FACodecDecoder(nn.Module):
243
+ def __init__(
244
+ self,
245
+ in_channels=256,
246
+ upsample_initial_channel=1536,
247
+ ngf=32,
248
+ up_ratios=(5, 5, 4, 2),
249
+ vq_num_q_c=2,
250
+ vq_num_q_p=1,
251
+ vq_num_q_r=3,
252
+ vq_dim=1024,
253
+ vq_commit_weight=0.005,
254
+ vq_weight_init=False,
255
+ vq_full_commit_loss=False,
256
+ codebook_dim=8,
257
+ codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
258
+ codebook_size_content=10,
259
+ codebook_size_residual=10,
260
+ quantizer_dropout=0.0,
261
+ dropout_type="linear",
262
+ use_gr_content_f0=False,
263
+ use_gr_prosody_phone=False,
264
+ use_gr_residual_f0=False,
265
+ use_gr_residual_phone=False,
266
+ use_gr_x_timbre=False,
267
+ use_random_mask_residual=True,
268
+ prob_random_mask_residual=0.75,
269
+ ):
270
+ super().__init__()
271
+ self.hop_length = np.prod(up_ratios)
272
+ self.ngf = ngf
273
+ self.up_ratios = up_ratios
274
+
275
+ self.use_random_mask_residual = use_random_mask_residual
276
+ self.prob_random_mask_residual = prob_random_mask_residual
277
+
278
+ self.vq_num_q_p = vq_num_q_p
279
+ self.vq_num_q_c = vq_num_q_c
280
+ self.vq_num_q_r = vq_num_q_r
281
+
282
+ self.codebook_size_prosody = codebook_size_prosody
283
+ self.codebook_size_content = codebook_size_content
284
+ self.codebook_size_residual = codebook_size_residual
285
+
286
+ quantizer_class = ResidualVQ
287
+
288
+ self.quantizer = nn.ModuleList()
289
+
290
+ # prosody
291
+ quantizer = quantizer_class(
292
+ num_quantizers=vq_num_q_p,
293
+ dim=vq_dim,
294
+ codebook_size=codebook_size_prosody,
295
+ codebook_dim=codebook_dim,
296
+ threshold_ema_dead_code=2,
297
+ commitment=vq_commit_weight,
298
+ weight_init=vq_weight_init,
299
+ full_commit_loss=vq_full_commit_loss,
300
+ quantizer_dropout=quantizer_dropout,
301
+ dropout_type=dropout_type,
302
+ )
303
+ self.quantizer.append(quantizer)
304
+
305
+ # phone
306
+ quantizer = quantizer_class(
307
+ num_quantizers=vq_num_q_c,
308
+ dim=vq_dim,
309
+ codebook_size=codebook_size_content,
310
+ codebook_dim=codebook_dim,
311
+ threshold_ema_dead_code=2,
312
+ commitment=vq_commit_weight,
313
+ weight_init=vq_weight_init,
314
+ full_commit_loss=vq_full_commit_loss,
315
+ quantizer_dropout=quantizer_dropout,
316
+ dropout_type=dropout_type,
317
+ )
318
+ self.quantizer.append(quantizer)
319
+
320
+ # residual
321
+ if self.vq_num_q_r > 0:
322
+ quantizer = quantizer_class(
323
+ num_quantizers=vq_num_q_r,
324
+ dim=vq_dim,
325
+ codebook_size=codebook_size_residual,
326
+ codebook_dim=codebook_dim,
327
+ threshold_ema_dead_code=2,
328
+ commitment=vq_commit_weight,
329
+ weight_init=vq_weight_init,
330
+ full_commit_loss=vq_full_commit_loss,
331
+ quantizer_dropout=quantizer_dropout,
332
+ dropout_type=dropout_type,
333
+ )
334
+ self.quantizer.append(quantizer)
335
+
336
+ # Add first conv layer
337
+ channels = upsample_initial_channel
338
+ layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
339
+
340
+ # Add upsampling + MRF blocks
341
+ for i, stride in enumerate(up_ratios):
342
+ input_dim = channels // 2**i
343
+ output_dim = channels // 2 ** (i + 1)
344
+ layers += [DecoderBlock(input_dim, output_dim, stride)]
345
+
346
+ # Add final conv layer
347
+ layers += [
348
+ Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
349
+ WNConv1d(output_dim, 1, kernel_size=7, padding=3),
350
+ nn.Tanh(),
351
+ ]
352
+
353
+ self.model = nn.Sequential(*layers)
354
+
355
+ self.timbre_encoder = TransformerEncoder(
356
+ enc_emb_tokens=None,
357
+ encoder_layer=4,
358
+ encoder_hidden=256,
359
+ encoder_head=4,
360
+ conv_filter_size=1024,
361
+ conv_kernel_size=5,
362
+ encoder_dropout=0.1,
363
+ use_cln=False,
364
+ )
365
+
366
+ self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
367
+ self.timbre_linear.bias.data[:in_channels] = 1
368
+ self.timbre_linear.bias.data[in_channels:] = 0
369
+ self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
370
+
371
+ self.f0_predictor = CNNLSTM(in_channels, 1, 2)
372
+ self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
373
+
374
+ self.use_gr_content_f0 = use_gr_content_f0
375
+ self.use_gr_prosody_phone = use_gr_prosody_phone
376
+ self.use_gr_residual_f0 = use_gr_residual_f0
377
+ self.use_gr_residual_phone = use_gr_residual_phone
378
+ self.use_gr_x_timbre = use_gr_x_timbre
379
+
380
+ if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
381
+ self.res_f0_predictor = nn.Sequential(
382
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
383
+ )
384
+
385
+ if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
386
+ self.res_phone_predictor = nn.Sequential(
387
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
388
+ )
389
+
390
+ if self.use_gr_content_f0:
391
+ self.content_f0_predictor = nn.Sequential(
392
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
393
+ )
394
+
395
+ if self.use_gr_prosody_phone:
396
+ self.prosody_phone_predictor = nn.Sequential(
397
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
398
+ )
399
+
400
+ if self.use_gr_x_timbre:
401
+ self.x_timbre_predictor = nn.Sequential(
402
+ GradientReversal(alpha=1),
403
+ CNNLSTM(in_channels, 245200, 1, global_pred=True),
404
+ )
405
+
406
+ self.reset_parameters()
407
+
408
+ def quantize(self, x, n_quantizers=None):
409
+ outs, qs, commit_loss, quantized_buf = 0, [], [], []
410
+
411
+ # prosody
412
+ f0_input = x # (B, d, T)
413
+ f0_quantizer = self.quantizer[0]
414
+ out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
415
+ outs += out
416
+ qs.append(q)
417
+ quantized_buf.append(quantized.sum(0))
418
+ commit_loss.append(commit)
419
+
420
+ # phone
421
+ phone_input = x
422
+ phone_quantizer = self.quantizer[1]
423
+ out, q, commit, quantized = phone_quantizer(
424
+ phone_input, n_quantizers=n_quantizers
425
+ )
426
+ outs += out
427
+ qs.append(q)
428
+ quantized_buf.append(quantized.sum(0))
429
+ commit_loss.append(commit)
430
+
431
+ # residual
432
+ if self.vq_num_q_r > 0:
433
+ residual_quantizer = self.quantizer[2]
434
+ residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
435
+ out, q, commit, quantized = residual_quantizer(
436
+ residual_input, n_quantizers=n_quantizers
437
+ )
438
+ outs += out
439
+ qs.append(q)
440
+ quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
441
+ commit_loss.append(commit)
442
+
443
+ qs = torch.cat(qs, dim=0)
444
+ commit_loss = torch.cat(commit_loss, dim=0)
445
+ return outs, qs, commit_loss, quantized_buf
446
+
447
+ def forward(
448
+ self,
449
+ x,
450
+ vq=True,
451
+ get_vq=False,
452
+ eval_vq=True,
453
+ speaker_embedding=None,
454
+ n_quantizers=None,
455
+ quantized=None,
456
+ ):
457
+ if get_vq:
458
+ return self.quantizer.get_emb()
459
+ if vq is True:
460
+ if eval_vq:
461
+ self.quantizer.eval()
462
+ x_timbre = x
463
+ outs, qs, commit_loss, quantized_buf = self.quantize(
464
+ x, n_quantizers=n_quantizers
465
+ )
466
+
467
+ x_timbre = x_timbre.transpose(1, 2)
468
+ x_timbre = self.timbre_encoder(x_timbre, None, None)
469
+ x_timbre = x_timbre.transpose(1, 2)
470
+ spk_embs = torch.mean(x_timbre, dim=2)
471
+ return outs, qs, commit_loss, quantized_buf, spk_embs
472
+
473
+ out = {}
474
+
475
+ layer_0 = quantized[0]
476
+ f0, uv = self.f0_predictor(layer_0)
477
+ f0 = rearrange(f0, "... 1 -> ...")
478
+ uv = rearrange(uv, "... 1 -> ...")
479
+
480
+ layer_1 = quantized[1]
481
+ (phone,) = self.phone_predictor(layer_1)
482
+
483
+ out = {"f0": f0, "uv": uv, "phone": phone}
484
+
485
+ if self.use_gr_prosody_phone:
486
+ (prosody_phone,) = self.prosody_phone_predictor(layer_0)
487
+ out["prosody_phone"] = prosody_phone
488
+
489
+ if self.use_gr_content_f0:
490
+ content_f0, content_uv = self.content_f0_predictor(layer_1)
491
+ content_f0 = rearrange(content_f0, "... 1 -> ...")
492
+ content_uv = rearrange(content_uv, "... 1 -> ...")
493
+ out["content_f0"] = content_f0
494
+ out["content_uv"] = content_uv
495
+
496
+ if self.vq_num_q_r > 0:
497
+ layer_2 = quantized[2]
498
+
499
+ if self.use_gr_residual_f0:
500
+ res_f0, res_uv = self.res_f0_predictor(layer_2)
501
+ res_f0 = rearrange(res_f0, "... 1 -> ...")
502
+ res_uv = rearrange(res_uv, "... 1 -> ...")
503
+ out["res_f0"] = res_f0
504
+ out["res_uv"] = res_uv
505
+
506
+ if self.use_gr_residual_phone:
507
+ (res_phone,) = self.res_phone_predictor(layer_2)
508
+ out["res_phone"] = res_phone
509
+
510
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
511
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
512
+ if self.vq_num_q_r > 0:
513
+ if self.use_random_mask_residual:
514
+ bsz = quantized[2].shape[0]
515
+ res_mask = np.random.choice(
516
+ [0, 1],
517
+ size=bsz,
518
+ p=[
519
+ self.prob_random_mask_residual,
520
+ 1 - self.prob_random_mask_residual,
521
+ ],
522
+ )
523
+ res_mask = (
524
+ torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
525
+ ) # (B, 1, 1)
526
+ res_mask = res_mask.to(
527
+ device=quantized[2].device, dtype=quantized[2].dtype
528
+ )
529
+ x = (
530
+ quantized[0].detach()
531
+ + quantized[1].detach()
532
+ + quantized[2] * res_mask
533
+ )
534
+ # x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
535
+ else:
536
+ x = quantized[0].detach() + quantized[1].detach() + quantized[2]
537
+ # x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
538
+ else:
539
+ x = quantized[0].detach() + quantized[1].detach()
540
+ # x = quantized_perturbe[0].detach() + quantized[1].detach()
541
+
542
+ if self.use_gr_x_timbre:
543
+ (x_timbre,) = self.x_timbre_predictor(x)
544
+ out["x_timbre"] = x_timbre
545
+
546
+ x = x.transpose(1, 2)
547
+ x = self.timbre_norm(x)
548
+ x = x.transpose(1, 2)
549
+ x = x * gamma + beta
550
+
551
+ x = self.model(x)
552
+ out["audio"] = x
553
+
554
+ return out
555
+
556
+ def vq2emb(self, vq, use_residual_code=True):
557
+ # vq: [num_quantizer, B, T]
558
+ self.quantizer = self.quantizer.eval()
559
+ out = 0
560
+ out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
561
+ out += self.quantizer[1].vq2emb(
562
+ vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
563
+ )
564
+ if self.vq_num_q_r > 0 and use_residual_code:
565
+ out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
566
+ return out
567
+
568
+ def inference(self, x, speaker_embedding):
569
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
570
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
571
+ x = x.transpose(1, 2)
572
+ x = self.timbre_norm(x)
573
+ x = x.transpose(1, 2)
574
+ x = x * gamma + beta
575
+ x = self.model(x)
576
+ return x
577
+
578
+ def remove_weight_norm(self):
579
+ """Remove weight normalization module from all of the layers."""
580
+
581
+ def _remove_weight_norm(m):
582
+ try:
583
+ torch.nn.utils.remove_weight_norm(m)
584
+ except ValueError: # this module didn't have weight norm
585
+ return
586
+
587
+ self.apply(_remove_weight_norm)
588
+
589
+ def apply_weight_norm(self):
590
+ """Apply weight normalization module from all of the layers."""
591
+
592
+ def _apply_weight_norm(m):
593
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
594
+ torch.nn.utils.weight_norm(m)
595
+
596
+ self.apply(_apply_weight_norm)
597
+
598
+ def reset_parameters(self):
599
+ self.apply(init_weights)
600
+
601
+
602
+ class FACodecRedecoder(nn.Module):
603
+ def __init__(
604
+ self,
605
+ in_channels=256,
606
+ upsample_initial_channel=1280,
607
+ up_ratios=(5, 5, 4, 2),
608
+ vq_num_q_c=2,
609
+ vq_num_q_p=1,
610
+ vq_num_q_r=3,
611
+ vq_dim=256,
612
+ codebook_size_prosody=10,
613
+ codebook_size_content=10,
614
+ codebook_size_residual=10,
615
+ ):
616
+ super().__init__()
617
+ self.hop_length = np.prod(up_ratios)
618
+ self.up_ratios = up_ratios
619
+
620
+ self.vq_num_q_p = vq_num_q_p
621
+ self.vq_num_q_c = vq_num_q_c
622
+ self.vq_num_q_r = vq_num_q_r
623
+
624
+ self.vq_dim = vq_dim
625
+
626
+ self.codebook_size_prosody = codebook_size_prosody
627
+ self.codebook_size_content = codebook_size_content
628
+ self.codebook_size_residual = codebook_size_residual
629
+
630
+ self.prosody_embs = nn.ModuleList()
631
+ for i in range(self.vq_num_q_p):
632
+ emb_tokens = nn.Embedding(
633
+ num_embeddings=2**self.codebook_size_prosody,
634
+ embedding_dim=self.vq_dim,
635
+ )
636
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
637
+ self.prosody_embs.append(emb_tokens)
638
+ self.content_embs = nn.ModuleList()
639
+ for i in range(self.vq_num_q_c):
640
+ emb_tokens = nn.Embedding(
641
+ num_embeddings=2**self.codebook_size_content,
642
+ embedding_dim=self.vq_dim,
643
+ )
644
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
645
+ self.content_embs.append(emb_tokens)
646
+ self.residual_embs = nn.ModuleList()
647
+ for i in range(self.vq_num_q_r):
648
+ emb_tokens = nn.Embedding(
649
+ num_embeddings=2**self.codebook_size_residual,
650
+ embedding_dim=self.vq_dim,
651
+ )
652
+ emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
653
+ self.residual_embs.append(emb_tokens)
654
+
655
+ # Add first conv layer
656
+ channels = upsample_initial_channel
657
+ layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
658
+
659
+ # Add upsampling + MRF blocks
660
+ for i, stride in enumerate(up_ratios):
661
+ input_dim = channels // 2**i
662
+ output_dim = channels // 2 ** (i + 1)
663
+ layers += [DecoderBlock(input_dim, output_dim, stride)]
664
+
665
+ # Add final conv layer
666
+ layers += [
667
+ Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
668
+ WNConv1d(output_dim, 1, kernel_size=7, padding=3),
669
+ nn.Tanh(),
670
+ ]
671
+
672
+ self.model = nn.Sequential(*layers)
673
+
674
+ self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
675
+ self.timbre_linear.bias.data[:in_channels] = 1
676
+ self.timbre_linear.bias.data[in_channels:] = 0
677
+ self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
678
+
679
+ self.timbre_cond_prosody_enc = TransformerEncoder(
680
+ enc_emb_tokens=None,
681
+ encoder_layer=4,
682
+ encoder_hidden=256,
683
+ encoder_head=4,
684
+ conv_filter_size=1024,
685
+ conv_kernel_size=5,
686
+ encoder_dropout=0.1,
687
+ use_cln=True,
688
+ cfg=None,
689
+ )
690
+
691
+ def forward(
692
+ self,
693
+ vq,
694
+ speaker_embedding,
695
+ use_residual_code=False,
696
+ ):
697
+
698
+ x = 0
699
+
700
+ x_p = 0
701
+ for i in range(self.vq_num_q_p):
702
+ x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d)
703
+ spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1)
704
+ x_p = self.timbre_cond_prosody_enc(
705
+ x_p, key_padding_mask=None, condition=spk_cond
706
+ )
707
+ x = x + x_p
708
+
709
+ x_c = 0
710
+ for i in range(self.vq_num_q_c):
711
+ x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i])
712
+
713
+ x = x + x_c
714
+
715
+ if use_residual_code:
716
+
717
+ x_r = 0
718
+ for i in range(self.vq_num_q_r):
719
+ x_r = x_r + self.residual_embs[i](
720
+ vq[self.vq_num_q_p + self.vq_num_q_c + i]
721
+ )
722
+ x = x + x_r
723
+
724
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
725
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
726
+ x = x.transpose(1, 2)
727
+ x = self.timbre_norm(x)
728
+ x = x.transpose(1, 2)
729
+ x = x * gamma + beta
730
+ x = self.model(x)
731
+
732
+ return x
733
+
734
+ def vq2emb(self, vq, speaker_embedding, use_residual=True):
735
+
736
+ out = 0
737
+
738
+ x_t = 0
739
+ for i in range(self.vq_num_q_p):
740
+ x_t += self.prosody_embs[i](vq[i]) # (B, T, d)
741
+ spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1)
742
+ x_t = self.timbre_cond_prosody_enc(
743
+ x_t, key_padding_mask=None, condition=spk_cond
744
+ )
745
+
746
+ # prosody
747
+ out += x_t
748
+
749
+ # content
750
+ for i in range(self.vq_num_q_c):
751
+ out += self.content_embs[i](vq[self.vq_num_q_p + i])
752
+
753
+ # residual
754
+ if use_residual:
755
+ for i in range(self.vq_num_q_r):
756
+ out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i])
757
+
758
+ out = out.transpose(1, 2) # (B, T, d) -> (B, d, T)
759
+ return out
760
+
761
+ def inference(self, x, speaker_embedding):
762
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
763
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
764
+ x = x.transpose(1, 2)
765
+ x = self.timbre_norm(x)
766
+ x = x.transpose(1, 2)
767
+ x = x * gamma + beta
768
+ x = self.model(x)
769
+ return x
770
+
771
+
772
+ class FACodecEncoderV2(nn.Module):
773
+ def __init__(
774
+ self,
775
+ ngf=32,
776
+ up_ratios=(2, 4, 5, 5),
777
+ out_channels=1024,
778
+ ):
779
+ super().__init__()
780
+ self.hop_length = np.prod(up_ratios)
781
+ self.up_ratios = up_ratios
782
+
783
+ # Create first convolution
784
+ d_model = ngf
785
+ self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
786
+
787
+ # Create EncoderBlocks that double channels as they downsample by `stride`
788
+ for stride in up_ratios:
789
+ d_model *= 2
790
+ self.block += [EncoderBlock(d_model, stride=stride)]
791
+
792
+ # Create last convolution
793
+ self.block += [
794
+ Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
795
+ WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
796
+ ]
797
+
798
+ # Wrap black into nn.Sequential
799
+ self.block = nn.Sequential(*self.block)
800
+ self.enc_dim = d_model
801
+
802
+ self.mel_transform = MelSpectrogram(
803
+ n_fft=1024,
804
+ num_mels=80,
805
+ sampling_rate=16000,
806
+ hop_size=200,
807
+ win_size=800,
808
+ fmin=0,
809
+ fmax=8000,
810
+ )
811
+
812
+ self.reset_parameters()
813
+
814
+ def forward(self, x):
815
+ out = self.block(x)
816
+ return out
817
+
818
+ def inference(self, x):
819
+ return self.block(x)
820
+
821
+ def get_prosody_feature(self, x):
822
+ return self.mel_transform(x.squeeze(1))[:, :20, :]
823
+
824
+ def remove_weight_norm(self):
825
+ """Remove weight normalization module from all of the layers."""
826
+
827
+ def _remove_weight_norm(m):
828
+ try:
829
+ torch.nn.utils.remove_weight_norm(m)
830
+ except ValueError: # this module didn't have weight norm
831
+ return
832
+
833
+ self.apply(_remove_weight_norm)
834
+
835
+ def apply_weight_norm(self):
836
+ """Apply weight normalization module from all of the layers."""
837
+
838
+ def _apply_weight_norm(m):
839
+ if isinstance(m, nn.Conv1d):
840
+ torch.nn.utils.weight_norm(m)
841
+
842
+ self.apply(_apply_weight_norm)
843
+
844
+ def reset_parameters(self):
845
+ self.apply(init_weights)
846
+
847
+
848
+ class FACodecDecoderV2(nn.Module):
849
+ def __init__(
850
+ self,
851
+ in_channels=256,
852
+ upsample_initial_channel=1536,
853
+ ngf=32,
854
+ up_ratios=(5, 5, 4, 2),
855
+ vq_num_q_c=2,
856
+ vq_num_q_p=1,
857
+ vq_num_q_r=3,
858
+ vq_dim=1024,
859
+ vq_commit_weight=0.005,
860
+ vq_weight_init=False,
861
+ vq_full_commit_loss=False,
862
+ codebook_dim=8,
863
+ codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
864
+ codebook_size_content=10,
865
+ codebook_size_residual=10,
866
+ quantizer_dropout=0.0,
867
+ dropout_type="linear",
868
+ use_gr_content_f0=False,
869
+ use_gr_prosody_phone=False,
870
+ use_gr_residual_f0=False,
871
+ use_gr_residual_phone=False,
872
+ use_gr_x_timbre=False,
873
+ use_random_mask_residual=True,
874
+ prob_random_mask_residual=0.75,
875
+ ):
876
+ super().__init__()
877
+ self.hop_length = np.prod(up_ratios)
878
+ self.ngf = ngf
879
+ self.up_ratios = up_ratios
880
+
881
+ self.use_random_mask_residual = use_random_mask_residual
882
+ self.prob_random_mask_residual = prob_random_mask_residual
883
+
884
+ self.vq_num_q_p = vq_num_q_p
885
+ self.vq_num_q_c = vq_num_q_c
886
+ self.vq_num_q_r = vq_num_q_r
887
+
888
+ self.codebook_size_prosody = codebook_size_prosody
889
+ self.codebook_size_content = codebook_size_content
890
+ self.codebook_size_residual = codebook_size_residual
891
+
892
+ quantizer_class = ResidualVQ
893
+
894
+ self.quantizer = nn.ModuleList()
895
+
896
+ # prosody
897
+ quantizer = quantizer_class(
898
+ num_quantizers=vq_num_q_p,
899
+ dim=vq_dim,
900
+ codebook_size=codebook_size_prosody,
901
+ codebook_dim=codebook_dim,
902
+ threshold_ema_dead_code=2,
903
+ commitment=vq_commit_weight,
904
+ weight_init=vq_weight_init,
905
+ full_commit_loss=vq_full_commit_loss,
906
+ quantizer_dropout=quantizer_dropout,
907
+ dropout_type=dropout_type,
908
+ )
909
+ self.quantizer.append(quantizer)
910
+
911
+ # phone
912
+ quantizer = quantizer_class(
913
+ num_quantizers=vq_num_q_c,
914
+ dim=vq_dim,
915
+ codebook_size=codebook_size_content,
916
+ codebook_dim=codebook_dim,
917
+ threshold_ema_dead_code=2,
918
+ commitment=vq_commit_weight,
919
+ weight_init=vq_weight_init,
920
+ full_commit_loss=vq_full_commit_loss,
921
+ quantizer_dropout=quantizer_dropout,
922
+ dropout_type=dropout_type,
923
+ )
924
+ self.quantizer.append(quantizer)
925
+
926
+ # residual
927
+ if self.vq_num_q_r > 0:
928
+ quantizer = quantizer_class(
929
+ num_quantizers=vq_num_q_r,
930
+ dim=vq_dim,
931
+ codebook_size=codebook_size_residual,
932
+ codebook_dim=codebook_dim,
933
+ threshold_ema_dead_code=2,
934
+ commitment=vq_commit_weight,
935
+ weight_init=vq_weight_init,
936
+ full_commit_loss=vq_full_commit_loss,
937
+ quantizer_dropout=quantizer_dropout,
938
+ dropout_type=dropout_type,
939
+ )
940
+ self.quantizer.append(quantizer)
941
+
942
+ # Add first conv layer
943
+ channels = upsample_initial_channel
944
+ layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
945
+
946
+ # Add upsampling + MRF blocks
947
+ for i, stride in enumerate(up_ratios):
948
+ input_dim = channels // 2**i
949
+ output_dim = channels // 2 ** (i + 1)
950
+ layers += [DecoderBlock(input_dim, output_dim, stride)]
951
+
952
+ # Add final conv layer
953
+ layers += [
954
+ Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
955
+ WNConv1d(output_dim, 1, kernel_size=7, padding=3),
956
+ nn.Tanh(),
957
+ ]
958
+
959
+ self.model = nn.Sequential(*layers)
960
+
961
+ self.timbre_encoder = TransformerEncoder(
962
+ enc_emb_tokens=None,
963
+ encoder_layer=4,
964
+ encoder_hidden=256,
965
+ encoder_head=4,
966
+ conv_filter_size=1024,
967
+ conv_kernel_size=5,
968
+ encoder_dropout=0.1,
969
+ use_cln=False,
970
+ )
971
+
972
+ self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
973
+ self.timbre_linear.bias.data[:in_channels] = 1
974
+ self.timbre_linear.bias.data[in_channels:] = 0
975
+ self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
976
+
977
+ self.f0_predictor = CNNLSTM(in_channels, 1, 2)
978
+ self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
979
+
980
+ self.use_gr_content_f0 = use_gr_content_f0
981
+ self.use_gr_prosody_phone = use_gr_prosody_phone
982
+ self.use_gr_residual_f0 = use_gr_residual_f0
983
+ self.use_gr_residual_phone = use_gr_residual_phone
984
+ self.use_gr_x_timbre = use_gr_x_timbre
985
+
986
+ if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
987
+ self.res_f0_predictor = nn.Sequential(
988
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
989
+ )
990
+
991
+ if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
992
+ self.res_phone_predictor = nn.Sequential(
993
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
994
+ )
995
+
996
+ if self.use_gr_content_f0:
997
+ self.content_f0_predictor = nn.Sequential(
998
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
999
+ )
1000
+
1001
+ if self.use_gr_prosody_phone:
1002
+ self.prosody_phone_predictor = nn.Sequential(
1003
+ GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
1004
+ )
1005
+
1006
+ if self.use_gr_x_timbre:
1007
+ self.x_timbre_predictor = nn.Sequential(
1008
+ GradientReversal(alpha=1),
1009
+ CNNLSTM(in_channels, 245200, 1, global_pred=True),
1010
+ )
1011
+
1012
+ self.melspec_linear = nn.Linear(20, 256)
1013
+ self.melspec_encoder = TransformerEncoder(
1014
+ enc_emb_tokens=None,
1015
+ encoder_layer=4,
1016
+ encoder_hidden=256,
1017
+ encoder_head=4,
1018
+ conv_filter_size=1024,
1019
+ conv_kernel_size=5,
1020
+ encoder_dropout=0.1,
1021
+ use_cln=False,
1022
+ cfg=None,
1023
+ )
1024
+
1025
+ self.reset_parameters()
1026
+
1027
+ def quantize(self, x, prosody_feature, n_quantizers=None):
1028
+ outs, qs, commit_loss, quantized_buf = 0, [], [], []
1029
+
1030
+ # prosody
1031
+ f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
1032
+ f0_input = self.melspec_linear(f0_input)
1033
+ f0_input = self.melspec_encoder(f0_input, None, None)
1034
+ f0_input = f0_input.transpose(1, 2)
1035
+ f0_quantizer = self.quantizer[0]
1036
+ out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
1037
+ outs += out
1038
+ qs.append(q)
1039
+ quantized_buf.append(quantized.sum(0))
1040
+ commit_loss.append(commit)
1041
+
1042
+ # phone
1043
+ phone_input = x
1044
+ phone_quantizer = self.quantizer[1]
1045
+ out, q, commit, quantized = phone_quantizer(
1046
+ phone_input, n_quantizers=n_quantizers
1047
+ )
1048
+ outs += out
1049
+ qs.append(q)
1050
+ quantized_buf.append(quantized.sum(0))
1051
+ commit_loss.append(commit)
1052
+
1053
+ # residual
1054
+ if self.vq_num_q_r > 0:
1055
+ residual_quantizer = self.quantizer[2]
1056
+ residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
1057
+ out, q, commit, quantized = residual_quantizer(
1058
+ residual_input, n_quantizers=n_quantizers
1059
+ )
1060
+ outs += out
1061
+ qs.append(q)
1062
+ quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
1063
+ commit_loss.append(commit)
1064
+
1065
+ qs = torch.cat(qs, dim=0)
1066
+ commit_loss = torch.cat(commit_loss, dim=0)
1067
+ return outs, qs, commit_loss, quantized_buf
1068
+
1069
+ def forward(
1070
+ self,
1071
+ x,
1072
+ prosody_feature,
1073
+ vq=True,
1074
+ get_vq=False,
1075
+ eval_vq=True,
1076
+ speaker_embedding=None,
1077
+ n_quantizers=None,
1078
+ quantized=None,
1079
+ ):
1080
+ if get_vq:
1081
+ return self.quantizer.get_emb()
1082
+ if vq is True:
1083
+ if eval_vq:
1084
+ self.quantizer.eval()
1085
+ x_timbre = x
1086
+ outs, qs, commit_loss, quantized_buf = self.quantize(
1087
+ x, prosody_feature, n_quantizers=n_quantizers
1088
+ )
1089
+
1090
+ x_timbre = x_timbre.transpose(1, 2)
1091
+ x_timbre = self.timbre_encoder(x_timbre, None, None)
1092
+ x_timbre = x_timbre.transpose(1, 2)
1093
+ spk_embs = torch.mean(x_timbre, dim=2)
1094
+ return outs, qs, commit_loss, quantized_buf, spk_embs
1095
+
1096
+ out = {}
1097
+
1098
+ layer_0 = quantized[0]
1099
+ f0, uv = self.f0_predictor(layer_0)
1100
+ f0 = rearrange(f0, "... 1 -> ...")
1101
+ uv = rearrange(uv, "... 1 -> ...")
1102
+
1103
+ layer_1 = quantized[1]
1104
+ (phone,) = self.phone_predictor(layer_1)
1105
+
1106
+ out = {"f0": f0, "uv": uv, "phone": phone}
1107
+
1108
+ if self.use_gr_prosody_phone:
1109
+ (prosody_phone,) = self.prosody_phone_predictor(layer_0)
1110
+ out["prosody_phone"] = prosody_phone
1111
+
1112
+ if self.use_gr_content_f0:
1113
+ content_f0, content_uv = self.content_f0_predictor(layer_1)
1114
+ content_f0 = rearrange(content_f0, "... 1 -> ...")
1115
+ content_uv = rearrange(content_uv, "... 1 -> ...")
1116
+ out["content_f0"] = content_f0
1117
+ out["content_uv"] = content_uv
1118
+
1119
+ if self.vq_num_q_r > 0:
1120
+ layer_2 = quantized[2]
1121
+
1122
+ if self.use_gr_residual_f0:
1123
+ res_f0, res_uv = self.res_f0_predictor(layer_2)
1124
+ res_f0 = rearrange(res_f0, "... 1 -> ...")
1125
+ res_uv = rearrange(res_uv, "... 1 -> ...")
1126
+ out["res_f0"] = res_f0
1127
+ out["res_uv"] = res_uv
1128
+
1129
+ if self.use_gr_residual_phone:
1130
+ (res_phone,) = self.res_phone_predictor(layer_2)
1131
+ out["res_phone"] = res_phone
1132
+
1133
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
1134
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
1135
+ if self.vq_num_q_r > 0:
1136
+ if self.use_random_mask_residual:
1137
+ bsz = quantized[2].shape[0]
1138
+ res_mask = np.random.choice(
1139
+ [0, 1],
1140
+ size=bsz,
1141
+ p=[
1142
+ self.prob_random_mask_residual,
1143
+ 1 - self.prob_random_mask_residual,
1144
+ ],
1145
+ )
1146
+ res_mask = (
1147
+ torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
1148
+ ) # (B, 1, 1)
1149
+ res_mask = res_mask.to(
1150
+ device=quantized[2].device, dtype=quantized[2].dtype
1151
+ )
1152
+ x = (
1153
+ quantized[0].detach()
1154
+ + quantized[1].detach()
1155
+ + quantized[2] * res_mask
1156
+ )
1157
+ # x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
1158
+ else:
1159
+ x = quantized[0].detach() + quantized[1].detach() + quantized[2]
1160
+ # x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
1161
+ else:
1162
+ x = quantized[0].detach() + quantized[1].detach()
1163
+ # x = quantized_perturbe[0].detach() + quantized[1].detach()
1164
+
1165
+ if self.use_gr_x_timbre:
1166
+ (x_timbre,) = self.x_timbre_predictor(x)
1167
+ out["x_timbre"] = x_timbre
1168
+
1169
+ x = x.transpose(1, 2)
1170
+ x = self.timbre_norm(x)
1171
+ x = x.transpose(1, 2)
1172
+ x = x * gamma + beta
1173
+
1174
+ x = self.model(x)
1175
+ out["audio"] = x
1176
+
1177
+ return out
1178
+
1179
+ def vq2emb(self, vq, use_residual=True):
1180
+ # vq: [num_quantizer, B, T]
1181
+ self.quantizer = self.quantizer.eval()
1182
+ out = 0
1183
+ out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
1184
+ out += self.quantizer[1].vq2emb(
1185
+ vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
1186
+ )
1187
+ if self.vq_num_q_r > 0 and use_residual:
1188
+ out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
1189
+ return out
1190
+
1191
+ def inference(self, x, speaker_embedding):
1192
+ style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
1193
+ gamma, beta = style.chunk(2, 1) # (B, d, 1)
1194
+ x = x.transpose(1, 2)
1195
+ x = self.timbre_norm(x)
1196
+ x = x.transpose(1, 2)
1197
+ x = x * gamma + beta
1198
+ x = self.model(x)
1199
+ return x
1200
+
1201
+ def remove_weight_norm(self):
1202
+ """Remove weight normalization module from all of the layers."""
1203
+
1204
+ def _remove_weight_norm(m):
1205
+ try:
1206
+ torch.nn.utils.remove_weight_norm(m)
1207
+ except ValueError: # this module didn't have weight norm
1208
+ return
1209
+
1210
+ self.apply(_remove_weight_norm)
1211
+
1212
+ def apply_weight_norm(self):
1213
+ """Apply weight normalization module from all of the layers."""
1214
+
1215
+ def _apply_weight_norm(m):
1216
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
1217
+ torch.nn.utils.weight_norm(m)
1218
+
1219
+ self.apply(_apply_weight_norm)
1220
+
1221
+ def reset_parameters(self):
1222
+ self.apply(init_weights)