xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,776 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import os
|
|
7
|
+
import time
|
|
8
|
+
import random
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
import re
|
|
11
|
+
import glob
|
|
12
|
+
|
|
13
|
+
import accelerate
|
|
14
|
+
import json
|
|
15
|
+
import numpy as np
|
|
16
|
+
import torch
|
|
17
|
+
from accelerate.utils import ProjectConfiguration
|
|
18
|
+
from torch.utils.data import DataLoader
|
|
19
|
+
from tqdm import tqdm
|
|
20
|
+
|
|
21
|
+
import torch
|
|
22
|
+
import torch.nn.functional as F
|
|
23
|
+
import torchaudio
|
|
24
|
+
|
|
25
|
+
from accelerate.logging import get_logger
|
|
26
|
+
|
|
27
|
+
from models.codec.facodec.facodec_dataset import FAcodecDataset, FAcodecCollator
|
|
28
|
+
from models.codec.codec_sampler import build_samplers
|
|
29
|
+
from models.codec.codec_trainer import CodecTrainer
|
|
30
|
+
|
|
31
|
+
from modules.dac.nn.loss import (
|
|
32
|
+
MultiScaleSTFTLoss,
|
|
33
|
+
MelSpectrogramLoss,
|
|
34
|
+
GANLoss,
|
|
35
|
+
L1Loss,
|
|
36
|
+
FocalLoss,
|
|
37
|
+
)
|
|
38
|
+
from audiotools import AudioSignal
|
|
39
|
+
|
|
40
|
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
41
|
+
|
|
42
|
+
try:
|
|
43
|
+
import nemo.collections.asr as nemo_asr
|
|
44
|
+
except ImportError:
|
|
45
|
+
print(
|
|
46
|
+
"Unable to import nemo_asr, titanet outputs will be set to random values, you may only run debugging mode. DO NOT USE THIS FOR TRAINING"
|
|
47
|
+
)
|
|
48
|
+
nemo_asr = None
|
|
49
|
+
|
|
50
|
+
from models.codec.facodec.modules.commons import (
|
|
51
|
+
build_model,
|
|
52
|
+
load_checkpoint,
|
|
53
|
+
load_F0_models,
|
|
54
|
+
log_norm,
|
|
55
|
+
)
|
|
56
|
+
from models.codec.facodec.optimizer import build_optimizer
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class FAcodecTrainer(CodecTrainer):
|
|
60
|
+
def __init__(self, args, cfg):
|
|
61
|
+
super().__init__()
|
|
62
|
+
|
|
63
|
+
self.args = args
|
|
64
|
+
self.cfg = cfg
|
|
65
|
+
|
|
66
|
+
cfg.exp_name = args.exp_name
|
|
67
|
+
|
|
68
|
+
# Init accelerator
|
|
69
|
+
self._init_accelerator()
|
|
70
|
+
self.accelerator.wait_for_everyone()
|
|
71
|
+
|
|
72
|
+
# Init logger
|
|
73
|
+
with self.accelerator.main_process_first():
|
|
74
|
+
self.logger = get_logger(args.exp_name, log_level=args.log_level)
|
|
75
|
+
|
|
76
|
+
self.logger.info("=" * 56)
|
|
77
|
+
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
|
|
78
|
+
self.logger.info("=" * 56)
|
|
79
|
+
self.logger.info("\n")
|
|
80
|
+
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
|
|
81
|
+
self.logger.info(f"Experiment name: {args.exp_name}")
|
|
82
|
+
self.logger.info(f"Experiment directory: {self.exp_dir}")
|
|
83
|
+
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
|
|
84
|
+
if self.accelerator.is_main_process:
|
|
85
|
+
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
|
86
|
+
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
|
|
87
|
+
|
|
88
|
+
# Init training status
|
|
89
|
+
self.batch_count: int = 0
|
|
90
|
+
self.step: int = 0
|
|
91
|
+
self.epoch: int = 0
|
|
92
|
+
|
|
93
|
+
self.max_epoch = (
|
|
94
|
+
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
|
|
95
|
+
)
|
|
96
|
+
self.logger.info(
|
|
97
|
+
"Max epoch: {}".format(
|
|
98
|
+
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
|
|
99
|
+
)
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
# Check potential erorrs
|
|
103
|
+
if self.accelerator.is_main_process:
|
|
104
|
+
self._check_basic_configs()
|
|
105
|
+
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
|
|
106
|
+
self.checkpoints_path = [
|
|
107
|
+
[] for _ in range(len(self.save_checkpoint_stride))
|
|
108
|
+
]
|
|
109
|
+
self.run_eval = self.cfg.train.run_eval
|
|
110
|
+
|
|
111
|
+
# Set random seed
|
|
112
|
+
with self.accelerator.main_process_first():
|
|
113
|
+
start = time.monotonic_ns()
|
|
114
|
+
self._set_random_seed(self.cfg.train.random_seed)
|
|
115
|
+
end = time.monotonic_ns()
|
|
116
|
+
self.logger.debug(
|
|
117
|
+
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
|
|
118
|
+
)
|
|
119
|
+
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
|
|
120
|
+
|
|
121
|
+
# Build dataloader
|
|
122
|
+
with self.accelerator.main_process_first():
|
|
123
|
+
self.logger.info("Building dataset...")
|
|
124
|
+
start = time.monotonic_ns()
|
|
125
|
+
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
|
|
126
|
+
end = time.monotonic_ns()
|
|
127
|
+
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
|
|
128
|
+
|
|
129
|
+
# Build model
|
|
130
|
+
with self.accelerator.main_process_first():
|
|
131
|
+
self.logger.info("Building model...")
|
|
132
|
+
start = time.monotonic_ns()
|
|
133
|
+
self.model = self._build_model()
|
|
134
|
+
end = time.monotonic_ns()
|
|
135
|
+
for _, model in self.model.items():
|
|
136
|
+
self.logger.debug(model)
|
|
137
|
+
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
|
|
138
|
+
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")
|
|
139
|
+
|
|
140
|
+
# Build optimizers and schedulers
|
|
141
|
+
with self.accelerator.main_process_first():
|
|
142
|
+
self.logger.info("Building optimizer and scheduler...")
|
|
143
|
+
start = time.monotonic_ns()
|
|
144
|
+
self.optimizer = self._build_optimizer()
|
|
145
|
+
end = time.monotonic_ns()
|
|
146
|
+
self.logger.info(
|
|
147
|
+
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
# Build helper models
|
|
151
|
+
with self.accelerator.main_process_first():
|
|
152
|
+
self.logger.info("Building helper models...")
|
|
153
|
+
start = time.monotonic_ns()
|
|
154
|
+
self._built_helper_model()
|
|
155
|
+
end = time.monotonic_ns()
|
|
156
|
+
self.logger.info(
|
|
157
|
+
f"Building helper models done in {(end - start) / 1e6:.2f}ms"
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
# Accelerator preparing
|
|
161
|
+
self.logger.info("Initializing accelerate...")
|
|
162
|
+
start = time.monotonic_ns()
|
|
163
|
+
for k in self.model:
|
|
164
|
+
self.model[k] = self.accelerator.prepare(self.model[k])
|
|
165
|
+
for k, v in self.optimizer.optimizers.items():
|
|
166
|
+
self.optimizer.optimizers[k] = self.accelerator.prepare(
|
|
167
|
+
self.optimizer.optimizers[k]
|
|
168
|
+
)
|
|
169
|
+
self.optimizer.schedulers[k] = self.accelerator.prepare(
|
|
170
|
+
self.optimizer.schedulers[k]
|
|
171
|
+
)
|
|
172
|
+
end = time.monotonic_ns()
|
|
173
|
+
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
|
|
174
|
+
|
|
175
|
+
# Build criterions
|
|
176
|
+
with self.accelerator.main_process_first():
|
|
177
|
+
self.logger.info("Building criterion...")
|
|
178
|
+
start = time.monotonic_ns()
|
|
179
|
+
self.criterions = self._build_criterion()
|
|
180
|
+
end = time.monotonic_ns()
|
|
181
|
+
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
|
|
182
|
+
|
|
183
|
+
# Resume checkpoints
|
|
184
|
+
with self.accelerator.main_process_first():
|
|
185
|
+
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
|
|
186
|
+
if args.resume_type:
|
|
187
|
+
self.logger.info("Resuming from checkpoint...")
|
|
188
|
+
start = time.monotonic_ns()
|
|
189
|
+
ckpt_path = Path(args.checkpoint)
|
|
190
|
+
if self._is_valid_pattern(ckpt_path.parts[-1]):
|
|
191
|
+
ckpt_path = self._load_model(args.checkpoint, args.resume_type)
|
|
192
|
+
else:
|
|
193
|
+
ckpt_path = self._load_model(
|
|
194
|
+
args.checkpoint, resume_type=args.resume_type
|
|
195
|
+
)
|
|
196
|
+
end = time.monotonic_ns()
|
|
197
|
+
self.logger.info(
|
|
198
|
+
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
|
|
199
|
+
)
|
|
200
|
+
self.checkpoints_path = json.load(
|
|
201
|
+
open(os.path.join(ckpt_path, "ckpts.json"), "r")
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
if self.accelerator.is_main_process:
|
|
205
|
+
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
|
206
|
+
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
|
|
207
|
+
|
|
208
|
+
# Save config
|
|
209
|
+
self.config_save_path = os.path.join(self.exp_dir, "args.json")
|
|
210
|
+
|
|
211
|
+
def _build_dataset(self):
|
|
212
|
+
return FAcodecDataset, FAcodecCollator
|
|
213
|
+
|
|
214
|
+
def _build_criterion(self):
|
|
215
|
+
criterions = dict()
|
|
216
|
+
stft_criterion = MultiScaleSTFTLoss()
|
|
217
|
+
mel_criterion = MelSpectrogramLoss(
|
|
218
|
+
n_mels=[5, 10, 20, 40, 80, 160, 320],
|
|
219
|
+
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
|
|
220
|
+
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
|
|
221
|
+
mel_fmax=[None, None, None, None, None, None, None],
|
|
222
|
+
pow=1.0,
|
|
223
|
+
mag_weight=0.0,
|
|
224
|
+
clamp_eps=1e-5,
|
|
225
|
+
)
|
|
226
|
+
content_criterion = FocalLoss(gamma=2)
|
|
227
|
+
l1_criterion = L1Loss()
|
|
228
|
+
criterions["stft"] = stft_criterion
|
|
229
|
+
criterions["mel"] = mel_criterion
|
|
230
|
+
criterions["l1"] = l1_criterion
|
|
231
|
+
criterions["content"] = content_criterion
|
|
232
|
+
|
|
233
|
+
return criterions
|
|
234
|
+
|
|
235
|
+
def _build_model(self):
|
|
236
|
+
model = build_model(self.cfg.model_params)
|
|
237
|
+
_ = [model[key].to(self.accelerator.device) for key in model]
|
|
238
|
+
return model
|
|
239
|
+
|
|
240
|
+
def _built_helper_model(self):
|
|
241
|
+
device = self.accelerator.device
|
|
242
|
+
self.pitch_extractor = load_F0_models(self.cfg.F0_path).to(device)
|
|
243
|
+
|
|
244
|
+
# load model and processor
|
|
245
|
+
self.w2v_processor = Wav2Vec2Processor.from_pretrained(
|
|
246
|
+
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
|
247
|
+
)
|
|
248
|
+
self.w2v_model = Wav2Vec2ForCTC.from_pretrained(
|
|
249
|
+
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
|
250
|
+
).to(device)
|
|
251
|
+
self.w2v_model.eval()
|
|
252
|
+
|
|
253
|
+
if nemo_asr is None:
|
|
254
|
+
self.speaker_model = None
|
|
255
|
+
else:
|
|
256
|
+
self.speaker_model = (
|
|
257
|
+
nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained(
|
|
258
|
+
"nvidia/speakerverification_en_titanet_large"
|
|
259
|
+
)
|
|
260
|
+
)
|
|
261
|
+
self.speaker_model = self.speaker_model.to(device)
|
|
262
|
+
self.speaker_model.eval()
|
|
263
|
+
|
|
264
|
+
def _build_optimizer(self):
|
|
265
|
+
scheduler_params = {
|
|
266
|
+
"warmup_steps": self.cfg.loss_params.warmup_steps,
|
|
267
|
+
"base_lr": self.cfg.loss_params.base_lr,
|
|
268
|
+
}
|
|
269
|
+
optimizer = build_optimizer(
|
|
270
|
+
{key: self.model[key] for key in self.model},
|
|
271
|
+
scheduler_params_dict={key: scheduler_params.copy() for key in self.model},
|
|
272
|
+
lr=float(scheduler_params["base_lr"]),
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
return optimizer
|
|
276
|
+
|
|
277
|
+
def train_loop(self):
|
|
278
|
+
"""Training process"""
|
|
279
|
+
self.accelerator.wait_for_everyone()
|
|
280
|
+
|
|
281
|
+
# Dump config
|
|
282
|
+
if self.accelerator.is_main_process:
|
|
283
|
+
self._dump_cfg(self.config_save_path)
|
|
284
|
+
_ = [self.model[key].train() for key in self.model]
|
|
285
|
+
self.optimizer.zero_grad()
|
|
286
|
+
|
|
287
|
+
# Sync and start training
|
|
288
|
+
self.accelerator.wait_for_everyone()
|
|
289
|
+
while self.epoch < self.max_epoch:
|
|
290
|
+
self.logger.info("\n")
|
|
291
|
+
self.logger.info("-" * 32)
|
|
292
|
+
self.logger.info("Epoch {}: ".format(self.epoch))
|
|
293
|
+
|
|
294
|
+
# Train and Validate
|
|
295
|
+
train_total_loss, train_losses = self._train_epoch()
|
|
296
|
+
for key, loss in train_losses.items():
|
|
297
|
+
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
|
|
298
|
+
self.accelerator.log(
|
|
299
|
+
{"Epoch/Train {} Loss".format(key): loss},
|
|
300
|
+
step=self.epoch,
|
|
301
|
+
)
|
|
302
|
+
self.accelerator.log(
|
|
303
|
+
{
|
|
304
|
+
"Epoch/Train Total Loss": train_total_loss,
|
|
305
|
+
},
|
|
306
|
+
step=self.epoch,
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
# Update scheduler
|
|
310
|
+
self.accelerator.wait_for_everyone()
|
|
311
|
+
|
|
312
|
+
# Check save checkpoint interval
|
|
313
|
+
run_eval = False
|
|
314
|
+
if self.accelerator.is_main_process:
|
|
315
|
+
save_checkpoint = False
|
|
316
|
+
for i, num in enumerate(self.save_checkpoint_stride):
|
|
317
|
+
if self.epoch % num == 0:
|
|
318
|
+
save_checkpoint = True
|
|
319
|
+
run_eval |= self.run_eval[i]
|
|
320
|
+
|
|
321
|
+
# Save checkpoints
|
|
322
|
+
self.accelerator.wait_for_everyone()
|
|
323
|
+
if self.accelerator.is_main_process and save_checkpoint:
|
|
324
|
+
print("Saving..")
|
|
325
|
+
state = {
|
|
326
|
+
"net": {key: self.model[key].state_dict() for key in self.model},
|
|
327
|
+
"optimizer": self.optimizer.state_dict(),
|
|
328
|
+
"scheduler": self.optimizer.scheduler_state_dict(),
|
|
329
|
+
"iters": self.step,
|
|
330
|
+
"epoch": self.epoch,
|
|
331
|
+
}
|
|
332
|
+
save_path = os.path.join(
|
|
333
|
+
self.checkpoint_dir,
|
|
334
|
+
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
|
|
335
|
+
)
|
|
336
|
+
torch.save(state, save_path)
|
|
337
|
+
json.dump(
|
|
338
|
+
self.checkpoints_path,
|
|
339
|
+
open(os.path.join(self.checkpoint_dir, "ckpts.json"), "w"),
|
|
340
|
+
ensure_ascii=False,
|
|
341
|
+
indent=4,
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
self.accelerator.wait_for_everyone()
|
|
345
|
+
|
|
346
|
+
self.epoch += 1
|
|
347
|
+
|
|
348
|
+
# Finish training
|
|
349
|
+
self.accelerator.wait_for_everyone()
|
|
350
|
+
if self.accelerator.is_main_process:
|
|
351
|
+
path = os.path.join(
|
|
352
|
+
self.checkpoint_dir,
|
|
353
|
+
"epoch-{:04d}_step-{:07d}".format(
|
|
354
|
+
self.epoch,
|
|
355
|
+
self.step,
|
|
356
|
+
),
|
|
357
|
+
)
|
|
358
|
+
print("Saving..")
|
|
359
|
+
state = {
|
|
360
|
+
"net": {key: self.model[key].state_dict() for key in self.model},
|
|
361
|
+
"optimizer": self.optimizer.state_dict(),
|
|
362
|
+
"scheduler": self.optimizer.scheduler_state_dict(),
|
|
363
|
+
"iters": self.step,
|
|
364
|
+
"epoch": self.epoch,
|
|
365
|
+
}
|
|
366
|
+
save_path = os.path.join(
|
|
367
|
+
self.checkpoint_dir,
|
|
368
|
+
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
|
|
369
|
+
)
|
|
370
|
+
torch.save(state, save_path)
|
|
371
|
+
|
|
372
|
+
def _train_epoch(self):
|
|
373
|
+
"""Training epoch. Should return average loss of a batch (sample) over
|
|
374
|
+
one epoch. See ``train_loop`` for usage.
|
|
375
|
+
"""
|
|
376
|
+
_ = [self.model[key].train() for key in self.model]
|
|
377
|
+
|
|
378
|
+
epoch_losses: dict = {}
|
|
379
|
+
epoch_total_loss: int = 0
|
|
380
|
+
|
|
381
|
+
for batch in tqdm(
|
|
382
|
+
self.train_dataloader,
|
|
383
|
+
desc=f"Training Epoch {self.epoch}",
|
|
384
|
+
unit="batch",
|
|
385
|
+
colour="GREEN",
|
|
386
|
+
leave=False,
|
|
387
|
+
dynamic_ncols=True,
|
|
388
|
+
smoothing=0.04,
|
|
389
|
+
disable=not self.accelerator.is_main_process,
|
|
390
|
+
):
|
|
391
|
+
# Get losses
|
|
392
|
+
total_loss, losses = self._train_step(batch)
|
|
393
|
+
self.batch_count += 1
|
|
394
|
+
|
|
395
|
+
# Log info
|
|
396
|
+
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
|
|
397
|
+
self.accelerator.log(
|
|
398
|
+
{
|
|
399
|
+
"Step/Learning Rate": (
|
|
400
|
+
self.optimizer.schedulers["encoder"].get_last_lr()[0]
|
|
401
|
+
if self.step != 0
|
|
402
|
+
else 0
|
|
403
|
+
)
|
|
404
|
+
},
|
|
405
|
+
step=self.step,
|
|
406
|
+
)
|
|
407
|
+
for key, _ in losses.items():
|
|
408
|
+
self.accelerator.log(
|
|
409
|
+
{
|
|
410
|
+
"Step/Train {} Loss".format(key): losses[key],
|
|
411
|
+
},
|
|
412
|
+
step=self.step,
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
if not epoch_losses:
|
|
416
|
+
epoch_losses = losses
|
|
417
|
+
else:
|
|
418
|
+
for key, value in losses.items():
|
|
419
|
+
epoch_losses[key] += value
|
|
420
|
+
epoch_total_loss += total_loss
|
|
421
|
+
self.step += 1
|
|
422
|
+
|
|
423
|
+
# Get and log total losses
|
|
424
|
+
self.accelerator.wait_for_everyone()
|
|
425
|
+
epoch_total_loss = (
|
|
426
|
+
epoch_total_loss
|
|
427
|
+
/ len(self.train_dataloader)
|
|
428
|
+
* self.cfg.train.gradient_accumulation_step
|
|
429
|
+
)
|
|
430
|
+
for key in epoch_losses.keys():
|
|
431
|
+
epoch_losses[key] = (
|
|
432
|
+
epoch_losses[key]
|
|
433
|
+
/ len(self.train_dataloader)
|
|
434
|
+
* self.cfg.train.gradient_accumulation_step
|
|
435
|
+
)
|
|
436
|
+
return epoch_total_loss, epoch_losses
|
|
437
|
+
|
|
438
|
+
def _train_step(self, data):
|
|
439
|
+
"""Training forward step. Should return average loss of a sample over
|
|
440
|
+
one batch. Provoke ``_forward_step`` is recommended except for special case.
|
|
441
|
+
See ``_train_epoch`` for usage.
|
|
442
|
+
"""
|
|
443
|
+
# Init losses
|
|
444
|
+
train_losses = {}
|
|
445
|
+
total_loss = 0
|
|
446
|
+
|
|
447
|
+
# Use input feature to get predictions
|
|
448
|
+
data = [b.to(self.accelerator.device, non_blocking=True) for b in data]
|
|
449
|
+
waves, mels, wave_lengths, mel_input_length = data
|
|
450
|
+
|
|
451
|
+
# extract semantic latent with w2v model
|
|
452
|
+
waves_16k = torchaudio.functional.resample(waves, 24000, 16000)
|
|
453
|
+
w2v_input = self.w2v_processor(
|
|
454
|
+
waves_16k, sampling_rate=16000, return_tensors="pt"
|
|
455
|
+
).input_values.to(self.accelerator.device)
|
|
456
|
+
with torch.no_grad():
|
|
457
|
+
w2v_outputs = self.w2v_model(w2v_input.squeeze(0)).logits
|
|
458
|
+
predicted_ids = torch.argmax(w2v_outputs, dim=-1)
|
|
459
|
+
phone_ids = (
|
|
460
|
+
F.interpolate(
|
|
461
|
+
predicted_ids.unsqueeze(0).float(), mels.size(-1), mode="nearest"
|
|
462
|
+
)
|
|
463
|
+
.long()
|
|
464
|
+
.squeeze(0)
|
|
465
|
+
)
|
|
466
|
+
|
|
467
|
+
# get clips
|
|
468
|
+
mel_seg_len = min(
|
|
469
|
+
[int(mel_input_length.min().item()), self.cfg.train.max_frame_len]
|
|
470
|
+
)
|
|
471
|
+
|
|
472
|
+
gt_mel_seg = []
|
|
473
|
+
wav_seg = []
|
|
474
|
+
w2v_seg = []
|
|
475
|
+
|
|
476
|
+
for bib in range(len(mel_input_length)):
|
|
477
|
+
mel_length = int(mel_input_length[bib].item())
|
|
478
|
+
|
|
479
|
+
random_start = (
|
|
480
|
+
np.random.randint(0, mel_length - mel_seg_len)
|
|
481
|
+
if mel_length != mel_seg_len
|
|
482
|
+
else 0
|
|
483
|
+
)
|
|
484
|
+
gt_mel_seg.append(mels[bib, :, random_start : random_start + mel_seg_len])
|
|
485
|
+
|
|
486
|
+
# w2v_seg.append(w2v_latent[bib, :, random_start:random_start + mel_seg_len])
|
|
487
|
+
w2v_seg.append(phone_ids[bib, random_start : random_start + mel_seg_len])
|
|
488
|
+
|
|
489
|
+
y = waves[bib][random_start * 300 : (random_start + mel_seg_len) * 300]
|
|
490
|
+
|
|
491
|
+
wav_seg.append(y.to(self.accelerator.device))
|
|
492
|
+
|
|
493
|
+
gt_mel_seg = torch.stack(gt_mel_seg).detach()
|
|
494
|
+
|
|
495
|
+
wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1)
|
|
496
|
+
w2v_seg = torch.stack(w2v_seg).float().detach()
|
|
497
|
+
|
|
498
|
+
with torch.no_grad():
|
|
499
|
+
real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach()
|
|
500
|
+
F0_real, _, _ = self.pitch_extractor(gt_mel_seg.unsqueeze(1))
|
|
501
|
+
|
|
502
|
+
# normalize f0
|
|
503
|
+
# Remove unvoiced frames (replace with -1)
|
|
504
|
+
gt_glob_f0s = []
|
|
505
|
+
f0_targets = []
|
|
506
|
+
for bib in range(len(F0_real)):
|
|
507
|
+
voiced_indices = F0_real[bib] > 5.0
|
|
508
|
+
f0_voiced = F0_real[bib][voiced_indices]
|
|
509
|
+
|
|
510
|
+
if len(f0_voiced) != 0:
|
|
511
|
+
# Convert to log scale
|
|
512
|
+
log_f0 = f0_voiced.log2()
|
|
513
|
+
|
|
514
|
+
# Calculate mean and standard deviation
|
|
515
|
+
mean_f0 = log_f0.mean()
|
|
516
|
+
std_f0 = log_f0.std()
|
|
517
|
+
|
|
518
|
+
# Normalize the F0 sequence
|
|
519
|
+
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
|
520
|
+
|
|
521
|
+
# Create the normalized F0 sequence with unvoiced frames
|
|
522
|
+
normalized_sequence = torch.zeros_like(F0_real[bib])
|
|
523
|
+
normalized_sequence[voiced_indices] = normalized_f0
|
|
524
|
+
normalized_sequence[~voiced_indices] = (
|
|
525
|
+
-10
|
|
526
|
+
) # Assign -10 to unvoiced frames
|
|
527
|
+
|
|
528
|
+
gt_glob_f0s.append(mean_f0)
|
|
529
|
+
else:
|
|
530
|
+
normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0
|
|
531
|
+
gt_glob_f0s.append(torch.tensor(0.0).to(self.accelerator.device))
|
|
532
|
+
|
|
533
|
+
# f0_targets.append(normalized_sequence[single_side_context // 200:-single_side_context // 200])
|
|
534
|
+
f0_targets.append(normalized_sequence)
|
|
535
|
+
f0_targets = torch.stack(f0_targets).to(self.accelerator.device)
|
|
536
|
+
# fill nan with -10
|
|
537
|
+
f0_targets[torch.isnan(f0_targets)] = -10.0
|
|
538
|
+
# fill inf with -10
|
|
539
|
+
f0_targets[torch.isinf(f0_targets)] = -10.0
|
|
540
|
+
# if frame_rate not equal to 80, interpolate f0 from frame rate of 80 to target frame rate
|
|
541
|
+
if self.cfg.preprocess_params.frame_rate != 80:
|
|
542
|
+
f0_targets = F.interpolate(
|
|
543
|
+
f0_targets.unsqueeze(1),
|
|
544
|
+
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
|
|
545
|
+
mode="nearest",
|
|
546
|
+
).squeeze(1)
|
|
547
|
+
w2v_seg = F.interpolate(
|
|
548
|
+
w2v_seg,
|
|
549
|
+
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
|
|
550
|
+
mode="nearest",
|
|
551
|
+
)
|
|
552
|
+
|
|
553
|
+
wav_seg_input = wav_seg
|
|
554
|
+
wav_seg_target = wav_seg
|
|
555
|
+
|
|
556
|
+
z = self.model.encoder(wav_seg_input)
|
|
557
|
+
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
|
|
558
|
+
z, wav_seg_input, n_c=2, full_waves=waves, wave_lens=wave_lengths
|
|
559
|
+
)
|
|
560
|
+
preds, rev_preds = self.model.fa_predictors(quantized, timbre)
|
|
561
|
+
|
|
562
|
+
pred_wave = self.model.decoder(z)
|
|
563
|
+
|
|
564
|
+
len_diff = wav_seg_target.size(-1) - pred_wave.size(-1)
|
|
565
|
+
if len_diff > 0:
|
|
566
|
+
wav_seg_target = wav_seg_target[..., len_diff // 2 : -len_diff // 2]
|
|
567
|
+
|
|
568
|
+
# discriminator loss
|
|
569
|
+
d_fake = self.model.discriminator(pred_wave.detach())
|
|
570
|
+
d_real = self.model.discriminator(wav_seg_target)
|
|
571
|
+
loss_d = 0
|
|
572
|
+
for x_fake, x_real in zip(d_fake, d_real):
|
|
573
|
+
loss_d += torch.mean(x_fake[-1] ** 2)
|
|
574
|
+
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
|
575
|
+
|
|
576
|
+
self.optimizer.zero_grad()
|
|
577
|
+
self.accelerator.backward(loss_d)
|
|
578
|
+
grad_norm_d = torch.nn.utils.clip_grad_norm_(
|
|
579
|
+
self.model.discriminator.parameters(), 10.0
|
|
580
|
+
)
|
|
581
|
+
self.optimizer.step("discriminator")
|
|
582
|
+
self.optimizer.scheduler(key="discriminator")
|
|
583
|
+
|
|
584
|
+
# generator loss
|
|
585
|
+
signal = AudioSignal(wav_seg_target, sample_rate=24000)
|
|
586
|
+
recons = AudioSignal(pred_wave, sample_rate=24000)
|
|
587
|
+
stft_loss = self.criterions["stft"](recons, signal)
|
|
588
|
+
mel_loss = self.criterions["mel"](recons, signal)
|
|
589
|
+
waveform_loss = self.criterions["l1"](recons, signal)
|
|
590
|
+
|
|
591
|
+
d_fake = self.model.discriminator(pred_wave)
|
|
592
|
+
d_real = self.model.discriminator(wav_seg_target)
|
|
593
|
+
|
|
594
|
+
loss_g = 0
|
|
595
|
+
for x_fake in d_fake:
|
|
596
|
+
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
|
597
|
+
|
|
598
|
+
loss_feature = 0
|
|
599
|
+
|
|
600
|
+
for i in range(len(d_fake)):
|
|
601
|
+
for j in range(len(d_fake[i]) - 1):
|
|
602
|
+
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
|
603
|
+
|
|
604
|
+
pred_f0, pred_uv = preds["f0"], preds["uv"]
|
|
605
|
+
rev_pred_f0, rev_pred_uv = rev_preds["rev_f0"], rev_preds["rev_uv"]
|
|
606
|
+
|
|
607
|
+
common_min_size = min(pred_f0.size(-2), f0_targets.size(-1))
|
|
608
|
+
f0_targets = f0_targets[..., :common_min_size]
|
|
609
|
+
real_norm = real_norm[..., :common_min_size]
|
|
610
|
+
|
|
611
|
+
f0_loss = F.smooth_l1_loss(
|
|
612
|
+
f0_targets, pred_f0.squeeze(-1)[..., :common_min_size]
|
|
613
|
+
)
|
|
614
|
+
uv_loss = F.smooth_l1_loss(
|
|
615
|
+
real_norm, pred_uv.squeeze(-1)[..., :common_min_size]
|
|
616
|
+
)
|
|
617
|
+
rev_f0_loss = (
|
|
618
|
+
F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size])
|
|
619
|
+
if rev_pred_f0 is not None
|
|
620
|
+
else torch.FloatTensor([0]).to(self.accelerator.device)
|
|
621
|
+
)
|
|
622
|
+
rev_uv_loss = (
|
|
623
|
+
F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size])
|
|
624
|
+
if rev_pred_uv is not None
|
|
625
|
+
else torch.FloatTensor([0]).to(self.accelerator.device)
|
|
626
|
+
)
|
|
627
|
+
|
|
628
|
+
tot_f0_loss = f0_loss + rev_f0_loss
|
|
629
|
+
tot_uv_loss = uv_loss + rev_uv_loss
|
|
630
|
+
|
|
631
|
+
pred_content = preds["content"]
|
|
632
|
+
rev_pred_content = rev_preds["rev_content"]
|
|
633
|
+
|
|
634
|
+
target_content_latents = w2v_seg[..., :common_min_size]
|
|
635
|
+
|
|
636
|
+
content_loss = self.criterions["content"](
|
|
637
|
+
pred_content.transpose(1, 2)[..., :common_min_size],
|
|
638
|
+
target_content_latents.long(),
|
|
639
|
+
)
|
|
640
|
+
rev_content_loss = (
|
|
641
|
+
self.criterions["content"](
|
|
642
|
+
rev_pred_content.transpose(1, 2)[..., :common_min_size],
|
|
643
|
+
target_content_latents.long(),
|
|
644
|
+
)
|
|
645
|
+
if rev_pred_content is not None
|
|
646
|
+
else torch.FloatTensor([0]).to(self.accelerator.device)
|
|
647
|
+
)
|
|
648
|
+
|
|
649
|
+
tot_content_loss = content_loss + rev_content_loss
|
|
650
|
+
|
|
651
|
+
if self.speaker_model is not None:
|
|
652
|
+
spk_logits = torch.cat(
|
|
653
|
+
[
|
|
654
|
+
self.speaker_model.infer_segment(w16.cpu()[..., :wl])[1]
|
|
655
|
+
for w16, wl in zip(waves_16k, wave_lengths)
|
|
656
|
+
],
|
|
657
|
+
dim=0,
|
|
658
|
+
)
|
|
659
|
+
spk_labels = spk_logits.argmax(dim=-1)
|
|
660
|
+
else:
|
|
661
|
+
spk_labels = torch.zeros([len(waves_16k)], dtype=torch.long).to(
|
|
662
|
+
self.accelerator.device
|
|
663
|
+
)
|
|
664
|
+
|
|
665
|
+
spk_pred_logits = preds["timbre"]
|
|
666
|
+
spk_loss = F.cross_entropy(spk_pred_logits, spk_labels)
|
|
667
|
+
x_spk_pred_logits = rev_preds["x_timbre"]
|
|
668
|
+
|
|
669
|
+
x_spk_loss = (
|
|
670
|
+
F.cross_entropy(x_spk_pred_logits, spk_labels)
|
|
671
|
+
if x_spk_pred_logits is not None
|
|
672
|
+
else torch.FloatTensor([0]).to(self.accelerator.device)
|
|
673
|
+
)
|
|
674
|
+
|
|
675
|
+
tot_spk_loss = spk_loss + x_spk_loss
|
|
676
|
+
|
|
677
|
+
loss_gen_all = (
|
|
678
|
+
mel_loss * 15.0
|
|
679
|
+
+ loss_feature * 1.0
|
|
680
|
+
+ loss_g * 1.0
|
|
681
|
+
+ commitment_loss * 0.25
|
|
682
|
+
+ codebook_loss * 1.0
|
|
683
|
+
+ tot_f0_loss * 1.0
|
|
684
|
+
+ tot_uv_loss * 1.0
|
|
685
|
+
+ tot_content_loss * 5.0
|
|
686
|
+
+ tot_spk_loss * 5.0
|
|
687
|
+
)
|
|
688
|
+
|
|
689
|
+
self.optimizer.zero_grad()
|
|
690
|
+
self.accelerator.backward(loss_gen_all)
|
|
691
|
+
|
|
692
|
+
with torch.no_grad():
|
|
693
|
+
total_loss = loss_gen_all.item()
|
|
694
|
+
train_losses["stft"] = stft_loss.item()
|
|
695
|
+
train_losses["mel"] = mel_loss.item()
|
|
696
|
+
train_losses["l1"] = waveform_loss.item()
|
|
697
|
+
train_losses["f0"] = f0_loss.item()
|
|
698
|
+
train_losses["uv"] = uv_loss.item()
|
|
699
|
+
train_losses["content"] = content_loss.item()
|
|
700
|
+
train_losses["speaker"] = spk_loss.item()
|
|
701
|
+
train_losses["rev_f0"] = rev_f0_loss.item()
|
|
702
|
+
train_losses["rev_uv"] = rev_uv_loss.item()
|
|
703
|
+
train_losses["rev_content"] = rev_content_loss.item()
|
|
704
|
+
train_losses["rev_speaker"] = x_spk_loss.item()
|
|
705
|
+
|
|
706
|
+
train_losses["feature"] = loss_feature.item()
|
|
707
|
+
train_losses["generator"] = loss_g.item()
|
|
708
|
+
train_losses["commitment"] = commitment_loss.item()
|
|
709
|
+
train_losses["codebook"] = codebook_loss.item()
|
|
710
|
+
|
|
711
|
+
# discriminators
|
|
712
|
+
train_losses["discriminator"] = loss_d.item()
|
|
713
|
+
|
|
714
|
+
return total_loss, train_losses
|
|
715
|
+
|
|
716
|
+
def _inference(self, eval_wave):
|
|
717
|
+
"""Inference during training for test audios."""
|
|
718
|
+
z = self.model.encoder(
|
|
719
|
+
eval_wave[None, None, ...].to(self.accelerator.device).float()
|
|
720
|
+
)
|
|
721
|
+
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
|
|
722
|
+
z, eval_wave[None, None, ...], n_c=self.cfg.model_params.n_c_codebooks
|
|
723
|
+
)
|
|
724
|
+
full_pred_wave = self.model.decoder(z)
|
|
725
|
+
return full_pred_wave[0]
|
|
726
|
+
|
|
727
|
+
def _load_model(self, checkpoint_path=None, resume_type="resume"):
|
|
728
|
+
"""Load model from checkpoint. If checkpoint_path is None, it will
|
|
729
|
+
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
|
|
730
|
+
None, it will load the checkpoint specified by checkpoint_path. **Only use this
|
|
731
|
+
method after** ``accelerator.prepare()``.
|
|
732
|
+
"""
|
|
733
|
+
if resume_type == "resume":
|
|
734
|
+
if checkpoint_path is None:
|
|
735
|
+
available_checkpoints = glob.glob(
|
|
736
|
+
os.path.join(self.checkpoint_dir, "FAcodc_epoch_*_step_*.pth")
|
|
737
|
+
)
|
|
738
|
+
# find the checkpoint that has the highest step number
|
|
739
|
+
latest_checkpoint = max(
|
|
740
|
+
available_checkpoints,
|
|
741
|
+
key=lambda x: int(x.split("_")[-1].split(".")[0]),
|
|
742
|
+
)
|
|
743
|
+
earliest_checkpoint = min(
|
|
744
|
+
available_checkpoints,
|
|
745
|
+
key=lambda x: int(x.split("_")[-1].split(".")[0]),
|
|
746
|
+
)
|
|
747
|
+
# delete the earliest checkpoint
|
|
748
|
+
if (
|
|
749
|
+
earliest_checkpoint != latest_checkpoint
|
|
750
|
+
and self.accelerator.is_main_process
|
|
751
|
+
and len(available_checkpoints) > 4
|
|
752
|
+
):
|
|
753
|
+
os.remove(earliest_checkpoint)
|
|
754
|
+
print(f"Removed {earliest_checkpoint}")
|
|
755
|
+
else:
|
|
756
|
+
latest_checkpoint = checkpoint_path
|
|
757
|
+
|
|
758
|
+
self.model, self.optimizer, self.epoch, self.step = load_checkpoint(
|
|
759
|
+
self.model,
|
|
760
|
+
self.optimizer,
|
|
761
|
+
latest_checkpoint,
|
|
762
|
+
load_only_params=False,
|
|
763
|
+
ignore_modules=[],
|
|
764
|
+
is_distributed=self.accelerator.num_processes > 1,
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
else:
|
|
768
|
+
raise ValueError("Invalid resume type")
|
|
769
|
+
return checkpoint_path
|
|
770
|
+
|
|
771
|
+
def _count_parameters(self):
|
|
772
|
+
total_num = sum(
|
|
773
|
+
sum(p.numel() for p in self.model[key].parameters()) for key in self.model
|
|
774
|
+
)
|
|
775
|
+
# trainable_num = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
|
|
776
|
+
return total_num
|