xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
from torch.autograd import Function
|
|
7
|
+
import torch
|
|
8
|
+
from torch import nn
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class GradientReversal(Function):
|
|
12
|
+
@staticmethod
|
|
13
|
+
def forward(ctx, x, alpha):
|
|
14
|
+
ctx.save_for_backward(x, alpha)
|
|
15
|
+
return x
|
|
16
|
+
|
|
17
|
+
@staticmethod
|
|
18
|
+
def backward(ctx, grad_output):
|
|
19
|
+
grad_input = None
|
|
20
|
+
_, alpha = ctx.saved_tensors
|
|
21
|
+
if ctx.needs_input_grad[0]:
|
|
22
|
+
grad_input = -alpha * grad_output
|
|
23
|
+
return grad_input, None
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
revgrad = GradientReversal.apply
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class GradientReversal(nn.Module):
|
|
30
|
+
def __init__(self, alpha):
|
|
31
|
+
super().__init__()
|
|
32
|
+
self.alpha = torch.tensor(alpha, requires_grad=False)
|
|
33
|
+
|
|
34
|
+
def forward(self, x):
|
|
35
|
+
return revgrad(x, self.alpha)
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import pyworld as pw
|
|
3
|
+
import numpy as np
|
|
4
|
+
import soundfile as sf
|
|
5
|
+
import os
|
|
6
|
+
from torchaudio.functional import pitch_shift
|
|
7
|
+
import librosa
|
|
8
|
+
from librosa.filters import mel as librosa_mel_fn
|
|
9
|
+
import torch.nn as nn
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
14
|
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def dynamic_range_decompression(x, C=1):
|
|
18
|
+
return np.exp(x) / C
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
22
|
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def dynamic_range_decompression_torch(x, C=1):
|
|
26
|
+
return torch.exp(x) / C
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def spectral_normalize_torch(magnitudes):
|
|
30
|
+
output = dynamic_range_compression_torch(magnitudes)
|
|
31
|
+
return output
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def spectral_de_normalize_torch(magnitudes):
|
|
35
|
+
output = dynamic_range_decompression_torch(magnitudes)
|
|
36
|
+
return output
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class MelSpectrogram(nn.Module):
|
|
40
|
+
def __init__(
|
|
41
|
+
self,
|
|
42
|
+
n_fft,
|
|
43
|
+
num_mels,
|
|
44
|
+
sampling_rate,
|
|
45
|
+
hop_size,
|
|
46
|
+
win_size,
|
|
47
|
+
fmin,
|
|
48
|
+
fmax,
|
|
49
|
+
center=False,
|
|
50
|
+
):
|
|
51
|
+
super(MelSpectrogram, self).__init__()
|
|
52
|
+
self.n_fft = n_fft
|
|
53
|
+
self.hop_size = hop_size
|
|
54
|
+
self.win_size = win_size
|
|
55
|
+
self.sampling_rate = sampling_rate
|
|
56
|
+
self.num_mels = num_mels
|
|
57
|
+
self.fmin = fmin
|
|
58
|
+
self.fmax = fmax
|
|
59
|
+
self.center = center
|
|
60
|
+
|
|
61
|
+
mel_basis = {}
|
|
62
|
+
hann_window = {}
|
|
63
|
+
|
|
64
|
+
mel = librosa_mel_fn(
|
|
65
|
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
|
66
|
+
)
|
|
67
|
+
mel_basis = torch.from_numpy(mel).float()
|
|
68
|
+
hann_window = torch.hann_window(win_size)
|
|
69
|
+
|
|
70
|
+
self.register_buffer("mel_basis", mel_basis)
|
|
71
|
+
self.register_buffer("hann_window", hann_window)
|
|
72
|
+
|
|
73
|
+
def forward(self, y):
|
|
74
|
+
y = torch.nn.functional.pad(
|
|
75
|
+
y.unsqueeze(1),
|
|
76
|
+
(
|
|
77
|
+
int((self.n_fft - self.hop_size) / 2),
|
|
78
|
+
int((self.n_fft - self.hop_size) / 2),
|
|
79
|
+
),
|
|
80
|
+
mode="reflect",
|
|
81
|
+
)
|
|
82
|
+
y = y.squeeze(1)
|
|
83
|
+
spec = torch.stft(
|
|
84
|
+
y,
|
|
85
|
+
self.n_fft,
|
|
86
|
+
hop_length=self.hop_size,
|
|
87
|
+
win_length=self.win_size,
|
|
88
|
+
window=self.hann_window,
|
|
89
|
+
center=self.center,
|
|
90
|
+
pad_mode="reflect",
|
|
91
|
+
normalized=False,
|
|
92
|
+
onesided=True,
|
|
93
|
+
return_complex=True,
|
|
94
|
+
)
|
|
95
|
+
spec = torch.view_as_real(spec)
|
|
96
|
+
|
|
97
|
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
|
98
|
+
|
|
99
|
+
spec = torch.matmul(self.mel_basis, spec)
|
|
100
|
+
spec = spectral_normalize_torch(spec)
|
|
101
|
+
|
|
102
|
+
return spec
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
from typing import Union
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from einops import rearrange
|
|
13
|
+
from torch.nn.utils import weight_norm
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class FactorizedVectorQuantize(nn.Module):
|
|
17
|
+
def __init__(self, dim, codebook_size, codebook_dim, commitment, **kwargs):
|
|
18
|
+
super().__init__()
|
|
19
|
+
self.codebook_size = codebook_size
|
|
20
|
+
self.codebook_dim = codebook_dim
|
|
21
|
+
self.commitment = commitment
|
|
22
|
+
|
|
23
|
+
if dim != self.codebook_dim:
|
|
24
|
+
self.in_proj = weight_norm(nn.Linear(dim, self.codebook_dim))
|
|
25
|
+
self.out_proj = weight_norm(nn.Linear(self.codebook_dim, dim))
|
|
26
|
+
else:
|
|
27
|
+
self.in_proj = nn.Identity()
|
|
28
|
+
self.out_proj = nn.Identity()
|
|
29
|
+
self._codebook = nn.Embedding(codebook_size, self.codebook_dim)
|
|
30
|
+
|
|
31
|
+
@property
|
|
32
|
+
def codebook(self):
|
|
33
|
+
return self._codebook
|
|
34
|
+
|
|
35
|
+
def forward(self, z):
|
|
36
|
+
"""Quantized the input tensor using a fixed codebook and returns
|
|
37
|
+
the corresponding codebook vectors
|
|
38
|
+
|
|
39
|
+
Parameters
|
|
40
|
+
----------
|
|
41
|
+
z : Tensor[B x D x T]
|
|
42
|
+
|
|
43
|
+
Returns
|
|
44
|
+
-------
|
|
45
|
+
Tensor[B x D x T]
|
|
46
|
+
Quantized continuous representation of input
|
|
47
|
+
Tensor[1]
|
|
48
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
49
|
+
entries
|
|
50
|
+
Tensor[1]
|
|
51
|
+
Codebook loss to update the codebook
|
|
52
|
+
Tensor[B x T]
|
|
53
|
+
Codebook indices (quantized discrete representation of input)
|
|
54
|
+
Tensor[B x D x T]
|
|
55
|
+
Projected latents (continuous representation of input before quantization)
|
|
56
|
+
"""
|
|
57
|
+
# transpose since we use linear
|
|
58
|
+
|
|
59
|
+
z = rearrange(z, "b d t -> b t d")
|
|
60
|
+
|
|
61
|
+
# Factorized codes project input into low-dimensional space
|
|
62
|
+
z_e = self.in_proj(z) # z_e : (B x T x D)
|
|
63
|
+
z_e = rearrange(z_e, "b t d -> b d t")
|
|
64
|
+
z_q, indices = self.decode_latents(z_e)
|
|
65
|
+
|
|
66
|
+
if self.training:
|
|
67
|
+
commitment_loss = (
|
|
68
|
+
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
|
|
69
|
+
* self.commitment
|
|
70
|
+
)
|
|
71
|
+
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
|
|
72
|
+
commit_loss = commitment_loss + codebook_loss
|
|
73
|
+
else:
|
|
74
|
+
commit_loss = torch.zeros(z.shape[0], device=z.device)
|
|
75
|
+
|
|
76
|
+
z_q = (
|
|
77
|
+
z_e + (z_q - z_e).detach()
|
|
78
|
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
|
79
|
+
|
|
80
|
+
z_q = rearrange(z_q, "b d t -> b t d")
|
|
81
|
+
z_q = self.out_proj(z_q)
|
|
82
|
+
z_q = rearrange(z_q, "b t d -> b d t")
|
|
83
|
+
|
|
84
|
+
return z_q, indices, commit_loss
|
|
85
|
+
|
|
86
|
+
def vq2emb(self, vq, proj=True):
|
|
87
|
+
emb = self.embed_code(vq)
|
|
88
|
+
if proj:
|
|
89
|
+
emb = self.out_proj(emb)
|
|
90
|
+
return emb.transpose(1, 2)
|
|
91
|
+
|
|
92
|
+
def get_emb(self):
|
|
93
|
+
return self.codebook.weight
|
|
94
|
+
|
|
95
|
+
def embed_code(self, embed_id):
|
|
96
|
+
return F.embedding(embed_id, self.codebook.weight)
|
|
97
|
+
|
|
98
|
+
def decode_code(self, embed_id):
|
|
99
|
+
return self.embed_code(embed_id).transpose(1, 2)
|
|
100
|
+
|
|
101
|
+
def decode_latents(self, latents):
|
|
102
|
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
|
103
|
+
codebook = self.codebook.weight # codebook: (N x D)
|
|
104
|
+
# L2 normalize encodings and codebook
|
|
105
|
+
encodings = F.normalize(encodings)
|
|
106
|
+
codebook = F.normalize(codebook)
|
|
107
|
+
|
|
108
|
+
# Compute euclidean distance with codebook
|
|
109
|
+
dist = (
|
|
110
|
+
encodings.pow(2).sum(1, keepdim=True)
|
|
111
|
+
- 2 * encodings @ codebook.t()
|
|
112
|
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
|
113
|
+
)
|
|
114
|
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
|
115
|
+
z_q = self.decode_code(indices)
|
|
116
|
+
return z_q, indices
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import math
|
|
7
|
+
import torch
|
|
8
|
+
from torch import nn
|
|
9
|
+
from .fvq import FactorizedVectorQuantize
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class ResidualVQ(nn.Module):
|
|
13
|
+
"""Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf"""
|
|
14
|
+
|
|
15
|
+
def __init__(self, *, num_quantizers, codebook_size, **kwargs):
|
|
16
|
+
super().__init__()
|
|
17
|
+
VQ = FactorizedVectorQuantize
|
|
18
|
+
if type(codebook_size) == int:
|
|
19
|
+
codebook_size = [codebook_size] * num_quantizers
|
|
20
|
+
self.layers = nn.ModuleList(
|
|
21
|
+
[VQ(codebook_size=2**size, **kwargs) for size in codebook_size]
|
|
22
|
+
)
|
|
23
|
+
self.num_quantizers = num_quantizers
|
|
24
|
+
self.quantizer_dropout = kwargs.get("quantizer_dropout", 0.0)
|
|
25
|
+
self.dropout_type = kwargs.get("dropout_type", None)
|
|
26
|
+
|
|
27
|
+
def forward(self, x, n_quantizers=None):
|
|
28
|
+
quantized_out = 0.0
|
|
29
|
+
residual = x
|
|
30
|
+
|
|
31
|
+
all_losses = []
|
|
32
|
+
all_indices = []
|
|
33
|
+
all_quantized = []
|
|
34
|
+
|
|
35
|
+
if n_quantizers is None:
|
|
36
|
+
n_quantizers = self.num_quantizers
|
|
37
|
+
if self.training:
|
|
38
|
+
n_quantizers = torch.ones((x.shape[0],)) * self.num_quantizers + 1
|
|
39
|
+
if self.dropout_type == "linear":
|
|
40
|
+
dropout = torch.randint(1, self.num_quantizers + 1, (x.shape[0],))
|
|
41
|
+
elif self.dropout_type == "exp":
|
|
42
|
+
dropout = torch.randint(
|
|
43
|
+
1, int(math.log2(self.num_quantizers)), (x.shape[0],)
|
|
44
|
+
)
|
|
45
|
+
dropout = torch.pow(2, dropout)
|
|
46
|
+
n_dropout = int(x.shape[0] * self.quantizer_dropout)
|
|
47
|
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
|
48
|
+
n_quantizers = n_quantizers.to(x.device)
|
|
49
|
+
|
|
50
|
+
for idx, layer in enumerate(self.layers):
|
|
51
|
+
if not self.training and idx >= n_quantizers:
|
|
52
|
+
break
|
|
53
|
+
quantized, indices, loss = layer(residual)
|
|
54
|
+
|
|
55
|
+
mask = (
|
|
56
|
+
torch.full((x.shape[0],), fill_value=idx, device=x.device)
|
|
57
|
+
< n_quantizers
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
residual = residual - quantized
|
|
61
|
+
|
|
62
|
+
quantized_out = quantized_out + quantized * mask[:, None, None]
|
|
63
|
+
|
|
64
|
+
# loss
|
|
65
|
+
loss = (loss * mask).mean()
|
|
66
|
+
|
|
67
|
+
all_indices.append(indices)
|
|
68
|
+
all_losses.append(loss)
|
|
69
|
+
all_quantized.append(quantized)
|
|
70
|
+
all_losses, all_indices, all_quantized = map(
|
|
71
|
+
torch.stack, (all_losses, all_indices, all_quantized)
|
|
72
|
+
)
|
|
73
|
+
return quantized_out, all_indices, all_losses, all_quantized
|
|
74
|
+
|
|
75
|
+
def vq2emb(self, vq):
|
|
76
|
+
# vq: [n_quantizers, B, T]
|
|
77
|
+
quantized_out = 0.0
|
|
78
|
+
for idx, layer in enumerate(self.layers):
|
|
79
|
+
quantized = layer.vq2emb(vq[idx])
|
|
80
|
+
quantized_out += quantized
|
|
81
|
+
return quantized_out
|
|
82
|
+
|
|
83
|
+
def get_emb(self):
|
|
84
|
+
embs = []
|
|
85
|
+
for idx, layer in enumerate(self.layers):
|
|
86
|
+
embs.append(layer.get_emb())
|
|
87
|
+
return embs
|
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
import math
|
|
10
|
+
from torch.nn import functional as F
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class StyleAdaptiveLayerNorm(nn.Module):
|
|
14
|
+
def __init__(self, normalized_shape, eps=1e-5):
|
|
15
|
+
super().__init__()
|
|
16
|
+
self.in_dim = normalized_shape
|
|
17
|
+
self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False)
|
|
18
|
+
self.style = nn.Linear(self.in_dim, self.in_dim * 2)
|
|
19
|
+
self.style.bias.data[: self.in_dim] = 1
|
|
20
|
+
self.style.bias.data[self.in_dim :] = 0
|
|
21
|
+
|
|
22
|
+
def forward(self, x, condition):
|
|
23
|
+
# x: (B, T, d); condition: (B, T, d)
|
|
24
|
+
|
|
25
|
+
style = self.style(torch.mean(condition, dim=1, keepdim=True))
|
|
26
|
+
|
|
27
|
+
gamma, beta = style.chunk(2, -1)
|
|
28
|
+
|
|
29
|
+
out = self.norm(x)
|
|
30
|
+
|
|
31
|
+
out = gamma * out + beta
|
|
32
|
+
return out
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class PositionalEncoding(nn.Module):
|
|
36
|
+
def __init__(self, d_model, dropout, max_len=5000):
|
|
37
|
+
super().__init__()
|
|
38
|
+
|
|
39
|
+
self.dropout = dropout
|
|
40
|
+
position = torch.arange(max_len).unsqueeze(1)
|
|
41
|
+
div_term = torch.exp(
|
|
42
|
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
|
43
|
+
)
|
|
44
|
+
pe = torch.zeros(max_len, 1, d_model)
|
|
45
|
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
|
46
|
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
|
47
|
+
self.register_buffer("pe", pe)
|
|
48
|
+
|
|
49
|
+
def forward(self, x):
|
|
50
|
+
x = x + self.pe[: x.size(0)]
|
|
51
|
+
return F.dropout(x, self.dropout, training=self.training)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class TransformerFFNLayer(nn.Module):
|
|
55
|
+
def __init__(
|
|
56
|
+
self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout
|
|
57
|
+
):
|
|
58
|
+
super().__init__()
|
|
59
|
+
|
|
60
|
+
self.encoder_hidden = encoder_hidden
|
|
61
|
+
self.conv_filter_size = conv_filter_size
|
|
62
|
+
self.conv_kernel_size = conv_kernel_size
|
|
63
|
+
self.encoder_dropout = encoder_dropout
|
|
64
|
+
|
|
65
|
+
self.ffn_1 = nn.Conv1d(
|
|
66
|
+
self.encoder_hidden,
|
|
67
|
+
self.conv_filter_size,
|
|
68
|
+
self.conv_kernel_size,
|
|
69
|
+
padding=self.conv_kernel_size // 2,
|
|
70
|
+
)
|
|
71
|
+
self.ffn_1.weight.data.normal_(0.0, 0.02)
|
|
72
|
+
self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden)
|
|
73
|
+
self.ffn_2.weight.data.normal_(0.0, 0.02)
|
|
74
|
+
|
|
75
|
+
def forward(self, x):
|
|
76
|
+
# x: (B, T, d)
|
|
77
|
+
x = self.ffn_1(x.permute(0, 2, 1)).permute(
|
|
78
|
+
0, 2, 1
|
|
79
|
+
) # (B, T, d) -> (B, d, T) -> (B, T, d)
|
|
80
|
+
x = F.relu(x)
|
|
81
|
+
x = F.dropout(x, self.encoder_dropout, training=self.training)
|
|
82
|
+
x = self.ffn_2(x)
|
|
83
|
+
return x
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
class TransformerEncoderLayer(nn.Module):
|
|
87
|
+
def __init__(
|
|
88
|
+
self,
|
|
89
|
+
encoder_hidden,
|
|
90
|
+
encoder_head,
|
|
91
|
+
conv_filter_size,
|
|
92
|
+
conv_kernel_size,
|
|
93
|
+
encoder_dropout,
|
|
94
|
+
use_cln,
|
|
95
|
+
):
|
|
96
|
+
super().__init__()
|
|
97
|
+
self.encoder_hidden = encoder_hidden
|
|
98
|
+
self.encoder_head = encoder_head
|
|
99
|
+
self.conv_filter_size = conv_filter_size
|
|
100
|
+
self.conv_kernel_size = conv_kernel_size
|
|
101
|
+
self.encoder_dropout = encoder_dropout
|
|
102
|
+
self.use_cln = use_cln
|
|
103
|
+
|
|
104
|
+
if not self.use_cln:
|
|
105
|
+
self.ln_1 = nn.LayerNorm(self.encoder_hidden)
|
|
106
|
+
self.ln_2 = nn.LayerNorm(self.encoder_hidden)
|
|
107
|
+
else:
|
|
108
|
+
self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden)
|
|
109
|
+
self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden)
|
|
110
|
+
|
|
111
|
+
self.self_attn = nn.MultiheadAttention(
|
|
112
|
+
self.encoder_hidden, self.encoder_head, batch_first=True
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
self.ffn = TransformerFFNLayer(
|
|
116
|
+
self.encoder_hidden,
|
|
117
|
+
self.conv_filter_size,
|
|
118
|
+
self.conv_kernel_size,
|
|
119
|
+
self.encoder_dropout,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
def forward(self, x, key_padding_mask, conditon=None):
|
|
123
|
+
# x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d)
|
|
124
|
+
|
|
125
|
+
# self attention
|
|
126
|
+
residual = x
|
|
127
|
+
if self.use_cln:
|
|
128
|
+
x = self.ln_1(x, conditon)
|
|
129
|
+
else:
|
|
130
|
+
x = self.ln_1(x)
|
|
131
|
+
|
|
132
|
+
if key_padding_mask != None:
|
|
133
|
+
key_padding_mask_input = ~(key_padding_mask.bool())
|
|
134
|
+
else:
|
|
135
|
+
key_padding_mask_input = None
|
|
136
|
+
x, _ = self.self_attn(
|
|
137
|
+
query=x, key=x, value=x, key_padding_mask=key_padding_mask_input
|
|
138
|
+
)
|
|
139
|
+
x = F.dropout(x, self.encoder_dropout, training=self.training)
|
|
140
|
+
x = residual + x
|
|
141
|
+
|
|
142
|
+
# ffn
|
|
143
|
+
residual = x
|
|
144
|
+
if self.use_cln:
|
|
145
|
+
x = self.ln_2(x, conditon)
|
|
146
|
+
else:
|
|
147
|
+
x = self.ln_2(x)
|
|
148
|
+
x = self.ffn(x)
|
|
149
|
+
x = residual + x
|
|
150
|
+
|
|
151
|
+
return x
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
class TransformerEncoder(nn.Module):
|
|
155
|
+
def __init__(
|
|
156
|
+
self,
|
|
157
|
+
enc_emb_tokens=None,
|
|
158
|
+
encoder_layer=4,
|
|
159
|
+
encoder_hidden=256,
|
|
160
|
+
encoder_head=4,
|
|
161
|
+
conv_filter_size=1024,
|
|
162
|
+
conv_kernel_size=5,
|
|
163
|
+
encoder_dropout=0.1,
|
|
164
|
+
use_cln=False,
|
|
165
|
+
cfg=None,
|
|
166
|
+
):
|
|
167
|
+
super().__init__()
|
|
168
|
+
|
|
169
|
+
self.encoder_layer = (
|
|
170
|
+
encoder_layer if encoder_layer is not None else cfg.encoder_layer
|
|
171
|
+
)
|
|
172
|
+
self.encoder_hidden = (
|
|
173
|
+
encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden
|
|
174
|
+
)
|
|
175
|
+
self.encoder_head = (
|
|
176
|
+
encoder_head if encoder_head is not None else cfg.encoder_head
|
|
177
|
+
)
|
|
178
|
+
self.conv_filter_size = (
|
|
179
|
+
conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size
|
|
180
|
+
)
|
|
181
|
+
self.conv_kernel_size = (
|
|
182
|
+
conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size
|
|
183
|
+
)
|
|
184
|
+
self.encoder_dropout = (
|
|
185
|
+
encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout
|
|
186
|
+
)
|
|
187
|
+
self.use_cln = use_cln if use_cln is not None else cfg.use_cln
|
|
188
|
+
|
|
189
|
+
if enc_emb_tokens != None:
|
|
190
|
+
self.use_enc_emb = True
|
|
191
|
+
self.enc_emb_tokens = enc_emb_tokens
|
|
192
|
+
else:
|
|
193
|
+
self.use_enc_emb = False
|
|
194
|
+
|
|
195
|
+
self.position_emb = PositionalEncoding(
|
|
196
|
+
self.encoder_hidden, self.encoder_dropout
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
self.layers = nn.ModuleList([])
|
|
200
|
+
self.layers.extend(
|
|
201
|
+
[
|
|
202
|
+
TransformerEncoderLayer(
|
|
203
|
+
self.encoder_hidden,
|
|
204
|
+
self.encoder_head,
|
|
205
|
+
self.conv_filter_size,
|
|
206
|
+
self.conv_kernel_size,
|
|
207
|
+
self.encoder_dropout,
|
|
208
|
+
self.use_cln,
|
|
209
|
+
)
|
|
210
|
+
for i in range(self.encoder_layer)
|
|
211
|
+
]
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
if self.use_cln:
|
|
215
|
+
self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden)
|
|
216
|
+
else:
|
|
217
|
+
self.last_ln = nn.LayerNorm(self.encoder_hidden)
|
|
218
|
+
|
|
219
|
+
def forward(self, x, key_padding_mask, condition=None):
|
|
220
|
+
if len(x.shape) == 2 and self.use_enc_emb:
|
|
221
|
+
x = self.enc_emb_tokens(x)
|
|
222
|
+
x = self.position_emb(x)
|
|
223
|
+
else:
|
|
224
|
+
x = self.position_emb(x) # (B, T, d)
|
|
225
|
+
|
|
226
|
+
for layer in self.layers:
|
|
227
|
+
x = layer(x, key_padding_mask, condition)
|
|
228
|
+
|
|
229
|
+
if self.use_cln:
|
|
230
|
+
x = self.last_ln(x, condition)
|
|
231
|
+
else:
|
|
232
|
+
x = self.last_ln(x)
|
|
233
|
+
|
|
234
|
+
return x
|