xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import shlex
|
|
3
|
+
import subprocess
|
|
4
|
+
import tempfile
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import Tuple
|
|
7
|
+
|
|
8
|
+
import ffmpy
|
|
9
|
+
import numpy as np
|
|
10
|
+
import torch
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def r128stats(filepath: str, quiet: bool):
|
|
14
|
+
"""Takes a path to an audio file, returns a dict with the loudness
|
|
15
|
+
stats computed by the ffmpeg ebur128 filter.
|
|
16
|
+
|
|
17
|
+
Parameters
|
|
18
|
+
----------
|
|
19
|
+
filepath : str
|
|
20
|
+
Path to compute loudness stats on.
|
|
21
|
+
quiet : bool
|
|
22
|
+
Whether to show FFMPEG output during computation.
|
|
23
|
+
|
|
24
|
+
Returns
|
|
25
|
+
-------
|
|
26
|
+
dict
|
|
27
|
+
Dictionary containing loudness stats.
|
|
28
|
+
"""
|
|
29
|
+
ffargs = [
|
|
30
|
+
"ffmpeg",
|
|
31
|
+
"-nostats",
|
|
32
|
+
"-i",
|
|
33
|
+
filepath,
|
|
34
|
+
"-filter_complex",
|
|
35
|
+
"ebur128",
|
|
36
|
+
"-f",
|
|
37
|
+
"null",
|
|
38
|
+
"-",
|
|
39
|
+
]
|
|
40
|
+
if quiet:
|
|
41
|
+
ffargs += ["-hide_banner"]
|
|
42
|
+
proc = subprocess.Popen(ffargs, stderr=subprocess.PIPE, universal_newlines=True)
|
|
43
|
+
stats = proc.communicate()[1]
|
|
44
|
+
summary_index = stats.rfind("Summary:")
|
|
45
|
+
|
|
46
|
+
summary_list = stats[summary_index:].split()
|
|
47
|
+
i_lufs = float(summary_list[summary_list.index("I:") + 1])
|
|
48
|
+
i_thresh = float(summary_list[summary_list.index("I:") + 4])
|
|
49
|
+
lra = float(summary_list[summary_list.index("LRA:") + 1])
|
|
50
|
+
lra_thresh = float(summary_list[summary_list.index("LRA:") + 4])
|
|
51
|
+
lra_low = float(summary_list[summary_list.index("low:") + 1])
|
|
52
|
+
lra_high = float(summary_list[summary_list.index("high:") + 1])
|
|
53
|
+
stats_dict = {
|
|
54
|
+
"I": i_lufs,
|
|
55
|
+
"I Threshold": i_thresh,
|
|
56
|
+
"LRA": lra,
|
|
57
|
+
"LRA Threshold": lra_thresh,
|
|
58
|
+
"LRA Low": lra_low,
|
|
59
|
+
"LRA High": lra_high,
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
return stats_dict
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def ffprobe_offset_and_codec(path: str) -> Tuple[float, str]:
|
|
66
|
+
"""Given a path to a file, returns the start time offset and codec of
|
|
67
|
+
the first audio stream.
|
|
68
|
+
"""
|
|
69
|
+
ff = ffmpy.FFprobe(
|
|
70
|
+
inputs={path: None},
|
|
71
|
+
global_options="-show_entries format=start_time:stream=duration,start_time,codec_type,codec_name,start_pts,time_base -of json -v quiet",
|
|
72
|
+
)
|
|
73
|
+
streams = json.loads(ff.run(stdout=subprocess.PIPE)[0])["streams"]
|
|
74
|
+
seconds_offset = 0.0
|
|
75
|
+
codec = None
|
|
76
|
+
|
|
77
|
+
# Get the offset and codec of the first audio stream we find
|
|
78
|
+
# and return its start time, if it has one.
|
|
79
|
+
for stream in streams:
|
|
80
|
+
if stream["codec_type"] == "audio":
|
|
81
|
+
seconds_offset = stream.get("start_time", 0.0)
|
|
82
|
+
codec = stream.get("codec_name")
|
|
83
|
+
break
|
|
84
|
+
return float(seconds_offset), codec
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class FFMPEGMixin:
|
|
88
|
+
_loudness = None
|
|
89
|
+
|
|
90
|
+
def ffmpeg_loudness(self, quiet: bool = True):
|
|
91
|
+
"""Computes loudness of audio file using FFMPEG.
|
|
92
|
+
|
|
93
|
+
Parameters
|
|
94
|
+
----------
|
|
95
|
+
quiet : bool, optional
|
|
96
|
+
Whether to show FFMPEG output during computation,
|
|
97
|
+
by default True
|
|
98
|
+
|
|
99
|
+
Returns
|
|
100
|
+
-------
|
|
101
|
+
torch.Tensor
|
|
102
|
+
Loudness of every item in the batch, computed via
|
|
103
|
+
FFMPEG.
|
|
104
|
+
"""
|
|
105
|
+
loudness = []
|
|
106
|
+
|
|
107
|
+
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
|
|
108
|
+
for i in range(self.batch_size):
|
|
109
|
+
self[i].write(f.name)
|
|
110
|
+
loudness_stats = r128stats(f.name, quiet=quiet)
|
|
111
|
+
loudness.append(loudness_stats["I"])
|
|
112
|
+
|
|
113
|
+
self._loudness = torch.from_numpy(np.array(loudness)).float()
|
|
114
|
+
return self.loudness()
|
|
115
|
+
|
|
116
|
+
def ffmpeg_resample(self, sample_rate: int, quiet: bool = True):
|
|
117
|
+
"""Resamples AudioSignal using FFMPEG. More memory-efficient
|
|
118
|
+
than using julius.resample for long audio files.
|
|
119
|
+
|
|
120
|
+
Parameters
|
|
121
|
+
----------
|
|
122
|
+
sample_rate : int
|
|
123
|
+
Sample rate to resample to.
|
|
124
|
+
quiet : bool, optional
|
|
125
|
+
Whether to show FFMPEG output during computation,
|
|
126
|
+
by default True
|
|
127
|
+
|
|
128
|
+
Returns
|
|
129
|
+
-------
|
|
130
|
+
AudioSignal
|
|
131
|
+
Resampled AudioSignal.
|
|
132
|
+
"""
|
|
133
|
+
from audiotools import AudioSignal
|
|
134
|
+
|
|
135
|
+
if sample_rate == self.sample_rate:
|
|
136
|
+
return self
|
|
137
|
+
|
|
138
|
+
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
|
|
139
|
+
self.write(f.name)
|
|
140
|
+
f_out = f.name.replace("wav", "rs.wav")
|
|
141
|
+
command = f"ffmpeg -i {f.name} -ar {sample_rate} {f_out}"
|
|
142
|
+
if quiet:
|
|
143
|
+
command += " -hide_banner -loglevel error"
|
|
144
|
+
subprocess.check_call(shlex.split(command))
|
|
145
|
+
resampled = AudioSignal(f_out)
|
|
146
|
+
Path.unlink(Path(f_out))
|
|
147
|
+
return resampled
|
|
148
|
+
|
|
149
|
+
@classmethod
|
|
150
|
+
def load_from_file_with_ffmpeg(cls, audio_path: str, quiet: bool = True, **kwargs):
|
|
151
|
+
"""Loads AudioSignal object after decoding it to a wav file using FFMPEG.
|
|
152
|
+
Useful for loading audio that isn't covered by librosa's loading mechanism. Also
|
|
153
|
+
useful for loading mp3 files, without any offset.
|
|
154
|
+
|
|
155
|
+
Parameters
|
|
156
|
+
----------
|
|
157
|
+
audio_path : str
|
|
158
|
+
Path to load AudioSignal from.
|
|
159
|
+
quiet : bool, optional
|
|
160
|
+
Whether to show FFMPEG output during computation,
|
|
161
|
+
by default True
|
|
162
|
+
|
|
163
|
+
Returns
|
|
164
|
+
-------
|
|
165
|
+
AudioSignal
|
|
166
|
+
AudioSignal loaded from file with FFMPEG.
|
|
167
|
+
"""
|
|
168
|
+
audio_path = str(audio_path)
|
|
169
|
+
with tempfile.TemporaryDirectory() as d:
|
|
170
|
+
wav_file = str(Path(d) / "extracted.wav")
|
|
171
|
+
padded_wav = str(Path(d) / "padded.wav")
|
|
172
|
+
|
|
173
|
+
global_options = "-y"
|
|
174
|
+
if quiet:
|
|
175
|
+
global_options += " -loglevel error"
|
|
176
|
+
|
|
177
|
+
ff = ffmpy.FFmpeg(
|
|
178
|
+
inputs={audio_path: None},
|
|
179
|
+
# For inputs that are m4a (and others?), the input audio can
|
|
180
|
+
# have samples that don't match the sample rate. This aresample
|
|
181
|
+
# option forces ffmpeg to read timing information in the source
|
|
182
|
+
# file instead of assuming constant sample rate.
|
|
183
|
+
#
|
|
184
|
+
# This fixes an issue where an input m4a file might be a
|
|
185
|
+
# different length than the output wav file
|
|
186
|
+
outputs={wav_file: "-af aresample=async=1000"},
|
|
187
|
+
global_options=global_options,
|
|
188
|
+
)
|
|
189
|
+
ff.run()
|
|
190
|
+
|
|
191
|
+
# We pad the file using the start time offset in case it's an audio
|
|
192
|
+
# stream starting at some offset in a video container.
|
|
193
|
+
pad, codec = ffprobe_offset_and_codec(audio_path)
|
|
194
|
+
|
|
195
|
+
# For mp3s, don't pad files with discrepancies less than 0.027s -
|
|
196
|
+
# it's likely due to codec latency. The amount of latency introduced
|
|
197
|
+
# by mp3 is 1152, which is 0.0261 44khz. So we set the threshold
|
|
198
|
+
# here slightly above that.
|
|
199
|
+
# Source: https://lame.sourceforge.io/tech-FAQ.txt.
|
|
200
|
+
if codec == "mp3" and pad < 0.027:
|
|
201
|
+
pad = 0.0
|
|
202
|
+
ff = ffmpy.FFmpeg(
|
|
203
|
+
inputs={wav_file: None},
|
|
204
|
+
outputs={padded_wav: f"-af 'adelay={pad*1000}:all=true'"},
|
|
205
|
+
global_options=global_options,
|
|
206
|
+
)
|
|
207
|
+
ff.run()
|
|
208
|
+
|
|
209
|
+
signal = cls(padded_wav, **kwargs)
|
|
210
|
+
|
|
211
|
+
return signal
|
|
@@ -0,0 +1,320 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
|
|
3
|
+
import julius
|
|
4
|
+
import numpy as np
|
|
5
|
+
import scipy
|
|
6
|
+
import torch
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
import torchaudio
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class Meter(torch.nn.Module):
|
|
12
|
+
"""Tensorized version of pyloudnorm.Meter. Works with batched audio tensors.
|
|
13
|
+
|
|
14
|
+
Parameters
|
|
15
|
+
----------
|
|
16
|
+
rate : int
|
|
17
|
+
Sample rate of audio.
|
|
18
|
+
filter_class : str, optional
|
|
19
|
+
Class of weighting filter used.
|
|
20
|
+
K-weighting' (default), 'Fenton/Lee 1'
|
|
21
|
+
'Fenton/Lee 2', 'Dash et al.'
|
|
22
|
+
by default "K-weighting"
|
|
23
|
+
block_size : float, optional
|
|
24
|
+
Gating block size in seconds, by default 0.400
|
|
25
|
+
zeros : int, optional
|
|
26
|
+
Number of zeros to use in FIR approximation of
|
|
27
|
+
IIR filters, by default 512
|
|
28
|
+
use_fir : bool, optional
|
|
29
|
+
Whether to use FIR approximation or exact IIR formulation.
|
|
30
|
+
If computing on GPU, ``use_fir=True`` will be used, as its
|
|
31
|
+
much faster, by default False
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
def __init__(
|
|
35
|
+
self,
|
|
36
|
+
rate: int,
|
|
37
|
+
filter_class: str = "K-weighting",
|
|
38
|
+
block_size: float = 0.400,
|
|
39
|
+
zeros: int = 512,
|
|
40
|
+
use_fir: bool = False,
|
|
41
|
+
):
|
|
42
|
+
super().__init__()
|
|
43
|
+
|
|
44
|
+
self.rate = rate
|
|
45
|
+
self.filter_class = filter_class
|
|
46
|
+
self.block_size = block_size
|
|
47
|
+
self.use_fir = use_fir
|
|
48
|
+
|
|
49
|
+
G = torch.from_numpy(np.array([1.0, 1.0, 1.0, 1.41, 1.41]))
|
|
50
|
+
self.register_buffer("G", G)
|
|
51
|
+
|
|
52
|
+
# Compute impulse responses so that filtering is fast via
|
|
53
|
+
# a convolution at runtime, on GPU, unlike lfilter.
|
|
54
|
+
impulse = np.zeros((zeros,))
|
|
55
|
+
impulse[..., 0] = 1.0
|
|
56
|
+
|
|
57
|
+
firs = np.zeros((len(self._filters), 1, zeros))
|
|
58
|
+
passband_gain = torch.zeros(len(self._filters))
|
|
59
|
+
|
|
60
|
+
for i, (_, filter_stage) in enumerate(self._filters.items()):
|
|
61
|
+
firs[i] = scipy.signal.lfilter(filter_stage.b, filter_stage.a, impulse)
|
|
62
|
+
passband_gain[i] = filter_stage.passband_gain
|
|
63
|
+
|
|
64
|
+
firs = torch.from_numpy(firs[..., ::-1].copy()).float()
|
|
65
|
+
|
|
66
|
+
self.register_buffer("firs", firs)
|
|
67
|
+
self.register_buffer("passband_gain", passband_gain)
|
|
68
|
+
|
|
69
|
+
def apply_filter_gpu(self, data: torch.Tensor):
|
|
70
|
+
"""Performs FIR approximation of loudness computation.
|
|
71
|
+
|
|
72
|
+
Parameters
|
|
73
|
+
----------
|
|
74
|
+
data : torch.Tensor
|
|
75
|
+
Audio data of shape (nb, nch, nt).
|
|
76
|
+
|
|
77
|
+
Returns
|
|
78
|
+
-------
|
|
79
|
+
torch.Tensor
|
|
80
|
+
Filtered audio data.
|
|
81
|
+
"""
|
|
82
|
+
# Data is of shape (nb, nch, nt)
|
|
83
|
+
# Reshape to (nb*nch, 1, nt)
|
|
84
|
+
nb, nt, nch = data.shape
|
|
85
|
+
data = data.permute(0, 2, 1)
|
|
86
|
+
data = data.reshape(nb * nch, 1, nt)
|
|
87
|
+
|
|
88
|
+
# Apply padding
|
|
89
|
+
pad_length = self.firs.shape[-1]
|
|
90
|
+
|
|
91
|
+
# Apply filtering in sequence
|
|
92
|
+
for i in range(self.firs.shape[0]):
|
|
93
|
+
data = F.pad(data, (pad_length, pad_length))
|
|
94
|
+
data = julius.fftconv.fft_conv1d(data, self.firs[i, None, ...])
|
|
95
|
+
data = self.passband_gain[i] * data
|
|
96
|
+
data = data[..., 1 : nt + 1]
|
|
97
|
+
|
|
98
|
+
data = data.permute(0, 2, 1)
|
|
99
|
+
data = data[:, :nt, :]
|
|
100
|
+
return data
|
|
101
|
+
|
|
102
|
+
def apply_filter_cpu(self, data: torch.Tensor):
|
|
103
|
+
"""Performs IIR formulation of loudness computation.
|
|
104
|
+
|
|
105
|
+
Parameters
|
|
106
|
+
----------
|
|
107
|
+
data : torch.Tensor
|
|
108
|
+
Audio data of shape (nb, nch, nt).
|
|
109
|
+
|
|
110
|
+
Returns
|
|
111
|
+
-------
|
|
112
|
+
torch.Tensor
|
|
113
|
+
Filtered audio data.
|
|
114
|
+
"""
|
|
115
|
+
for _, filter_stage in self._filters.items():
|
|
116
|
+
passband_gain = filter_stage.passband_gain
|
|
117
|
+
|
|
118
|
+
a_coeffs = torch.from_numpy(filter_stage.a).float().to(data.device)
|
|
119
|
+
b_coeffs = torch.from_numpy(filter_stage.b).float().to(data.device)
|
|
120
|
+
|
|
121
|
+
_data = data.permute(0, 2, 1)
|
|
122
|
+
filtered = torchaudio.functional.lfilter(
|
|
123
|
+
_data, a_coeffs, b_coeffs, clamp=False
|
|
124
|
+
)
|
|
125
|
+
data = passband_gain * filtered.permute(0, 2, 1)
|
|
126
|
+
return data
|
|
127
|
+
|
|
128
|
+
def apply_filter(self, data: torch.Tensor):
|
|
129
|
+
"""Applies filter on either CPU or GPU, depending
|
|
130
|
+
on if the audio is on GPU or is on CPU, or if
|
|
131
|
+
``self.use_fir`` is True.
|
|
132
|
+
|
|
133
|
+
Parameters
|
|
134
|
+
----------
|
|
135
|
+
data : torch.Tensor
|
|
136
|
+
Audio data of shape (nb, nch, nt).
|
|
137
|
+
|
|
138
|
+
Returns
|
|
139
|
+
-------
|
|
140
|
+
torch.Tensor
|
|
141
|
+
Filtered audio data.
|
|
142
|
+
"""
|
|
143
|
+
if data.is_cuda or self.use_fir:
|
|
144
|
+
data = self.apply_filter_gpu(data)
|
|
145
|
+
else:
|
|
146
|
+
data = self.apply_filter_cpu(data)
|
|
147
|
+
return data
|
|
148
|
+
|
|
149
|
+
def forward(self, data: torch.Tensor):
|
|
150
|
+
"""Computes integrated loudness of data.
|
|
151
|
+
|
|
152
|
+
Parameters
|
|
153
|
+
----------
|
|
154
|
+
data : torch.Tensor
|
|
155
|
+
Audio data of shape (nb, nch, nt).
|
|
156
|
+
|
|
157
|
+
Returns
|
|
158
|
+
-------
|
|
159
|
+
torch.Tensor
|
|
160
|
+
Filtered audio data.
|
|
161
|
+
"""
|
|
162
|
+
return self.integrated_loudness(data)
|
|
163
|
+
|
|
164
|
+
def _unfold(self, input_data):
|
|
165
|
+
T_g = self.block_size
|
|
166
|
+
overlap = 0.75 # overlap of 75% of the block duration
|
|
167
|
+
step = 1.0 - overlap # step size by percentage
|
|
168
|
+
|
|
169
|
+
kernel_size = int(T_g * self.rate)
|
|
170
|
+
stride = int(T_g * self.rate * step)
|
|
171
|
+
unfolded = julius.core.unfold(input_data.permute(0, 2, 1), kernel_size, stride)
|
|
172
|
+
unfolded = unfolded.transpose(-1, -2)
|
|
173
|
+
|
|
174
|
+
return unfolded
|
|
175
|
+
|
|
176
|
+
def integrated_loudness(self, data: torch.Tensor):
|
|
177
|
+
"""Computes integrated loudness of data.
|
|
178
|
+
|
|
179
|
+
Parameters
|
|
180
|
+
----------
|
|
181
|
+
data : torch.Tensor
|
|
182
|
+
Audio data of shape (nb, nch, nt).
|
|
183
|
+
|
|
184
|
+
Returns
|
|
185
|
+
-------
|
|
186
|
+
torch.Tensor
|
|
187
|
+
Filtered audio data.
|
|
188
|
+
"""
|
|
189
|
+
if not torch.is_tensor(data):
|
|
190
|
+
data = torch.from_numpy(data).float()
|
|
191
|
+
else:
|
|
192
|
+
data = data.float()
|
|
193
|
+
|
|
194
|
+
input_data = copy.copy(data)
|
|
195
|
+
# Data always has a batch and channel dimension.
|
|
196
|
+
# Is of shape (nb, nt, nch)
|
|
197
|
+
if input_data.ndim < 2:
|
|
198
|
+
input_data = input_data.unsqueeze(-1)
|
|
199
|
+
if input_data.ndim < 3:
|
|
200
|
+
input_data = input_data.unsqueeze(0)
|
|
201
|
+
|
|
202
|
+
nb, nt, nch = input_data.shape
|
|
203
|
+
|
|
204
|
+
# Apply frequency weighting filters - account
|
|
205
|
+
# for the acoustic respose of the head and auditory system
|
|
206
|
+
input_data = self.apply_filter(input_data)
|
|
207
|
+
|
|
208
|
+
G = self.G # channel gains
|
|
209
|
+
T_g = self.block_size # 400 ms gating block standard
|
|
210
|
+
Gamma_a = -70.0 # -70 LKFS = absolute loudness threshold
|
|
211
|
+
|
|
212
|
+
unfolded = self._unfold(input_data)
|
|
213
|
+
|
|
214
|
+
z = (1.0 / (T_g * self.rate)) * unfolded.square().sum(2)
|
|
215
|
+
l = -0.691 + 10.0 * torch.log10((G[None, :nch, None] * z).sum(1, keepdim=True))
|
|
216
|
+
l = l.expand_as(z)
|
|
217
|
+
|
|
218
|
+
# find gating block indices above absolute threshold
|
|
219
|
+
z_avg_gated = z
|
|
220
|
+
z_avg_gated[l <= Gamma_a] = 0
|
|
221
|
+
masked = l > Gamma_a
|
|
222
|
+
z_avg_gated = z_avg_gated.sum(2) / masked.sum(2)
|
|
223
|
+
|
|
224
|
+
# calculate the relative threshold value (see eq. 6)
|
|
225
|
+
Gamma_r = (
|
|
226
|
+
-0.691 + 10.0 * torch.log10((z_avg_gated * G[None, :nch]).sum(-1)) - 10.0
|
|
227
|
+
)
|
|
228
|
+
Gamma_r = Gamma_r[:, None, None]
|
|
229
|
+
Gamma_r = Gamma_r.expand(nb, nch, l.shape[-1])
|
|
230
|
+
|
|
231
|
+
# find gating block indices above relative and absolute thresholds (end of eq. 7)
|
|
232
|
+
z_avg_gated = z
|
|
233
|
+
z_avg_gated[l <= Gamma_a] = 0
|
|
234
|
+
z_avg_gated[l <= Gamma_r] = 0
|
|
235
|
+
masked = (l > Gamma_a) * (l > Gamma_r)
|
|
236
|
+
z_avg_gated = z_avg_gated.sum(2) / masked.sum(2)
|
|
237
|
+
|
|
238
|
+
# # Cannot use nan_to_num (pytorch 1.8 does not come with GCP-supported cuda version)
|
|
239
|
+
# z_avg_gated = torch.nan_to_num(z_avg_gated)
|
|
240
|
+
z_avg_gated = torch.where(
|
|
241
|
+
z_avg_gated.isnan(), torch.zeros_like(z_avg_gated), z_avg_gated
|
|
242
|
+
)
|
|
243
|
+
z_avg_gated[z_avg_gated == float("inf")] = float(np.finfo(np.float32).max)
|
|
244
|
+
z_avg_gated[z_avg_gated == -float("inf")] = float(np.finfo(np.float32).min)
|
|
245
|
+
|
|
246
|
+
LUFS = -0.691 + 10.0 * torch.log10((G[None, :nch] * z_avg_gated).sum(1))
|
|
247
|
+
return LUFS.float()
|
|
248
|
+
|
|
249
|
+
@property
|
|
250
|
+
def filter_class(self):
|
|
251
|
+
return self._filter_class
|
|
252
|
+
|
|
253
|
+
@filter_class.setter
|
|
254
|
+
def filter_class(self, value):
|
|
255
|
+
from pyloudnorm import Meter
|
|
256
|
+
|
|
257
|
+
meter = Meter(self.rate)
|
|
258
|
+
meter.filter_class = value
|
|
259
|
+
self._filter_class = value
|
|
260
|
+
self._filters = meter._filters
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
class LoudnessMixin:
|
|
264
|
+
_loudness = None
|
|
265
|
+
MIN_LOUDNESS = -70
|
|
266
|
+
"""Minimum loudness possible."""
|
|
267
|
+
|
|
268
|
+
def loudness(
|
|
269
|
+
self, filter_class: str = "K-weighting", block_size: float = 0.400, **kwargs
|
|
270
|
+
):
|
|
271
|
+
"""Calculates loudness using an implementation of ITU-R BS.1770-4.
|
|
272
|
+
Allows control over gating block size and frequency weighting filters for
|
|
273
|
+
additional control. Measure the integrated gated loudness of a signal.
|
|
274
|
+
|
|
275
|
+
API is derived from PyLoudnorm, but this implementation is ported to PyTorch
|
|
276
|
+
and is tensorized across batches. When on GPU, an FIR approximation of the IIR
|
|
277
|
+
filters is used to compute loudness for speed.
|
|
278
|
+
|
|
279
|
+
Uses the weighting filters and block size defined by the meter
|
|
280
|
+
the integrated loudness is measured based upon the gating algorithm
|
|
281
|
+
defined in the ITU-R BS.1770-4 specification.
|
|
282
|
+
|
|
283
|
+
Parameters
|
|
284
|
+
----------
|
|
285
|
+
filter_class : str, optional
|
|
286
|
+
Class of weighting filter used.
|
|
287
|
+
K-weighting' (default), 'Fenton/Lee 1'
|
|
288
|
+
'Fenton/Lee 2', 'Dash et al.'
|
|
289
|
+
by default "K-weighting"
|
|
290
|
+
block_size : float, optional
|
|
291
|
+
Gating block size in seconds, by default 0.400
|
|
292
|
+
kwargs : dict, optional
|
|
293
|
+
Keyword arguments to :py:func:`audiotools.core.loudness.Meter`.
|
|
294
|
+
|
|
295
|
+
Returns
|
|
296
|
+
-------
|
|
297
|
+
torch.Tensor
|
|
298
|
+
Loudness of audio data.
|
|
299
|
+
"""
|
|
300
|
+
if self._loudness is not None:
|
|
301
|
+
return self._loudness.to(self.device)
|
|
302
|
+
original_length = self.signal_length
|
|
303
|
+
if self.signal_duration < 0.5:
|
|
304
|
+
pad_len = int((0.5 - self.signal_duration) * self.sample_rate)
|
|
305
|
+
self.zero_pad(0, pad_len)
|
|
306
|
+
|
|
307
|
+
# create BS.1770 meter
|
|
308
|
+
meter = Meter(
|
|
309
|
+
self.sample_rate, filter_class=filter_class, block_size=block_size, **kwargs
|
|
310
|
+
)
|
|
311
|
+
meter = meter.to(self.device)
|
|
312
|
+
# measure loudness
|
|
313
|
+
loudness = meter.integrated_loudness(self.audio_data.permute(0, 2, 1))
|
|
314
|
+
self.truncate_samples(original_length)
|
|
315
|
+
min_loudness = (
|
|
316
|
+
torch.ones_like(loudness, device=loudness.device) * self.MIN_LOUDNESS
|
|
317
|
+
)
|
|
318
|
+
self._loudness = torch.maximum(loudness, min_loudness)
|
|
319
|
+
|
|
320
|
+
return self._loudness.to(self.device)
|