xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
import typing
|
|
3
|
+
from functools import wraps
|
|
4
|
+
|
|
5
|
+
from . import util
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def format_figure(func):
|
|
9
|
+
"""Decorator for formatting figures produced by the code below.
|
|
10
|
+
See :py:func:`audiotools.core.util.format_figure` for more.
|
|
11
|
+
|
|
12
|
+
Parameters
|
|
13
|
+
----------
|
|
14
|
+
func : Callable
|
|
15
|
+
Plotting function that is decorated by this function.
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
@wraps(func)
|
|
20
|
+
def wrapper(*args, **kwargs):
|
|
21
|
+
f_keys = inspect.signature(util.format_figure).parameters.keys()
|
|
22
|
+
f_kwargs = {}
|
|
23
|
+
for k, v in list(kwargs.items()):
|
|
24
|
+
if k in f_keys:
|
|
25
|
+
kwargs.pop(k)
|
|
26
|
+
f_kwargs[k] = v
|
|
27
|
+
func(*args, **kwargs)
|
|
28
|
+
util.format_figure(**f_kwargs)
|
|
29
|
+
|
|
30
|
+
return wrapper
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class DisplayMixin:
|
|
34
|
+
@format_figure
|
|
35
|
+
def specshow(
|
|
36
|
+
self,
|
|
37
|
+
preemphasis: bool = False,
|
|
38
|
+
x_axis: str = "time",
|
|
39
|
+
y_axis: str = "linear",
|
|
40
|
+
n_mels: int = 128,
|
|
41
|
+
**kwargs,
|
|
42
|
+
):
|
|
43
|
+
"""Displays a spectrogram, using ``librosa.display.specshow``.
|
|
44
|
+
|
|
45
|
+
Parameters
|
|
46
|
+
----------
|
|
47
|
+
preemphasis : bool, optional
|
|
48
|
+
Whether or not to apply preemphasis, which makes high
|
|
49
|
+
frequency detail easier to see, by default False
|
|
50
|
+
x_axis : str, optional
|
|
51
|
+
How to label the x axis, by default "time"
|
|
52
|
+
y_axis : str, optional
|
|
53
|
+
How to label the y axis, by default "linear"
|
|
54
|
+
n_mels : int, optional
|
|
55
|
+
If displaying a mel spectrogram with ``y_axis = "mel"``,
|
|
56
|
+
this controls the number of mels, by default 128.
|
|
57
|
+
kwargs : dict, optional
|
|
58
|
+
Keyword arguments to :py:func:`audiotools.core.util.format_figure`.
|
|
59
|
+
"""
|
|
60
|
+
import librosa
|
|
61
|
+
import librosa.display
|
|
62
|
+
|
|
63
|
+
# Always re-compute the STFT data before showing it, in case
|
|
64
|
+
# it changed.
|
|
65
|
+
signal = self.clone()
|
|
66
|
+
signal.stft_data = None
|
|
67
|
+
|
|
68
|
+
if preemphasis:
|
|
69
|
+
signal.preemphasis()
|
|
70
|
+
|
|
71
|
+
ref = signal.magnitude.max()
|
|
72
|
+
log_mag = signal.log_magnitude(ref_value=ref)
|
|
73
|
+
|
|
74
|
+
if y_axis == "mel":
|
|
75
|
+
log_mag = 20 * signal.mel_spectrogram(n_mels).clamp(1e-5).log10()
|
|
76
|
+
log_mag -= log_mag.max()
|
|
77
|
+
|
|
78
|
+
librosa.display.specshow(
|
|
79
|
+
log_mag.numpy()[0].mean(axis=0),
|
|
80
|
+
x_axis=x_axis,
|
|
81
|
+
y_axis=y_axis,
|
|
82
|
+
sr=signal.sample_rate,
|
|
83
|
+
**kwargs,
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
@format_figure
|
|
87
|
+
def waveplot(self, x_axis: str = "time", **kwargs):
|
|
88
|
+
"""Displays a waveform plot, using ``librosa.display.waveshow``.
|
|
89
|
+
|
|
90
|
+
Parameters
|
|
91
|
+
----------
|
|
92
|
+
x_axis : str, optional
|
|
93
|
+
How to label the x axis, by default "time"
|
|
94
|
+
kwargs : dict, optional
|
|
95
|
+
Keyword arguments to :py:func:`audiotools.core.util.format_figure`.
|
|
96
|
+
"""
|
|
97
|
+
import librosa
|
|
98
|
+
import librosa.display
|
|
99
|
+
|
|
100
|
+
audio_data = self.audio_data[0].mean(dim=0)
|
|
101
|
+
audio_data = audio_data.cpu().numpy()
|
|
102
|
+
|
|
103
|
+
plot_fn = "waveshow" if hasattr(librosa.display, "waveshow") else "waveplot"
|
|
104
|
+
wave_plot_fn = getattr(librosa.display, plot_fn)
|
|
105
|
+
wave_plot_fn(audio_data, x_axis=x_axis, sr=self.sample_rate, **kwargs)
|
|
106
|
+
|
|
107
|
+
@format_figure
|
|
108
|
+
def wavespec(self, x_axis: str = "time", **kwargs):
|
|
109
|
+
"""Displays a waveform plot, using ``librosa.display.waveshow``.
|
|
110
|
+
|
|
111
|
+
Parameters
|
|
112
|
+
----------
|
|
113
|
+
x_axis : str, optional
|
|
114
|
+
How to label the x axis, by default "time"
|
|
115
|
+
kwargs : dict, optional
|
|
116
|
+
Keyword arguments to :py:func:`audiotools.core.display.DisplayMixin.specshow`.
|
|
117
|
+
"""
|
|
118
|
+
import matplotlib.pyplot as plt
|
|
119
|
+
from matplotlib.gridspec import GridSpec
|
|
120
|
+
|
|
121
|
+
gs = GridSpec(6, 1)
|
|
122
|
+
plt.subplot(gs[0, :])
|
|
123
|
+
self.waveplot(x_axis=x_axis)
|
|
124
|
+
plt.subplot(gs[1:, :])
|
|
125
|
+
self.specshow(x_axis=x_axis, **kwargs)
|
|
126
|
+
|
|
127
|
+
def write_audio_to_tb(
|
|
128
|
+
self,
|
|
129
|
+
tag: str,
|
|
130
|
+
writer,
|
|
131
|
+
step: int = None,
|
|
132
|
+
plot_fn: typing.Union[typing.Callable, str] = "specshow",
|
|
133
|
+
**kwargs,
|
|
134
|
+
):
|
|
135
|
+
"""Writes a signal and its spectrogram to Tensorboard. Will show up
|
|
136
|
+
under the Audio and Images tab in Tensorboard.
|
|
137
|
+
|
|
138
|
+
Parameters
|
|
139
|
+
----------
|
|
140
|
+
tag : str
|
|
141
|
+
Tag to write signal to (e.g. ``clean/sample_0.wav``). The image will be
|
|
142
|
+
written to the corresponding ``.png`` file (e.g. ``clean/sample_0.png``).
|
|
143
|
+
writer : SummaryWriter
|
|
144
|
+
A SummaryWriter object from PyTorch library.
|
|
145
|
+
step : int, optional
|
|
146
|
+
The step to write the signal to, by default None
|
|
147
|
+
plot_fn : typing.Union[typing.Callable, str], optional
|
|
148
|
+
How to create the image. Set to ``None`` to avoid plotting, by default "specshow"
|
|
149
|
+
kwargs : dict, optional
|
|
150
|
+
Keyword arguments to :py:func:`audiotools.core.display.DisplayMixin.specshow` or
|
|
151
|
+
whatever ``plot_fn`` is set to.
|
|
152
|
+
"""
|
|
153
|
+
import matplotlib.pyplot as plt
|
|
154
|
+
|
|
155
|
+
audio_data = self.audio_data[0, 0].detach().cpu()
|
|
156
|
+
sample_rate = self.sample_rate
|
|
157
|
+
writer.add_audio(tag, audio_data, step, sample_rate)
|
|
158
|
+
|
|
159
|
+
if plot_fn is not None:
|
|
160
|
+
if isinstance(plot_fn, str):
|
|
161
|
+
plot_fn = getattr(self, plot_fn)
|
|
162
|
+
fig = plt.figure()
|
|
163
|
+
plt.clf()
|
|
164
|
+
plot_fn(**kwargs)
|
|
165
|
+
writer.add_figure(tag.replace("wav", "png"), fig, step)
|
|
166
|
+
|
|
167
|
+
def save_image(
|
|
168
|
+
self,
|
|
169
|
+
image_path: str,
|
|
170
|
+
plot_fn: typing.Union[typing.Callable, str] = "specshow",
|
|
171
|
+
**kwargs,
|
|
172
|
+
):
|
|
173
|
+
"""Save AudioSignal spectrogram (or whatever ``plot_fn`` is set to) to
|
|
174
|
+
a specified file.
|
|
175
|
+
|
|
176
|
+
Parameters
|
|
177
|
+
----------
|
|
178
|
+
image_path : str
|
|
179
|
+
Where to save the file to.
|
|
180
|
+
plot_fn : typing.Union[typing.Callable, str], optional
|
|
181
|
+
How to create the image. Set to ``None`` to avoid plotting, by default "specshow"
|
|
182
|
+
kwargs : dict, optional
|
|
183
|
+
Keyword arguments to :py:func:`audiotools.core.display.DisplayMixin.specshow` or
|
|
184
|
+
whatever ``plot_fn`` is set to.
|
|
185
|
+
"""
|
|
186
|
+
import matplotlib.pyplot as plt
|
|
187
|
+
|
|
188
|
+
if isinstance(plot_fn, str):
|
|
189
|
+
plot_fn = getattr(self, plot_fn)
|
|
190
|
+
|
|
191
|
+
plt.clf()
|
|
192
|
+
plot_fn(**kwargs)
|
|
193
|
+
plt.savefig(image_path, bbox_inches="tight", pad_inches=0)
|
|
194
|
+
plt.close()
|
|
@@ -0,0 +1,390 @@
|
|
|
1
|
+
import typing
|
|
2
|
+
|
|
3
|
+
import julius
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from . import util
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class DSPMixin:
|
|
11
|
+
_original_batch_size = None
|
|
12
|
+
_original_num_channels = None
|
|
13
|
+
_padded_signal_length = None
|
|
14
|
+
|
|
15
|
+
def _preprocess_signal_for_windowing(self, window_duration, hop_duration):
|
|
16
|
+
self._original_batch_size = self.batch_size
|
|
17
|
+
self._original_num_channels = self.num_channels
|
|
18
|
+
|
|
19
|
+
window_length = int(window_duration * self.sample_rate)
|
|
20
|
+
hop_length = int(hop_duration * self.sample_rate)
|
|
21
|
+
|
|
22
|
+
if window_length % hop_length != 0:
|
|
23
|
+
factor = window_length // hop_length
|
|
24
|
+
window_length = factor * hop_length
|
|
25
|
+
|
|
26
|
+
self.zero_pad(hop_length, hop_length)
|
|
27
|
+
self._padded_signal_length = self.signal_length
|
|
28
|
+
|
|
29
|
+
return window_length, hop_length
|
|
30
|
+
|
|
31
|
+
def windows(
|
|
32
|
+
self, window_duration: float, hop_duration: float, preprocess: bool = True
|
|
33
|
+
):
|
|
34
|
+
"""Generator which yields windows of specified duration from signal with a specified
|
|
35
|
+
hop length.
|
|
36
|
+
|
|
37
|
+
Parameters
|
|
38
|
+
----------
|
|
39
|
+
window_duration : float
|
|
40
|
+
Duration of every window in seconds.
|
|
41
|
+
hop_duration : float
|
|
42
|
+
Hop between windows in seconds.
|
|
43
|
+
preprocess : bool, optional
|
|
44
|
+
Whether to preprocess the signal, so that the first sample is in
|
|
45
|
+
the middle of the first window, by default True
|
|
46
|
+
|
|
47
|
+
Yields
|
|
48
|
+
------
|
|
49
|
+
AudioSignal
|
|
50
|
+
Each window is returned as an AudioSignal.
|
|
51
|
+
"""
|
|
52
|
+
if preprocess:
|
|
53
|
+
window_length, hop_length = self._preprocess_signal_for_windowing(
|
|
54
|
+
window_duration, hop_duration
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
self.audio_data = self.audio_data.reshape(-1, 1, self.signal_length)
|
|
58
|
+
|
|
59
|
+
for b in range(self.batch_size):
|
|
60
|
+
i = 0
|
|
61
|
+
start_idx = i * hop_length
|
|
62
|
+
while True:
|
|
63
|
+
start_idx = i * hop_length
|
|
64
|
+
i += 1
|
|
65
|
+
end_idx = start_idx + window_length
|
|
66
|
+
if end_idx > self.signal_length:
|
|
67
|
+
break
|
|
68
|
+
yield self[b, ..., start_idx:end_idx]
|
|
69
|
+
|
|
70
|
+
def collect_windows(
|
|
71
|
+
self, window_duration: float, hop_duration: float, preprocess: bool = True
|
|
72
|
+
):
|
|
73
|
+
"""Reshapes signal into windows of specified duration from signal with a specified
|
|
74
|
+
hop length. Window are placed along the batch dimension. Use with
|
|
75
|
+
:py:func:`audiotools.core.dsp.DSPMixin.overlap_and_add` to reconstruct the
|
|
76
|
+
original signal.
|
|
77
|
+
|
|
78
|
+
Parameters
|
|
79
|
+
----------
|
|
80
|
+
window_duration : float
|
|
81
|
+
Duration of every window in seconds.
|
|
82
|
+
hop_duration : float
|
|
83
|
+
Hop between windows in seconds.
|
|
84
|
+
preprocess : bool, optional
|
|
85
|
+
Whether to preprocess the signal, so that the first sample is in
|
|
86
|
+
the middle of the first window, by default True
|
|
87
|
+
|
|
88
|
+
Returns
|
|
89
|
+
-------
|
|
90
|
+
AudioSignal
|
|
91
|
+
AudioSignal unfolded with shape ``(nb * nch * num_windows, 1, window_length)``
|
|
92
|
+
"""
|
|
93
|
+
if preprocess:
|
|
94
|
+
window_length, hop_length = self._preprocess_signal_for_windowing(
|
|
95
|
+
window_duration, hop_duration
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
# self.audio_data: (nb, nch, nt).
|
|
99
|
+
unfolded = torch.nn.functional.unfold(
|
|
100
|
+
self.audio_data.reshape(-1, 1, 1, self.signal_length),
|
|
101
|
+
kernel_size=(1, window_length),
|
|
102
|
+
stride=(1, hop_length),
|
|
103
|
+
)
|
|
104
|
+
# unfolded: (nb * nch, window_length, num_windows).
|
|
105
|
+
# -> (nb * nch * num_windows, 1, window_length)
|
|
106
|
+
unfolded = unfolded.permute(0, 2, 1).reshape(-1, 1, window_length)
|
|
107
|
+
self.audio_data = unfolded
|
|
108
|
+
return self
|
|
109
|
+
|
|
110
|
+
def overlap_and_add(self, hop_duration: float):
|
|
111
|
+
"""Function which takes a list of windows and overlap adds them into a
|
|
112
|
+
signal the same length as ``audio_signal``.
|
|
113
|
+
|
|
114
|
+
Parameters
|
|
115
|
+
----------
|
|
116
|
+
hop_duration : float
|
|
117
|
+
How much to shift for each window
|
|
118
|
+
(overlap is window_duration - hop_duration) in seconds.
|
|
119
|
+
|
|
120
|
+
Returns
|
|
121
|
+
-------
|
|
122
|
+
AudioSignal
|
|
123
|
+
overlap-and-added signal.
|
|
124
|
+
"""
|
|
125
|
+
hop_length = int(hop_duration * self.sample_rate)
|
|
126
|
+
window_length = self.signal_length
|
|
127
|
+
|
|
128
|
+
nb, nch = self._original_batch_size, self._original_num_channels
|
|
129
|
+
|
|
130
|
+
unfolded = self.audio_data.reshape(nb * nch, -1, window_length).permute(0, 2, 1)
|
|
131
|
+
folded = torch.nn.functional.fold(
|
|
132
|
+
unfolded,
|
|
133
|
+
output_size=(1, self._padded_signal_length),
|
|
134
|
+
kernel_size=(1, window_length),
|
|
135
|
+
stride=(1, hop_length),
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
norm = torch.ones_like(unfolded, device=unfolded.device)
|
|
139
|
+
norm = torch.nn.functional.fold(
|
|
140
|
+
norm,
|
|
141
|
+
output_size=(1, self._padded_signal_length),
|
|
142
|
+
kernel_size=(1, window_length),
|
|
143
|
+
stride=(1, hop_length),
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
folded = folded / norm
|
|
147
|
+
|
|
148
|
+
folded = folded.reshape(nb, nch, -1)
|
|
149
|
+
self.audio_data = folded
|
|
150
|
+
self.trim(hop_length, hop_length)
|
|
151
|
+
return self
|
|
152
|
+
|
|
153
|
+
def low_pass(
|
|
154
|
+
self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
|
|
155
|
+
):
|
|
156
|
+
"""Low-passes the signal in-place. Each item in the batch
|
|
157
|
+
can have a different low-pass cutoff, if the input
|
|
158
|
+
to this signal is an array or tensor. If a float, all
|
|
159
|
+
items are given the same low-pass filter.
|
|
160
|
+
|
|
161
|
+
Parameters
|
|
162
|
+
----------
|
|
163
|
+
cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
|
|
164
|
+
Cutoff in Hz of low-pass filter.
|
|
165
|
+
zeros : int, optional
|
|
166
|
+
Number of taps to use in low-pass filter, by default 51
|
|
167
|
+
|
|
168
|
+
Returns
|
|
169
|
+
-------
|
|
170
|
+
AudioSignal
|
|
171
|
+
Low-passed AudioSignal.
|
|
172
|
+
"""
|
|
173
|
+
cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
|
|
174
|
+
cutoffs = cutoffs / self.sample_rate
|
|
175
|
+
filtered = torch.empty_like(self.audio_data)
|
|
176
|
+
|
|
177
|
+
for i, cutoff in enumerate(cutoffs):
|
|
178
|
+
lp_filter = julius.LowPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
|
|
179
|
+
filtered[i] = lp_filter(self.audio_data[i])
|
|
180
|
+
|
|
181
|
+
self.audio_data = filtered
|
|
182
|
+
self.stft_data = None
|
|
183
|
+
return self
|
|
184
|
+
|
|
185
|
+
def high_pass(
|
|
186
|
+
self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
|
|
187
|
+
):
|
|
188
|
+
"""High-passes the signal in-place. Each item in the batch
|
|
189
|
+
can have a different high-pass cutoff, if the input
|
|
190
|
+
to this signal is an array or tensor. If a float, all
|
|
191
|
+
items are given the same high-pass filter.
|
|
192
|
+
|
|
193
|
+
Parameters
|
|
194
|
+
----------
|
|
195
|
+
cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
|
|
196
|
+
Cutoff in Hz of high-pass filter.
|
|
197
|
+
zeros : int, optional
|
|
198
|
+
Number of taps to use in high-pass filter, by default 51
|
|
199
|
+
|
|
200
|
+
Returns
|
|
201
|
+
-------
|
|
202
|
+
AudioSignal
|
|
203
|
+
High-passed AudioSignal.
|
|
204
|
+
"""
|
|
205
|
+
cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
|
|
206
|
+
cutoffs = cutoffs / self.sample_rate
|
|
207
|
+
filtered = torch.empty_like(self.audio_data)
|
|
208
|
+
|
|
209
|
+
for i, cutoff in enumerate(cutoffs):
|
|
210
|
+
hp_filter = julius.HighPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
|
|
211
|
+
filtered[i] = hp_filter(self.audio_data[i])
|
|
212
|
+
|
|
213
|
+
self.audio_data = filtered
|
|
214
|
+
self.stft_data = None
|
|
215
|
+
return self
|
|
216
|
+
|
|
217
|
+
def mask_frequencies(
|
|
218
|
+
self,
|
|
219
|
+
fmin_hz: typing.Union[torch.Tensor, np.ndarray, float],
|
|
220
|
+
fmax_hz: typing.Union[torch.Tensor, np.ndarray, float],
|
|
221
|
+
val: float = 0.0,
|
|
222
|
+
):
|
|
223
|
+
"""Masks frequencies between ``fmin_hz`` and ``fmax_hz``, and fills them
|
|
224
|
+
with the value specified by ``val``. Useful for implementing SpecAug.
|
|
225
|
+
The min and max can be different for every item in the batch.
|
|
226
|
+
|
|
227
|
+
Parameters
|
|
228
|
+
----------
|
|
229
|
+
fmin_hz : typing.Union[torch.Tensor, np.ndarray, float]
|
|
230
|
+
Lower end of band to mask out.
|
|
231
|
+
fmax_hz : typing.Union[torch.Tensor, np.ndarray, float]
|
|
232
|
+
Upper end of band to mask out.
|
|
233
|
+
val : float, optional
|
|
234
|
+
Value to fill in, by default 0.0
|
|
235
|
+
|
|
236
|
+
Returns
|
|
237
|
+
-------
|
|
238
|
+
AudioSignal
|
|
239
|
+
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
|
|
240
|
+
masked audio data.
|
|
241
|
+
"""
|
|
242
|
+
# SpecAug
|
|
243
|
+
mag, phase = self.magnitude, self.phase
|
|
244
|
+
fmin_hz = util.ensure_tensor(fmin_hz, ndim=mag.ndim)
|
|
245
|
+
fmax_hz = util.ensure_tensor(fmax_hz, ndim=mag.ndim)
|
|
246
|
+
assert torch.all(fmin_hz < fmax_hz)
|
|
247
|
+
|
|
248
|
+
# build mask
|
|
249
|
+
nbins = mag.shape[-2]
|
|
250
|
+
bins_hz = torch.linspace(0, self.sample_rate / 2, nbins, device=self.device)
|
|
251
|
+
bins_hz = bins_hz[None, None, :, None].repeat(
|
|
252
|
+
self.batch_size, 1, 1, mag.shape[-1]
|
|
253
|
+
)
|
|
254
|
+
mask = (fmin_hz <= bins_hz) & (bins_hz < fmax_hz)
|
|
255
|
+
mask = mask.to(self.device)
|
|
256
|
+
|
|
257
|
+
mag = mag.masked_fill(mask, val)
|
|
258
|
+
phase = phase.masked_fill(mask, val)
|
|
259
|
+
self.stft_data = mag * torch.exp(1j * phase)
|
|
260
|
+
return self
|
|
261
|
+
|
|
262
|
+
def mask_timesteps(
|
|
263
|
+
self,
|
|
264
|
+
tmin_s: typing.Union[torch.Tensor, np.ndarray, float],
|
|
265
|
+
tmax_s: typing.Union[torch.Tensor, np.ndarray, float],
|
|
266
|
+
val: float = 0.0,
|
|
267
|
+
):
|
|
268
|
+
"""Masks timesteps between ``tmin_s`` and ``tmax_s``, and fills them
|
|
269
|
+
with the value specified by ``val``. Useful for implementing SpecAug.
|
|
270
|
+
The min and max can be different for every item in the batch.
|
|
271
|
+
|
|
272
|
+
Parameters
|
|
273
|
+
----------
|
|
274
|
+
tmin_s : typing.Union[torch.Tensor, np.ndarray, float]
|
|
275
|
+
Lower end of timesteps to mask out.
|
|
276
|
+
tmax_s : typing.Union[torch.Tensor, np.ndarray, float]
|
|
277
|
+
Upper end of timesteps to mask out.
|
|
278
|
+
val : float, optional
|
|
279
|
+
Value to fill in, by default 0.0
|
|
280
|
+
|
|
281
|
+
Returns
|
|
282
|
+
-------
|
|
283
|
+
AudioSignal
|
|
284
|
+
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
|
|
285
|
+
masked audio data.
|
|
286
|
+
"""
|
|
287
|
+
# SpecAug
|
|
288
|
+
mag, phase = self.magnitude, self.phase
|
|
289
|
+
tmin_s = util.ensure_tensor(tmin_s, ndim=mag.ndim)
|
|
290
|
+
tmax_s = util.ensure_tensor(tmax_s, ndim=mag.ndim)
|
|
291
|
+
|
|
292
|
+
assert torch.all(tmin_s < tmax_s)
|
|
293
|
+
|
|
294
|
+
# build mask
|
|
295
|
+
nt = mag.shape[-1]
|
|
296
|
+
bins_t = torch.linspace(0, self.signal_duration, nt, device=self.device)
|
|
297
|
+
bins_t = bins_t[None, None, None, :].repeat(
|
|
298
|
+
self.batch_size, 1, mag.shape[-2], 1
|
|
299
|
+
)
|
|
300
|
+
mask = (tmin_s <= bins_t) & (bins_t < tmax_s)
|
|
301
|
+
|
|
302
|
+
mag = mag.masked_fill(mask, val)
|
|
303
|
+
phase = phase.masked_fill(mask, val)
|
|
304
|
+
self.stft_data = mag * torch.exp(1j * phase)
|
|
305
|
+
return self
|
|
306
|
+
|
|
307
|
+
def mask_low_magnitudes(
|
|
308
|
+
self, db_cutoff: typing.Union[torch.Tensor, np.ndarray, float], val: float = 0.0
|
|
309
|
+
):
|
|
310
|
+
"""Mask away magnitudes below a specified threshold, which
|
|
311
|
+
can be different for every item in the batch.
|
|
312
|
+
|
|
313
|
+
Parameters
|
|
314
|
+
----------
|
|
315
|
+
db_cutoff : typing.Union[torch.Tensor, np.ndarray, float]
|
|
316
|
+
Decibel value for which things below it will be masked away.
|
|
317
|
+
val : float, optional
|
|
318
|
+
Value to fill in for masked portions, by default 0.0
|
|
319
|
+
|
|
320
|
+
Returns
|
|
321
|
+
-------
|
|
322
|
+
AudioSignal
|
|
323
|
+
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
|
|
324
|
+
masked audio data.
|
|
325
|
+
"""
|
|
326
|
+
mag = self.magnitude
|
|
327
|
+
log_mag = self.log_magnitude()
|
|
328
|
+
|
|
329
|
+
db_cutoff = util.ensure_tensor(db_cutoff, ndim=mag.ndim)
|
|
330
|
+
mask = log_mag < db_cutoff
|
|
331
|
+
mag = mag.masked_fill(mask, val)
|
|
332
|
+
|
|
333
|
+
self.magnitude = mag
|
|
334
|
+
return self
|
|
335
|
+
|
|
336
|
+
def shift_phase(self, shift: typing.Union[torch.Tensor, np.ndarray, float]):
|
|
337
|
+
"""Shifts the phase by a constant value.
|
|
338
|
+
|
|
339
|
+
Parameters
|
|
340
|
+
----------
|
|
341
|
+
shift : typing.Union[torch.Tensor, np.ndarray, float]
|
|
342
|
+
What to shift the phase by.
|
|
343
|
+
|
|
344
|
+
Returns
|
|
345
|
+
-------
|
|
346
|
+
AudioSignal
|
|
347
|
+
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
|
|
348
|
+
masked audio data.
|
|
349
|
+
"""
|
|
350
|
+
shift = util.ensure_tensor(shift, ndim=self.phase.ndim)
|
|
351
|
+
self.phase = self.phase + shift
|
|
352
|
+
return self
|
|
353
|
+
|
|
354
|
+
def corrupt_phase(self, scale: typing.Union[torch.Tensor, np.ndarray, float]):
|
|
355
|
+
"""Corrupts the phase randomly by some scaled value.
|
|
356
|
+
|
|
357
|
+
Parameters
|
|
358
|
+
----------
|
|
359
|
+
scale : typing.Union[torch.Tensor, np.ndarray, float]
|
|
360
|
+
Standard deviation of noise to add to the phase.
|
|
361
|
+
|
|
362
|
+
Returns
|
|
363
|
+
-------
|
|
364
|
+
AudioSignal
|
|
365
|
+
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
|
|
366
|
+
masked audio data.
|
|
367
|
+
"""
|
|
368
|
+
scale = util.ensure_tensor(scale, ndim=self.phase.ndim)
|
|
369
|
+
self.phase = self.phase + scale * torch.randn_like(self.phase)
|
|
370
|
+
return self
|
|
371
|
+
|
|
372
|
+
def preemphasis(self, coef: float = 0.85):
|
|
373
|
+
"""Applies pre-emphasis to audio signal.
|
|
374
|
+
|
|
375
|
+
Parameters
|
|
376
|
+
----------
|
|
377
|
+
coef : float, optional
|
|
378
|
+
How much pre-emphasis to apply, lower values do less. 0 does nothing.
|
|
379
|
+
by default 0.85
|
|
380
|
+
|
|
381
|
+
Returns
|
|
382
|
+
-------
|
|
383
|
+
AudioSignal
|
|
384
|
+
Pre-emphasized signal.
|
|
385
|
+
"""
|
|
386
|
+
kernel = torch.tensor([1, -coef, 0]).view(1, 1, -1).to(self.device)
|
|
387
|
+
x = self.audio_data.reshape(-1, 1, self.signal_length)
|
|
388
|
+
x = torch.nn.functional.conv1d(x, kernel, padding=1)
|
|
389
|
+
self.audio_data = x.reshape(*self.audio_data.shape)
|
|
390
|
+
return self
|