xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
# Copyright (c) 2024 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
from typing import Union
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from einops import rearrange
|
|
13
|
+
from torch.nn.utils import weight_norm
|
|
14
|
+
|
|
15
|
+
from indextts.utils.maskgct.models.codec.amphion_codec.quantize.factorized_vector_quantize import (
|
|
16
|
+
FactorizedVectorQuantize,
|
|
17
|
+
)
|
|
18
|
+
from indextts.utils.maskgct.models.codec.amphion_codec.quantize.vector_quantize import VectorQuantize
|
|
19
|
+
from indextts.utils.maskgct.models.codec.amphion_codec.quantize.lookup_free_quantize import LookupFreeQuantize
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class ResidualVQ(nn.Module):
|
|
23
|
+
"""
|
|
24
|
+
Introduced in SoundStream: An end2end neural audio codec
|
|
25
|
+
https://arxiv.org/abs/2107.03312
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
def __init__(
|
|
29
|
+
self,
|
|
30
|
+
input_dim: int = 256,
|
|
31
|
+
num_quantizers: int = 8,
|
|
32
|
+
codebook_size: int = 1024,
|
|
33
|
+
codebook_dim: int = 256,
|
|
34
|
+
quantizer_type: str = "vq", # "vq" or "fvq" or "lfq"
|
|
35
|
+
quantizer_dropout: float = 0.5,
|
|
36
|
+
**kwargs,
|
|
37
|
+
):
|
|
38
|
+
super().__init__()
|
|
39
|
+
|
|
40
|
+
self.input_dim = input_dim
|
|
41
|
+
self.num_quantizers = num_quantizers
|
|
42
|
+
self.codebook_size = codebook_size
|
|
43
|
+
self.codebook_dim = codebook_dim
|
|
44
|
+
self.quantizer_type = quantizer_type
|
|
45
|
+
self.quantizer_dropout = quantizer_dropout
|
|
46
|
+
|
|
47
|
+
if quantizer_type == "vq":
|
|
48
|
+
VQ = VectorQuantize
|
|
49
|
+
elif quantizer_type == "fvq":
|
|
50
|
+
VQ = FactorizedVectorQuantize
|
|
51
|
+
elif quantizer_type == "lfq":
|
|
52
|
+
VQ = LookupFreeQuantize
|
|
53
|
+
else:
|
|
54
|
+
raise ValueError(f"Unknown quantizer type {quantizer_type}")
|
|
55
|
+
|
|
56
|
+
self.quantizers = nn.ModuleList(
|
|
57
|
+
[
|
|
58
|
+
VQ(
|
|
59
|
+
input_dim=input_dim,
|
|
60
|
+
codebook_size=codebook_size,
|
|
61
|
+
codebook_dim=codebook_dim,
|
|
62
|
+
**kwargs,
|
|
63
|
+
)
|
|
64
|
+
for _ in range(num_quantizers)
|
|
65
|
+
]
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
def forward(self, z, n_quantizers: int = None):
|
|
69
|
+
"""
|
|
70
|
+
Parameters
|
|
71
|
+
----------
|
|
72
|
+
z : Tensor[B x D x T]
|
|
73
|
+
n_quantizers : int, optional
|
|
74
|
+
No. of quantizers to use
|
|
75
|
+
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
|
|
76
|
+
Note: if `self.quantizer_dropout` is True, this argument is ignored
|
|
77
|
+
when in training mode, and a random number of quantizers is used.
|
|
78
|
+
Returns
|
|
79
|
+
-------
|
|
80
|
+
"quantized_out" : Tensor[B x D x T]
|
|
81
|
+
Quantized continuous representation of input
|
|
82
|
+
"all_indices" : Tensor[N x B x T]
|
|
83
|
+
Codebook indices for each codebook
|
|
84
|
+
(quantized discrete representation of input)
|
|
85
|
+
"all_commit_losses" : Tensor[N]
|
|
86
|
+
"all_codebook_losses" : Tensor[N]
|
|
87
|
+
"all_quantized" : Tensor[N x B x D x T]
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
quantized_out = 0.0
|
|
91
|
+
residual = z
|
|
92
|
+
|
|
93
|
+
all_commit_losses = []
|
|
94
|
+
all_codebook_losses = []
|
|
95
|
+
all_indices = []
|
|
96
|
+
all_quantized = []
|
|
97
|
+
|
|
98
|
+
if n_quantizers is None:
|
|
99
|
+
n_quantizers = self.num_quantizers
|
|
100
|
+
|
|
101
|
+
if self.training:
|
|
102
|
+
n_quantizers = torch.ones((z.shape[0],)) * self.num_quantizers + 1
|
|
103
|
+
dropout = torch.randint(1, self.num_quantizers + 1, (z.shape[0],))
|
|
104
|
+
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
|
105
|
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
|
106
|
+
n_quantizers = n_quantizers.to(z.device)
|
|
107
|
+
|
|
108
|
+
for i, quantizer in enumerate(self.quantizers):
|
|
109
|
+
if self.training is False and i >= n_quantizers:
|
|
110
|
+
break
|
|
111
|
+
|
|
112
|
+
z_q_i, commit_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
|
|
113
|
+
residual
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Create mask to apply quantizer dropout
|
|
117
|
+
mask = (
|
|
118
|
+
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
|
|
119
|
+
)
|
|
120
|
+
quantized_out = quantized_out + z_q_i * mask[:, None, None]
|
|
121
|
+
residual = residual - z_q_i
|
|
122
|
+
|
|
123
|
+
commit_loss_i = (commit_loss_i * mask).mean()
|
|
124
|
+
codebook_loss_i = (codebook_loss_i * mask).mean()
|
|
125
|
+
|
|
126
|
+
all_commit_losses.append(commit_loss_i)
|
|
127
|
+
all_codebook_losses.append(codebook_loss_i)
|
|
128
|
+
all_indices.append(indices_i)
|
|
129
|
+
all_quantized.append(z_q_i)
|
|
130
|
+
|
|
131
|
+
all_commit_losses, all_codebook_losses, all_indices, all_quantized = map(
|
|
132
|
+
torch.stack,
|
|
133
|
+
(all_commit_losses, all_codebook_losses, all_indices, all_quantized),
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
return (
|
|
137
|
+
quantized_out,
|
|
138
|
+
all_indices,
|
|
139
|
+
all_commit_losses,
|
|
140
|
+
all_codebook_losses,
|
|
141
|
+
all_quantized,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
def vq2emb(self, vq, n_quantizers=None):
|
|
145
|
+
quantized_out = 0.0
|
|
146
|
+
if n_quantizers is None:
|
|
147
|
+
n_quantizers = self.num_quantizers
|
|
148
|
+
for idx, quantizer in enumerate(self.quantizers):
|
|
149
|
+
if idx >= n_quantizers:
|
|
150
|
+
break
|
|
151
|
+
quantized_out += quantizer.vq2emb(vq[idx])
|
|
152
|
+
return quantized_out
|
|
153
|
+
|
|
154
|
+
def latent2dist(self, z, n_quantizers=None):
|
|
155
|
+
quantized_out = 0.0
|
|
156
|
+
residual = z
|
|
157
|
+
|
|
158
|
+
all_dists = []
|
|
159
|
+
all_indices = []
|
|
160
|
+
|
|
161
|
+
if n_quantizers is None:
|
|
162
|
+
n_quantizers = self.num_quantizers
|
|
163
|
+
|
|
164
|
+
for i, quantizer in enumerate(self.quantizers):
|
|
165
|
+
if self.training is False and i >= n_quantizers:
|
|
166
|
+
break
|
|
167
|
+
dist_i, indices_i, z_q_i = quantizer.latent2dist(residual)
|
|
168
|
+
all_dists.append(dist_i)
|
|
169
|
+
all_indices.append(indices_i)
|
|
170
|
+
|
|
171
|
+
quantized_out = quantized_out + z_q_i
|
|
172
|
+
residual = residual - z_q_i
|
|
173
|
+
|
|
174
|
+
all_dists = torch.stack(all_dists)
|
|
175
|
+
all_indices = torch.stack(all_indices)
|
|
176
|
+
|
|
177
|
+
return all_dists, all_indices
|
xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
1
|
+
# Copyright (c) 2024 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
from einops import rearrange, repeat
|
|
11
|
+
from torch.nn.utils import weight_norm
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def WNConv1d(*args, **kwargs):
|
|
15
|
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def WNConvTranspose1d(*args, **kwargs):
|
|
19
|
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def l2norm(t):
|
|
23
|
+
return F.normalize(t, p=2, dim=-1)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def ema_inplace(moving_avg, new, decay):
|
|
27
|
+
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def laplace_smoothing(x, n_categories, eps=1e-5):
|
|
31
|
+
return (x + eps) / (x.sum() + n_categories * eps)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def sample_vectors(samples, num):
|
|
35
|
+
num_samples, device = samples.shape[0], samples.device
|
|
36
|
+
|
|
37
|
+
if num_samples >= num:
|
|
38
|
+
indices = torch.randperm(num_samples, device=device)[:num]
|
|
39
|
+
else:
|
|
40
|
+
indices = torch.randint(0, num_samples, (num,), device=device)
|
|
41
|
+
|
|
42
|
+
return samples[indices]
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False):
|
|
46
|
+
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
|
|
47
|
+
|
|
48
|
+
means = sample_vectors(samples, num_clusters)
|
|
49
|
+
|
|
50
|
+
for _ in range(num_iters):
|
|
51
|
+
if use_cosine_sim:
|
|
52
|
+
dists = samples @ means.t()
|
|
53
|
+
else:
|
|
54
|
+
diffs = rearrange(samples, "n d -> n () d") - rearrange(
|
|
55
|
+
means, "c d -> () c d"
|
|
56
|
+
)
|
|
57
|
+
dists = -(diffs**2).sum(dim=-1)
|
|
58
|
+
|
|
59
|
+
buckets = dists.max(dim=-1).indices
|
|
60
|
+
bins = torch.bincount(buckets, minlength=num_clusters)
|
|
61
|
+
zero_mask = bins == 0
|
|
62
|
+
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
|
63
|
+
|
|
64
|
+
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
|
|
65
|
+
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
|
|
66
|
+
new_means = new_means / bins_min_clamped[..., None]
|
|
67
|
+
|
|
68
|
+
if use_cosine_sim:
|
|
69
|
+
new_means = l2norm(new_means)
|
|
70
|
+
|
|
71
|
+
means = torch.where(zero_mask[..., None], means, new_means)
|
|
72
|
+
|
|
73
|
+
return means, bins
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class EuclideanCodebook(nn.Module):
|
|
77
|
+
def __init__(
|
|
78
|
+
self,
|
|
79
|
+
dim,
|
|
80
|
+
codebook_size,
|
|
81
|
+
kmeans_init=False,
|
|
82
|
+
kmeans_iters=10,
|
|
83
|
+
decay=0.8,
|
|
84
|
+
eps=1e-5,
|
|
85
|
+
threshold_ema_dead_code=2,
|
|
86
|
+
weight_init=False,
|
|
87
|
+
):
|
|
88
|
+
super().__init__()
|
|
89
|
+
|
|
90
|
+
self.decay = decay
|
|
91
|
+
init_fn = torch.randn if not weight_init else torch.zeros
|
|
92
|
+
embed = init_fn(codebook_size, dim)
|
|
93
|
+
|
|
94
|
+
if weight_init:
|
|
95
|
+
nn.init.uniform_(embed, -1 / codebook_size, 1 / codebook_size)
|
|
96
|
+
|
|
97
|
+
self.codebook_size = codebook_size
|
|
98
|
+
self.kmeans_iters = kmeans_iters
|
|
99
|
+
self.eps = eps
|
|
100
|
+
self.threshold_ema_dead_code = threshold_ema_dead_code
|
|
101
|
+
|
|
102
|
+
self.register_buffer(
|
|
103
|
+
"initted", torch.Tensor([not kmeans_init])
|
|
104
|
+
) # if kmeans_init is True, then initted is False; otherwise, initted is True
|
|
105
|
+
self.register_buffer("cluster_size", torch.zeros(codebook_size))
|
|
106
|
+
self.register_buffer("embed", embed)
|
|
107
|
+
self.register_buffer("embed_avg", embed.clone())
|
|
108
|
+
|
|
109
|
+
def init_embed_(self, data):
|
|
110
|
+
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
|
111
|
+
self.embed.data.copy_(embed)
|
|
112
|
+
self.embed_avg.data.copy_(embed)
|
|
113
|
+
self.cluster_size.data.copy_(cluster_size)
|
|
114
|
+
self.initted.data.copy_(torch.Tensor([True]))
|
|
115
|
+
|
|
116
|
+
def replace(self, samples, mask):
|
|
117
|
+
modified_codebook = torch.where(
|
|
118
|
+
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
|
|
119
|
+
)
|
|
120
|
+
self.embed.data.copy_(modified_codebook)
|
|
121
|
+
|
|
122
|
+
def expire_codes_(self, batch_samples):
|
|
123
|
+
if self.threshold_ema_dead_code == 0:
|
|
124
|
+
return
|
|
125
|
+
|
|
126
|
+
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
|
127
|
+
if not torch.any(expired_codes):
|
|
128
|
+
return
|
|
129
|
+
batch_samples = rearrange(batch_samples, "... d -> (...) d")
|
|
130
|
+
self.replace(batch_samples, mask=expired_codes)
|
|
131
|
+
|
|
132
|
+
def forward(self, x):
|
|
133
|
+
shape, dtype = x.shape, x.dtype
|
|
134
|
+
flatten = rearrange(x, "... d -> (...) d")
|
|
135
|
+
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size)
|
|
136
|
+
|
|
137
|
+
if not self.initted:
|
|
138
|
+
self.init_embed_(flatten)
|
|
139
|
+
|
|
140
|
+
dist = -(
|
|
141
|
+
flatten.pow(2).sum(1, keepdim=True)
|
|
142
|
+
- 2 * flatten @ embed
|
|
143
|
+
+ embed.pow(2).sum(0, keepdim=True)
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
embed_ind = dist.max(dim=-1).indices
|
|
147
|
+
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
|
148
|
+
embed_ind = embed_ind.view(*shape[:-1])
|
|
149
|
+
quantize = F.embedding(embed_ind, self.embed)
|
|
150
|
+
|
|
151
|
+
if self.training:
|
|
152
|
+
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
|
|
153
|
+
embed_sum = (
|
|
154
|
+
flatten.t() @ embed_onehot
|
|
155
|
+
) # (dim, ...) @ (..., codebook_size) -> (dim, codebook_size)
|
|
156
|
+
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
|
157
|
+
cluster_size = (
|
|
158
|
+
laplace_smoothing(self.cluster_size, self.codebook_size, self.eps)
|
|
159
|
+
* self.cluster_size.sum()
|
|
160
|
+
)
|
|
161
|
+
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
|
162
|
+
self.embed.data.copy_(embed_normalized)
|
|
163
|
+
self.expire_codes_(x)
|
|
164
|
+
|
|
165
|
+
return quantize, embed_ind
|
|
166
|
+
|
|
167
|
+
def vq2emb(self, vq):
|
|
168
|
+
quantize = F.embedding(vq, self.embed)
|
|
169
|
+
return quantize
|
|
170
|
+
|
|
171
|
+
def latent2dist(self, x):
|
|
172
|
+
shape, dtype = x.shape, x.dtype
|
|
173
|
+
flatten = rearrange(x, "... d -> (...) d")
|
|
174
|
+
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size)
|
|
175
|
+
|
|
176
|
+
if not self.initted:
|
|
177
|
+
self.init_embed_(flatten)
|
|
178
|
+
|
|
179
|
+
dist = -(
|
|
180
|
+
flatten.pow(2).sum(1, keepdim=True)
|
|
181
|
+
- 2 * flatten @ embed
|
|
182
|
+
+ embed.pow(2).sum(0, keepdim=True)
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
embed_ind = dist.max(dim=-1).indices
|
|
186
|
+
embed_ind = embed_ind.view(*shape[:-1])
|
|
187
|
+
quantize = F.embedding(embed_ind, self.embed)
|
|
188
|
+
|
|
189
|
+
dist = dist.view(*shape[:-1], -1)
|
|
190
|
+
|
|
191
|
+
return dist, embed_ind, quantize
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
class SimpleCodebook(nn.Module):
|
|
195
|
+
def __init__(
|
|
196
|
+
self,
|
|
197
|
+
dim,
|
|
198
|
+
codebook_size,
|
|
199
|
+
use_l2_normlize=False,
|
|
200
|
+
):
|
|
201
|
+
super().__init__()
|
|
202
|
+
|
|
203
|
+
self.dim = dim
|
|
204
|
+
self.codebook_size = codebook_size
|
|
205
|
+
self.use_l2_normlize = use_l2_normlize
|
|
206
|
+
|
|
207
|
+
self.embed = nn.Embedding(self.codebook_size, self.dim)
|
|
208
|
+
|
|
209
|
+
def forward(self, x):
|
|
210
|
+
shape, dtype = x.shape, x.dtype
|
|
211
|
+
flatten = rearrange(x, "... d -> (...) d")
|
|
212
|
+
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size)
|
|
213
|
+
|
|
214
|
+
if self.use_l2_normlize:
|
|
215
|
+
flatten = F.normalize(flatten)
|
|
216
|
+
embed = F.normalize(embed)
|
|
217
|
+
|
|
218
|
+
dist = -(
|
|
219
|
+
flatten.pow(2).sum(1, keepdim=True)
|
|
220
|
+
- 2 * flatten @ embed
|
|
221
|
+
+ embed.pow(2).sum(0, keepdim=True)
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
embed_ind = dist.max(dim=-1).indices
|
|
225
|
+
embed_ind = embed_ind.view(*shape[:-1])
|
|
226
|
+
quantize = F.embedding(embed_ind, self.embed)
|
|
227
|
+
|
|
228
|
+
return quantize, embed_ind
|
|
229
|
+
|
|
230
|
+
def vq2emb(self, vq):
|
|
231
|
+
quantize = F.embedding(vq, self.embed.weight)
|
|
232
|
+
return quantize
|
|
233
|
+
|
|
234
|
+
def latent2dist(self, x):
|
|
235
|
+
shape, dtype = x.shape, x.dtype
|
|
236
|
+
flatten = rearrange(x, "... d -> (...) d")
|
|
237
|
+
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size)
|
|
238
|
+
|
|
239
|
+
if self.use_l2_normlize:
|
|
240
|
+
flatten = F.normalize(flatten)
|
|
241
|
+
embed = F.normalize(embed)
|
|
242
|
+
|
|
243
|
+
dist = -(
|
|
244
|
+
flatten.pow(2).sum(1, keepdim=True)
|
|
245
|
+
- 2 * flatten @ embed
|
|
246
|
+
+ embed.pow(2).sum(0, keepdim=True)
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
embed_ind = dist.max(dim=-1).indices
|
|
250
|
+
embed_ind = embed_ind.view(*shape[:-1])
|
|
251
|
+
quantize = F.embedding(embed_ind, self.embed)
|
|
252
|
+
|
|
253
|
+
dist = dist.view(*shape[:-1], -1)
|
|
254
|
+
|
|
255
|
+
return dist, embed_ind, quantize
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
class VectorQuantize(nn.Module):
|
|
259
|
+
"""Vector quantization and factorized vecotor quantization implementation
|
|
260
|
+
Args:
|
|
261
|
+
input_dim (int): Dimension of input.
|
|
262
|
+
codebook_size (int): Codebook size.
|
|
263
|
+
codebook_dim (int): Codebook dimension. We suggest use codebook_dim = input_dim
|
|
264
|
+
if use codebook_type == "euclidean", otherwise, if you want to use
|
|
265
|
+
factorized vector quantization, use codebook_dim as small number (e.g. 8 or 32).
|
|
266
|
+
commitment (float): Weight for commitment loss.
|
|
267
|
+
use_l2_normlize (bool): Whether to use l2 normlized codes for factorized vecotor quantization,
|
|
268
|
+
we suggest use it as True if you want to use factorized vector quantization
|
|
269
|
+
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
|
270
|
+
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
|
271
|
+
decay (float): Decay for exponential moving average over the codebooks.
|
|
272
|
+
epsilon (float): Epsilon value for numerical stability.
|
|
273
|
+
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
|
274
|
+
that have an exponential moving average cluster size less than the specified threshold with
|
|
275
|
+
randomly selected vector from the current batch.
|
|
276
|
+
"""
|
|
277
|
+
|
|
278
|
+
def __init__(
|
|
279
|
+
self,
|
|
280
|
+
input_dim,
|
|
281
|
+
codebook_size,
|
|
282
|
+
codebook_dim,
|
|
283
|
+
commitment=0.005,
|
|
284
|
+
codebook_loss_weight=1.0,
|
|
285
|
+
use_l2_normlize=False,
|
|
286
|
+
codebook_type="euclidean", # "euclidean" or "simple"
|
|
287
|
+
kmeans_init=False,
|
|
288
|
+
kmeans_iters=10,
|
|
289
|
+
decay=0.8,
|
|
290
|
+
eps=1e-5,
|
|
291
|
+
threshold_ema_dead_code=2,
|
|
292
|
+
weight_init=False,
|
|
293
|
+
):
|
|
294
|
+
super().__init__()
|
|
295
|
+
self.input_dim = input_dim
|
|
296
|
+
self.codebook_size = codebook_size
|
|
297
|
+
self.codebook_dim = codebook_dim
|
|
298
|
+
self.commitment = commitment
|
|
299
|
+
self.codebook_loss_weight = codebook_loss_weight
|
|
300
|
+
self.use_l2_normlize = use_l2_normlize
|
|
301
|
+
self.codebook_type = codebook_type
|
|
302
|
+
self.kmeans_init = kmeans_init
|
|
303
|
+
self.kmeans_iters = kmeans_iters
|
|
304
|
+
self.decay = decay
|
|
305
|
+
self.eps = eps
|
|
306
|
+
self.threshold_ema_dead_code = threshold_ema_dead_code
|
|
307
|
+
self.weight_init = weight_init
|
|
308
|
+
|
|
309
|
+
if self.input_dim != self.codebook_dim:
|
|
310
|
+
self.in_project = WNConv1d(self.input_dim, self.codebook_dim, kernel_size=1)
|
|
311
|
+
self.out_project = WNConv1d(
|
|
312
|
+
self.codebook_dim, self.input_dim, kernel_size=1
|
|
313
|
+
)
|
|
314
|
+
|
|
315
|
+
else:
|
|
316
|
+
self.in_project = nn.Identity()
|
|
317
|
+
self.out_project = nn.Identity()
|
|
318
|
+
|
|
319
|
+
if self.codebook_type == "euclidean":
|
|
320
|
+
self.codebook = EuclideanCodebook(
|
|
321
|
+
self.codebook_dim,
|
|
322
|
+
codebook_size=self.codebook_size,
|
|
323
|
+
kmeans_init=self.kmeans_init,
|
|
324
|
+
kmeans_iters=self.kmeans_iters,
|
|
325
|
+
decay=self.decay,
|
|
326
|
+
eps=self.eps,
|
|
327
|
+
threshold_ema_dead_code=self.threshold_ema_dead_code,
|
|
328
|
+
weight_init=self.weight_init,
|
|
329
|
+
)
|
|
330
|
+
elif self.codebook_type == "simple":
|
|
331
|
+
self.codebook = SimpleCodebook(
|
|
332
|
+
self.codebook_dim,
|
|
333
|
+
codebook_size=self.codebook_size,
|
|
334
|
+
use_l2_normlize=self.use_l2_normlize,
|
|
335
|
+
)
|
|
336
|
+
else:
|
|
337
|
+
raise NotImplementedError(
|
|
338
|
+
f"codebook_type {self.codebook_type} is not implemented!"
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
def forward(self, z):
|
|
342
|
+
"""
|
|
343
|
+
Parameters
|
|
344
|
+
----------
|
|
345
|
+
z: torch.Tensor[B x D x T]
|
|
346
|
+
|
|
347
|
+
Returns
|
|
348
|
+
-------
|
|
349
|
+
z_q: torch.Tensor[B x D x T]
|
|
350
|
+
Quantized continuous representation of input
|
|
351
|
+
commit_loss: Tensor[B]
|
|
352
|
+
Commitment loss to train encoder to predict vectors closer to codebook entries
|
|
353
|
+
codebook_loss: Tensor[B]
|
|
354
|
+
Codebook loss to update the codebook
|
|
355
|
+
indices: torch.Tensor[B x T]
|
|
356
|
+
Codebook indices (quantized discrete representation of input)
|
|
357
|
+
z_e: torch.Tensor[B x D x T]
|
|
358
|
+
Projected latents (continuous representation of input before quantization)
|
|
359
|
+
"""
|
|
360
|
+
|
|
361
|
+
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim
|
|
362
|
+
z_e = self.in_project(z)
|
|
363
|
+
z_q, indices = self.decode_latents(z_e)
|
|
364
|
+
|
|
365
|
+
# Compute commitment loss and codebook loss
|
|
366
|
+
if self.training:
|
|
367
|
+
commit_loss = (
|
|
368
|
+
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
|
|
369
|
+
* self.commitment
|
|
370
|
+
)
|
|
371
|
+
codebook_loss = (
|
|
372
|
+
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
|
|
373
|
+
* self.codebook_loss_weight
|
|
374
|
+
)
|
|
375
|
+
else:
|
|
376
|
+
commit_loss = torch.zeros(z.shape[0], device=z.device)
|
|
377
|
+
codebook_loss = torch.zeros(z.shape[0], device=z.device)
|
|
378
|
+
|
|
379
|
+
z_q = z_e + (z_q - z_e).detach()
|
|
380
|
+
|
|
381
|
+
z_q = self.out_project(z_q)
|
|
382
|
+
|
|
383
|
+
return z_q, commit_loss, codebook_loss, indices, z_e
|
|
384
|
+
|
|
385
|
+
def decode_latents(self, latents):
|
|
386
|
+
encodings = rearrange(latents, "b d t -> b t d")
|
|
387
|
+
z_q, indices = self.codebook(encodings)
|
|
388
|
+
z_q = z_q.transpose(1, 2)
|
|
389
|
+
return z_q, indices
|
|
390
|
+
|
|
391
|
+
def vq2emb(self, vq, out_proj=True):
|
|
392
|
+
emb = self.codebook.vq2emb(vq)
|
|
393
|
+
emb = emb.transpose(1, 2)
|
|
394
|
+
if out_proj:
|
|
395
|
+
emb = self.out_project(emb)
|
|
396
|
+
return emb
|
|
397
|
+
|
|
398
|
+
def latent2dist(self, latents):
|
|
399
|
+
latents = rearrange(latents, "b d t -> b t d")
|
|
400
|
+
dist, embed_ind, quantize = self.codebook.latent2dist(latents)
|
|
401
|
+
return dist, embed_ind, quantize.transpose(1, 2)
|