xinference 1.9.1__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +400 -3
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/constants.py +2 -0
- xinference/core/supervisor.py +111 -49
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +26 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/kokoro.py +1 -1
- xinference/model/audio/kokoro_zh.py +124 -0
- xinference/model/audio/model_spec.json +58 -1
- xinference/model/embedding/sentence_transformers/core.py +4 -4
- xinference/model/embedding/vllm/core.py +7 -1
- xinference/model/image/model_spec.json +71 -3
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/core.py +10 -0
- xinference/model/llm/llama_cpp/core.py +1 -0
- xinference/model/llm/llm_family.json +503 -21
- xinference/model/llm/llm_family.py +1 -0
- xinference/model/llm/mlx/core.py +52 -33
- xinference/model/llm/sglang/core.py +32 -55
- xinference/model/llm/tool_parsers/__init__.py +58 -0
- xinference/model/llm/tool_parsers/abstract_tool_parser.py +33 -0
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +190 -0
- xinference/model/llm/tool_parsers/deepseek_v3_tool_parser.py +145 -0
- xinference/model/llm/tool_parsers/glm4_tool_parser.py +123 -0
- xinference/model/llm/tool_parsers/llama3_tool_parser.py +77 -0
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +320 -0
- xinference/model/llm/transformers/core.py +1 -1
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +138 -53
- xinference/model/llm/vllm/core.py +95 -78
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/types.py +105 -2
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/METADATA +24 -4
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/RECORD +302 -76
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.9.1.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,631 @@
|
|
|
1
|
+
from io import BytesIO
|
|
2
|
+
import os
|
|
3
|
+
from typing import List, Optional, Tuple
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
import torch.nn as nn
|
|
8
|
+
import torch.nn.functional as F
|
|
9
|
+
from librosa.util import normalize, pad_center, tiny
|
|
10
|
+
from scipy.signal import get_window
|
|
11
|
+
|
|
12
|
+
import logging
|
|
13
|
+
|
|
14
|
+
logger = logging.getLogger(__name__)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class STFT(torch.nn.Module):
|
|
18
|
+
def __init__(
|
|
19
|
+
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
|
20
|
+
):
|
|
21
|
+
"""
|
|
22
|
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
|
23
|
+
This is a bit tricky so there are some cases that probably won't work as working
|
|
24
|
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
|
25
|
+
this code should work with hop lengths that are half the filter length (50% overlap
|
|
26
|
+
between frames).
|
|
27
|
+
|
|
28
|
+
Keyword Arguments:
|
|
29
|
+
filter_length {int} -- Length of filters used (default: {1024})
|
|
30
|
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
|
31
|
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
|
32
|
+
equals the filter length). (default: {None})
|
|
33
|
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
|
34
|
+
(default: {'hann'})
|
|
35
|
+
"""
|
|
36
|
+
super(STFT, self).__init__()
|
|
37
|
+
self.filter_length = filter_length
|
|
38
|
+
self.hop_length = hop_length
|
|
39
|
+
self.win_length = win_length if win_length else filter_length
|
|
40
|
+
self.window = window
|
|
41
|
+
self.forward_transform = None
|
|
42
|
+
self.pad_amount = int(self.filter_length / 2)
|
|
43
|
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
|
44
|
+
|
|
45
|
+
cutoff = int((self.filter_length / 2 + 1))
|
|
46
|
+
fourier_basis = np.vstack(
|
|
47
|
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
|
48
|
+
)
|
|
49
|
+
forward_basis = torch.FloatTensor(fourier_basis)
|
|
50
|
+
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
|
|
51
|
+
|
|
52
|
+
assert filter_length >= self.win_length
|
|
53
|
+
# get window and zero center pad it to filter_length
|
|
54
|
+
fft_window = get_window(window, self.win_length, fftbins=True)
|
|
55
|
+
fft_window = pad_center(fft_window, size=filter_length)
|
|
56
|
+
fft_window = torch.from_numpy(fft_window).float()
|
|
57
|
+
|
|
58
|
+
# window the bases
|
|
59
|
+
forward_basis *= fft_window
|
|
60
|
+
inverse_basis = (inverse_basis.T * fft_window).T
|
|
61
|
+
|
|
62
|
+
self.register_buffer("forward_basis", forward_basis.float())
|
|
63
|
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
|
64
|
+
self.register_buffer("fft_window", fft_window.float())
|
|
65
|
+
|
|
66
|
+
def transform(self, input_data, return_phase=False):
|
|
67
|
+
"""Take input data (audio) to STFT domain.
|
|
68
|
+
|
|
69
|
+
Arguments:
|
|
70
|
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
|
74
|
+
num_frequencies, num_frames)
|
|
75
|
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
|
76
|
+
num_frequencies, num_frames)
|
|
77
|
+
"""
|
|
78
|
+
input_data = F.pad(
|
|
79
|
+
input_data,
|
|
80
|
+
(self.pad_amount, self.pad_amount),
|
|
81
|
+
mode="reflect",
|
|
82
|
+
)
|
|
83
|
+
forward_transform = input_data.unfold(
|
|
84
|
+
1, self.filter_length, self.hop_length
|
|
85
|
+
).permute(0, 2, 1)
|
|
86
|
+
forward_transform = torch.matmul(self.forward_basis, forward_transform)
|
|
87
|
+
cutoff = int((self.filter_length / 2) + 1)
|
|
88
|
+
real_part = forward_transform[:, :cutoff, :]
|
|
89
|
+
imag_part = forward_transform[:, cutoff:, :]
|
|
90
|
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
|
91
|
+
if return_phase:
|
|
92
|
+
phase = torch.atan2(imag_part.data, real_part.data)
|
|
93
|
+
return magnitude, phase
|
|
94
|
+
else:
|
|
95
|
+
return magnitude
|
|
96
|
+
|
|
97
|
+
def inverse(self, magnitude, phase):
|
|
98
|
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
|
99
|
+
by the ```transform``` function.
|
|
100
|
+
|
|
101
|
+
Arguments:
|
|
102
|
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
|
103
|
+
num_frequencies, num_frames)
|
|
104
|
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
|
105
|
+
num_frequencies, num_frames)
|
|
106
|
+
|
|
107
|
+
Returns:
|
|
108
|
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
|
109
|
+
shape (num_batch, num_samples)
|
|
110
|
+
"""
|
|
111
|
+
cat = torch.cat(
|
|
112
|
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
|
113
|
+
)
|
|
114
|
+
fold = torch.nn.Fold(
|
|
115
|
+
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
|
|
116
|
+
kernel_size=(1, self.filter_length),
|
|
117
|
+
stride=(1, self.hop_length),
|
|
118
|
+
)
|
|
119
|
+
inverse_transform = torch.matmul(self.inverse_basis, cat)
|
|
120
|
+
inverse_transform = fold(inverse_transform)[
|
|
121
|
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
|
122
|
+
]
|
|
123
|
+
window_square_sum = (
|
|
124
|
+
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
|
|
125
|
+
)
|
|
126
|
+
window_square_sum = fold(window_square_sum)[
|
|
127
|
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
|
128
|
+
]
|
|
129
|
+
inverse_transform /= window_square_sum
|
|
130
|
+
return inverse_transform
|
|
131
|
+
|
|
132
|
+
def forward(self, input_data):
|
|
133
|
+
"""Take input data (audio) to STFT domain and then back to audio.
|
|
134
|
+
|
|
135
|
+
Arguments:
|
|
136
|
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
|
140
|
+
shape (num_batch, num_samples)
|
|
141
|
+
"""
|
|
142
|
+
self.magnitude, self.phase = self.transform(input_data, return_phase=True)
|
|
143
|
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
|
144
|
+
return reconstruction
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
from time import time as ttime
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
class BiGRU(nn.Module):
|
|
151
|
+
def __init__(self, input_features, hidden_features, num_layers):
|
|
152
|
+
super(BiGRU, self).__init__()
|
|
153
|
+
self.gru = nn.GRU(
|
|
154
|
+
input_features,
|
|
155
|
+
hidden_features,
|
|
156
|
+
num_layers=num_layers,
|
|
157
|
+
batch_first=True,
|
|
158
|
+
bidirectional=True,
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
def forward(self, x):
|
|
162
|
+
return self.gru(x)[0]
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class ConvBlockRes(nn.Module):
|
|
166
|
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
|
167
|
+
super(ConvBlockRes, self).__init__()
|
|
168
|
+
self.conv = nn.Sequential(
|
|
169
|
+
nn.Conv2d(
|
|
170
|
+
in_channels=in_channels,
|
|
171
|
+
out_channels=out_channels,
|
|
172
|
+
kernel_size=(3, 3),
|
|
173
|
+
stride=(1, 1),
|
|
174
|
+
padding=(1, 1),
|
|
175
|
+
bias=False,
|
|
176
|
+
),
|
|
177
|
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
|
178
|
+
nn.ReLU(),
|
|
179
|
+
nn.Conv2d(
|
|
180
|
+
in_channels=out_channels,
|
|
181
|
+
out_channels=out_channels,
|
|
182
|
+
kernel_size=(3, 3),
|
|
183
|
+
stride=(1, 1),
|
|
184
|
+
padding=(1, 1),
|
|
185
|
+
bias=False,
|
|
186
|
+
),
|
|
187
|
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
|
188
|
+
nn.ReLU(),
|
|
189
|
+
)
|
|
190
|
+
# self.shortcut:Optional[nn.Module] = None
|
|
191
|
+
if in_channels != out_channels:
|
|
192
|
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
|
193
|
+
|
|
194
|
+
def forward(self, x: torch.Tensor):
|
|
195
|
+
if not hasattr(self, "shortcut"):
|
|
196
|
+
return self.conv(x) + x
|
|
197
|
+
else:
|
|
198
|
+
return self.conv(x) + self.shortcut(x)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
class Encoder(nn.Module):
|
|
202
|
+
def __init__(
|
|
203
|
+
self,
|
|
204
|
+
in_channels,
|
|
205
|
+
in_size,
|
|
206
|
+
n_encoders,
|
|
207
|
+
kernel_size,
|
|
208
|
+
n_blocks,
|
|
209
|
+
out_channels=16,
|
|
210
|
+
momentum=0.01,
|
|
211
|
+
):
|
|
212
|
+
super(Encoder, self).__init__()
|
|
213
|
+
self.n_encoders = n_encoders
|
|
214
|
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
|
215
|
+
self.layers = nn.ModuleList()
|
|
216
|
+
self.latent_channels = []
|
|
217
|
+
for i in range(self.n_encoders):
|
|
218
|
+
self.layers.append(
|
|
219
|
+
ResEncoderBlock(
|
|
220
|
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
|
221
|
+
)
|
|
222
|
+
)
|
|
223
|
+
self.latent_channels.append([out_channels, in_size])
|
|
224
|
+
in_channels = out_channels
|
|
225
|
+
out_channels *= 2
|
|
226
|
+
in_size //= 2
|
|
227
|
+
self.out_size = in_size
|
|
228
|
+
self.out_channel = out_channels
|
|
229
|
+
|
|
230
|
+
def forward(self, x: torch.Tensor):
|
|
231
|
+
concat_tensors: List[torch.Tensor] = []
|
|
232
|
+
x = self.bn(x)
|
|
233
|
+
for i, layer in enumerate(self.layers):
|
|
234
|
+
t, x = layer(x)
|
|
235
|
+
concat_tensors.append(t)
|
|
236
|
+
return x, concat_tensors
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
class ResEncoderBlock(nn.Module):
|
|
240
|
+
def __init__(
|
|
241
|
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
|
242
|
+
):
|
|
243
|
+
super(ResEncoderBlock, self).__init__()
|
|
244
|
+
self.n_blocks = n_blocks
|
|
245
|
+
self.conv = nn.ModuleList()
|
|
246
|
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
|
247
|
+
for i in range(n_blocks - 1):
|
|
248
|
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
|
249
|
+
self.kernel_size = kernel_size
|
|
250
|
+
if self.kernel_size is not None:
|
|
251
|
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
|
252
|
+
|
|
253
|
+
def forward(self, x):
|
|
254
|
+
for i, conv in enumerate(self.conv):
|
|
255
|
+
x = conv(x)
|
|
256
|
+
if self.kernel_size is not None:
|
|
257
|
+
return x, self.pool(x)
|
|
258
|
+
else:
|
|
259
|
+
return x
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
class Intermediate(nn.Module): #
|
|
263
|
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
|
264
|
+
super(Intermediate, self).__init__()
|
|
265
|
+
self.n_inters = n_inters
|
|
266
|
+
self.layers = nn.ModuleList()
|
|
267
|
+
self.layers.append(
|
|
268
|
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
|
269
|
+
)
|
|
270
|
+
for i in range(self.n_inters - 1):
|
|
271
|
+
self.layers.append(
|
|
272
|
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
def forward(self, x):
|
|
276
|
+
for i, layer in enumerate(self.layers):
|
|
277
|
+
x = layer(x)
|
|
278
|
+
return x
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
class ResDecoderBlock(nn.Module):
|
|
282
|
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
|
283
|
+
super(ResDecoderBlock, self).__init__()
|
|
284
|
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
|
285
|
+
self.n_blocks = n_blocks
|
|
286
|
+
self.conv1 = nn.Sequential(
|
|
287
|
+
nn.ConvTranspose2d(
|
|
288
|
+
in_channels=in_channels,
|
|
289
|
+
out_channels=out_channels,
|
|
290
|
+
kernel_size=(3, 3),
|
|
291
|
+
stride=stride,
|
|
292
|
+
padding=(1, 1),
|
|
293
|
+
output_padding=out_padding,
|
|
294
|
+
bias=False,
|
|
295
|
+
),
|
|
296
|
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
|
297
|
+
nn.ReLU(),
|
|
298
|
+
)
|
|
299
|
+
self.conv2 = nn.ModuleList()
|
|
300
|
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
|
301
|
+
for i in range(n_blocks - 1):
|
|
302
|
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
|
303
|
+
|
|
304
|
+
def forward(self, x, concat_tensor):
|
|
305
|
+
x = self.conv1(x)
|
|
306
|
+
x = torch.cat((x, concat_tensor), dim=1)
|
|
307
|
+
for i, conv2 in enumerate(self.conv2):
|
|
308
|
+
x = conv2(x)
|
|
309
|
+
return x
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
class Decoder(nn.Module):
|
|
313
|
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
|
314
|
+
super(Decoder, self).__init__()
|
|
315
|
+
self.layers = nn.ModuleList()
|
|
316
|
+
self.n_decoders = n_decoders
|
|
317
|
+
for i in range(self.n_decoders):
|
|
318
|
+
out_channels = in_channels // 2
|
|
319
|
+
self.layers.append(
|
|
320
|
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
|
321
|
+
)
|
|
322
|
+
in_channels = out_channels
|
|
323
|
+
|
|
324
|
+
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
|
|
325
|
+
for i, layer in enumerate(self.layers):
|
|
326
|
+
x = layer(x, concat_tensors[-1 - i])
|
|
327
|
+
return x
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
class DeepUnet(nn.Module):
|
|
331
|
+
def __init__(
|
|
332
|
+
self,
|
|
333
|
+
kernel_size,
|
|
334
|
+
n_blocks,
|
|
335
|
+
en_de_layers=5,
|
|
336
|
+
inter_layers=4,
|
|
337
|
+
in_channels=1,
|
|
338
|
+
en_out_channels=16,
|
|
339
|
+
):
|
|
340
|
+
super(DeepUnet, self).__init__()
|
|
341
|
+
self.encoder = Encoder(
|
|
342
|
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
|
343
|
+
)
|
|
344
|
+
self.intermediate = Intermediate(
|
|
345
|
+
self.encoder.out_channel // 2,
|
|
346
|
+
self.encoder.out_channel,
|
|
347
|
+
inter_layers,
|
|
348
|
+
n_blocks,
|
|
349
|
+
)
|
|
350
|
+
self.decoder = Decoder(
|
|
351
|
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
|
352
|
+
)
|
|
353
|
+
|
|
354
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
355
|
+
x, concat_tensors = self.encoder(x)
|
|
356
|
+
x = self.intermediate(x)
|
|
357
|
+
x = self.decoder(x, concat_tensors)
|
|
358
|
+
return x
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
class E2E(nn.Module):
|
|
362
|
+
def __init__(
|
|
363
|
+
self,
|
|
364
|
+
n_blocks,
|
|
365
|
+
n_gru,
|
|
366
|
+
kernel_size,
|
|
367
|
+
en_de_layers=5,
|
|
368
|
+
inter_layers=4,
|
|
369
|
+
in_channels=1,
|
|
370
|
+
en_out_channels=16,
|
|
371
|
+
):
|
|
372
|
+
super(E2E, self).__init__()
|
|
373
|
+
self.unet = DeepUnet(
|
|
374
|
+
kernel_size,
|
|
375
|
+
n_blocks,
|
|
376
|
+
en_de_layers,
|
|
377
|
+
inter_layers,
|
|
378
|
+
in_channels,
|
|
379
|
+
en_out_channels,
|
|
380
|
+
)
|
|
381
|
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
|
382
|
+
if n_gru:
|
|
383
|
+
self.fc = nn.Sequential(
|
|
384
|
+
BiGRU(3 * 128, 256, n_gru),
|
|
385
|
+
nn.Linear(512, 360),
|
|
386
|
+
nn.Dropout(0.25),
|
|
387
|
+
nn.Sigmoid(),
|
|
388
|
+
)
|
|
389
|
+
else:
|
|
390
|
+
self.fc = nn.Sequential(
|
|
391
|
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
def forward(self, mel):
|
|
395
|
+
# print(mel.shape)
|
|
396
|
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
|
397
|
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
|
398
|
+
x = self.fc(x)
|
|
399
|
+
# print(x.shape)
|
|
400
|
+
return x
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
from librosa.filters import mel
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
class MelSpectrogram(torch.nn.Module):
|
|
407
|
+
def __init__(
|
|
408
|
+
self,
|
|
409
|
+
is_half,
|
|
410
|
+
n_mel_channels,
|
|
411
|
+
sampling_rate,
|
|
412
|
+
win_length,
|
|
413
|
+
hop_length,
|
|
414
|
+
n_fft=None,
|
|
415
|
+
mel_fmin=0,
|
|
416
|
+
mel_fmax=None,
|
|
417
|
+
clamp=1e-5,
|
|
418
|
+
):
|
|
419
|
+
super().__init__()
|
|
420
|
+
n_fft = win_length if n_fft is None else n_fft
|
|
421
|
+
self.hann_window = {}
|
|
422
|
+
mel_basis = mel(
|
|
423
|
+
sr=sampling_rate,
|
|
424
|
+
n_fft=n_fft,
|
|
425
|
+
n_mels=n_mel_channels,
|
|
426
|
+
fmin=mel_fmin,
|
|
427
|
+
fmax=mel_fmax,
|
|
428
|
+
htk=True,
|
|
429
|
+
)
|
|
430
|
+
mel_basis = torch.from_numpy(mel_basis).float()
|
|
431
|
+
self.register_buffer("mel_basis", mel_basis)
|
|
432
|
+
self.n_fft = win_length if n_fft is None else n_fft
|
|
433
|
+
self.hop_length = hop_length
|
|
434
|
+
self.win_length = win_length
|
|
435
|
+
self.sampling_rate = sampling_rate
|
|
436
|
+
self.n_mel_channels = n_mel_channels
|
|
437
|
+
self.clamp = clamp
|
|
438
|
+
self.is_half = is_half
|
|
439
|
+
|
|
440
|
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
|
441
|
+
factor = 2 ** (keyshift / 12)
|
|
442
|
+
n_fft_new = int(np.round(self.n_fft * factor))
|
|
443
|
+
win_length_new = int(np.round(self.win_length * factor))
|
|
444
|
+
hop_length_new = int(np.round(self.hop_length * speed))
|
|
445
|
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
|
446
|
+
if keyshift_key not in self.hann_window:
|
|
447
|
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
|
448
|
+
audio.device
|
|
449
|
+
)
|
|
450
|
+
if "privateuseone" in str(audio.device):
|
|
451
|
+
if not hasattr(self, "stft"):
|
|
452
|
+
self.stft = STFT(
|
|
453
|
+
filter_length=n_fft_new,
|
|
454
|
+
hop_length=hop_length_new,
|
|
455
|
+
win_length=win_length_new,
|
|
456
|
+
window="hann",
|
|
457
|
+
).to(audio.device)
|
|
458
|
+
magnitude = self.stft.transform(audio)
|
|
459
|
+
else:
|
|
460
|
+
fft = torch.stft(
|
|
461
|
+
audio,
|
|
462
|
+
n_fft=n_fft_new,
|
|
463
|
+
hop_length=hop_length_new,
|
|
464
|
+
win_length=win_length_new,
|
|
465
|
+
window=self.hann_window[keyshift_key],
|
|
466
|
+
center=center,
|
|
467
|
+
return_complex=True,
|
|
468
|
+
)
|
|
469
|
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
|
470
|
+
if keyshift != 0:
|
|
471
|
+
size = self.n_fft // 2 + 1
|
|
472
|
+
resize = magnitude.size(1)
|
|
473
|
+
if resize < size:
|
|
474
|
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
|
475
|
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
|
476
|
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
|
477
|
+
if self.is_half == True:
|
|
478
|
+
mel_output = mel_output.half()
|
|
479
|
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
|
480
|
+
return log_mel_spec
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
class RMVPE:
|
|
484
|
+
def __init__(self, model_path: str, is_half, device=None, use_jit=False):
|
|
485
|
+
self.resample_kernel = {}
|
|
486
|
+
self.resample_kernel = {}
|
|
487
|
+
self.is_half = is_half
|
|
488
|
+
if device is None:
|
|
489
|
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
490
|
+
self.device = device
|
|
491
|
+
self.mel_extractor = MelSpectrogram(
|
|
492
|
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
|
493
|
+
).to(device)
|
|
494
|
+
if "privateuseone" in str(device):
|
|
495
|
+
import onnxruntime as ort
|
|
496
|
+
|
|
497
|
+
ort_session = ort.InferenceSession(
|
|
498
|
+
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
|
499
|
+
providers=["DmlExecutionProvider"],
|
|
500
|
+
)
|
|
501
|
+
self.model = ort_session
|
|
502
|
+
else:
|
|
503
|
+
if str(self.device) == "cuda":
|
|
504
|
+
self.device = torch.device("cuda:0")
|
|
505
|
+
|
|
506
|
+
def get_default_model():
|
|
507
|
+
model = E2E(4, 1, (2, 2))
|
|
508
|
+
ckpt = torch.load(model_path, map_location="cpu")
|
|
509
|
+
model.load_state_dict(ckpt)
|
|
510
|
+
model.eval()
|
|
511
|
+
if is_half:
|
|
512
|
+
model = model.half()
|
|
513
|
+
else:
|
|
514
|
+
model = model.float()
|
|
515
|
+
return model
|
|
516
|
+
|
|
517
|
+
self.model = get_default_model()
|
|
518
|
+
|
|
519
|
+
self.model = self.model.to(device)
|
|
520
|
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
|
521
|
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
|
522
|
+
|
|
523
|
+
def mel2hidden(self, mel):
|
|
524
|
+
with torch.no_grad():
|
|
525
|
+
n_frames = mel.shape[-1]
|
|
526
|
+
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
|
|
527
|
+
if n_pad > 0:
|
|
528
|
+
mel = F.pad(mel, (0, n_pad), mode="constant")
|
|
529
|
+
if "privateuseone" in str(self.device):
|
|
530
|
+
onnx_input_name = self.model.get_inputs()[0].name
|
|
531
|
+
onnx_outputs_names = self.model.get_outputs()[0].name
|
|
532
|
+
hidden = self.model.run(
|
|
533
|
+
[onnx_outputs_names],
|
|
534
|
+
input_feed={onnx_input_name: mel.cpu().numpy()},
|
|
535
|
+
)[0]
|
|
536
|
+
else:
|
|
537
|
+
mel = mel.half() if self.is_half else mel.float()
|
|
538
|
+
hidden = self.model(mel)
|
|
539
|
+
return hidden[:, :n_frames]
|
|
540
|
+
|
|
541
|
+
def decode(self, hidden, thred=0.03):
|
|
542
|
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
|
543
|
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
|
544
|
+
f0[f0 == 10] = 0
|
|
545
|
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
|
546
|
+
return f0
|
|
547
|
+
|
|
548
|
+
def infer_from_audio(self, audio, thred=0.03):
|
|
549
|
+
# torch.cuda.synchronize()
|
|
550
|
+
# t0 = ttime()
|
|
551
|
+
if not torch.is_tensor(audio):
|
|
552
|
+
audio = torch.from_numpy(audio)
|
|
553
|
+
mel = self.mel_extractor(
|
|
554
|
+
audio.float().to(self.device).unsqueeze(0), center=True
|
|
555
|
+
)
|
|
556
|
+
# print(123123123,mel.device.type)
|
|
557
|
+
# torch.cuda.synchronize()
|
|
558
|
+
# t1 = ttime()
|
|
559
|
+
hidden = self.mel2hidden(mel)
|
|
560
|
+
# torch.cuda.synchronize()
|
|
561
|
+
# t2 = ttime()
|
|
562
|
+
# print(234234,hidden.device.type)
|
|
563
|
+
if "privateuseone" not in str(self.device):
|
|
564
|
+
hidden = hidden.squeeze(0).cpu().numpy()
|
|
565
|
+
else:
|
|
566
|
+
hidden = hidden[0]
|
|
567
|
+
if self.is_half == True:
|
|
568
|
+
hidden = hidden.astype("float32")
|
|
569
|
+
|
|
570
|
+
f0 = self.decode(hidden, thred=thred)
|
|
571
|
+
# torch.cuda.synchronize()
|
|
572
|
+
# t3 = ttime()
|
|
573
|
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
|
574
|
+
return f0
|
|
575
|
+
def infer_from_audio_batch(self, audio, thred=0.03):
|
|
576
|
+
# torch.cuda.synchronize()
|
|
577
|
+
# t0 = ttime()
|
|
578
|
+
if not torch.is_tensor(audio):
|
|
579
|
+
audio = torch.from_numpy(audio)
|
|
580
|
+
mel = self.mel_extractor(
|
|
581
|
+
audio.float().to(self.device), center=True
|
|
582
|
+
)
|
|
583
|
+
# print(123123123,mel.device.type)
|
|
584
|
+
# torch.cuda.synchronize()
|
|
585
|
+
# t1 = ttime()
|
|
586
|
+
hidden = self.mel2hidden(mel)
|
|
587
|
+
# torch.cuda.synchronize()
|
|
588
|
+
# t2 = ttime()
|
|
589
|
+
# print(234234,hidden.device.type)
|
|
590
|
+
if "privateuseone" not in str(self.device):
|
|
591
|
+
hidden = hidden.cpu().numpy()
|
|
592
|
+
else:
|
|
593
|
+
pass
|
|
594
|
+
if self.is_half == True:
|
|
595
|
+
hidden = hidden.astype("float32")
|
|
596
|
+
|
|
597
|
+
f0s = []
|
|
598
|
+
for bib in range(hidden.shape[0]):
|
|
599
|
+
f0s.append(self.decode(hidden[bib], thred=thred))
|
|
600
|
+
f0s = np.stack(f0s)
|
|
601
|
+
f0s = torch.from_numpy(f0s).to(self.device)
|
|
602
|
+
# torch.cuda.synchronize()
|
|
603
|
+
# t3 = ttime()
|
|
604
|
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
|
605
|
+
return f0s
|
|
606
|
+
|
|
607
|
+
def to_local_average_cents(self, salience, thred=0.05):
|
|
608
|
+
# t0 = ttime()
|
|
609
|
+
center = np.argmax(salience, axis=1) # 帧长#index
|
|
610
|
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
|
611
|
+
# t1 = ttime()
|
|
612
|
+
center += 4
|
|
613
|
+
todo_salience = []
|
|
614
|
+
todo_cents_mapping = []
|
|
615
|
+
starts = center - 4
|
|
616
|
+
ends = center + 5
|
|
617
|
+
for idx in range(salience.shape[0]):
|
|
618
|
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
|
619
|
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
|
620
|
+
# t2 = ttime()
|
|
621
|
+
todo_salience = np.array(todo_salience) # 帧长,9
|
|
622
|
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
|
623
|
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
|
624
|
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
|
625
|
+
devided = product_sum / weight_sum # 帧长
|
|
626
|
+
# t3 = ttime()
|
|
627
|
+
maxx = np.max(salience, axis=1) # 帧长
|
|
628
|
+
devided[maxx <= thred] = 0
|
|
629
|
+
# t4 = ttime()
|
|
630
|
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
|
631
|
+
return devided
|