warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +334 -0
- warp/__init__.pyi +5856 -0
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1077 -0
- warp/_src/build.py +620 -0
- warp/_src/build_dll.py +642 -0
- warp/_src/builtins.py +10555 -0
- warp/_src/codegen.py +4361 -0
- warp/_src/config.py +178 -0
- warp/_src/constants.py +59 -0
- warp/_src/context.py +8352 -0
- warp/_src/dlpack.py +464 -0
- warp/_src/fabric.py +362 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +510 -0
- warp/_src/fem/cache.py +689 -0
- warp/_src/fem/dirichlet.py +190 -0
- warp/_src/fem/domain.py +553 -0
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +703 -0
- warp/_src/fem/field/nodal_field.py +403 -0
- warp/_src/fem/field/restriction.py +39 -0
- warp/_src/fem/field/virtual.py +1021 -0
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
- warp/_src/fem/geometry/closest_point.py +99 -0
- warp/_src/fem/geometry/deformed_geometry.py +277 -0
- warp/_src/fem/geometry/element.py +854 -0
- warp/_src/fem/geometry/geometry.py +693 -0
- warp/_src/fem/geometry/grid_2d.py +478 -0
- warp/_src/fem/geometry/grid_3d.py +539 -0
- warp/_src/fem/geometry/hexmesh.py +956 -0
- warp/_src/fem/geometry/nanogrid.py +660 -0
- warp/_src/fem/geometry/partition.py +483 -0
- warp/_src/fem/geometry/quadmesh.py +597 -0
- warp/_src/fem/geometry/tetmesh.py +762 -0
- warp/_src/fem/geometry/trimesh.py +588 -0
- warp/_src/fem/integrate.py +2507 -0
- warp/_src/fem/linalg.py +385 -0
- warp/_src/fem/operator.py +398 -0
- warp/_src/fem/polynomial.py +231 -0
- warp/_src/fem/quadrature/__init__.py +17 -0
- warp/_src/fem/quadrature/pic_quadrature.py +318 -0
- warp/_src/fem/quadrature/quadrature.py +665 -0
- warp/_src/fem/space/__init__.py +248 -0
- warp/_src/fem/space/basis_function_space.py +499 -0
- warp/_src/fem/space/basis_space.py +681 -0
- warp/_src/fem/space/dof_mapper.py +253 -0
- warp/_src/fem/space/function_space.py +312 -0
- warp/_src/fem/space/grid_2d_function_space.py +179 -0
- warp/_src/fem/space/grid_3d_function_space.py +229 -0
- warp/_src/fem/space/hexmesh_function_space.py +255 -0
- warp/_src/fem/space/nanogrid_function_space.py +199 -0
- warp/_src/fem/space/partition.py +435 -0
- warp/_src/fem/space/quadmesh_function_space.py +222 -0
- warp/_src/fem/space/restriction.py +221 -0
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
- warp/_src/fem/space/shape/shape_function.py +134 -0
- warp/_src/fem/space/shape/square_shape_function.py +928 -0
- warp/_src/fem/space/shape/tet_shape_function.py +829 -0
- warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
- warp/_src/fem/space/tetmesh_function_space.py +270 -0
- warp/_src/fem/space/topology.py +461 -0
- warp/_src/fem/space/trimesh_function_space.py +193 -0
- warp/_src/fem/types.py +114 -0
- warp/_src/fem/utils.py +488 -0
- warp/_src/jax.py +188 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +389 -0
- warp/_src/jax_experimental/ffi.py +1286 -0
- warp/_src/jax_experimental/xla_ffi.py +658 -0
- warp/_src/marching_cubes.py +710 -0
- warp/_src/math.py +416 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +165 -0
- warp/_src/optim/linear.py +1608 -0
- warp/_src/optim/sgd.py +114 -0
- warp/_src/paddle.py +408 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +291 -0
- warp/_src/render/render_opengl.py +3638 -0
- warp/_src/render/render_usd.py +939 -0
- warp/_src/render/utils.py +162 -0
- warp/_src/sparse.py +2718 -0
- warp/_src/tape.py +1208 -0
- warp/_src/thirdparty/__init__.py +0 -0
- warp/_src/thirdparty/appdirs.py +598 -0
- warp/_src/thirdparty/dlpack.py +145 -0
- warp/_src/thirdparty/unittest_parallel.py +676 -0
- warp/_src/torch.py +393 -0
- warp/_src/types.py +5888 -0
- warp/_src/utils.py +1695 -0
- warp/autograd.py +33 -0
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +29 -0
- warp/build_dll.py +24 -0
- warp/codegen.py +24 -0
- warp/constants.py +24 -0
- warp/context.py +33 -0
- warp/dlpack.py +24 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +195 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +290 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/distributed/example_jacobi_mpi.py +506 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +469 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +181 -0
- warp/examples/fem/example_convection_diffusion_dg.py +225 -0
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +225 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +242 -0
- warp/examples/fem/example_mixed_elasticity.py +293 -0
- warp/examples/fem/example_navier_stokes.py +263 -0
- warp/examples/fem/example_nonconforming_contact.py +300 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +357 -0
- warp/examples/fem/utils.py +1047 -0
- warp/examples/interop/example_jax_callable.py +146 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +232 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +88 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/examples/tile/example_tile_mlp.py +385 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/fabric.py +24 -0
- warp/fem/__init__.py +173 -0
- warp/fem/adaptivity.py +26 -0
- warp/fem/cache.py +30 -0
- warp/fem/dirichlet.py +24 -0
- warp/fem/field/__init__.py +24 -0
- warp/fem/field/field.py +26 -0
- warp/fem/geometry/__init__.py +21 -0
- warp/fem/geometry/closest_point.py +31 -0
- warp/fem/linalg.py +38 -0
- warp/fem/operator.py +32 -0
- warp/fem/polynomial.py +29 -0
- warp/fem/space/__init__.py +22 -0
- warp/fem/space/basis_space.py +24 -0
- warp/fem/space/shape/__init__.py +68 -0
- warp/fem/space/topology.py +24 -0
- warp/fem/types.py +24 -0
- warp/fem/utils.py +32 -0
- warp/jax.py +29 -0
- warp/jax_experimental/__init__.py +29 -0
- warp/jax_experimental/custom_call.py +29 -0
- warp/jax_experimental/ffi.py +39 -0
- warp/jax_experimental/xla_ffi.py +24 -0
- warp/marching_cubes.py +24 -0
- warp/math.py +37 -0
- warp/native/array.h +1687 -0
- warp/native/builtin.h +2327 -0
- warp/native/bvh.cpp +562 -0
- warp/native/bvh.cu +826 -0
- warp/native/bvh.h +555 -0
- warp/native/clang/clang.cpp +541 -0
- warp/native/coloring.cpp +622 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +568 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +677 -0
- warp/native/cuda_util.h +313 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +2023 -0
- warp/native/fabric.h +246 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +89 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1253 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +348 -0
- warp/native/mat.h +5189 -0
- warp/native/mathdx.cpp +93 -0
- warp/native/matnn.h +221 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +406 -0
- warp/native/mesh.h +2097 -0
- warp/native/nanovdb/GridHandle.h +533 -0
- warp/native/nanovdb/HostBuffer.h +591 -0
- warp/native/nanovdb/NanoVDB.h +6246 -0
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1664 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +145 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +363 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +55 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +286 -0
- warp/native/sort.h +35 -0
- warp/native/sparse.cpp +241 -0
- warp/native/sparse.cu +435 -0
- warp/native/spatial.h +1306 -0
- warp/native/svd.h +727 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +4124 -0
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +838 -0
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +2199 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +68 -0
- warp/native/volume.h +970 -0
- warp/native/volume_builder.cu +483 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1143 -0
- warp/native/warp.cu +4604 -0
- warp/native/warp.h +358 -0
- warp/optim/__init__.py +20 -0
- warp/optim/adam.py +24 -0
- warp/optim/linear.py +35 -0
- warp/optim/sgd.py +24 -0
- warp/paddle.py +24 -0
- warp/py.typed +0 -0
- warp/render/__init__.py +22 -0
- warp/render/imgui_manager.py +29 -0
- warp/render/render_opengl.py +24 -0
- warp/render/render_usd.py +24 -0
- warp/render/utils.py +24 -0
- warp/sparse.py +51 -0
- warp/tape.py +24 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_conditional_captures.py +1147 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +691 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +335 -0
- warp/tests/geometry/test_hash_grid.py +259 -0
- warp/tests/geometry/test_marching_cubes.py +294 -0
- warp/tests/geometry/test_mesh.py +318 -0
- warp/tests/geometry/test_mesh_query_aabb.py +392 -0
- warp/tests/geometry/test_mesh_query_point.py +935 -0
- warp/tests/geometry/test_mesh_query_ray.py +323 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +730 -0
- warp/tests/interop/test_jax.py +1673 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/test_adam.py +162 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +3756 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +303 -0
- warp/tests/test_atomic.py +336 -0
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +732 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +974 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +298 -0
- warp/tests/test_context.py +35 -0
- warp/tests/test_copy.py +319 -0
- warp/tests/test_ctypes.py +618 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +127 -0
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +424 -0
- warp/tests/test_fabricarray.py +998 -0
- warp/tests/test_fast_math.py +72 -0
- warp/tests/test_fem.py +2204 -0
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +501 -0
- warp/tests/test_future_annotations.py +100 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +103 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +223 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_map.py +526 -0
- warp/tests/test_mat.py +3515 -0
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +573 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +212 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +70 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +408 -0
- warp/tests/test_quat.py +2653 -0
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +303 -0
- warp/tests/test_rounding.py +157 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +133 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +845 -0
- warp/tests/test_spatial.py +2859 -0
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +640 -0
- warp/tests/test_struct.py +901 -0
- warp/tests/test_tape.py +242 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +192 -0
- warp/tests/test_tuple.py +361 -0
- warp/tests/test_types.py +615 -0
- warp/tests/test_utils.py +594 -0
- warp/tests/test_vec.py +1408 -0
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/test_version.py +75 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +1519 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +608 -0
- warp/tests/tile/test_tile_load.py +724 -0
- warp/tests/tile/test_tile_mathdx.py +156 -0
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +400 -0
- warp/tests/tile/test_tile_reduce.py +950 -0
- warp/tests/tile/test_tile_shared_memory.py +376 -0
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +430 -0
- warp/tests/unittest_utils.py +469 -0
- warp/tests/walkthrough_debug.py +95 -0
- warp/torch.py +24 -0
- warp/types.py +51 -0
- warp/utils.py +31 -0
- warp_lang-1.10.0.dist-info/METADATA +459 -0
- warp_lang-1.10.0.dist-info/RECORD +468 -0
- warp_lang-1.10.0.dist-info/WHEEL +5 -0
- warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/top_level.txt +1 -0
warp/_src/fem/types.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from enum import IntEnum
|
|
17
|
+
|
|
18
|
+
import warp as wp
|
|
19
|
+
|
|
20
|
+
_wp_module_name_ = "warp.fem.types"
|
|
21
|
+
|
|
22
|
+
# kept to avoid breaking existing example code, no longer used internally
|
|
23
|
+
vec2i = wp.vec2i
|
|
24
|
+
vec3i = wp.vec3i
|
|
25
|
+
vec4i = wp.vec4i
|
|
26
|
+
|
|
27
|
+
Coords = wp.vec3
|
|
28
|
+
"""Type representing coordinates within elements"""
|
|
29
|
+
OUTSIDE = -1.0e8
|
|
30
|
+
"""Constant indicating an invalid element coordinate"""
|
|
31
|
+
|
|
32
|
+
ElementIndex = int
|
|
33
|
+
"""Type representing the index of an element in the geometry"""
|
|
34
|
+
QuadraturePointIndex = int
|
|
35
|
+
"""Type representing the index of a quadrature point"""
|
|
36
|
+
NodeIndex = int
|
|
37
|
+
"""Type representing the index of a node in a function space"""
|
|
38
|
+
|
|
39
|
+
NULL_ELEMENT_INDEX: ElementIndex = wp.constant(-1)
|
|
40
|
+
"""Constant indicating an invalid element index"""
|
|
41
|
+
NULL_QP_INDEX: QuadraturePointIndex = wp.constant(-1)
|
|
42
|
+
"""Constant indicating an invalid quadrature point index"""
|
|
43
|
+
NULL_NODE_INDEX: NodeIndex = wp.constant((1 << 31) - 1) # this should be larger than normal nodes when sorting
|
|
44
|
+
"""Constant indicating an invalid node index"""
|
|
45
|
+
|
|
46
|
+
DofIndex = wp.vec2i
|
|
47
|
+
"""Opaque descriptor for indexing degrees of freedom within elements"""
|
|
48
|
+
NULL_DOF_INDEX: DofIndex = wp.constant(DofIndex(-1, -1))
|
|
49
|
+
"""Constant indicating an invalid degree of freedom index"""
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
@wp.func
|
|
53
|
+
def get_node_index_in_element(dof_idx: DofIndex):
|
|
54
|
+
return dof_idx[0]
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@wp.func
|
|
58
|
+
def get_node_coord(dof_idx: DofIndex):
|
|
59
|
+
return dof_idx[1]
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class ElementKind(IntEnum):
|
|
63
|
+
"""Type of geometry elements"""
|
|
64
|
+
|
|
65
|
+
CELL = 0
|
|
66
|
+
"""Cells: elements that have the same dimension as the geometry"""
|
|
67
|
+
SIDE = 1
|
|
68
|
+
"""Sides: elements that have one dimension less than the geometry"""
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@wp.struct
|
|
72
|
+
class NodeElementIndex:
|
|
73
|
+
domain_element_index: ElementIndex
|
|
74
|
+
node_index_in_element: int
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@wp.struct
|
|
78
|
+
class Sample:
|
|
79
|
+
"""Per-sample point context for evaluating fields and related operators in integrands"""
|
|
80
|
+
|
|
81
|
+
element_index: ElementIndex
|
|
82
|
+
"""Index of the geometry element the sample point is in"""
|
|
83
|
+
element_coords: Coords
|
|
84
|
+
"""Coordinates of the sample point inside the element"""
|
|
85
|
+
qp_index: QuadraturePointIndex = NULL_QP_INDEX
|
|
86
|
+
"""If the sample corresponds to a quadrature point, its global index"""
|
|
87
|
+
qp_weight: float = 0.0
|
|
88
|
+
"""If the sample corresponds to a quadrature point, its weight"""
|
|
89
|
+
test_dof: DofIndex = NULL_DOF_INDEX
|
|
90
|
+
"""For linear of bilinear form assembly, index of the test degree-of-freedom currently being considered"""
|
|
91
|
+
trial_dof: DofIndex = NULL_DOF_INDEX
|
|
92
|
+
"""For bilinear form assembly, index of the trial degree-of-freedom currently being considered"""
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@wp.func
|
|
96
|
+
def make_free_sample(element_index: ElementIndex, element_coords: Coords):
|
|
97
|
+
"""Returns a :class:`Sample` that is not associated to any quadrature point or dof"""
|
|
98
|
+
return Sample(element_index, element_coords, NULL_QP_INDEX, 0.0, NULL_DOF_INDEX, NULL_DOF_INDEX)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class Field:
|
|
102
|
+
"""
|
|
103
|
+
Tag for field-like integrand arguments
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
call_operator: "warp.fem.operator.Operator" = None # noqa: F821 Set in operator.py
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
class Domain:
|
|
110
|
+
"""
|
|
111
|
+
Tag for domain-like integrand arguments
|
|
112
|
+
"""
|
|
113
|
+
|
|
114
|
+
call_operator: "warp.fem.operator.Operator" = None # noqa: F821 Set in operator.py
|
warp/_src/fem/utils.py
ADDED
|
@@ -0,0 +1,488 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from typing import Optional, Tuple, Union
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
import warp._src.fem.cache as cache
|
|
22
|
+
from warp._src.fem.linalg import array_axpy, inverse_qr, symmetric_eigenvalues_qr # noqa: F401
|
|
23
|
+
from warp._src.fem.types import NULL_NODE_INDEX
|
|
24
|
+
from warp._src.types import scalar_types, type_is_matrix
|
|
25
|
+
from warp._src.utils import array_scan, radix_sort_pairs, runlength_encode
|
|
26
|
+
|
|
27
|
+
_wp_module_name_ = "warp.fem.utils"
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def type_zero_element(dtype):
|
|
31
|
+
suffix = cache.pod_type_key(dtype)
|
|
32
|
+
|
|
33
|
+
if dtype in scalar_types:
|
|
34
|
+
|
|
35
|
+
@cache.dynamic_func(suffix=suffix)
|
|
36
|
+
def zero_element():
|
|
37
|
+
return dtype(0.0)
|
|
38
|
+
|
|
39
|
+
return zero_element
|
|
40
|
+
|
|
41
|
+
@cache.dynamic_func(suffix=suffix)
|
|
42
|
+
def zero_element():
|
|
43
|
+
return dtype()
|
|
44
|
+
|
|
45
|
+
return zero_element
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def type_basis_element(dtype):
|
|
49
|
+
suffix = cache.pod_type_key(dtype)
|
|
50
|
+
|
|
51
|
+
if dtype in scalar_types:
|
|
52
|
+
|
|
53
|
+
@cache.dynamic_func(suffix=suffix)
|
|
54
|
+
def basis_element(coord: int):
|
|
55
|
+
return dtype(1.0)
|
|
56
|
+
|
|
57
|
+
return basis_element
|
|
58
|
+
|
|
59
|
+
if type_is_matrix(dtype):
|
|
60
|
+
cols = dtype._shape_[1]
|
|
61
|
+
|
|
62
|
+
@cache.dynamic_func(suffix=suffix)
|
|
63
|
+
def basis_element(coord: int):
|
|
64
|
+
v = dtype()
|
|
65
|
+
i = coord // cols
|
|
66
|
+
j = coord - i * cols
|
|
67
|
+
v[i, j] = v.dtype(1.0)
|
|
68
|
+
return v
|
|
69
|
+
|
|
70
|
+
return basis_element
|
|
71
|
+
|
|
72
|
+
@cache.dynamic_func(suffix=suffix)
|
|
73
|
+
def basis_element(coord: int):
|
|
74
|
+
v = dtype()
|
|
75
|
+
v[coord] = v.dtype(1.0)
|
|
76
|
+
return v
|
|
77
|
+
|
|
78
|
+
return basis_element
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def compress_node_indices(
|
|
82
|
+
node_count: int,
|
|
83
|
+
node_indices: wp.array(dtype=int),
|
|
84
|
+
return_unique_nodes=False,
|
|
85
|
+
node_offsets: wp.array(dtype=int) = None,
|
|
86
|
+
sorted_array_indices: wp.array(dtype=int) = None,
|
|
87
|
+
unique_node_count: wp.array(dtype=int) = None,
|
|
88
|
+
unique_node_indices: wp.array(dtype=int) = None,
|
|
89
|
+
temporary_store: cache.TemporaryStore = None,
|
|
90
|
+
) -> Union[Tuple[cache.Temporary, cache.Temporary], Tuple[cache.Temporary, cache.Temporary, int, cache.Temporary]]:
|
|
91
|
+
"""
|
|
92
|
+
Compress an unsorted list of node indices into:
|
|
93
|
+
- the `node_offsets` array, giving for each node the start offset of corresponding indices in sorted_array_indices
|
|
94
|
+
- the `sorted_array_indices` array, listing the indices in the input array corresponding to each node
|
|
95
|
+
|
|
96
|
+
Plus if `return_unique_nodes` is ``True``,
|
|
97
|
+
- the `unique_node_count` array containing the number of unique node indices
|
|
98
|
+
- the `unique_node_indices` array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1])
|
|
99
|
+
|
|
100
|
+
Node indices equal to NULL_NODE_INDEX will be ignored
|
|
101
|
+
|
|
102
|
+
If the ``node_offsets``, ``sorted_array_indices``, ``unique_node_count`` and ``unique_node_indices`` arrays are provided and adequately shaped, they will be used to store the results instead of creating new arrays.
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
index_count = node_indices.size
|
|
107
|
+
device = node_indices.device
|
|
108
|
+
|
|
109
|
+
with wp.ScopedDevice(device):
|
|
110
|
+
sorted_node_indices = cache.borrow_temporary(temporary_store, shape=2 * index_count, dtype=int)
|
|
111
|
+
|
|
112
|
+
if sorted_array_indices is None or sorted_array_indices.shape != sorted_node_indices.shape:
|
|
113
|
+
sorted_array_indices = cache.borrow_temporary_like(sorted_node_indices, temporary_store)
|
|
114
|
+
|
|
115
|
+
indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1]
|
|
116
|
+
wp.launch(
|
|
117
|
+
kernel=_prepare_node_sort_kernel,
|
|
118
|
+
dim=index_count,
|
|
119
|
+
inputs=[node_indices.flatten(), sorted_node_indices, sorted_array_indices, indices_per_element],
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
# Sort indices
|
|
123
|
+
radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count)
|
|
124
|
+
|
|
125
|
+
# Build prefix sum of number of elements per node
|
|
126
|
+
node_element_counts = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
|
|
127
|
+
if unique_node_indices is None or unique_node_indices.shape != node_element_counts.shape:
|
|
128
|
+
unique_node_indices = cache.borrow_temporary_like(node_element_counts, temporary_store)
|
|
129
|
+
|
|
130
|
+
if unique_node_count is None or unique_node_count.shape != (1,):
|
|
131
|
+
unique_node_count = cache.borrow_temporary(temporary_store, shape=(1,), dtype=int)
|
|
132
|
+
|
|
133
|
+
runlength_encode(
|
|
134
|
+
sorted_node_indices,
|
|
135
|
+
unique_node_indices,
|
|
136
|
+
node_element_counts,
|
|
137
|
+
value_count=index_count,
|
|
138
|
+
run_count=unique_node_count,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# Scatter seen run counts to global array of element count per node
|
|
142
|
+
if node_offsets is None or node_offsets.shape != (node_count + 1,):
|
|
143
|
+
node_offsets = cache.borrow_temporary(temporary_store, shape=(node_count + 1), dtype=int)
|
|
144
|
+
|
|
145
|
+
node_offsets.zero_()
|
|
146
|
+
wp.launch(
|
|
147
|
+
kernel=_scatter_node_counts,
|
|
148
|
+
dim=node_count + 1, # +1 to accommodate possible NULL node,
|
|
149
|
+
inputs=[node_element_counts, unique_node_indices, node_offsets, unique_node_count],
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
# Prefix sum of number of elements per node
|
|
153
|
+
array_scan(node_offsets, node_offsets, inclusive=True)
|
|
154
|
+
|
|
155
|
+
sorted_node_indices.release()
|
|
156
|
+
node_element_counts.release()
|
|
157
|
+
|
|
158
|
+
if not return_unique_nodes:
|
|
159
|
+
return node_offsets, sorted_array_indices
|
|
160
|
+
|
|
161
|
+
return node_offsets, sorted_array_indices, unique_node_count, unique_node_indices
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def host_read_at_index(array: wp.array, index: int = -1, temporary_store: cache.TemporaryStore = None) -> int:
|
|
165
|
+
"""Returns the value of the array element at the given index on host"""
|
|
166
|
+
|
|
167
|
+
if index < 0:
|
|
168
|
+
index += array.shape[0]
|
|
169
|
+
return array[index : index + 1].numpy()[0]
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def masked_indices(
|
|
173
|
+
mask: wp.array,
|
|
174
|
+
missing_index: int = -1,
|
|
175
|
+
max_index_count: int = -1,
|
|
176
|
+
local_to_global: Optional[wp.array] = None,
|
|
177
|
+
global_to_local: Optional[wp.array] = None,
|
|
178
|
+
temporary_store: cache.TemporaryStore = None,
|
|
179
|
+
) -> Tuple[wp.array, wp.array]:
|
|
180
|
+
"""
|
|
181
|
+
From an array of boolean masks (must be either 0 or 1), returns:
|
|
182
|
+
- Local to global map: The list of indices for which the mask is 1
|
|
183
|
+
- Global to local map: A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero.
|
|
184
|
+
|
|
185
|
+
If ``max_index_count`` is provided, it will be used to limit the number of indices returned instead of synchronizing back to the host
|
|
186
|
+
|
|
187
|
+
If ``local_to_global`` and ``global_to_local`` are provided and adequately sized, they will be used to store the indices instead of creating new arrays.
|
|
188
|
+
"""
|
|
189
|
+
|
|
190
|
+
if global_to_local is None or global_to_local.shape != mask.shape:
|
|
191
|
+
offsets = cache.borrow_temporary_like(mask, temporary_store)
|
|
192
|
+
global_to_local = offsets
|
|
193
|
+
else:
|
|
194
|
+
offsets = global_to_local
|
|
195
|
+
|
|
196
|
+
array_scan(mask, offsets, inclusive=True)
|
|
197
|
+
|
|
198
|
+
# Get back total counts (on host if no estimate is provided)
|
|
199
|
+
local_count = (
|
|
200
|
+
min(max_index_count, mask.shape[0])
|
|
201
|
+
if max_index_count >= 0
|
|
202
|
+
else int(host_read_at_index(offsets, temporary_store=temporary_store))
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
# Convert counts to indices
|
|
206
|
+
if local_to_global is None or local_to_global.shape[0] != local_count:
|
|
207
|
+
local_to_global = cache.borrow_temporary(temporary_store, shape=local_count, device=mask.device, dtype=int)
|
|
208
|
+
|
|
209
|
+
if max_index_count >= 0:
|
|
210
|
+
# We might (and hopefully have) reserved more space than necessary
|
|
211
|
+
# Fill with missing index to avoid uninitialized values
|
|
212
|
+
local_to_global.fill_(missing_index)
|
|
213
|
+
|
|
214
|
+
wp.launch(
|
|
215
|
+
kernel=_masked_indices_kernel,
|
|
216
|
+
dim=offsets.shape,
|
|
217
|
+
inputs=[missing_index, mask, offsets, local_to_global, offsets],
|
|
218
|
+
device=mask.device,
|
|
219
|
+
)
|
|
220
|
+
|
|
221
|
+
return local_to_global, global_to_local
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
@wp.kernel
|
|
225
|
+
def _prepare_node_sort_kernel(
|
|
226
|
+
node_indices: wp.array(dtype=int),
|
|
227
|
+
sort_keys: wp.array(dtype=int),
|
|
228
|
+
sort_values: wp.array(dtype=int),
|
|
229
|
+
divisor: int,
|
|
230
|
+
):
|
|
231
|
+
i = wp.tid()
|
|
232
|
+
node = node_indices[i]
|
|
233
|
+
sort_keys[i] = wp.where(node >= 0, node, NULL_NODE_INDEX)
|
|
234
|
+
sort_values[i] = i // divisor
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
@wp.kernel
|
|
238
|
+
def _scatter_node_counts(
|
|
239
|
+
unique_counts: wp.array(dtype=int),
|
|
240
|
+
unique_node_indices: wp.array(dtype=int),
|
|
241
|
+
node_counts: wp.array(dtype=int),
|
|
242
|
+
unique_node_count: wp.array(dtype=int),
|
|
243
|
+
):
|
|
244
|
+
i = wp.tid()
|
|
245
|
+
|
|
246
|
+
if i >= unique_node_count[0]:
|
|
247
|
+
if i < unique_node_indices.shape[0]:
|
|
248
|
+
unique_node_indices[i] = NULL_NODE_INDEX
|
|
249
|
+
return
|
|
250
|
+
|
|
251
|
+
node_index = unique_node_indices[i]
|
|
252
|
+
if node_index == NULL_NODE_INDEX:
|
|
253
|
+
wp.atomic_sub(unique_node_count, 0, 1)
|
|
254
|
+
return
|
|
255
|
+
|
|
256
|
+
node_counts[1 + node_index] = unique_counts[i]
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
@wp.kernel
|
|
260
|
+
def _masked_indices_kernel(
|
|
261
|
+
missing_index: int,
|
|
262
|
+
mask: wp.array(dtype=int),
|
|
263
|
+
offsets: wp.array(dtype=int),
|
|
264
|
+
masked_to_global: wp.array(dtype=int),
|
|
265
|
+
global_to_masked: wp.array(dtype=int),
|
|
266
|
+
):
|
|
267
|
+
i = wp.tid()
|
|
268
|
+
|
|
269
|
+
max_count = masked_to_global.shape[0]
|
|
270
|
+
masked_idx = offsets[i] - 1
|
|
271
|
+
|
|
272
|
+
if i + 1 == offsets.shape[0] and masked_idx >= max_count:
|
|
273
|
+
if max_count < offsets[i]:
|
|
274
|
+
wp.printf(
|
|
275
|
+
"Number of elements exceeded the %d limit; increase to %d.\n",
|
|
276
|
+
max_count,
|
|
277
|
+
masked_idx + 1,
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
if mask[i] == 0 or masked_idx >= max_count:
|
|
281
|
+
# index not in mask, or greater than reserved index count
|
|
282
|
+
global_to_masked[i] = missing_index
|
|
283
|
+
else:
|
|
284
|
+
global_to_masked[i] = masked_idx
|
|
285
|
+
masked_to_global[masked_idx] = i
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def grid_to_tris(Nx: int, Ny: int):
|
|
289
|
+
"""Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles.
|
|
290
|
+
|
|
291
|
+
The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction
|
|
292
|
+
|
|
293
|
+
Args:
|
|
294
|
+
Nx: Resolution of the grid along `x` dimension
|
|
295
|
+
Ny: Resolution of the grid along `y` dimension
|
|
296
|
+
|
|
297
|
+
Returns:
|
|
298
|
+
Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle
|
|
299
|
+
"""
|
|
300
|
+
|
|
301
|
+
cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij")
|
|
302
|
+
|
|
303
|
+
vidx = np.transpose(
|
|
304
|
+
np.array(
|
|
305
|
+
[
|
|
306
|
+
(Ny + 1) * cx + cy,
|
|
307
|
+
(Ny + 1) * (cx + 1) + cy,
|
|
308
|
+
(Ny + 1) * (cx + 1) + (cy + 1),
|
|
309
|
+
(Ny + 1) * cx + cy,
|
|
310
|
+
(Ny + 1) * (cx + 1) + (cy + 1),
|
|
311
|
+
(Ny + 1) * (cx) + (cy + 1),
|
|
312
|
+
]
|
|
313
|
+
)
|
|
314
|
+
).reshape((-1, 3))
|
|
315
|
+
|
|
316
|
+
return vidx
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def grid_to_tets(Nx: int, Ny: int, Nz: int):
|
|
320
|
+
"""Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons
|
|
321
|
+
|
|
322
|
+
The resulting tets have positive volume assuming that `z` is the fastest moving index direction
|
|
323
|
+
|
|
324
|
+
Args:
|
|
325
|
+
Nx: Resolution of the grid along `x` dimension
|
|
326
|
+
Ny: Resolution of the grid along `y` dimension
|
|
327
|
+
Nz: Resolution of the grid along `z` dimension
|
|
328
|
+
|
|
329
|
+
Returns:
|
|
330
|
+
Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet
|
|
331
|
+
"""
|
|
332
|
+
|
|
333
|
+
# Global node indices for each cell
|
|
334
|
+
cx, cy, cz = np.meshgrid(
|
|
335
|
+
np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij"
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
grid_vidx = np.array(
|
|
339
|
+
[
|
|
340
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz,
|
|
341
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1,
|
|
342
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz,
|
|
343
|
+
(Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1,
|
|
344
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz,
|
|
345
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1,
|
|
346
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz,
|
|
347
|
+
(Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1,
|
|
348
|
+
]
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
# decompose grid cells into 5 tets
|
|
352
|
+
tet_vidx = np.array(
|
|
353
|
+
[
|
|
354
|
+
[0, 1, 2, 4],
|
|
355
|
+
[3, 2, 1, 7],
|
|
356
|
+
[5, 1, 7, 4],
|
|
357
|
+
[6, 7, 4, 2],
|
|
358
|
+
[4, 1, 2, 7],
|
|
359
|
+
]
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
# Convert to 3d index coordinates
|
|
363
|
+
vidx_coords = np.array(
|
|
364
|
+
[
|
|
365
|
+
[0, 0, 0],
|
|
366
|
+
[0, 0, 1],
|
|
367
|
+
[0, 1, 0],
|
|
368
|
+
[0, 1, 1],
|
|
369
|
+
[1, 0, 0],
|
|
370
|
+
[1, 0, 1],
|
|
371
|
+
[1, 1, 0],
|
|
372
|
+
[1, 1, 1],
|
|
373
|
+
]
|
|
374
|
+
)
|
|
375
|
+
tet_coords = vidx_coords[tet_vidx]
|
|
376
|
+
|
|
377
|
+
# Symmetry bits for each cell
|
|
378
|
+
ox, oy, oz = np.meshgrid(
|
|
379
|
+
np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij"
|
|
380
|
+
)
|
|
381
|
+
tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape))
|
|
382
|
+
|
|
383
|
+
# Flip coordinates according to symmetry
|
|
384
|
+
ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1])
|
|
385
|
+
oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1])
|
|
386
|
+
oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1])
|
|
387
|
+
|
|
388
|
+
tet_coords_x = tet_coords[..., 0] ^ ox_bk
|
|
389
|
+
tet_coords_y = tet_coords[..., 1] ^ oy_bk
|
|
390
|
+
tet_coords_z = tet_coords[..., 2] ^ oz_bk
|
|
391
|
+
|
|
392
|
+
# Back to local vertex indices
|
|
393
|
+
corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z
|
|
394
|
+
|
|
395
|
+
# Now go from cell-local to global node indices
|
|
396
|
+
# There must be a nicer way than this, but for small grids this works
|
|
397
|
+
|
|
398
|
+
corner_indices = corner_indices.reshape(-1, 4)
|
|
399
|
+
|
|
400
|
+
grid_vidx = grid_vidx.reshape((8, -1, 1))
|
|
401
|
+
grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5))
|
|
402
|
+
grid_vidx = grid_vidx.reshape((8, -1))
|
|
403
|
+
|
|
404
|
+
node_indices = np.arange(corner_indices.shape[0])
|
|
405
|
+
tet_grid_vidx = np.transpose(
|
|
406
|
+
[
|
|
407
|
+
grid_vidx[corner_indices[:, 0], node_indices],
|
|
408
|
+
grid_vidx[corner_indices[:, 1], node_indices],
|
|
409
|
+
grid_vidx[corner_indices[:, 2], node_indices],
|
|
410
|
+
grid_vidx[corner_indices[:, 3], node_indices],
|
|
411
|
+
]
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
return tet_grid_vidx
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
def grid_to_quads(Nx: int, Ny: int):
|
|
418
|
+
"""Constructs a quadrilateral mesh topology from a dense 2D grid
|
|
419
|
+
|
|
420
|
+
The resulting quads will be indexed counter-clockwise
|
|
421
|
+
|
|
422
|
+
Args:
|
|
423
|
+
Nx: Resolution of the grid along `x` dimension
|
|
424
|
+
Ny: Resolution of the grid along `y` dimension
|
|
425
|
+
|
|
426
|
+
Returns:
|
|
427
|
+
Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral
|
|
428
|
+
"""
|
|
429
|
+
|
|
430
|
+
quad_vtx = np.array(
|
|
431
|
+
[
|
|
432
|
+
[0, 0],
|
|
433
|
+
[1, 0],
|
|
434
|
+
[1, 1],
|
|
435
|
+
[0, 1],
|
|
436
|
+
]
|
|
437
|
+
).T
|
|
438
|
+
|
|
439
|
+
quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij"))
|
|
440
|
+
|
|
441
|
+
quads_vtx_shape = (*quads.shape, quad_vtx.shape[1])
|
|
442
|
+
quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to(
|
|
443
|
+
quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape
|
|
444
|
+
)
|
|
445
|
+
|
|
446
|
+
quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1]
|
|
447
|
+
|
|
448
|
+
return quad_vtx_indices.reshape(-1, 4)
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
def grid_to_hexes(Nx: int, Ny: int, Nz: int):
|
|
452
|
+
"""Constructs a hexahedral mesh topology from a dense 3D grid
|
|
453
|
+
|
|
454
|
+
The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction
|
|
455
|
+
(counter-clockwise bottom vertices, then counter-clockwise top vertices)
|
|
456
|
+
|
|
457
|
+
Args:
|
|
458
|
+
Nx: Resolution of the grid along `x` dimension
|
|
459
|
+
Ny: Resolution of the grid along `y` dimension
|
|
460
|
+
Nz: Resolution of the grid along `z` dimension
|
|
461
|
+
|
|
462
|
+
Returns:
|
|
463
|
+
Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexahedron
|
|
464
|
+
"""
|
|
465
|
+
|
|
466
|
+
hex_vtx = np.array(
|
|
467
|
+
[
|
|
468
|
+
[0, 0, 0],
|
|
469
|
+
[1, 0, 0],
|
|
470
|
+
[1, 1, 0],
|
|
471
|
+
[0, 1, 0],
|
|
472
|
+
[0, 0, 1],
|
|
473
|
+
[1, 0, 1],
|
|
474
|
+
[1, 1, 1],
|
|
475
|
+
[0, 1, 1],
|
|
476
|
+
]
|
|
477
|
+
).T
|
|
478
|
+
|
|
479
|
+
hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij"))
|
|
480
|
+
|
|
481
|
+
hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1])
|
|
482
|
+
hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to(
|
|
483
|
+
hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2]
|
|
487
|
+
|
|
488
|
+
return hexes_vtx_indices.reshape(-1, 8)
|