warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +334 -0
- warp/__init__.pyi +5856 -0
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1077 -0
- warp/_src/build.py +620 -0
- warp/_src/build_dll.py +642 -0
- warp/_src/builtins.py +10555 -0
- warp/_src/codegen.py +4361 -0
- warp/_src/config.py +178 -0
- warp/_src/constants.py +59 -0
- warp/_src/context.py +8352 -0
- warp/_src/dlpack.py +464 -0
- warp/_src/fabric.py +362 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +510 -0
- warp/_src/fem/cache.py +689 -0
- warp/_src/fem/dirichlet.py +190 -0
- warp/_src/fem/domain.py +553 -0
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +703 -0
- warp/_src/fem/field/nodal_field.py +403 -0
- warp/_src/fem/field/restriction.py +39 -0
- warp/_src/fem/field/virtual.py +1021 -0
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
- warp/_src/fem/geometry/closest_point.py +99 -0
- warp/_src/fem/geometry/deformed_geometry.py +277 -0
- warp/_src/fem/geometry/element.py +854 -0
- warp/_src/fem/geometry/geometry.py +693 -0
- warp/_src/fem/geometry/grid_2d.py +478 -0
- warp/_src/fem/geometry/grid_3d.py +539 -0
- warp/_src/fem/geometry/hexmesh.py +956 -0
- warp/_src/fem/geometry/nanogrid.py +660 -0
- warp/_src/fem/geometry/partition.py +483 -0
- warp/_src/fem/geometry/quadmesh.py +597 -0
- warp/_src/fem/geometry/tetmesh.py +762 -0
- warp/_src/fem/geometry/trimesh.py +588 -0
- warp/_src/fem/integrate.py +2507 -0
- warp/_src/fem/linalg.py +385 -0
- warp/_src/fem/operator.py +398 -0
- warp/_src/fem/polynomial.py +231 -0
- warp/_src/fem/quadrature/__init__.py +17 -0
- warp/_src/fem/quadrature/pic_quadrature.py +318 -0
- warp/_src/fem/quadrature/quadrature.py +665 -0
- warp/_src/fem/space/__init__.py +248 -0
- warp/_src/fem/space/basis_function_space.py +499 -0
- warp/_src/fem/space/basis_space.py +681 -0
- warp/_src/fem/space/dof_mapper.py +253 -0
- warp/_src/fem/space/function_space.py +312 -0
- warp/_src/fem/space/grid_2d_function_space.py +179 -0
- warp/_src/fem/space/grid_3d_function_space.py +229 -0
- warp/_src/fem/space/hexmesh_function_space.py +255 -0
- warp/_src/fem/space/nanogrid_function_space.py +199 -0
- warp/_src/fem/space/partition.py +435 -0
- warp/_src/fem/space/quadmesh_function_space.py +222 -0
- warp/_src/fem/space/restriction.py +221 -0
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
- warp/_src/fem/space/shape/shape_function.py +134 -0
- warp/_src/fem/space/shape/square_shape_function.py +928 -0
- warp/_src/fem/space/shape/tet_shape_function.py +829 -0
- warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
- warp/_src/fem/space/tetmesh_function_space.py +270 -0
- warp/_src/fem/space/topology.py +461 -0
- warp/_src/fem/space/trimesh_function_space.py +193 -0
- warp/_src/fem/types.py +114 -0
- warp/_src/fem/utils.py +488 -0
- warp/_src/jax.py +188 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +389 -0
- warp/_src/jax_experimental/ffi.py +1286 -0
- warp/_src/jax_experimental/xla_ffi.py +658 -0
- warp/_src/marching_cubes.py +710 -0
- warp/_src/math.py +416 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +165 -0
- warp/_src/optim/linear.py +1608 -0
- warp/_src/optim/sgd.py +114 -0
- warp/_src/paddle.py +408 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +291 -0
- warp/_src/render/render_opengl.py +3638 -0
- warp/_src/render/render_usd.py +939 -0
- warp/_src/render/utils.py +162 -0
- warp/_src/sparse.py +2718 -0
- warp/_src/tape.py +1208 -0
- warp/_src/thirdparty/__init__.py +0 -0
- warp/_src/thirdparty/appdirs.py +598 -0
- warp/_src/thirdparty/dlpack.py +145 -0
- warp/_src/thirdparty/unittest_parallel.py +676 -0
- warp/_src/torch.py +393 -0
- warp/_src/types.py +5888 -0
- warp/_src/utils.py +1695 -0
- warp/autograd.py +33 -0
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +29 -0
- warp/build_dll.py +24 -0
- warp/codegen.py +24 -0
- warp/constants.py +24 -0
- warp/context.py +33 -0
- warp/dlpack.py +24 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +195 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +290 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/distributed/example_jacobi_mpi.py +506 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +469 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +181 -0
- warp/examples/fem/example_convection_diffusion_dg.py +225 -0
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +225 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +242 -0
- warp/examples/fem/example_mixed_elasticity.py +293 -0
- warp/examples/fem/example_navier_stokes.py +263 -0
- warp/examples/fem/example_nonconforming_contact.py +300 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +357 -0
- warp/examples/fem/utils.py +1047 -0
- warp/examples/interop/example_jax_callable.py +146 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +232 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +88 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/examples/tile/example_tile_mlp.py +385 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/fabric.py +24 -0
- warp/fem/__init__.py +173 -0
- warp/fem/adaptivity.py +26 -0
- warp/fem/cache.py +30 -0
- warp/fem/dirichlet.py +24 -0
- warp/fem/field/__init__.py +24 -0
- warp/fem/field/field.py +26 -0
- warp/fem/geometry/__init__.py +21 -0
- warp/fem/geometry/closest_point.py +31 -0
- warp/fem/linalg.py +38 -0
- warp/fem/operator.py +32 -0
- warp/fem/polynomial.py +29 -0
- warp/fem/space/__init__.py +22 -0
- warp/fem/space/basis_space.py +24 -0
- warp/fem/space/shape/__init__.py +68 -0
- warp/fem/space/topology.py +24 -0
- warp/fem/types.py +24 -0
- warp/fem/utils.py +32 -0
- warp/jax.py +29 -0
- warp/jax_experimental/__init__.py +29 -0
- warp/jax_experimental/custom_call.py +29 -0
- warp/jax_experimental/ffi.py +39 -0
- warp/jax_experimental/xla_ffi.py +24 -0
- warp/marching_cubes.py +24 -0
- warp/math.py +37 -0
- warp/native/array.h +1687 -0
- warp/native/builtin.h +2327 -0
- warp/native/bvh.cpp +562 -0
- warp/native/bvh.cu +826 -0
- warp/native/bvh.h +555 -0
- warp/native/clang/clang.cpp +541 -0
- warp/native/coloring.cpp +622 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +568 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +677 -0
- warp/native/cuda_util.h +313 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +2023 -0
- warp/native/fabric.h +246 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +89 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1253 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +348 -0
- warp/native/mat.h +5189 -0
- warp/native/mathdx.cpp +93 -0
- warp/native/matnn.h +221 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +406 -0
- warp/native/mesh.h +2097 -0
- warp/native/nanovdb/GridHandle.h +533 -0
- warp/native/nanovdb/HostBuffer.h +591 -0
- warp/native/nanovdb/NanoVDB.h +6246 -0
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1664 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +145 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +363 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +55 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +286 -0
- warp/native/sort.h +35 -0
- warp/native/sparse.cpp +241 -0
- warp/native/sparse.cu +435 -0
- warp/native/spatial.h +1306 -0
- warp/native/svd.h +727 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +4124 -0
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +838 -0
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +2199 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +68 -0
- warp/native/volume.h +970 -0
- warp/native/volume_builder.cu +483 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1143 -0
- warp/native/warp.cu +4604 -0
- warp/native/warp.h +358 -0
- warp/optim/__init__.py +20 -0
- warp/optim/adam.py +24 -0
- warp/optim/linear.py +35 -0
- warp/optim/sgd.py +24 -0
- warp/paddle.py +24 -0
- warp/py.typed +0 -0
- warp/render/__init__.py +22 -0
- warp/render/imgui_manager.py +29 -0
- warp/render/render_opengl.py +24 -0
- warp/render/render_usd.py +24 -0
- warp/render/utils.py +24 -0
- warp/sparse.py +51 -0
- warp/tape.py +24 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_conditional_captures.py +1147 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +691 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +335 -0
- warp/tests/geometry/test_hash_grid.py +259 -0
- warp/tests/geometry/test_marching_cubes.py +294 -0
- warp/tests/geometry/test_mesh.py +318 -0
- warp/tests/geometry/test_mesh_query_aabb.py +392 -0
- warp/tests/geometry/test_mesh_query_point.py +935 -0
- warp/tests/geometry/test_mesh_query_ray.py +323 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +730 -0
- warp/tests/interop/test_jax.py +1673 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/test_adam.py +162 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +3756 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +303 -0
- warp/tests/test_atomic.py +336 -0
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +732 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +974 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +298 -0
- warp/tests/test_context.py +35 -0
- warp/tests/test_copy.py +319 -0
- warp/tests/test_ctypes.py +618 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +127 -0
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +424 -0
- warp/tests/test_fabricarray.py +998 -0
- warp/tests/test_fast_math.py +72 -0
- warp/tests/test_fem.py +2204 -0
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +501 -0
- warp/tests/test_future_annotations.py +100 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +103 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +223 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_map.py +526 -0
- warp/tests/test_mat.py +3515 -0
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +573 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +212 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +70 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +408 -0
- warp/tests/test_quat.py +2653 -0
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +303 -0
- warp/tests/test_rounding.py +157 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +133 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +845 -0
- warp/tests/test_spatial.py +2859 -0
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +640 -0
- warp/tests/test_struct.py +901 -0
- warp/tests/test_tape.py +242 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +192 -0
- warp/tests/test_tuple.py +361 -0
- warp/tests/test_types.py +615 -0
- warp/tests/test_utils.py +594 -0
- warp/tests/test_vec.py +1408 -0
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/test_version.py +75 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +1519 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +608 -0
- warp/tests/tile/test_tile_load.py +724 -0
- warp/tests/tile/test_tile_mathdx.py +156 -0
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +400 -0
- warp/tests/tile/test_tile_reduce.py +950 -0
- warp/tests/tile/test_tile_shared_memory.py +376 -0
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +430 -0
- warp/tests/unittest_utils.py +469 -0
- warp/tests/walkthrough_debug.py +95 -0
- warp/torch.py +24 -0
- warp/types.py +51 -0
- warp/utils.py +31 -0
- warp_lang-1.10.0.dist-info/METADATA +459 -0
- warp_lang-1.10.0.dist-info/RECORD +468 -0
- warp_lang-1.10.0.dist-info/WHEEL +5 -0
- warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/top_level.txt +1 -0
warp/tests/test_vec.py
ADDED
|
@@ -0,0 +1,1408 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
import warp as wp
|
|
22
|
+
from warp.tests.unittest_utils import *
|
|
23
|
+
|
|
24
|
+
np_signed_int_types = [
|
|
25
|
+
np.int8,
|
|
26
|
+
np.int16,
|
|
27
|
+
np.int32,
|
|
28
|
+
np.int64,
|
|
29
|
+
np.byte,
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
np_unsigned_int_types = [
|
|
33
|
+
np.uint8,
|
|
34
|
+
np.uint16,
|
|
35
|
+
np.uint32,
|
|
36
|
+
np.uint64,
|
|
37
|
+
np.ubyte,
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
np_float_types = [np.float16, np.float32, np.float64]
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def randvals(rng, shape, dtype):
|
|
44
|
+
if dtype in np_float_types:
|
|
45
|
+
return rng.standard_normal(size=shape).astype(dtype)
|
|
46
|
+
elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]:
|
|
47
|
+
return rng.integers(1, high=3, size=shape, dtype=dtype)
|
|
48
|
+
return rng.integers(1, high=5, size=shape, dtype=dtype)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
kernel_cache = {}
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def getkernel(func, suffix=""):
|
|
55
|
+
key = func.__name__ + "_" + suffix
|
|
56
|
+
if key not in kernel_cache:
|
|
57
|
+
kernel_cache[key] = wp.Kernel(func=func, key=key)
|
|
58
|
+
return kernel_cache[key]
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def test_length_mismatch(test, device):
|
|
62
|
+
test.assertNotEqual(wp.vec3f(0.0, 0.0, 0.0), wp.vec2f(0.0, 0.0))
|
|
63
|
+
test.assertNotEqual(wp.vec2f(0.0, 0.0), wp.vec3f(0.0, 0.0, 0.0))
|
|
64
|
+
|
|
65
|
+
@wp.kernel
|
|
66
|
+
def kernel():
|
|
67
|
+
wp.expect_neq(wp.vec3f(0.0, 0.0, 0.0), wp.vec2f(0.0, 0.0))
|
|
68
|
+
wp.expect_neq(wp.vec2f(0.0, 0.0), wp.vec3f(0.0, 0.0, 0.0))
|
|
69
|
+
|
|
70
|
+
with test.assertRaisesRegex(
|
|
71
|
+
RuntimeError,
|
|
72
|
+
r"Can't test equality for objects with different types$",
|
|
73
|
+
):
|
|
74
|
+
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def test_negation(test, device, dtype, register_kernels=False):
|
|
78
|
+
rng = np.random.default_rng(123)
|
|
79
|
+
|
|
80
|
+
tol = {
|
|
81
|
+
np.float16: 5.0e-3,
|
|
82
|
+
np.float32: 1.0e-6,
|
|
83
|
+
np.float64: 1.0e-8,
|
|
84
|
+
}.get(dtype, 0)
|
|
85
|
+
|
|
86
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
87
|
+
vec2 = wp._src.types.vector(length=2, dtype=wptype)
|
|
88
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
89
|
+
vec4 = wp._src.types.vector(length=4, dtype=wptype)
|
|
90
|
+
vec5 = wp._src.types.vector(length=5, dtype=wptype)
|
|
91
|
+
|
|
92
|
+
def check_negation(
|
|
93
|
+
v2: wp.array(dtype=vec2),
|
|
94
|
+
v3: wp.array(dtype=vec3),
|
|
95
|
+
v4: wp.array(dtype=vec4),
|
|
96
|
+
v5: wp.array(dtype=vec5),
|
|
97
|
+
v2out: wp.array(dtype=vec2),
|
|
98
|
+
v3out: wp.array(dtype=vec3),
|
|
99
|
+
v4out: wp.array(dtype=vec4),
|
|
100
|
+
v5out: wp.array(dtype=vec5),
|
|
101
|
+
v20: wp.array(dtype=wptype),
|
|
102
|
+
v21: wp.array(dtype=wptype),
|
|
103
|
+
v30: wp.array(dtype=wptype),
|
|
104
|
+
v31: wp.array(dtype=wptype),
|
|
105
|
+
v32: wp.array(dtype=wptype),
|
|
106
|
+
v40: wp.array(dtype=wptype),
|
|
107
|
+
v41: wp.array(dtype=wptype),
|
|
108
|
+
v42: wp.array(dtype=wptype),
|
|
109
|
+
v43: wp.array(dtype=wptype),
|
|
110
|
+
v50: wp.array(dtype=wptype),
|
|
111
|
+
v51: wp.array(dtype=wptype),
|
|
112
|
+
v52: wp.array(dtype=wptype),
|
|
113
|
+
v53: wp.array(dtype=wptype),
|
|
114
|
+
v54: wp.array(dtype=wptype),
|
|
115
|
+
):
|
|
116
|
+
v2result = -v2[0]
|
|
117
|
+
v3result = -v3[0]
|
|
118
|
+
v4result = -v4[0]
|
|
119
|
+
v5result = -v5[0]
|
|
120
|
+
|
|
121
|
+
v2out[0] = v2result
|
|
122
|
+
v3out[0] = v3result
|
|
123
|
+
v4out[0] = v4result
|
|
124
|
+
v5out[0] = v5result
|
|
125
|
+
|
|
126
|
+
# multiply these outputs by 2 so we've got something to backpropagate:
|
|
127
|
+
v20[0] = wptype(2) * v2result[0]
|
|
128
|
+
v21[0] = wptype(2) * v2result[1]
|
|
129
|
+
|
|
130
|
+
v30[0] = wptype(2) * v3result[0]
|
|
131
|
+
v31[0] = wptype(2) * v3result[1]
|
|
132
|
+
v32[0] = wptype(2) * v3result[2]
|
|
133
|
+
|
|
134
|
+
v40[0] = wptype(2) * v4result[0]
|
|
135
|
+
v41[0] = wptype(2) * v4result[1]
|
|
136
|
+
v42[0] = wptype(2) * v4result[2]
|
|
137
|
+
v43[0] = wptype(2) * v4result[3]
|
|
138
|
+
|
|
139
|
+
v50[0] = wptype(2) * v5result[0]
|
|
140
|
+
v51[0] = wptype(2) * v5result[1]
|
|
141
|
+
v52[0] = wptype(2) * v5result[2]
|
|
142
|
+
v53[0] = wptype(2) * v5result[3]
|
|
143
|
+
v54[0] = wptype(2) * v5result[4]
|
|
144
|
+
|
|
145
|
+
kernel = getkernel(check_negation, suffix=dtype.__name__)
|
|
146
|
+
|
|
147
|
+
if register_kernels:
|
|
148
|
+
return
|
|
149
|
+
|
|
150
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
151
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
152
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
153
|
+
v5_np = randvals(rng, (1, 5), dtype)
|
|
154
|
+
v5 = wp.array(v5_np, dtype=vec5, requires_grad=True, device=device)
|
|
155
|
+
|
|
156
|
+
v2out = wp.zeros(1, dtype=vec2, device=device)
|
|
157
|
+
v3out = wp.zeros(1, dtype=vec3, device=device)
|
|
158
|
+
v4out = wp.zeros(1, dtype=vec4, device=device)
|
|
159
|
+
v5out = wp.zeros(1, dtype=vec5, device=device)
|
|
160
|
+
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
161
|
+
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
162
|
+
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
163
|
+
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
164
|
+
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
165
|
+
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
166
|
+
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
167
|
+
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
168
|
+
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
169
|
+
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
170
|
+
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
171
|
+
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
172
|
+
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
173
|
+
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
174
|
+
|
|
175
|
+
tape = wp.Tape()
|
|
176
|
+
with tape:
|
|
177
|
+
wp.launch(
|
|
178
|
+
kernel,
|
|
179
|
+
dim=1,
|
|
180
|
+
inputs=[v2, v3, v4, v5],
|
|
181
|
+
outputs=[v2out, v3out, v4out, v5out, v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
182
|
+
device=device,
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
if dtype in np_float_types:
|
|
186
|
+
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
187
|
+
tape.backward(loss=l)
|
|
188
|
+
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
189
|
+
expected_grads = np.zeros_like(allgrads)
|
|
190
|
+
expected_grads[i] = -2
|
|
191
|
+
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
192
|
+
tape.zero()
|
|
193
|
+
|
|
194
|
+
assert_np_equal(v2out.numpy()[0], -v2.numpy()[0], tol=tol)
|
|
195
|
+
assert_np_equal(v3out.numpy()[0], -v3.numpy()[0], tol=tol)
|
|
196
|
+
assert_np_equal(v4out.numpy()[0], -v4.numpy()[0], tol=tol)
|
|
197
|
+
assert_np_equal(v5out.numpy()[0], -v5.numpy()[0], tol=tol)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
def test_subtraction_unsigned(test, device, dtype, register_kernels=False):
|
|
201
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
202
|
+
vec2 = wp._src.types.vector(length=2, dtype=wptype)
|
|
203
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
204
|
+
vec4 = wp._src.types.vector(length=4, dtype=wptype)
|
|
205
|
+
vec5 = wp._src.types.vector(length=5, dtype=wptype)
|
|
206
|
+
|
|
207
|
+
def check_subtraction_unsigned():
|
|
208
|
+
wp.expect_eq(vec2(wptype(3), wptype(4)) - vec2(wptype(1), wptype(2)), vec2(wptype(2), wptype(2)))
|
|
209
|
+
wp.expect_eq(
|
|
210
|
+
vec3(wptype(3), wptype(4), wptype(4)) - vec3(wptype(1), wptype(2), wptype(3)),
|
|
211
|
+
vec3(wptype(2), wptype(2), wptype(1)),
|
|
212
|
+
)
|
|
213
|
+
wp.expect_eq(
|
|
214
|
+
vec4(wptype(3), wptype(4), wptype(4), wptype(5)) - vec4(wptype(1), wptype(2), wptype(3), wptype(4)),
|
|
215
|
+
vec4(wptype(2), wptype(2), wptype(1), wptype(1)),
|
|
216
|
+
)
|
|
217
|
+
wp.expect_eq(
|
|
218
|
+
vec5(wptype(3), wptype(4), wptype(4), wptype(5), wptype(4))
|
|
219
|
+
- vec5(wptype(1), wptype(2), wptype(3), wptype(4), wptype(4)),
|
|
220
|
+
vec5(wptype(2), wptype(2), wptype(1), wptype(1), wptype(0)),
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
kernel = getkernel(check_subtraction_unsigned, suffix=dtype.__name__)
|
|
224
|
+
|
|
225
|
+
if register_kernels:
|
|
226
|
+
return
|
|
227
|
+
|
|
228
|
+
wp.launch(kernel, dim=1, inputs=[], outputs=[], device=device)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def test_subtraction(test, device, dtype, register_kernels=False):
|
|
232
|
+
rng = np.random.default_rng(123)
|
|
233
|
+
|
|
234
|
+
tol = {
|
|
235
|
+
np.float16: 5.0e-3,
|
|
236
|
+
np.float32: 1.0e-6,
|
|
237
|
+
np.float64: 1.0e-8,
|
|
238
|
+
}.get(dtype, 0)
|
|
239
|
+
|
|
240
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
241
|
+
vec2 = wp._src.types.vector(length=2, dtype=wptype)
|
|
242
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
243
|
+
vec4 = wp._src.types.vector(length=4, dtype=wptype)
|
|
244
|
+
vec5 = wp._src.types.vector(length=5, dtype=wptype)
|
|
245
|
+
|
|
246
|
+
def check_subtraction(
|
|
247
|
+
s2: wp.array(dtype=vec2),
|
|
248
|
+
s3: wp.array(dtype=vec3),
|
|
249
|
+
s4: wp.array(dtype=vec4),
|
|
250
|
+
s5: wp.array(dtype=vec5),
|
|
251
|
+
v2: wp.array(dtype=vec2),
|
|
252
|
+
v3: wp.array(dtype=vec3),
|
|
253
|
+
v4: wp.array(dtype=vec4),
|
|
254
|
+
v5: wp.array(dtype=vec5),
|
|
255
|
+
v20: wp.array(dtype=wptype),
|
|
256
|
+
v21: wp.array(dtype=wptype),
|
|
257
|
+
v30: wp.array(dtype=wptype),
|
|
258
|
+
v31: wp.array(dtype=wptype),
|
|
259
|
+
v32: wp.array(dtype=wptype),
|
|
260
|
+
v40: wp.array(dtype=wptype),
|
|
261
|
+
v41: wp.array(dtype=wptype),
|
|
262
|
+
v42: wp.array(dtype=wptype),
|
|
263
|
+
v43: wp.array(dtype=wptype),
|
|
264
|
+
v50: wp.array(dtype=wptype),
|
|
265
|
+
v51: wp.array(dtype=wptype),
|
|
266
|
+
v52: wp.array(dtype=wptype),
|
|
267
|
+
v53: wp.array(dtype=wptype),
|
|
268
|
+
v54: wp.array(dtype=wptype),
|
|
269
|
+
):
|
|
270
|
+
v2result = v2[0] - s2[0]
|
|
271
|
+
v3result = v3[0] - s3[0]
|
|
272
|
+
v4result = v4[0] - s4[0]
|
|
273
|
+
v5result = v5[0] - s5[0]
|
|
274
|
+
|
|
275
|
+
# multiply outputs by 2 so there's something to backpropagate:
|
|
276
|
+
v20[0] = wptype(2) * v2result[0]
|
|
277
|
+
v21[0] = wptype(2) * v2result[1]
|
|
278
|
+
|
|
279
|
+
v30[0] = wptype(2) * v3result[0]
|
|
280
|
+
v31[0] = wptype(2) * v3result[1]
|
|
281
|
+
v32[0] = wptype(2) * v3result[2]
|
|
282
|
+
|
|
283
|
+
v40[0] = wptype(2) * v4result[0]
|
|
284
|
+
v41[0] = wptype(2) * v4result[1]
|
|
285
|
+
v42[0] = wptype(2) * v4result[2]
|
|
286
|
+
v43[0] = wptype(2) * v4result[3]
|
|
287
|
+
|
|
288
|
+
v50[0] = wptype(2) * v5result[0]
|
|
289
|
+
v51[0] = wptype(2) * v5result[1]
|
|
290
|
+
v52[0] = wptype(2) * v5result[2]
|
|
291
|
+
v53[0] = wptype(2) * v5result[3]
|
|
292
|
+
v54[0] = wptype(2) * v5result[4]
|
|
293
|
+
|
|
294
|
+
kernel = getkernel(check_subtraction, suffix=dtype.__name__)
|
|
295
|
+
|
|
296
|
+
if register_kernels:
|
|
297
|
+
return
|
|
298
|
+
|
|
299
|
+
s2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
300
|
+
s3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
301
|
+
s4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
302
|
+
s5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
303
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
304
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
305
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
306
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
307
|
+
v20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
308
|
+
v21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
309
|
+
v30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
310
|
+
v31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
311
|
+
v32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
312
|
+
v40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
313
|
+
v41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
314
|
+
v42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
315
|
+
v43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
316
|
+
v50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
317
|
+
v51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
318
|
+
v52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
319
|
+
v53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
320
|
+
v54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
321
|
+
tape = wp.Tape()
|
|
322
|
+
with tape:
|
|
323
|
+
wp.launch(
|
|
324
|
+
kernel,
|
|
325
|
+
dim=1,
|
|
326
|
+
inputs=[s2, s3, s4, s5, v2, v3, v4, v5],
|
|
327
|
+
outputs=[v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54],
|
|
328
|
+
device=device,
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
assert_np_equal(v20.numpy()[0], 2 * (v2.numpy()[0, 0] - s2.numpy()[0, 0]), tol=tol)
|
|
332
|
+
assert_np_equal(v21.numpy()[0], 2 * (v2.numpy()[0, 1] - s2.numpy()[0, 1]), tol=tol)
|
|
333
|
+
|
|
334
|
+
assert_np_equal(v30.numpy()[0], 2 * (v3.numpy()[0, 0] - s3.numpy()[0, 0]), tol=tol)
|
|
335
|
+
assert_np_equal(v31.numpy()[0], 2 * (v3.numpy()[0, 1] - s3.numpy()[0, 1]), tol=tol)
|
|
336
|
+
assert_np_equal(v32.numpy()[0], 2 * (v3.numpy()[0, 2] - s3.numpy()[0, 2]), tol=tol)
|
|
337
|
+
|
|
338
|
+
assert_np_equal(v40.numpy()[0], 2 * (v4.numpy()[0, 0] - s4.numpy()[0, 0]), tol=2 * tol)
|
|
339
|
+
assert_np_equal(v41.numpy()[0], 2 * (v4.numpy()[0, 1] - s4.numpy()[0, 1]), tol=2 * tol)
|
|
340
|
+
assert_np_equal(v42.numpy()[0], 2 * (v4.numpy()[0, 2] - s4.numpy()[0, 2]), tol=2 * tol)
|
|
341
|
+
assert_np_equal(v43.numpy()[0], 2 * (v4.numpy()[0, 3] - s4.numpy()[0, 3]), tol=2 * tol)
|
|
342
|
+
|
|
343
|
+
assert_np_equal(v50.numpy()[0], 2 * (v5.numpy()[0, 0] - s5.numpy()[0, 0]), tol=tol)
|
|
344
|
+
assert_np_equal(v51.numpy()[0], 2 * (v5.numpy()[0, 1] - s5.numpy()[0, 1]), tol=tol)
|
|
345
|
+
assert_np_equal(v52.numpy()[0], 2 * (v5.numpy()[0, 2] - s5.numpy()[0, 2]), tol=tol)
|
|
346
|
+
assert_np_equal(v53.numpy()[0], 2 * (v5.numpy()[0, 3] - s5.numpy()[0, 3]), tol=tol)
|
|
347
|
+
assert_np_equal(v54.numpy()[0], 2 * (v5.numpy()[0, 4] - s5.numpy()[0, 4]), tol=tol)
|
|
348
|
+
|
|
349
|
+
if dtype in np_float_types:
|
|
350
|
+
for i, l in enumerate([v20, v21, v30, v31, v32, v40, v41, v42, v43, v50, v51, v52, v53, v54]):
|
|
351
|
+
tape.backward(loss=l)
|
|
352
|
+
sgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [s2, s3, s4, s5]])
|
|
353
|
+
expected_grads = np.zeros_like(sgrads)
|
|
354
|
+
|
|
355
|
+
expected_grads[i] = -2
|
|
356
|
+
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
357
|
+
|
|
358
|
+
allgrads = np.concatenate([tape.gradients[v].numpy()[0] for v in [v2, v3, v4, v5]])
|
|
359
|
+
expected_grads = np.zeros_like(allgrads)
|
|
360
|
+
|
|
361
|
+
# d/dv v/s = 1/s
|
|
362
|
+
expected_grads[i] = 2
|
|
363
|
+
assert_np_equal(allgrads, expected_grads, tol=tol)
|
|
364
|
+
|
|
365
|
+
tape.zero()
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def test_length(test, device, dtype, register_kernels=False):
|
|
369
|
+
rng = np.random.default_rng(123)
|
|
370
|
+
|
|
371
|
+
tol = {
|
|
372
|
+
np.float16: 5.0e-3,
|
|
373
|
+
np.float32: 1.0e-6,
|
|
374
|
+
np.float64: 1.0e-7,
|
|
375
|
+
}.get(dtype, 0)
|
|
376
|
+
|
|
377
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
378
|
+
vec2 = wp._src.types.vector(length=2, dtype=wptype)
|
|
379
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
380
|
+
vec4 = wp._src.types.vector(length=4, dtype=wptype)
|
|
381
|
+
vec5 = wp._src.types.vector(length=5, dtype=wptype)
|
|
382
|
+
|
|
383
|
+
def check_length(
|
|
384
|
+
v2: wp.array(dtype=vec2),
|
|
385
|
+
v3: wp.array(dtype=vec3),
|
|
386
|
+
v4: wp.array(dtype=vec4),
|
|
387
|
+
v5: wp.array(dtype=vec5),
|
|
388
|
+
l2: wp.array(dtype=wptype),
|
|
389
|
+
l3: wp.array(dtype=wptype),
|
|
390
|
+
l4: wp.array(dtype=wptype),
|
|
391
|
+
l5: wp.array(dtype=wptype),
|
|
392
|
+
l22: wp.array(dtype=wptype),
|
|
393
|
+
l23: wp.array(dtype=wptype),
|
|
394
|
+
l24: wp.array(dtype=wptype),
|
|
395
|
+
l25: wp.array(dtype=wptype),
|
|
396
|
+
):
|
|
397
|
+
l2[0] = wptype(2) * wp.length(v2[0])
|
|
398
|
+
l3[0] = wptype(2) * wp.length(v3[0])
|
|
399
|
+
l4[0] = wptype(2) * wp.length(v4[0])
|
|
400
|
+
l5[0] = wptype(2) * wp.length(v5[0])
|
|
401
|
+
|
|
402
|
+
l22[0] = wptype(2) * wp.length_sq(v2[0])
|
|
403
|
+
l23[0] = wptype(2) * wp.length_sq(v3[0])
|
|
404
|
+
l24[0] = wptype(2) * wp.length_sq(v4[0])
|
|
405
|
+
l25[0] = wptype(2) * wp.length_sq(v5[0])
|
|
406
|
+
|
|
407
|
+
kernel = getkernel(check_length, suffix=dtype.__name__)
|
|
408
|
+
|
|
409
|
+
if register_kernels:
|
|
410
|
+
return
|
|
411
|
+
|
|
412
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
413
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
414
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
415
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
416
|
+
|
|
417
|
+
l2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
418
|
+
l3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
419
|
+
l4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
420
|
+
l5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
421
|
+
|
|
422
|
+
l22 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
423
|
+
l23 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
424
|
+
l24 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
425
|
+
l25 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
426
|
+
|
|
427
|
+
tape = wp.Tape()
|
|
428
|
+
with tape:
|
|
429
|
+
wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5], outputs=[l2, l3, l4, l5, l22, l23, l24, l25], device=device)
|
|
430
|
+
|
|
431
|
+
assert_np_equal(l2.numpy()[0], 2 * np.linalg.norm(v2.numpy()), tol=10 * tol)
|
|
432
|
+
assert_np_equal(l3.numpy()[0], 2 * np.linalg.norm(v3.numpy()), tol=10 * tol)
|
|
433
|
+
assert_np_equal(l4.numpy()[0], 2 * np.linalg.norm(v4.numpy()), tol=10 * tol)
|
|
434
|
+
assert_np_equal(l5.numpy()[0], 2 * np.linalg.norm(v5.numpy()), tol=10 * tol)
|
|
435
|
+
|
|
436
|
+
assert_np_equal(l22.numpy()[0], 2 * np.linalg.norm(v2.numpy()) ** 2, tol=10 * tol)
|
|
437
|
+
assert_np_equal(l23.numpy()[0], 2 * np.linalg.norm(v3.numpy()) ** 2, tol=10 * tol)
|
|
438
|
+
assert_np_equal(l24.numpy()[0], 2 * np.linalg.norm(v4.numpy()) ** 2, tol=10 * tol)
|
|
439
|
+
assert_np_equal(l25.numpy()[0], 2 * np.linalg.norm(v5.numpy()) ** 2, tol=10 * tol)
|
|
440
|
+
|
|
441
|
+
tape.backward(loss=l2)
|
|
442
|
+
grad = tape.gradients[v2].numpy()[0]
|
|
443
|
+
expected_grad = 2 * v2.numpy()[0] / np.linalg.norm(v2.numpy())
|
|
444
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
445
|
+
tape.zero()
|
|
446
|
+
|
|
447
|
+
tape.backward(loss=l3)
|
|
448
|
+
grad = tape.gradients[v3].numpy()[0]
|
|
449
|
+
expected_grad = 2 * v3.numpy()[0] / np.linalg.norm(v3.numpy())
|
|
450
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
451
|
+
tape.zero()
|
|
452
|
+
|
|
453
|
+
tape.backward(loss=l4)
|
|
454
|
+
grad = tape.gradients[v4].numpy()[0]
|
|
455
|
+
expected_grad = 2 * v4.numpy()[0] / np.linalg.norm(v4.numpy())
|
|
456
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
457
|
+
tape.zero()
|
|
458
|
+
|
|
459
|
+
tape.backward(loss=l5)
|
|
460
|
+
grad = tape.gradients[v5].numpy()[0]
|
|
461
|
+
expected_grad = 2 * v5.numpy()[0] / np.linalg.norm(v5.numpy())
|
|
462
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
463
|
+
tape.zero()
|
|
464
|
+
|
|
465
|
+
tape.backward(loss=l22)
|
|
466
|
+
grad = tape.gradients[v2].numpy()[0]
|
|
467
|
+
expected_grad = 4 * v2.numpy()[0]
|
|
468
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
469
|
+
tape.zero()
|
|
470
|
+
|
|
471
|
+
tape.backward(loss=l23)
|
|
472
|
+
grad = tape.gradients[v3].numpy()[0]
|
|
473
|
+
expected_grad = 4 * v3.numpy()[0]
|
|
474
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
475
|
+
tape.zero()
|
|
476
|
+
|
|
477
|
+
tape.backward(loss=l24)
|
|
478
|
+
grad = tape.gradients[v4].numpy()[0]
|
|
479
|
+
expected_grad = 4 * v4.numpy()[0]
|
|
480
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
481
|
+
tape.zero()
|
|
482
|
+
|
|
483
|
+
tape.backward(loss=l25)
|
|
484
|
+
grad = tape.gradients[v5].numpy()[0]
|
|
485
|
+
expected_grad = 4 * v5.numpy()[0]
|
|
486
|
+
assert_np_equal(grad, expected_grad, tol=10 * tol)
|
|
487
|
+
tape.zero()
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
def test_normalize(test, device, dtype, register_kernels=False):
|
|
491
|
+
rng = np.random.default_rng(123)
|
|
492
|
+
|
|
493
|
+
tol = {
|
|
494
|
+
np.float16: 5.0e-3,
|
|
495
|
+
np.float32: 1.0e-6,
|
|
496
|
+
np.float64: 1.0e-8,
|
|
497
|
+
}.get(dtype, 0)
|
|
498
|
+
|
|
499
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
500
|
+
vec2 = wp._src.types.vector(length=2, dtype=wptype)
|
|
501
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
502
|
+
vec4 = wp._src.types.vector(length=4, dtype=wptype)
|
|
503
|
+
vec5 = wp._src.types.vector(length=5, dtype=wptype)
|
|
504
|
+
|
|
505
|
+
def check_normalize(
|
|
506
|
+
v2: wp.array(dtype=vec2),
|
|
507
|
+
v3: wp.array(dtype=vec3),
|
|
508
|
+
v4: wp.array(dtype=vec4),
|
|
509
|
+
v5: wp.array(dtype=vec5),
|
|
510
|
+
n20: wp.array(dtype=wptype),
|
|
511
|
+
n21: wp.array(dtype=wptype),
|
|
512
|
+
n30: wp.array(dtype=wptype),
|
|
513
|
+
n31: wp.array(dtype=wptype),
|
|
514
|
+
n32: wp.array(dtype=wptype),
|
|
515
|
+
n40: wp.array(dtype=wptype),
|
|
516
|
+
n41: wp.array(dtype=wptype),
|
|
517
|
+
n42: wp.array(dtype=wptype),
|
|
518
|
+
n43: wp.array(dtype=wptype),
|
|
519
|
+
n50: wp.array(dtype=wptype),
|
|
520
|
+
n51: wp.array(dtype=wptype),
|
|
521
|
+
n52: wp.array(dtype=wptype),
|
|
522
|
+
n53: wp.array(dtype=wptype),
|
|
523
|
+
n54: wp.array(dtype=wptype),
|
|
524
|
+
):
|
|
525
|
+
n2 = wptype(2) * wp.normalize(v2[0])
|
|
526
|
+
n3 = wptype(2) * wp.normalize(v3[0])
|
|
527
|
+
n4 = wptype(2) * wp.normalize(v4[0])
|
|
528
|
+
n5 = wptype(2) * wp.normalize(v5[0])
|
|
529
|
+
|
|
530
|
+
n20[0] = n2[0]
|
|
531
|
+
n21[0] = n2[1]
|
|
532
|
+
|
|
533
|
+
n30[0] = n3[0]
|
|
534
|
+
n31[0] = n3[1]
|
|
535
|
+
n32[0] = n3[2]
|
|
536
|
+
|
|
537
|
+
n40[0] = n4[0]
|
|
538
|
+
n41[0] = n4[1]
|
|
539
|
+
n42[0] = n4[2]
|
|
540
|
+
n43[0] = n4[3]
|
|
541
|
+
|
|
542
|
+
n50[0] = n5[0]
|
|
543
|
+
n51[0] = n5[1]
|
|
544
|
+
n52[0] = n5[2]
|
|
545
|
+
n53[0] = n5[3]
|
|
546
|
+
n54[0] = n5[4]
|
|
547
|
+
|
|
548
|
+
def check_normalize_alt(
|
|
549
|
+
v2: wp.array(dtype=vec2),
|
|
550
|
+
v3: wp.array(dtype=vec3),
|
|
551
|
+
v4: wp.array(dtype=vec4),
|
|
552
|
+
v5: wp.array(dtype=vec5),
|
|
553
|
+
n20: wp.array(dtype=wptype),
|
|
554
|
+
n21: wp.array(dtype=wptype),
|
|
555
|
+
n30: wp.array(dtype=wptype),
|
|
556
|
+
n31: wp.array(dtype=wptype),
|
|
557
|
+
n32: wp.array(dtype=wptype),
|
|
558
|
+
n40: wp.array(dtype=wptype),
|
|
559
|
+
n41: wp.array(dtype=wptype),
|
|
560
|
+
n42: wp.array(dtype=wptype),
|
|
561
|
+
n43: wp.array(dtype=wptype),
|
|
562
|
+
n50: wp.array(dtype=wptype),
|
|
563
|
+
n51: wp.array(dtype=wptype),
|
|
564
|
+
n52: wp.array(dtype=wptype),
|
|
565
|
+
n53: wp.array(dtype=wptype),
|
|
566
|
+
n54: wp.array(dtype=wptype),
|
|
567
|
+
):
|
|
568
|
+
n2 = wptype(2) * v2[0] / wp.length(v2[0])
|
|
569
|
+
n3 = wptype(2) * v3[0] / wp.length(v3[0])
|
|
570
|
+
n4 = wptype(2) * v4[0] / wp.length(v4[0])
|
|
571
|
+
n5 = wptype(2) * v5[0] / wp.length(v5[0])
|
|
572
|
+
|
|
573
|
+
n20[0] = n2[0]
|
|
574
|
+
n21[0] = n2[1]
|
|
575
|
+
|
|
576
|
+
n30[0] = n3[0]
|
|
577
|
+
n31[0] = n3[1]
|
|
578
|
+
n32[0] = n3[2]
|
|
579
|
+
|
|
580
|
+
n40[0] = n4[0]
|
|
581
|
+
n41[0] = n4[1]
|
|
582
|
+
n42[0] = n4[2]
|
|
583
|
+
n43[0] = n4[3]
|
|
584
|
+
|
|
585
|
+
n50[0] = n5[0]
|
|
586
|
+
n51[0] = n5[1]
|
|
587
|
+
n52[0] = n5[2]
|
|
588
|
+
n53[0] = n5[3]
|
|
589
|
+
n54[0] = n5[4]
|
|
590
|
+
|
|
591
|
+
normalize_kernel = getkernel(check_normalize, suffix=dtype.__name__)
|
|
592
|
+
normalize_alt_kernel = getkernel(check_normalize_alt, suffix=dtype.__name__)
|
|
593
|
+
|
|
594
|
+
if register_kernels:
|
|
595
|
+
return
|
|
596
|
+
|
|
597
|
+
# I've already tested the things I'm using in check_normalize_alt, so I'll just
|
|
598
|
+
# make sure the two are giving the same results/gradients
|
|
599
|
+
v2 = wp.array(randvals(rng, (1, 2), dtype), dtype=vec2, requires_grad=True, device=device)
|
|
600
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
601
|
+
v4 = wp.array(randvals(rng, (1, 4), dtype), dtype=vec4, requires_grad=True, device=device)
|
|
602
|
+
v5 = wp.array(randvals(rng, (1, 5), dtype), dtype=vec5, requires_grad=True, device=device)
|
|
603
|
+
|
|
604
|
+
n20 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
605
|
+
n21 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
606
|
+
n30 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
607
|
+
n31 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
608
|
+
n32 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
609
|
+
n40 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
610
|
+
n41 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
611
|
+
n42 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
612
|
+
n43 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
613
|
+
n50 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
614
|
+
n51 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
615
|
+
n52 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
616
|
+
n53 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
617
|
+
n54 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
618
|
+
|
|
619
|
+
n20_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
620
|
+
n21_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
621
|
+
n30_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
622
|
+
n31_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
623
|
+
n32_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
624
|
+
n40_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
625
|
+
n41_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
626
|
+
n42_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
627
|
+
n43_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
628
|
+
n50_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
629
|
+
n51_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
630
|
+
n52_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
631
|
+
n53_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
632
|
+
n54_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
633
|
+
|
|
634
|
+
outputs0 = [
|
|
635
|
+
n20,
|
|
636
|
+
n21,
|
|
637
|
+
n30,
|
|
638
|
+
n31,
|
|
639
|
+
n32,
|
|
640
|
+
n40,
|
|
641
|
+
n41,
|
|
642
|
+
n42,
|
|
643
|
+
n43,
|
|
644
|
+
n50,
|
|
645
|
+
n51,
|
|
646
|
+
n52,
|
|
647
|
+
n53,
|
|
648
|
+
n54,
|
|
649
|
+
]
|
|
650
|
+
tape0 = wp.Tape()
|
|
651
|
+
with tape0:
|
|
652
|
+
wp.launch(normalize_kernel, dim=1, inputs=[v2, v3, v4, v5], outputs=outputs0, device=device)
|
|
653
|
+
|
|
654
|
+
outputs1 = [
|
|
655
|
+
n20_alt,
|
|
656
|
+
n21_alt,
|
|
657
|
+
n30_alt,
|
|
658
|
+
n31_alt,
|
|
659
|
+
n32_alt,
|
|
660
|
+
n40_alt,
|
|
661
|
+
n41_alt,
|
|
662
|
+
n42_alt,
|
|
663
|
+
n43_alt,
|
|
664
|
+
n50_alt,
|
|
665
|
+
n51_alt,
|
|
666
|
+
n52_alt,
|
|
667
|
+
n53_alt,
|
|
668
|
+
n54_alt,
|
|
669
|
+
]
|
|
670
|
+
tape1 = wp.Tape()
|
|
671
|
+
with tape1:
|
|
672
|
+
wp.launch(
|
|
673
|
+
normalize_alt_kernel,
|
|
674
|
+
dim=1,
|
|
675
|
+
inputs=[
|
|
676
|
+
v2,
|
|
677
|
+
v3,
|
|
678
|
+
v4,
|
|
679
|
+
v5,
|
|
680
|
+
],
|
|
681
|
+
outputs=outputs1,
|
|
682
|
+
device=device,
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
for ncmp, ncmpalt in zip(outputs0, outputs1):
|
|
686
|
+
assert_np_equal(ncmp.numpy()[0], ncmpalt.numpy()[0], tol=10 * tol)
|
|
687
|
+
|
|
688
|
+
invecs = [v2, v2, v3, v3, v3, v4, v4, v4, v4, v5, v5, v5, v5, v5]
|
|
689
|
+
for ncmp, ncmpalt, v in zip(outputs0, outputs1, invecs):
|
|
690
|
+
tape0.backward(loss=ncmp)
|
|
691
|
+
tape1.backward(loss=ncmpalt)
|
|
692
|
+
assert_np_equal(tape0.gradients[v].numpy()[0], tape1.gradients[v].numpy()[0], tol=10 * tol)
|
|
693
|
+
tape0.zero()
|
|
694
|
+
tape1.zero()
|
|
695
|
+
|
|
696
|
+
|
|
697
|
+
def test_crossproduct(test, device, dtype, register_kernels=False):
|
|
698
|
+
rng = np.random.default_rng(123)
|
|
699
|
+
|
|
700
|
+
tol = {
|
|
701
|
+
np.float16: 5.0e-3,
|
|
702
|
+
np.float32: 1.0e-6,
|
|
703
|
+
np.float64: 1.0e-8,
|
|
704
|
+
}.get(dtype, 0)
|
|
705
|
+
|
|
706
|
+
wptype = wp._src.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
707
|
+
vec3 = wp._src.types.vector(length=3, dtype=wptype)
|
|
708
|
+
|
|
709
|
+
def check_cross(
|
|
710
|
+
s3: wp.array(dtype=vec3),
|
|
711
|
+
v3: wp.array(dtype=vec3),
|
|
712
|
+
c0: wp.array(dtype=wptype),
|
|
713
|
+
c1: wp.array(dtype=wptype),
|
|
714
|
+
c2: wp.array(dtype=wptype),
|
|
715
|
+
):
|
|
716
|
+
c = wp.cross(s3[0], v3[0])
|
|
717
|
+
|
|
718
|
+
# multiply outputs by 2 so we've got something to backpropagate:
|
|
719
|
+
c0[0] = wptype(2) * c[0]
|
|
720
|
+
c1[0] = wptype(2) * c[1]
|
|
721
|
+
c2[0] = wptype(2) * c[2]
|
|
722
|
+
|
|
723
|
+
kernel = getkernel(check_cross, suffix=dtype.__name__)
|
|
724
|
+
|
|
725
|
+
if register_kernels:
|
|
726
|
+
return
|
|
727
|
+
|
|
728
|
+
s3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
729
|
+
v3 = wp.array(randvals(rng, (1, 3), dtype), dtype=vec3, requires_grad=True, device=device)
|
|
730
|
+
c0 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
731
|
+
c1 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
732
|
+
c2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
733
|
+
tape = wp.Tape()
|
|
734
|
+
with tape:
|
|
735
|
+
wp.launch(
|
|
736
|
+
kernel,
|
|
737
|
+
dim=1,
|
|
738
|
+
inputs=[
|
|
739
|
+
s3,
|
|
740
|
+
v3,
|
|
741
|
+
],
|
|
742
|
+
outputs=[c0, c1, c2],
|
|
743
|
+
device=device,
|
|
744
|
+
)
|
|
745
|
+
|
|
746
|
+
result = 2 * np.cross(s3.numpy(), v3.numpy())[0]
|
|
747
|
+
assert_np_equal(c0.numpy()[0], result[0], tol=10 * tol)
|
|
748
|
+
assert_np_equal(c1.numpy()[0], result[1], tol=10 * tol)
|
|
749
|
+
assert_np_equal(c2.numpy()[0], result[2], tol=10 * tol)
|
|
750
|
+
|
|
751
|
+
if dtype in np_float_types:
|
|
752
|
+
# c.x = sy vz - sz vy
|
|
753
|
+
# c.y = sz vx - sx vz
|
|
754
|
+
# c.z = sx vy - sy vx
|
|
755
|
+
|
|
756
|
+
# ( d/dsx d/dsy d/dsz )c.x = ( 0 vz -vy )
|
|
757
|
+
# ( d/dsx d/dsy d/dsz )c.y = ( -vz 0 vx )
|
|
758
|
+
# ( d/dsx d/dsy d/dsz )c.z = ( vy -vx 0 )
|
|
759
|
+
|
|
760
|
+
# ( d/dvx d/dvy d/dvz )c.x = (0 -sz sy)
|
|
761
|
+
# ( d/dvx d/dvy d/dvz )c.y = (sz 0 -sx)
|
|
762
|
+
# ( d/dvx d/dvy d/dvz )c.z = (-sy sx 0)
|
|
763
|
+
|
|
764
|
+
tape.backward(loss=c0)
|
|
765
|
+
assert_np_equal(
|
|
766
|
+
tape.gradients[s3].numpy(), 2.0 * np.array([0, v3.numpy()[0, 2], -v3.numpy()[0, 1]]), tol=10 * tol
|
|
767
|
+
)
|
|
768
|
+
assert_np_equal(
|
|
769
|
+
tape.gradients[v3].numpy(), 2.0 * np.array([0, -s3.numpy()[0, 2], s3.numpy()[0, 1]]), tol=10 * tol
|
|
770
|
+
)
|
|
771
|
+
tape.zero()
|
|
772
|
+
|
|
773
|
+
tape.backward(loss=c1)
|
|
774
|
+
assert_np_equal(
|
|
775
|
+
tape.gradients[s3].numpy(), 2.0 * np.array([-v3.numpy()[0, 2], 0, v3.numpy()[0, 0]]), tol=10 * tol
|
|
776
|
+
)
|
|
777
|
+
assert_np_equal(
|
|
778
|
+
tape.gradients[v3].numpy(), 2.0 * np.array([s3.numpy()[0, 2], 0, -s3.numpy()[0, 0]]), tol=10 * tol
|
|
779
|
+
)
|
|
780
|
+
tape.zero()
|
|
781
|
+
|
|
782
|
+
tape.backward(loss=c2)
|
|
783
|
+
assert_np_equal(
|
|
784
|
+
tape.gradients[s3].numpy(), 2.0 * np.array([v3.numpy()[0, 1], -v3.numpy()[0, 0], 0]), tol=10 * tol
|
|
785
|
+
)
|
|
786
|
+
assert_np_equal(
|
|
787
|
+
tape.gradients[v3].numpy(), 2.0 * np.array([-s3.numpy()[0, 1], s3.numpy()[0, 0], 0]), tol=10 * tol
|
|
788
|
+
)
|
|
789
|
+
tape.zero()
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
@wp.kernel(module="unique")
|
|
793
|
+
def test_vector_mutation(expected: wp._src.types.vector(length=10, dtype=float)):
|
|
794
|
+
v = wp.vector(length=10, dtype=float)
|
|
795
|
+
|
|
796
|
+
# test element indexing
|
|
797
|
+
v[0] = 1.0
|
|
798
|
+
|
|
799
|
+
for i in range(1, 10):
|
|
800
|
+
v[i] = float(i) + 1.0
|
|
801
|
+
|
|
802
|
+
wp.expect_eq(v, expected)
|
|
803
|
+
|
|
804
|
+
|
|
805
|
+
Vec123 = wp.vec(123, dtype=wp.float16)
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
@wp.kernel(module="unique")
|
|
809
|
+
def vector_len_kernel(v1: wp.vec2, v2: wp.vec(3, float), v3: wp.vec(Any, float), v4: Vec123, out: wp.array(dtype=int)):
|
|
810
|
+
length = wp.static(len(v1))
|
|
811
|
+
wp.expect_eq(len(v1), 2)
|
|
812
|
+
out[0] = len(v1)
|
|
813
|
+
|
|
814
|
+
length = len(v2)
|
|
815
|
+
wp.expect_eq(wp.static(len(v2)), 3)
|
|
816
|
+
out[1] = len(v2)
|
|
817
|
+
|
|
818
|
+
length = len(v3)
|
|
819
|
+
wp.expect_eq(len(v3), 4)
|
|
820
|
+
out[2] = wp.static(len(v3))
|
|
821
|
+
|
|
822
|
+
length = wp.static(len(v4))
|
|
823
|
+
wp.expect_eq(wp.static(len(v4)), 123)
|
|
824
|
+
out[3] = wp.static(len(v4))
|
|
825
|
+
|
|
826
|
+
foo = wp.vec2()
|
|
827
|
+
length = len(foo)
|
|
828
|
+
wp.expect_eq(len(foo), 2)
|
|
829
|
+
out[4] = len(foo)
|
|
830
|
+
|
|
831
|
+
|
|
832
|
+
def test_vector_len(test, device):
|
|
833
|
+
v1 = wp.vec2()
|
|
834
|
+
v2 = wp.vec3()
|
|
835
|
+
v3 = wp.vec4()
|
|
836
|
+
v4 = Vec123()
|
|
837
|
+
out = wp.empty(5, dtype=int, device=device)
|
|
838
|
+
wp.launch(vector_len_kernel, dim=(1,), inputs=(v1, v2, v3, v4), outputs=(out,), device=device)
|
|
839
|
+
|
|
840
|
+
test.assertEqual(out.numpy()[0], 2)
|
|
841
|
+
test.assertEqual(out.numpy()[1], 3)
|
|
842
|
+
test.assertEqual(out.numpy()[2], 4)
|
|
843
|
+
test.assertEqual(out.numpy()[3], 123)
|
|
844
|
+
test.assertEqual(out.numpy()[4], 2)
|
|
845
|
+
|
|
846
|
+
|
|
847
|
+
@wp.kernel
|
|
848
|
+
def vec_extract_subscript(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=float)):
|
|
849
|
+
tid = wp.tid()
|
|
850
|
+
|
|
851
|
+
a = x[tid]
|
|
852
|
+
b = a[0] + 2.0 * a[1] + 3.0 * a[2]
|
|
853
|
+
y[tid] = b
|
|
854
|
+
|
|
855
|
+
|
|
856
|
+
@wp.kernel
|
|
857
|
+
def vec_extract_attribute(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=float)):
|
|
858
|
+
tid = wp.tid()
|
|
859
|
+
|
|
860
|
+
a = x[tid]
|
|
861
|
+
b = a.x + float(2.0) * a.y + 3.0 * a.z
|
|
862
|
+
y[tid] = b
|
|
863
|
+
|
|
864
|
+
|
|
865
|
+
def test_vec_extract(test, device):
|
|
866
|
+
def run(kernel):
|
|
867
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
868
|
+
y = wp.zeros(1, dtype=float, requires_grad=True, device=device)
|
|
869
|
+
|
|
870
|
+
tape = wp.Tape()
|
|
871
|
+
with tape:
|
|
872
|
+
wp.launch(kernel, 1, inputs=[x], outputs=[y], device=device)
|
|
873
|
+
|
|
874
|
+
y.grad = wp.ones_like(y)
|
|
875
|
+
tape.backward()
|
|
876
|
+
|
|
877
|
+
assert_np_equal(y.numpy(), np.array([6.0], dtype=float))
|
|
878
|
+
assert_np_equal(x.grad.numpy(), np.array([[1.0, 2.0, 3.0]], dtype=float))
|
|
879
|
+
|
|
880
|
+
run(vec_extract_subscript)
|
|
881
|
+
run(vec_extract_attribute)
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
@wp.kernel
|
|
885
|
+
def vec_assign_subscript(x: wp.array(dtype=float), y: wp.array(dtype=wp.vec3)):
|
|
886
|
+
i = wp.tid()
|
|
887
|
+
|
|
888
|
+
a = wp.vec3()
|
|
889
|
+
a[0] = 1.0 * x[i]
|
|
890
|
+
a[1] = 2.0 * x[i]
|
|
891
|
+
a[2] = 3.0 * x[i]
|
|
892
|
+
y[i] = a
|
|
893
|
+
|
|
894
|
+
|
|
895
|
+
@wp.kernel
|
|
896
|
+
def vec_assign_attribute(x: wp.array(dtype=float), y: wp.array(dtype=wp.vec3)):
|
|
897
|
+
i = wp.tid()
|
|
898
|
+
|
|
899
|
+
a = wp.vec3()
|
|
900
|
+
a.x = 1.0 * x[i]
|
|
901
|
+
a.y = 2.0 * x[i]
|
|
902
|
+
a.z = 3.0 * x[i]
|
|
903
|
+
y[i] = a
|
|
904
|
+
|
|
905
|
+
|
|
906
|
+
def test_vec_assign(test, device):
|
|
907
|
+
def run(kernel):
|
|
908
|
+
x = wp.ones(1, dtype=float, requires_grad=True, device=device)
|
|
909
|
+
y = wp.zeros(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
910
|
+
|
|
911
|
+
tape = wp.Tape()
|
|
912
|
+
with tape:
|
|
913
|
+
wp.launch(kernel, 1, inputs=[x], outputs=[y], device=device)
|
|
914
|
+
|
|
915
|
+
y.grad = wp.ones_like(y)
|
|
916
|
+
tape.backward()
|
|
917
|
+
|
|
918
|
+
assert_np_equal(y.numpy(), np.array([[1.0, 2.0, 3.0]], dtype=float))
|
|
919
|
+
assert_np_equal(x.grad.numpy(), np.array([6.0], dtype=float))
|
|
920
|
+
|
|
921
|
+
run(vec_assign_subscript)
|
|
922
|
+
run(vec_assign_attribute)
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
@wp.kernel
|
|
926
|
+
def vec_array_extract_subscript(x: wp.array2d(dtype=wp.vec3), y: wp.array2d(dtype=float)):
|
|
927
|
+
i, j = wp.tid()
|
|
928
|
+
a = x[i, j][0]
|
|
929
|
+
b = x[i, j][1]
|
|
930
|
+
c = x[i, j][2]
|
|
931
|
+
y[i, j] = 1.0 * a + 2.0 * b + 3.0 * c
|
|
932
|
+
|
|
933
|
+
|
|
934
|
+
@wp.kernel
|
|
935
|
+
def vec_array_extract_attribute(x: wp.array2d(dtype=wp.vec3), y: wp.array2d(dtype=float)):
|
|
936
|
+
i, j = wp.tid()
|
|
937
|
+
a = x[i, j].x
|
|
938
|
+
b = x[i, j].y
|
|
939
|
+
c = x[i, j].z
|
|
940
|
+
y[i, j] = 1.0 * a + 2.0 * b + 3.0 * c
|
|
941
|
+
|
|
942
|
+
|
|
943
|
+
def test_vec_array_extract(test, device):
|
|
944
|
+
def run(kernel):
|
|
945
|
+
x = wp.ones((1, 1), dtype=wp.vec3, requires_grad=True, device=device)
|
|
946
|
+
y = wp.zeros((1, 1), dtype=float, requires_grad=True, device=device)
|
|
947
|
+
|
|
948
|
+
tape = wp.Tape()
|
|
949
|
+
with tape:
|
|
950
|
+
wp.launch(kernel, (1, 1), inputs=[x], outputs=[y], device=device)
|
|
951
|
+
|
|
952
|
+
y.grad = wp.ones_like(y)
|
|
953
|
+
tape.backward()
|
|
954
|
+
|
|
955
|
+
assert_np_equal(y.numpy(), np.array([[6.0]], dtype=float))
|
|
956
|
+
assert_np_equal(x.grad.numpy(), np.array([[[1.0, 2.0, 3.0]]], dtype=float))
|
|
957
|
+
|
|
958
|
+
run(vec_array_extract_subscript)
|
|
959
|
+
run(vec_array_extract_attribute)
|
|
960
|
+
|
|
961
|
+
|
|
962
|
+
@wp.kernel
|
|
963
|
+
def vec_array_assign_subscript(x: wp.array2d(dtype=float), y: wp.array2d(dtype=wp.vec3)):
|
|
964
|
+
i, j = wp.tid()
|
|
965
|
+
|
|
966
|
+
y[i, j][0] = 1.0 * x[i, j]
|
|
967
|
+
y[i, j][1] = 2.0 * x[i, j]
|
|
968
|
+
y[i, j][2] = 3.0 * x[i, j]
|
|
969
|
+
|
|
970
|
+
|
|
971
|
+
@wp.kernel
|
|
972
|
+
def vec_array_assign_attribute(x: wp.array2d(dtype=float), y: wp.array2d(dtype=wp.vec3)):
|
|
973
|
+
i, j = wp.tid()
|
|
974
|
+
|
|
975
|
+
y[i, j].x = 1.0 * x[i, j]
|
|
976
|
+
y[i, j].y = 2.0 * x[i, j]
|
|
977
|
+
y[i, j].z = 3.0 * x[i, j]
|
|
978
|
+
|
|
979
|
+
|
|
980
|
+
def test_vec_array_assign(test, device):
|
|
981
|
+
def run(kernel):
|
|
982
|
+
x = wp.ones((1, 1), dtype=float, requires_grad=True, device=device)
|
|
983
|
+
y = wp.zeros((1, 1), dtype=wp.vec3, requires_grad=True, device=device)
|
|
984
|
+
|
|
985
|
+
tape = wp.Tape()
|
|
986
|
+
with tape:
|
|
987
|
+
wp.launch(kernel, (1, 1), inputs=[x], outputs=[y], device=device)
|
|
988
|
+
|
|
989
|
+
y.grad = wp.ones_like(y)
|
|
990
|
+
tape.backward()
|
|
991
|
+
|
|
992
|
+
assert_np_equal(y.numpy(), np.array([[[1.0, 2.0, 3.0]]], dtype=float))
|
|
993
|
+
# TODO: gradient propagation for in-place array assignment
|
|
994
|
+
# assert_np_equal(x.grad.numpy(), np.array([[6.0]], dtype=float))
|
|
995
|
+
|
|
996
|
+
run(vec_array_assign_subscript)
|
|
997
|
+
run(vec_array_assign_attribute)
|
|
998
|
+
|
|
999
|
+
|
|
1000
|
+
@wp.kernel(module="unique")
|
|
1001
|
+
def vec_add_inplace_subscript(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1002
|
+
i = wp.tid()
|
|
1003
|
+
|
|
1004
|
+
a = wp.vec3()
|
|
1005
|
+
b = x[i]
|
|
1006
|
+
|
|
1007
|
+
a[0] += 1.0 * b[0]
|
|
1008
|
+
a[1] += 2.0 * b[1]
|
|
1009
|
+
a[2] += 3.0 * b[2]
|
|
1010
|
+
|
|
1011
|
+
y[i] = a
|
|
1012
|
+
|
|
1013
|
+
|
|
1014
|
+
@wp.kernel(module="unique")
|
|
1015
|
+
def vec_add_inplace_attribute(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1016
|
+
i = wp.tid()
|
|
1017
|
+
|
|
1018
|
+
a = wp.vec3()
|
|
1019
|
+
b = x[i]
|
|
1020
|
+
|
|
1021
|
+
a.x += 1.0 * b.x
|
|
1022
|
+
a.y += 2.0 * b.y
|
|
1023
|
+
a.z += 3.0 * b.z
|
|
1024
|
+
|
|
1025
|
+
y[i] = a
|
|
1026
|
+
|
|
1027
|
+
|
|
1028
|
+
def test_vec_add_inplace(test, device):
|
|
1029
|
+
def run(kernel):
|
|
1030
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1031
|
+
y = wp.zeros(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1032
|
+
|
|
1033
|
+
tape = wp.Tape()
|
|
1034
|
+
with tape:
|
|
1035
|
+
wp.launch(kernel, 1, inputs=[x], outputs=[y], device=device)
|
|
1036
|
+
|
|
1037
|
+
y.grad = wp.ones_like(y)
|
|
1038
|
+
tape.backward()
|
|
1039
|
+
|
|
1040
|
+
assert_np_equal(y.numpy(), np.array([[1.0, 2.0, 3.0]], dtype=float))
|
|
1041
|
+
assert_np_equal(x.grad.numpy(), np.array([[1.0, 2.0, 3.0]], dtype=float))
|
|
1042
|
+
|
|
1043
|
+
run(vec_add_inplace_subscript)
|
|
1044
|
+
run(vec_add_inplace_attribute)
|
|
1045
|
+
|
|
1046
|
+
|
|
1047
|
+
@wp.kernel
|
|
1048
|
+
def vec_sub_inplace_subscript(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1049
|
+
i = wp.tid()
|
|
1050
|
+
|
|
1051
|
+
a = wp.vec3()
|
|
1052
|
+
b = x[i]
|
|
1053
|
+
|
|
1054
|
+
a[0] -= 1.0 * b[0]
|
|
1055
|
+
a[1] -= 2.0 * b[1]
|
|
1056
|
+
a[2] -= 3.0 * b[2]
|
|
1057
|
+
|
|
1058
|
+
y[i] = a
|
|
1059
|
+
|
|
1060
|
+
|
|
1061
|
+
@wp.kernel
|
|
1062
|
+
def vec_sub_inplace_attribute(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1063
|
+
i = wp.tid()
|
|
1064
|
+
|
|
1065
|
+
a = wp.vec3()
|
|
1066
|
+
b = x[i]
|
|
1067
|
+
|
|
1068
|
+
a.x -= 1.0 * b.x
|
|
1069
|
+
a.y -= 2.0 * b.y
|
|
1070
|
+
a.z -= 3.0 * b.z
|
|
1071
|
+
|
|
1072
|
+
y[i] = a
|
|
1073
|
+
|
|
1074
|
+
|
|
1075
|
+
def test_vec_sub_inplace(test, device):
|
|
1076
|
+
def run(kernel):
|
|
1077
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1078
|
+
y = wp.zeros(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1079
|
+
|
|
1080
|
+
tape = wp.Tape()
|
|
1081
|
+
with tape:
|
|
1082
|
+
wp.launch(kernel, 1, inputs=[x], outputs=[y], device=device)
|
|
1083
|
+
|
|
1084
|
+
y.grad = wp.ones_like(y)
|
|
1085
|
+
tape.backward()
|
|
1086
|
+
|
|
1087
|
+
assert_np_equal(y.numpy(), np.array([[-1.0, -2.0, -3.0]], dtype=float))
|
|
1088
|
+
assert_np_equal(x.grad.numpy(), np.array([[-1.0, -2.0, -3.0]], dtype=float))
|
|
1089
|
+
|
|
1090
|
+
run(vec_sub_inplace_subscript)
|
|
1091
|
+
run(vec_sub_inplace_attribute)
|
|
1092
|
+
|
|
1093
|
+
|
|
1094
|
+
@wp.kernel(module="unique")
|
|
1095
|
+
def vec_array_add_inplace(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1096
|
+
i = wp.tid()
|
|
1097
|
+
|
|
1098
|
+
y[i] += x[i]
|
|
1099
|
+
|
|
1100
|
+
|
|
1101
|
+
def test_vec_array_add_inplace(test, device):
|
|
1102
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1103
|
+
y = wp.zeros(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1104
|
+
|
|
1105
|
+
tape = wp.Tape()
|
|
1106
|
+
with tape:
|
|
1107
|
+
wp.launch(vec_array_add_inplace, 1, inputs=[x], outputs=[y], device=device)
|
|
1108
|
+
|
|
1109
|
+
y.grad = wp.ones_like(y)
|
|
1110
|
+
tape.backward()
|
|
1111
|
+
|
|
1112
|
+
assert_np_equal(y.numpy(), np.array([[1.0, 1.0, 1.0]], dtype=float))
|
|
1113
|
+
assert_np_equal(x.grad.numpy(), np.array([[1.0, 1.0, 1.0]], dtype=float))
|
|
1114
|
+
|
|
1115
|
+
|
|
1116
|
+
@wp.kernel
|
|
1117
|
+
def vec_array_sub_inplace(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1118
|
+
i = wp.tid()
|
|
1119
|
+
|
|
1120
|
+
y[i] -= x[i]
|
|
1121
|
+
|
|
1122
|
+
|
|
1123
|
+
def test_vec_array_sub_inplace(test, device):
|
|
1124
|
+
x = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1125
|
+
y = wp.zeros(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1126
|
+
|
|
1127
|
+
tape = wp.Tape()
|
|
1128
|
+
with tape:
|
|
1129
|
+
wp.launch(vec_array_sub_inplace, 1, inputs=[x], outputs=[y], device=device)
|
|
1130
|
+
|
|
1131
|
+
y.grad = wp.ones_like(y)
|
|
1132
|
+
tape.backward()
|
|
1133
|
+
|
|
1134
|
+
assert_np_equal(y.numpy(), np.array([[-1.0, -1.0, -1.0]], dtype=float))
|
|
1135
|
+
assert_np_equal(x.grad.numpy(), np.array([[-1.0, -1.0, -1.0]], dtype=float))
|
|
1136
|
+
|
|
1137
|
+
|
|
1138
|
+
@wp.kernel
|
|
1139
|
+
def scalar_vec_div(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
1140
|
+
i = wp.tid()
|
|
1141
|
+
y[i] = 1.0 / x[i]
|
|
1142
|
+
|
|
1143
|
+
|
|
1144
|
+
def test_scalar_vec_div(test, device):
|
|
1145
|
+
x = wp.array((wp.vec3(1.0, 2.0, 4.0),), dtype=wp.vec3, requires_grad=True, device=device)
|
|
1146
|
+
y = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
1147
|
+
|
|
1148
|
+
tape = wp.Tape()
|
|
1149
|
+
with tape:
|
|
1150
|
+
wp.launch(scalar_vec_div, 1, inputs=(x,), outputs=(y,), device=device)
|
|
1151
|
+
|
|
1152
|
+
y.grad = wp.ones_like(y)
|
|
1153
|
+
tape.backward()
|
|
1154
|
+
|
|
1155
|
+
assert_np_equal(y.numpy(), np.array(((1.0, 0.5, 0.25),), dtype=float))
|
|
1156
|
+
assert_np_equal(x.grad.numpy(), np.array(((-1.0, -0.25, -0.0625),), dtype=float))
|
|
1157
|
+
|
|
1158
|
+
|
|
1159
|
+
def test_vec_indexing_assign(test, device):
|
|
1160
|
+
@wp.func
|
|
1161
|
+
def fn():
|
|
1162
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1163
|
+
|
|
1164
|
+
v[0] = 123.0
|
|
1165
|
+
v[1] *= 2.0
|
|
1166
|
+
|
|
1167
|
+
wp.expect_eq(v[0], 123.0)
|
|
1168
|
+
wp.expect_eq(v[1], 4.0)
|
|
1169
|
+
wp.expect_eq(v[2], 3.0)
|
|
1170
|
+
wp.expect_eq(v[3], 4.0)
|
|
1171
|
+
|
|
1172
|
+
v[-1] = 123.0
|
|
1173
|
+
v[-2] *= 2.0
|
|
1174
|
+
|
|
1175
|
+
wp.expect_eq(v[-1], 123.0)
|
|
1176
|
+
wp.expect_eq(v[-2], 6.0)
|
|
1177
|
+
wp.expect_eq(v[-3], 4.0)
|
|
1178
|
+
wp.expect_eq(v[-4], 123.0)
|
|
1179
|
+
|
|
1180
|
+
@wp.kernel(module="unique")
|
|
1181
|
+
def kernel():
|
|
1182
|
+
fn()
|
|
1183
|
+
|
|
1184
|
+
wp.launch(kernel, 1, device=device)
|
|
1185
|
+
wp.synchronize()
|
|
1186
|
+
fn()
|
|
1187
|
+
|
|
1188
|
+
|
|
1189
|
+
def test_vec_slicing_assign(test, device):
|
|
1190
|
+
vec0 = wp.vec(0, float)
|
|
1191
|
+
vec1 = wp.vec(1, float)
|
|
1192
|
+
vec2 = wp.vec(2, float)
|
|
1193
|
+
vec3 = wp.vec(3, float)
|
|
1194
|
+
vec4 = wp.vec(4, float)
|
|
1195
|
+
|
|
1196
|
+
@wp.func
|
|
1197
|
+
def fn():
|
|
1198
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1199
|
+
|
|
1200
|
+
wp.expect_eq(v[:] == vec4(1.0, 2.0, 3.0, 4.0), True)
|
|
1201
|
+
wp.expect_eq(v[-123:123] == vec4(1.0, 2.0, 3.0, 4.0), True)
|
|
1202
|
+
wp.expect_eq(v[123:] == vec0(), True)
|
|
1203
|
+
wp.expect_eq(v[:-123] == vec0(), True)
|
|
1204
|
+
wp.expect_eq(v[::123] == vec1(1.0), True)
|
|
1205
|
+
|
|
1206
|
+
wp.expect_eq(v[1:] == vec3(2.0, 3.0, 4.0), True)
|
|
1207
|
+
wp.expect_eq(v[-2:] == vec2(3.0, 4.0), True)
|
|
1208
|
+
wp.expect_eq(v[:2] == vec2(1.0, 2.0), True)
|
|
1209
|
+
wp.expect_eq(v[:-1] == vec3(1.0, 2.0, 3.0), True)
|
|
1210
|
+
wp.expect_eq(v[::2] == vec2(1.0, 3.0), True)
|
|
1211
|
+
wp.expect_eq(v[1::2] == vec2(2.0, 4.0), True)
|
|
1212
|
+
wp.expect_eq(v[::-1] == vec4(4.0, 3.0, 2.0, 1.0), True)
|
|
1213
|
+
wp.expect_eq(v[::-2] == vec2(4.0, 2.0), True)
|
|
1214
|
+
wp.expect_eq(v[1::-2] == vec1(2.0), True)
|
|
1215
|
+
|
|
1216
|
+
v[1:] = vec3(5.0, 6.0, 7.0)
|
|
1217
|
+
wp.expect_eq(v == wp.vec4(1.0, 5.0, 6.0, 7.0), True)
|
|
1218
|
+
|
|
1219
|
+
v[-2:] = vec2(8.0, 9.0)
|
|
1220
|
+
wp.expect_eq(v == wp.vec4(1.0, 5.0, 8.0, 9.0), True)
|
|
1221
|
+
|
|
1222
|
+
v[:2] = vec2(10.0, 11.0)
|
|
1223
|
+
wp.expect_eq(v == wp.vec4(10.0, 11.0, 8.0, 9.0), True)
|
|
1224
|
+
|
|
1225
|
+
v[:-1] = vec3(12.0, 13.0, 14.0)
|
|
1226
|
+
wp.expect_eq(v == wp.vec4(12.0, 13.0, 14.0, 9.0), True)
|
|
1227
|
+
|
|
1228
|
+
v[::2] = vec2(15.0, 16.0)
|
|
1229
|
+
wp.expect_eq(v == wp.vec4(15.0, 13.0, 16.0, 9.0), True)
|
|
1230
|
+
|
|
1231
|
+
v[1::2] = vec2(17.0, 18.0)
|
|
1232
|
+
wp.expect_eq(v == wp.vec4(15.0, 17.0, 16.0, 18.0), True)
|
|
1233
|
+
|
|
1234
|
+
v[::-1] = vec4(19.0, 20.0, 21.0, 22.0)
|
|
1235
|
+
wp.expect_eq(v == wp.vec4(22.0, 21.0, 20.0, 19.0), True)
|
|
1236
|
+
|
|
1237
|
+
v[::-2] = vec2(23.0, 24.0)
|
|
1238
|
+
wp.expect_eq(v == wp.vec4(22.0, 24.0, 20.0, 23.0), True)
|
|
1239
|
+
|
|
1240
|
+
v[1::-2] = vec1(25.0)
|
|
1241
|
+
wp.expect_eq(v == wp.vec4(22.0, 25.0, 20.0, 23.0), True)
|
|
1242
|
+
|
|
1243
|
+
v[1:] += vec3(26.0, 27.0, 28.0)
|
|
1244
|
+
wp.expect_eq(v == wp.vec4(22.0, 51.0, 47.0, 51.0), True)
|
|
1245
|
+
|
|
1246
|
+
v[:-1] -= vec3(29.0, 30.0, 31.0)
|
|
1247
|
+
wp.expect_eq(v == wp.vec4(-7.0, 21.0, 16.0, 51.0), True)
|
|
1248
|
+
|
|
1249
|
+
v[:] %= vec4(32.0, 33.0, 34.0, 35.0)
|
|
1250
|
+
wp.expect_eq(v == wp.vec4(-7.0, 21.0, 16.0, 16.0), True)
|
|
1251
|
+
|
|
1252
|
+
@wp.kernel(module="unique")
|
|
1253
|
+
def kernel():
|
|
1254
|
+
fn()
|
|
1255
|
+
|
|
1256
|
+
wp.launch(kernel, 1, device=device)
|
|
1257
|
+
wp.synchronize()
|
|
1258
|
+
fn()
|
|
1259
|
+
|
|
1260
|
+
|
|
1261
|
+
def test_vec_assign_inplace_errors(test, device):
|
|
1262
|
+
@wp.kernel
|
|
1263
|
+
def kernel_1():
|
|
1264
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1265
|
+
v[1:] = wp.vec3d(wp.float64(5.0), wp.float64(6.0), wp.float64(7.0))
|
|
1266
|
+
|
|
1267
|
+
with test.assertRaisesRegex(
|
|
1268
|
+
ValueError,
|
|
1269
|
+
r"The provided vector is expected to be of length 3 with dtype float32.$",
|
|
1270
|
+
):
|
|
1271
|
+
wp.launch(kernel_1, dim=1, device=device)
|
|
1272
|
+
|
|
1273
|
+
@wp.kernel
|
|
1274
|
+
def kernel_2():
|
|
1275
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1276
|
+
v[1:] = wp.float64(5.0)
|
|
1277
|
+
|
|
1278
|
+
with test.assertRaisesRegex(
|
|
1279
|
+
ValueError,
|
|
1280
|
+
r"The provided value is expected to be a vector of length 3, with dtype float32.$",
|
|
1281
|
+
):
|
|
1282
|
+
wp.launch(kernel_2, dim=1, device=device)
|
|
1283
|
+
|
|
1284
|
+
@wp.kernel
|
|
1285
|
+
def kernel_3():
|
|
1286
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1287
|
+
v[1:] = wp.mat22(5.0, 6.0, 7.0, 8.0)
|
|
1288
|
+
|
|
1289
|
+
with test.assertRaisesRegex(
|
|
1290
|
+
ValueError,
|
|
1291
|
+
r"The provided value is expected to be a vector of length 3, with dtype float32.$",
|
|
1292
|
+
):
|
|
1293
|
+
wp.launch(kernel_3, dim=1, device=device)
|
|
1294
|
+
|
|
1295
|
+
@wp.kernel
|
|
1296
|
+
def kernel_4():
|
|
1297
|
+
v = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1298
|
+
v[1:] = wp.vec2(5.0, 6.0)
|
|
1299
|
+
|
|
1300
|
+
with test.assertRaisesRegex(
|
|
1301
|
+
ValueError,
|
|
1302
|
+
r"The length of the provided vector \(2\) isn't compatible with the given slice \(expected 3\).$",
|
|
1303
|
+
):
|
|
1304
|
+
wp.launch(kernel_4, dim=1, device=device)
|
|
1305
|
+
|
|
1306
|
+
|
|
1307
|
+
def test_vec_slicing_assign_backward(test, device):
|
|
1308
|
+
@wp.kernel(module="unique")
|
|
1309
|
+
def kernel(arr_x: wp.array(dtype=wp.vec2), arr_y: wp.array(dtype=wp.vec4)):
|
|
1310
|
+
i = wp.tid()
|
|
1311
|
+
|
|
1312
|
+
y = arr_y[i]
|
|
1313
|
+
|
|
1314
|
+
y[:2] = arr_x[i]
|
|
1315
|
+
y[1:-1] += arr_x[i][:2]
|
|
1316
|
+
y[3:1:-1] -= arr_x[i][0:]
|
|
1317
|
+
|
|
1318
|
+
arr_y[i] = y
|
|
1319
|
+
|
|
1320
|
+
x = wp.ones(1, dtype=wp.vec2, requires_grad=True, device=device)
|
|
1321
|
+
y = wp.zeros(1, dtype=wp.vec4, requires_grad=True, device=device)
|
|
1322
|
+
|
|
1323
|
+
tape = wp.Tape()
|
|
1324
|
+
with tape:
|
|
1325
|
+
wp.launch(kernel, 1, inputs=(x,), outputs=(y,), device=device)
|
|
1326
|
+
|
|
1327
|
+
y.grad = wp.ones_like(y)
|
|
1328
|
+
tape.backward()
|
|
1329
|
+
|
|
1330
|
+
assert_np_equal(y.numpy(), np.array(((1.0, 2.0, 0.0, -1.0),), dtype=float))
|
|
1331
|
+
assert_np_equal(x.grad.numpy(), np.array(((1.0, 1.0),), dtype=float))
|
|
1332
|
+
|
|
1333
|
+
|
|
1334
|
+
devices = get_test_devices()
|
|
1335
|
+
|
|
1336
|
+
|
|
1337
|
+
class TestVec(unittest.TestCase):
|
|
1338
|
+
def test_tpl_ops_with_anon(self):
|
|
1339
|
+
vec3i = wp.vec(3, dtype=int)
|
|
1340
|
+
|
|
1341
|
+
v = wp.vec3i(1, 2, 3)
|
|
1342
|
+
v += vec3i(2, 3, 4)
|
|
1343
|
+
v -= vec3i(3, 4, 5)
|
|
1344
|
+
self.assertSequenceEqual(v, (0, 1, 2))
|
|
1345
|
+
|
|
1346
|
+
v = vec3i(1, 2, 3)
|
|
1347
|
+
v += wp.vec3i(2, 3, 4)
|
|
1348
|
+
v -= wp.vec3i(3, 4, 5)
|
|
1349
|
+
self.assertSequenceEqual(v, (0, 1, 2))
|
|
1350
|
+
|
|
1351
|
+
|
|
1352
|
+
vec10 = wp._src.types.vector(length=10, dtype=float)
|
|
1353
|
+
add_kernel_test(
|
|
1354
|
+
TestVec,
|
|
1355
|
+
test_vector_mutation,
|
|
1356
|
+
dim=1,
|
|
1357
|
+
inputs=[vec10(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)],
|
|
1358
|
+
devices=devices,
|
|
1359
|
+
)
|
|
1360
|
+
|
|
1361
|
+
for dtype in np_unsigned_int_types:
|
|
1362
|
+
add_function_test_register_kernel(
|
|
1363
|
+
TestVec,
|
|
1364
|
+
f"test_subtraction_unsigned_{dtype.__name__}",
|
|
1365
|
+
test_subtraction_unsigned,
|
|
1366
|
+
devices=devices,
|
|
1367
|
+
dtype=dtype,
|
|
1368
|
+
)
|
|
1369
|
+
|
|
1370
|
+
for dtype in np_signed_int_types + np_float_types:
|
|
1371
|
+
add_function_test_register_kernel(
|
|
1372
|
+
TestVec, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype
|
|
1373
|
+
)
|
|
1374
|
+
add_function_test_register_kernel(
|
|
1375
|
+
TestVec, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype
|
|
1376
|
+
)
|
|
1377
|
+
|
|
1378
|
+
for dtype in np_float_types:
|
|
1379
|
+
add_function_test_register_kernel(
|
|
1380
|
+
TestVec, f"test_crossproduct_{dtype.__name__}", test_crossproduct, devices=devices, dtype=dtype
|
|
1381
|
+
)
|
|
1382
|
+
add_function_test_register_kernel(
|
|
1383
|
+
TestVec, f"test_length_{dtype.__name__}", test_length, devices=devices, dtype=dtype
|
|
1384
|
+
)
|
|
1385
|
+
add_function_test_register_kernel(
|
|
1386
|
+
TestVec, f"test_normalize_{dtype.__name__}", test_normalize, devices=devices, dtype=dtype
|
|
1387
|
+
)
|
|
1388
|
+
|
|
1389
|
+
add_function_test(TestVec, "test_length_mismatch", test_length_mismatch, devices=devices)
|
|
1390
|
+
add_function_test(TestVec, "test_vector_len", test_vector_len, devices=devices)
|
|
1391
|
+
add_function_test(TestVec, "test_vec_extract", test_vec_extract, devices=devices)
|
|
1392
|
+
add_function_test(TestVec, "test_vec_assign", test_vec_assign, devices=devices)
|
|
1393
|
+
add_function_test(TestVec, "test_vec_array_extract", test_vec_array_extract, devices=devices)
|
|
1394
|
+
add_function_test(TestVec, "test_vec_array_assign", test_vec_array_assign, devices=devices)
|
|
1395
|
+
add_function_test(TestVec, "test_vec_add_inplace", test_vec_add_inplace, devices=devices)
|
|
1396
|
+
add_function_test(TestVec, "test_vec_sub_inplace", test_vec_sub_inplace, devices=devices)
|
|
1397
|
+
add_function_test(TestVec, "test_vec_array_add_inplace", test_vec_array_add_inplace, devices=devices)
|
|
1398
|
+
add_function_test(TestVec, "test_vec_array_sub_inplace", test_vec_array_sub_inplace, devices=devices)
|
|
1399
|
+
add_function_test(TestVec, "test_scalar_vec_div", test_scalar_vec_div, devices=devices)
|
|
1400
|
+
add_function_test(TestVec, "test_vec_indexing_assign", test_vec_indexing_assign, devices=devices)
|
|
1401
|
+
add_function_test(TestVec, "test_vec_slicing_assign", test_vec_slicing_assign, devices=devices)
|
|
1402
|
+
add_function_test(TestVec, "test_vec_assign_inplace_errors", test_vec_assign_inplace_errors, devices=devices)
|
|
1403
|
+
add_function_test(TestVec, "test_vec_slicing_assign_backward", test_vec_slicing_assign_backward, devices=devices)
|
|
1404
|
+
|
|
1405
|
+
|
|
1406
|
+
if __name__ == "__main__":
|
|
1407
|
+
wp.clear_kernel_cache()
|
|
1408
|
+
unittest.main(verbosity=2, failfast=True)
|