warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (468) hide show
  1. warp/__init__.py +334 -0
  2. warp/__init__.pyi +5856 -0
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1077 -0
  5. warp/_src/build.py +620 -0
  6. warp/_src/build_dll.py +642 -0
  7. warp/_src/builtins.py +10555 -0
  8. warp/_src/codegen.py +4361 -0
  9. warp/_src/config.py +178 -0
  10. warp/_src/constants.py +59 -0
  11. warp/_src/context.py +8352 -0
  12. warp/_src/dlpack.py +464 -0
  13. warp/_src/fabric.py +362 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +510 -0
  16. warp/_src/fem/cache.py +689 -0
  17. warp/_src/fem/dirichlet.py +190 -0
  18. warp/_src/fem/domain.py +553 -0
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +703 -0
  21. warp/_src/fem/field/nodal_field.py +403 -0
  22. warp/_src/fem/field/restriction.py +39 -0
  23. warp/_src/fem/field/virtual.py +1021 -0
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
  26. warp/_src/fem/geometry/closest_point.py +99 -0
  27. warp/_src/fem/geometry/deformed_geometry.py +277 -0
  28. warp/_src/fem/geometry/element.py +854 -0
  29. warp/_src/fem/geometry/geometry.py +693 -0
  30. warp/_src/fem/geometry/grid_2d.py +478 -0
  31. warp/_src/fem/geometry/grid_3d.py +539 -0
  32. warp/_src/fem/geometry/hexmesh.py +956 -0
  33. warp/_src/fem/geometry/nanogrid.py +660 -0
  34. warp/_src/fem/geometry/partition.py +483 -0
  35. warp/_src/fem/geometry/quadmesh.py +597 -0
  36. warp/_src/fem/geometry/tetmesh.py +762 -0
  37. warp/_src/fem/geometry/trimesh.py +588 -0
  38. warp/_src/fem/integrate.py +2507 -0
  39. warp/_src/fem/linalg.py +385 -0
  40. warp/_src/fem/operator.py +398 -0
  41. warp/_src/fem/polynomial.py +231 -0
  42. warp/_src/fem/quadrature/__init__.py +17 -0
  43. warp/_src/fem/quadrature/pic_quadrature.py +318 -0
  44. warp/_src/fem/quadrature/quadrature.py +665 -0
  45. warp/_src/fem/space/__init__.py +248 -0
  46. warp/_src/fem/space/basis_function_space.py +499 -0
  47. warp/_src/fem/space/basis_space.py +681 -0
  48. warp/_src/fem/space/dof_mapper.py +253 -0
  49. warp/_src/fem/space/function_space.py +312 -0
  50. warp/_src/fem/space/grid_2d_function_space.py +179 -0
  51. warp/_src/fem/space/grid_3d_function_space.py +229 -0
  52. warp/_src/fem/space/hexmesh_function_space.py +255 -0
  53. warp/_src/fem/space/nanogrid_function_space.py +199 -0
  54. warp/_src/fem/space/partition.py +435 -0
  55. warp/_src/fem/space/quadmesh_function_space.py +222 -0
  56. warp/_src/fem/space/restriction.py +221 -0
  57. warp/_src/fem/space/shape/__init__.py +152 -0
  58. warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
  59. warp/_src/fem/space/shape/shape_function.py +134 -0
  60. warp/_src/fem/space/shape/square_shape_function.py +928 -0
  61. warp/_src/fem/space/shape/tet_shape_function.py +829 -0
  62. warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
  63. warp/_src/fem/space/tetmesh_function_space.py +270 -0
  64. warp/_src/fem/space/topology.py +461 -0
  65. warp/_src/fem/space/trimesh_function_space.py +193 -0
  66. warp/_src/fem/types.py +114 -0
  67. warp/_src/fem/utils.py +488 -0
  68. warp/_src/jax.py +188 -0
  69. warp/_src/jax_experimental/__init__.py +14 -0
  70. warp/_src/jax_experimental/custom_call.py +389 -0
  71. warp/_src/jax_experimental/ffi.py +1286 -0
  72. warp/_src/jax_experimental/xla_ffi.py +658 -0
  73. warp/_src/marching_cubes.py +710 -0
  74. warp/_src/math.py +416 -0
  75. warp/_src/optim/__init__.py +14 -0
  76. warp/_src/optim/adam.py +165 -0
  77. warp/_src/optim/linear.py +1608 -0
  78. warp/_src/optim/sgd.py +114 -0
  79. warp/_src/paddle.py +408 -0
  80. warp/_src/render/__init__.py +14 -0
  81. warp/_src/render/imgui_manager.py +291 -0
  82. warp/_src/render/render_opengl.py +3638 -0
  83. warp/_src/render/render_usd.py +939 -0
  84. warp/_src/render/utils.py +162 -0
  85. warp/_src/sparse.py +2718 -0
  86. warp/_src/tape.py +1208 -0
  87. warp/_src/thirdparty/__init__.py +0 -0
  88. warp/_src/thirdparty/appdirs.py +598 -0
  89. warp/_src/thirdparty/dlpack.py +145 -0
  90. warp/_src/thirdparty/unittest_parallel.py +676 -0
  91. warp/_src/torch.py +393 -0
  92. warp/_src/types.py +5888 -0
  93. warp/_src/utils.py +1695 -0
  94. warp/autograd.py +33 -0
  95. warp/bin/libwarp-clang.dylib +0 -0
  96. warp/bin/libwarp.dylib +0 -0
  97. warp/build.py +29 -0
  98. warp/build_dll.py +24 -0
  99. warp/codegen.py +24 -0
  100. warp/constants.py +24 -0
  101. warp/context.py +33 -0
  102. warp/dlpack.py +24 -0
  103. warp/examples/__init__.py +24 -0
  104. warp/examples/assets/bear.usd +0 -0
  105. warp/examples/assets/bunny.usd +0 -0
  106. warp/examples/assets/cube.usd +0 -0
  107. warp/examples/assets/nonuniform.usd +0 -0
  108. warp/examples/assets/nvidia_logo.png +0 -0
  109. warp/examples/assets/pixel.jpg +0 -0
  110. warp/examples/assets/rocks.nvdb +0 -0
  111. warp/examples/assets/rocks.usd +0 -0
  112. warp/examples/assets/sphere.usd +0 -0
  113. warp/examples/assets/square_cloth.usd +0 -0
  114. warp/examples/benchmarks/benchmark_api.py +389 -0
  115. warp/examples/benchmarks/benchmark_cloth.py +296 -0
  116. warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
  117. warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
  118. warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
  119. warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
  120. warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
  121. warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
  122. warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
  123. warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
  124. warp/examples/benchmarks/benchmark_gemm.py +164 -0
  125. warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
  126. warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
  127. warp/examples/benchmarks/benchmark_launches.py +301 -0
  128. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  129. warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
  130. warp/examples/browse.py +37 -0
  131. warp/examples/core/example_cupy.py +86 -0
  132. warp/examples/core/example_dem.py +241 -0
  133. warp/examples/core/example_fluid.py +299 -0
  134. warp/examples/core/example_graph_capture.py +150 -0
  135. warp/examples/core/example_marching_cubes.py +195 -0
  136. warp/examples/core/example_mesh.py +180 -0
  137. warp/examples/core/example_mesh_intersect.py +211 -0
  138. warp/examples/core/example_nvdb.py +182 -0
  139. warp/examples/core/example_raycast.py +111 -0
  140. warp/examples/core/example_raymarch.py +205 -0
  141. warp/examples/core/example_render_opengl.py +290 -0
  142. warp/examples/core/example_sample_mesh.py +300 -0
  143. warp/examples/core/example_sph.py +411 -0
  144. warp/examples/core/example_spin_lock.py +93 -0
  145. warp/examples/core/example_torch.py +211 -0
  146. warp/examples/core/example_wave.py +269 -0
  147. warp/examples/core/example_work_queue.py +118 -0
  148. warp/examples/distributed/example_jacobi_mpi.py +506 -0
  149. warp/examples/fem/example_adaptive_grid.py +286 -0
  150. warp/examples/fem/example_apic_fluid.py +469 -0
  151. warp/examples/fem/example_burgers.py +261 -0
  152. warp/examples/fem/example_convection_diffusion.py +181 -0
  153. warp/examples/fem/example_convection_diffusion_dg.py +225 -0
  154. warp/examples/fem/example_darcy_ls_optimization.py +489 -0
  155. warp/examples/fem/example_deformed_geometry.py +172 -0
  156. warp/examples/fem/example_diffusion.py +196 -0
  157. warp/examples/fem/example_diffusion_3d.py +225 -0
  158. warp/examples/fem/example_diffusion_mgpu.py +225 -0
  159. warp/examples/fem/example_distortion_energy.py +228 -0
  160. warp/examples/fem/example_elastic_shape_optimization.py +387 -0
  161. warp/examples/fem/example_magnetostatics.py +242 -0
  162. warp/examples/fem/example_mixed_elasticity.py +293 -0
  163. warp/examples/fem/example_navier_stokes.py +263 -0
  164. warp/examples/fem/example_nonconforming_contact.py +300 -0
  165. warp/examples/fem/example_stokes.py +213 -0
  166. warp/examples/fem/example_stokes_transfer.py +262 -0
  167. warp/examples/fem/example_streamlines.py +357 -0
  168. warp/examples/fem/utils.py +1047 -0
  169. warp/examples/interop/example_jax_callable.py +146 -0
  170. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  171. warp/examples/interop/example_jax_kernel.py +232 -0
  172. warp/examples/optim/example_diffray.py +561 -0
  173. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  174. warp/examples/tile/example_tile_block_cholesky.py +502 -0
  175. warp/examples/tile/example_tile_cholesky.py +88 -0
  176. warp/examples/tile/example_tile_convolution.py +66 -0
  177. warp/examples/tile/example_tile_fft.py +55 -0
  178. warp/examples/tile/example_tile_filtering.py +113 -0
  179. warp/examples/tile/example_tile_matmul.py +85 -0
  180. warp/examples/tile/example_tile_mcgp.py +191 -0
  181. warp/examples/tile/example_tile_mlp.py +385 -0
  182. warp/examples/tile/example_tile_nbody.py +199 -0
  183. warp/fabric.py +24 -0
  184. warp/fem/__init__.py +173 -0
  185. warp/fem/adaptivity.py +26 -0
  186. warp/fem/cache.py +30 -0
  187. warp/fem/dirichlet.py +24 -0
  188. warp/fem/field/__init__.py +24 -0
  189. warp/fem/field/field.py +26 -0
  190. warp/fem/geometry/__init__.py +21 -0
  191. warp/fem/geometry/closest_point.py +31 -0
  192. warp/fem/linalg.py +38 -0
  193. warp/fem/operator.py +32 -0
  194. warp/fem/polynomial.py +29 -0
  195. warp/fem/space/__init__.py +22 -0
  196. warp/fem/space/basis_space.py +24 -0
  197. warp/fem/space/shape/__init__.py +68 -0
  198. warp/fem/space/topology.py +24 -0
  199. warp/fem/types.py +24 -0
  200. warp/fem/utils.py +32 -0
  201. warp/jax.py +29 -0
  202. warp/jax_experimental/__init__.py +29 -0
  203. warp/jax_experimental/custom_call.py +29 -0
  204. warp/jax_experimental/ffi.py +39 -0
  205. warp/jax_experimental/xla_ffi.py +24 -0
  206. warp/marching_cubes.py +24 -0
  207. warp/math.py +37 -0
  208. warp/native/array.h +1687 -0
  209. warp/native/builtin.h +2327 -0
  210. warp/native/bvh.cpp +562 -0
  211. warp/native/bvh.cu +826 -0
  212. warp/native/bvh.h +555 -0
  213. warp/native/clang/clang.cpp +541 -0
  214. warp/native/coloring.cpp +622 -0
  215. warp/native/crt.cpp +51 -0
  216. warp/native/crt.h +568 -0
  217. warp/native/cuda_crt.h +1058 -0
  218. warp/native/cuda_util.cpp +677 -0
  219. warp/native/cuda_util.h +313 -0
  220. warp/native/error.cpp +77 -0
  221. warp/native/error.h +36 -0
  222. warp/native/exports.h +2023 -0
  223. warp/native/fabric.h +246 -0
  224. warp/native/hashgrid.cpp +311 -0
  225. warp/native/hashgrid.cu +89 -0
  226. warp/native/hashgrid.h +240 -0
  227. warp/native/initializer_array.h +41 -0
  228. warp/native/intersect.h +1253 -0
  229. warp/native/intersect_adj.h +375 -0
  230. warp/native/intersect_tri.h +348 -0
  231. warp/native/mat.h +5189 -0
  232. warp/native/mathdx.cpp +93 -0
  233. warp/native/matnn.h +221 -0
  234. warp/native/mesh.cpp +266 -0
  235. warp/native/mesh.cu +406 -0
  236. warp/native/mesh.h +2097 -0
  237. warp/native/nanovdb/GridHandle.h +533 -0
  238. warp/native/nanovdb/HostBuffer.h +591 -0
  239. warp/native/nanovdb/NanoVDB.h +6246 -0
  240. warp/native/nanovdb/NodeManager.h +323 -0
  241. warp/native/nanovdb/PNanoVDB.h +3390 -0
  242. warp/native/noise.h +859 -0
  243. warp/native/quat.h +1664 -0
  244. warp/native/rand.h +342 -0
  245. warp/native/range.h +145 -0
  246. warp/native/reduce.cpp +174 -0
  247. warp/native/reduce.cu +363 -0
  248. warp/native/runlength_encode.cpp +79 -0
  249. warp/native/runlength_encode.cu +61 -0
  250. warp/native/scan.cpp +47 -0
  251. warp/native/scan.cu +55 -0
  252. warp/native/scan.h +23 -0
  253. warp/native/solid_angle.h +466 -0
  254. warp/native/sort.cpp +251 -0
  255. warp/native/sort.cu +286 -0
  256. warp/native/sort.h +35 -0
  257. warp/native/sparse.cpp +241 -0
  258. warp/native/sparse.cu +435 -0
  259. warp/native/spatial.h +1306 -0
  260. warp/native/svd.h +727 -0
  261. warp/native/temp_buffer.h +46 -0
  262. warp/native/tile.h +4124 -0
  263. warp/native/tile_radix_sort.h +1112 -0
  264. warp/native/tile_reduce.h +838 -0
  265. warp/native/tile_scan.h +240 -0
  266. warp/native/tuple.h +189 -0
  267. warp/native/vec.h +2199 -0
  268. warp/native/version.h +23 -0
  269. warp/native/volume.cpp +501 -0
  270. warp/native/volume.cu +68 -0
  271. warp/native/volume.h +970 -0
  272. warp/native/volume_builder.cu +483 -0
  273. warp/native/volume_builder.h +52 -0
  274. warp/native/volume_impl.h +70 -0
  275. warp/native/warp.cpp +1143 -0
  276. warp/native/warp.cu +4604 -0
  277. warp/native/warp.h +358 -0
  278. warp/optim/__init__.py +20 -0
  279. warp/optim/adam.py +24 -0
  280. warp/optim/linear.py +35 -0
  281. warp/optim/sgd.py +24 -0
  282. warp/paddle.py +24 -0
  283. warp/py.typed +0 -0
  284. warp/render/__init__.py +22 -0
  285. warp/render/imgui_manager.py +29 -0
  286. warp/render/render_opengl.py +24 -0
  287. warp/render/render_usd.py +24 -0
  288. warp/render/utils.py +24 -0
  289. warp/sparse.py +51 -0
  290. warp/tape.py +24 -0
  291. warp/tests/__init__.py +1 -0
  292. warp/tests/__main__.py +4 -0
  293. warp/tests/assets/curlnoise_golden.npy +0 -0
  294. warp/tests/assets/mlp_golden.npy +0 -0
  295. warp/tests/assets/pixel.npy +0 -0
  296. warp/tests/assets/pnoise_golden.npy +0 -0
  297. warp/tests/assets/spiky.usd +0 -0
  298. warp/tests/assets/test_grid.nvdb +0 -0
  299. warp/tests/assets/test_index_grid.nvdb +0 -0
  300. warp/tests/assets/test_int32_grid.nvdb +0 -0
  301. warp/tests/assets/test_vec_grid.nvdb +0 -0
  302. warp/tests/assets/torus.nvdb +0 -0
  303. warp/tests/assets/torus.usda +105 -0
  304. warp/tests/aux_test_class_kernel.py +34 -0
  305. warp/tests/aux_test_compile_consts_dummy.py +18 -0
  306. warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
  307. warp/tests/aux_test_dependent.py +29 -0
  308. warp/tests/aux_test_grad_customs.py +29 -0
  309. warp/tests/aux_test_instancing_gc.py +26 -0
  310. warp/tests/aux_test_module_aot.py +7 -0
  311. warp/tests/aux_test_module_unload.py +23 -0
  312. warp/tests/aux_test_name_clash1.py +40 -0
  313. warp/tests/aux_test_name_clash2.py +40 -0
  314. warp/tests/aux_test_reference.py +9 -0
  315. warp/tests/aux_test_reference_reference.py +8 -0
  316. warp/tests/aux_test_square.py +16 -0
  317. warp/tests/aux_test_unresolved_func.py +22 -0
  318. warp/tests/aux_test_unresolved_symbol.py +22 -0
  319. warp/tests/cuda/__init__.py +0 -0
  320. warp/tests/cuda/test_async.py +676 -0
  321. warp/tests/cuda/test_conditional_captures.py +1147 -0
  322. warp/tests/cuda/test_ipc.py +124 -0
  323. warp/tests/cuda/test_mempool.py +233 -0
  324. warp/tests/cuda/test_multigpu.py +169 -0
  325. warp/tests/cuda/test_peer.py +139 -0
  326. warp/tests/cuda/test_pinned.py +84 -0
  327. warp/tests/cuda/test_streams.py +691 -0
  328. warp/tests/geometry/__init__.py +0 -0
  329. warp/tests/geometry/test_bvh.py +335 -0
  330. warp/tests/geometry/test_hash_grid.py +259 -0
  331. warp/tests/geometry/test_marching_cubes.py +294 -0
  332. warp/tests/geometry/test_mesh.py +318 -0
  333. warp/tests/geometry/test_mesh_query_aabb.py +392 -0
  334. warp/tests/geometry/test_mesh_query_point.py +935 -0
  335. warp/tests/geometry/test_mesh_query_ray.py +323 -0
  336. warp/tests/geometry/test_volume.py +1103 -0
  337. warp/tests/geometry/test_volume_write.py +346 -0
  338. warp/tests/interop/__init__.py +0 -0
  339. warp/tests/interop/test_dlpack.py +730 -0
  340. warp/tests/interop/test_jax.py +1673 -0
  341. warp/tests/interop/test_paddle.py +800 -0
  342. warp/tests/interop/test_torch.py +1001 -0
  343. warp/tests/run_coverage_serial.py +39 -0
  344. warp/tests/test_adam.py +162 -0
  345. warp/tests/test_arithmetic.py +1096 -0
  346. warp/tests/test_array.py +3756 -0
  347. warp/tests/test_array_reduce.py +156 -0
  348. warp/tests/test_assert.py +303 -0
  349. warp/tests/test_atomic.py +336 -0
  350. warp/tests/test_atomic_bitwise.py +209 -0
  351. warp/tests/test_atomic_cas.py +312 -0
  352. warp/tests/test_bool.py +220 -0
  353. warp/tests/test_builtins_resolution.py +732 -0
  354. warp/tests/test_closest_point_edge_edge.py +327 -0
  355. warp/tests/test_codegen.py +974 -0
  356. warp/tests/test_codegen_instancing.py +1495 -0
  357. warp/tests/test_compile_consts.py +215 -0
  358. warp/tests/test_conditional.py +298 -0
  359. warp/tests/test_context.py +35 -0
  360. warp/tests/test_copy.py +319 -0
  361. warp/tests/test_ctypes.py +618 -0
  362. warp/tests/test_dense.py +73 -0
  363. warp/tests/test_devices.py +127 -0
  364. warp/tests/test_enum.py +136 -0
  365. warp/tests/test_examples.py +424 -0
  366. warp/tests/test_fabricarray.py +998 -0
  367. warp/tests/test_fast_math.py +72 -0
  368. warp/tests/test_fem.py +2204 -0
  369. warp/tests/test_fixedarray.py +229 -0
  370. warp/tests/test_fp16.py +136 -0
  371. warp/tests/test_func.py +501 -0
  372. warp/tests/test_future_annotations.py +100 -0
  373. warp/tests/test_generics.py +656 -0
  374. warp/tests/test_grad.py +893 -0
  375. warp/tests/test_grad_customs.py +339 -0
  376. warp/tests/test_grad_debug.py +341 -0
  377. warp/tests/test_implicit_init.py +411 -0
  378. warp/tests/test_import.py +45 -0
  379. warp/tests/test_indexedarray.py +1140 -0
  380. warp/tests/test_intersect.py +103 -0
  381. warp/tests/test_iter.py +76 -0
  382. warp/tests/test_large.py +177 -0
  383. warp/tests/test_launch.py +411 -0
  384. warp/tests/test_lerp.py +151 -0
  385. warp/tests/test_linear_solvers.py +223 -0
  386. warp/tests/test_lvalue.py +427 -0
  387. warp/tests/test_map.py +526 -0
  388. warp/tests/test_mat.py +3515 -0
  389. warp/tests/test_mat_assign_copy.py +178 -0
  390. warp/tests/test_mat_constructors.py +573 -0
  391. warp/tests/test_mat_lite.py +122 -0
  392. warp/tests/test_mat_scalar_ops.py +2913 -0
  393. warp/tests/test_math.py +212 -0
  394. warp/tests/test_module_aot.py +287 -0
  395. warp/tests/test_module_hashing.py +258 -0
  396. warp/tests/test_modules_lite.py +70 -0
  397. warp/tests/test_noise.py +252 -0
  398. warp/tests/test_operators.py +299 -0
  399. warp/tests/test_options.py +129 -0
  400. warp/tests/test_overwrite.py +551 -0
  401. warp/tests/test_print.py +408 -0
  402. warp/tests/test_quat.py +2653 -0
  403. warp/tests/test_quat_assign_copy.py +145 -0
  404. warp/tests/test_rand.py +339 -0
  405. warp/tests/test_reload.py +303 -0
  406. warp/tests/test_rounding.py +157 -0
  407. warp/tests/test_runlength_encode.py +196 -0
  408. warp/tests/test_scalar_ops.py +133 -0
  409. warp/tests/test_smoothstep.py +108 -0
  410. warp/tests/test_snippet.py +318 -0
  411. warp/tests/test_sparse.py +845 -0
  412. warp/tests/test_spatial.py +2859 -0
  413. warp/tests/test_spatial_assign_copy.py +160 -0
  414. warp/tests/test_special_values.py +361 -0
  415. warp/tests/test_static.py +640 -0
  416. warp/tests/test_struct.py +901 -0
  417. warp/tests/test_tape.py +242 -0
  418. warp/tests/test_transient_module.py +93 -0
  419. warp/tests/test_triangle_closest_point.py +192 -0
  420. warp/tests/test_tuple.py +361 -0
  421. warp/tests/test_types.py +615 -0
  422. warp/tests/test_utils.py +594 -0
  423. warp/tests/test_vec.py +1408 -0
  424. warp/tests/test_vec_assign_copy.py +143 -0
  425. warp/tests/test_vec_constructors.py +325 -0
  426. warp/tests/test_vec_lite.py +80 -0
  427. warp/tests/test_vec_scalar_ops.py +2327 -0
  428. warp/tests/test_verify_fp.py +100 -0
  429. warp/tests/test_version.py +75 -0
  430. warp/tests/tile/__init__.py +0 -0
  431. warp/tests/tile/test_tile.py +1519 -0
  432. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  433. warp/tests/tile/test_tile_cholesky.py +608 -0
  434. warp/tests/tile/test_tile_load.py +724 -0
  435. warp/tests/tile/test_tile_mathdx.py +156 -0
  436. warp/tests/tile/test_tile_matmul.py +179 -0
  437. warp/tests/tile/test_tile_mlp.py +400 -0
  438. warp/tests/tile/test_tile_reduce.py +950 -0
  439. warp/tests/tile/test_tile_shared_memory.py +376 -0
  440. warp/tests/tile/test_tile_sort.py +121 -0
  441. warp/tests/tile/test_tile_view.py +173 -0
  442. warp/tests/unittest_serial.py +47 -0
  443. warp/tests/unittest_suites.py +430 -0
  444. warp/tests/unittest_utils.py +469 -0
  445. warp/tests/walkthrough_debug.py +95 -0
  446. warp/torch.py +24 -0
  447. warp/types.py +51 -0
  448. warp/utils.py +31 -0
  449. warp_lang-1.10.0.dist-info/METADATA +459 -0
  450. warp_lang-1.10.0.dist-info/RECORD +468 -0
  451. warp_lang-1.10.0.dist-info/WHEEL +5 -0
  452. warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
  453. warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  454. warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  455. warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  456. warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  457. warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  458. warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  459. warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  460. warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  461. warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  462. warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  463. warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  464. warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  465. warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  466. warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  467. warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  468. warp_lang-1.10.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,400 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ import warp.examples
22
+ import warp.optim
23
+ from warp.tests.unittest_utils import *
24
+
25
+
26
+ def create_layer(rng, dim_in, dim_hid, dtype=float):
27
+ w = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, dim_in))
28
+ b = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, 1))
29
+
30
+ weights = wp.array(w, dtype=dtype, requires_grad=True)
31
+ bias = wp.array(b, dtype=dtype, requires_grad=True)
32
+
33
+ return (weights, bias)
34
+
35
+
36
+ def create_array(rng, dim_in, dim_hid, dtype=float):
37
+ s = rng.uniform(-1.0 / np.sqrt(dim_in), 1.0 / np.sqrt(dim_in), (dim_hid, dim_in))
38
+ a = wp.array(s, dtype=dtype, requires_grad=True)
39
+
40
+ return a
41
+
42
+
43
+ def test_multi_layer_nn(test, device):
44
+ import torch as tc
45
+
46
+ if device.is_cuda and not wp._src.context.runtime.core.wp_is_mathdx_enabled():
47
+ test.skipTest("Skipping test on CUDA device without MathDx (tolerance)")
48
+
49
+ NUM_FREQ = wp.constant(8)
50
+
51
+ DIM_IN = wp.constant(4 * NUM_FREQ) # sin,cos for both x,y at each frequency
52
+ DIM_HID = 32
53
+ DIM_OUT = 3
54
+
55
+ IMG_WIDTH = 256
56
+ IMG_HEIGHT = 256
57
+
58
+ BATCH_SIZE = min(512, int((IMG_WIDTH * IMG_HEIGHT) / 8))
59
+
60
+ if device.is_cpu:
61
+ NUM_THREADS = 1
62
+ else:
63
+ NUM_THREADS = 32
64
+
65
+ dtype = wp.float16
66
+ npdtype = wp._src.types.warp_type_to_np_dtype[dtype]
67
+
68
+ @wp.func
69
+ def relu(x: dtype):
70
+ return wp.max(x, dtype(0.0))
71
+
72
+ @wp.func
73
+ def sigmoid(x: dtype):
74
+ return dtype(1.0 / (1.0 + wp.exp(-float(x))))
75
+
76
+ @wp.kernel
77
+ def zero(loss: wp.array(dtype=float)):
78
+ loss[0] = 0.0
79
+
80
+ @wp.kernel(module="unique")
81
+ def compute(
82
+ batches: wp.array(dtype=int),
83
+ input: wp.array2d(dtype=dtype),
84
+ weights_0: wp.array2d(dtype=dtype),
85
+ bias_0: wp.array2d(dtype=dtype),
86
+ weights_1: wp.array2d(dtype=dtype),
87
+ bias_1: wp.array2d(dtype=dtype),
88
+ weights_2: wp.array2d(dtype=dtype),
89
+ bias_2: wp.array2d(dtype=dtype),
90
+ weights_3: wp.array2d(dtype=dtype),
91
+ bias_3: wp.array2d(dtype=dtype),
92
+ reference: wp.array2d(dtype=float),
93
+ loss: wp.array1d(dtype=float),
94
+ out: wp.array2d(dtype=float),
95
+ ):
96
+ linear = batches[wp.tid()]
97
+ row = linear / IMG_WIDTH
98
+ col = linear % IMG_WIDTH
99
+
100
+ # normalize input coordinates to [-1, 1]
101
+ x = (float(row) / float(IMG_WIDTH) - 0.5) * 2.0
102
+ y = (float(col) / float(IMG_HEIGHT) - 0.5) * 2.0
103
+
104
+ local = wp.vector(dtype=dtype, length=DIM_IN)
105
+
106
+ # construct positional encoding
107
+ for s in range(NUM_FREQ):
108
+ scale = wp.pow(2.0, float(s)) * wp.pi
109
+
110
+ # x-coord
111
+ local[s * 4 + 0] = dtype(wp.sin(x * scale))
112
+ local[s * 4 + 1] = dtype(wp.cos(x * scale))
113
+
114
+ # y-coord
115
+ local[s * 4 + 2] = dtype(wp.sin(y * scale))
116
+ local[s * 4 + 3] = dtype(wp.cos(y * scale))
117
+
118
+ # write input back to array so that torch can use it
119
+ input[s * 4 + 0, linear] = local[s * 4 + 0]
120
+ input[s * 4 + 1, linear] = local[s * 4 + 1]
121
+ input[s * 4 + 2, linear] = local[s * 4 + 2]
122
+ input[s * 4 + 3, linear] = local[s * 4 + 3]
123
+
124
+ # tile feature vectors across the block, returns [dim(f), NUM_THREADS]
125
+ f = wp.tile(local)
126
+
127
+ # input layer
128
+ w0 = wp.tile_load(weights_0, shape=(DIM_HID, DIM_IN))
129
+ b0 = wp.tile_load(bias_0, shape=(DIM_HID, 1))
130
+ z = wp.tile_map(relu, wp.tile_matmul(w0, f) + wp.tile_broadcast(b0, shape=(DIM_HID, NUM_THREADS)))
131
+
132
+ # hidden layer
133
+ w1 = wp.tile_load(weights_1, shape=(DIM_HID, DIM_HID))
134
+ b1 = wp.tile_load(bias_1, shape=(DIM_HID, 1))
135
+ z = wp.tile_map(relu, wp.tile_matmul(w1, z) + wp.tile_broadcast(b1, shape=(DIM_HID, NUM_THREADS)))
136
+
137
+ w2 = wp.tile_load(weights_2, shape=(DIM_HID, DIM_HID))
138
+ b2 = wp.tile_load(bias_2, shape=(DIM_HID, 1))
139
+ z = wp.tile_map(relu, wp.tile_matmul(w2, z) + wp.tile_broadcast(b2, shape=(DIM_HID, NUM_THREADS)))
140
+
141
+ # output layer
142
+ w3 = wp.tile_load(weights_3, shape=(DIM_OUT, DIM_HID))
143
+ b3 = wp.tile_load(bias_3, shape=(DIM_OUT, 1))
144
+ o = wp.tile_map(relu, wp.tile_matmul(w3, z) + wp.tile_broadcast(b3, shape=(DIM_OUT, NUM_THREADS)))
145
+
146
+ # untile back to SIMT
147
+ output = wp.untile(o)
148
+
149
+ # compute error
150
+ error = wp.vec3(
151
+ float(output[0]) - reference[0, linear],
152
+ float(output[1]) - reference[1, linear],
153
+ float(output[2]) - reference[2, linear],
154
+ )
155
+
156
+ # write MSE loss
157
+ wp.atomic_add(loss, 0, wp.length_sq(error) / float(3 * BATCH_SIZE))
158
+
159
+ # image output
160
+ for i in range(DIM_OUT):
161
+ out[i, linear] = float(output[i])
162
+
163
+ with wp.ScopedDevice(device):
164
+ torch_device = wp.device_to_torch(device)
165
+
166
+ rng = np.random.default_rng(45)
167
+
168
+ weights_0, bias_0 = create_layer(rng, DIM_IN, DIM_HID, dtype=dtype)
169
+ weights_1, bias_1 = create_layer(rng, DIM_HID, DIM_HID, dtype=dtype)
170
+ weights_2, bias_2 = create_layer(rng, DIM_HID, DIM_HID, dtype=dtype)
171
+ weights_3, bias_3 = create_layer(rng, DIM_HID, DIM_OUT, dtype=dtype)
172
+
173
+ input = create_array(rng, IMG_WIDTH * IMG_HEIGHT, DIM_IN, dtype=dtype)
174
+ output = create_array(rng, IMG_WIDTH * IMG_HEIGHT, DIM_OUT)
175
+
176
+ reference_np = (
177
+ np.load(os.path.join(os.path.dirname(__file__), "..", "assets", "pixel.npy"), allow_pickle=True) / 255.0
178
+ )
179
+ reference = wp.array(reference_np, dtype=float)
180
+
181
+ assert reference.shape[1] == IMG_WIDTH * IMG_HEIGHT
182
+
183
+ loss = wp.zeros(1, dtype=float, requires_grad=True)
184
+
185
+ params = [weights_0, bias_0, weights_1, bias_1, weights_2, bias_2, weights_3, bias_3]
186
+
187
+ optimizer_grads = [p.grad.flatten() for p in params]
188
+ optimizer_inputs = [p.flatten() for p in params]
189
+ optimizer = warp.optim.Adam(optimizer_inputs, lr=0.01)
190
+
191
+ max_epochs = 30
192
+
193
+ # create randomized batch indices
194
+ batches = np.arange(0, IMG_WIDTH * IMG_HEIGHT, dtype=np.int32)
195
+ rng.shuffle(batches)
196
+ batches = wp.array(batches)
197
+
198
+ with wp.ScopedTimer("Training", active=False):
199
+ for epoch in range(max_epochs):
200
+ for b in range(0, IMG_WIDTH * IMG_HEIGHT, BATCH_SIZE):
201
+ loss.zero_()
202
+
203
+ with wp.Tape() as tape:
204
+ wp.launch(
205
+ compute,
206
+ dim=[BATCH_SIZE],
207
+ inputs=[
208
+ batches[b : b + BATCH_SIZE],
209
+ input,
210
+ weights_0,
211
+ bias_0,
212
+ weights_1,
213
+ bias_1,
214
+ weights_2,
215
+ bias_2,
216
+ weights_3,
217
+ bias_3,
218
+ reference,
219
+ loss,
220
+ output,
221
+ ],
222
+ block_dim=NUM_THREADS,
223
+ )
224
+
225
+ tape.backward(loss)
226
+
227
+ # check outputs + grads on the first few epoch only
228
+ # since this is a relatively slow operation
229
+ verify = True
230
+ if verify and epoch < 3:
231
+ indices = batches[b : b + BATCH_SIZE].numpy()
232
+
233
+ z_np = np.maximum(weights_0.numpy() @ input.numpy()[:, indices] + bias_0.numpy(), 0.0)
234
+ z_np = np.maximum(weights_1.numpy() @ z_np + bias_1.numpy(), 0.0)
235
+ z_np = np.maximum(weights_2.numpy() @ z_np + bias_2.numpy(), 0.0)
236
+ z_np = np.maximum(weights_3.numpy() @ z_np + bias_3.numpy(), 0.0)
237
+
238
+ # test numpy forward
239
+ assert_np_equal(output.numpy()[:, indices].astype(npdtype), z_np, tol=1.0e-2)
240
+
241
+ # torch
242
+ input_tc = tc.tensor(input.numpy()[:, indices], requires_grad=True, device=torch_device)
243
+
244
+ weights_0_tc = tc.tensor(weights_0.numpy(), requires_grad=True, device=torch_device)
245
+ bias_0_tc = tc.tensor(bias_0.numpy(), requires_grad=True, device=torch_device)
246
+
247
+ weights_1_tc = tc.tensor(weights_1.numpy(), requires_grad=True, device=torch_device)
248
+ bias_1_tc = tc.tensor(bias_1.numpy(), requires_grad=True, device=torch_device)
249
+
250
+ weights_2_tc = tc.tensor(weights_2.numpy(), requires_grad=True, device=torch_device)
251
+ bias_2_tc = tc.tensor(bias_2.numpy(), requires_grad=True, device=torch_device)
252
+
253
+ weights_3_tc = tc.tensor(weights_3.numpy(), requires_grad=True, device=torch_device)
254
+ bias_3_tc = tc.tensor(bias_3.numpy(), requires_grad=True, device=torch_device)
255
+
256
+ z_tc = tc.clamp(weights_0_tc @ input_tc + bias_0_tc, min=0.0)
257
+ z_tc = tc.clamp(weights_1_tc @ z_tc + bias_1_tc, min=0.0)
258
+ z_tc = tc.clamp(weights_2_tc @ z_tc + bias_2_tc, min=0.0)
259
+ z_tc = tc.clamp(weights_3_tc @ z_tc + bias_3_tc, min=0.0)
260
+
261
+ ref_tc = tc.tensor(reference.numpy()[:, indices], requires_grad=True, device=torch_device)
262
+
263
+ l_tc = tc.mean((z_tc - ref_tc) ** 2)
264
+ l_tc.backward()
265
+
266
+ # test torch
267
+ assert_np_equal(
268
+ z_tc.cpu().detach().numpy(), output.numpy()[:, indices].astype(npdtype), tol=1.0e-2
269
+ )
270
+ assert_np_equal(weights_0.grad.numpy(), weights_0_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
271
+ assert_np_equal(bias_0.grad.numpy(), bias_0_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
272
+ assert_np_equal(weights_1.grad.numpy(), weights_1_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
273
+ assert_np_equal(bias_1.grad.numpy(), bias_1_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
274
+ assert_np_equal(weights_2.grad.numpy(), weights_2_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
275
+ assert_np_equal(bias_2.grad.numpy(), bias_2_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
276
+ assert_np_equal(weights_3.grad.numpy(), weights_3_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
277
+ assert_np_equal(bias_3.grad.numpy(), bias_3_tc.grad.cpu().detach().numpy(), tol=1.0e-2)
278
+
279
+ optimizer.step(optimizer_grads)
280
+ tape.zero()
281
+
282
+ # initial loss is ~0.061
283
+ test.assertLess(loss.numpy()[0], 0.002)
284
+
285
+
286
+ def test_single_layer_nn(test, device):
287
+ import torch as tc
288
+
289
+ DIM_IN = 8
290
+ DIM_OUT = 16
291
+
292
+ NUM_BLOCKS = 56
293
+
294
+ if device.is_cpu:
295
+ NUM_THREADS = 1
296
+ else:
297
+ NUM_THREADS = 32
298
+
299
+ @wp.func
300
+ def relu(x: float):
301
+ return wp.max(x, 0.0)
302
+
303
+ @wp.kernel(module="unique")
304
+ def compute(
305
+ input: wp.array2d(dtype=float),
306
+ weights: wp.array2d(dtype=float),
307
+ bias: wp.array2d(dtype=float),
308
+ out: wp.array2d(dtype=float),
309
+ ):
310
+ i = wp.tid()
311
+
312
+ f = wp.tile_load(input, shape=(DIM_IN, NUM_THREADS), offset=(0, i * NUM_THREADS))
313
+
314
+ w = wp.tile_load(weights, shape=(DIM_OUT, DIM_IN))
315
+ b = wp.tile_load(bias, shape=(DIM_OUT, 1))
316
+
317
+ o = wp.tile_map(relu, wp.tile_matmul(w, f) + wp.tile_broadcast(b, shape=(DIM_OUT, NUM_THREADS)))
318
+
319
+ wp.tile_store(out, o, offset=(0, i * NUM_THREADS))
320
+
321
+ with wp.ScopedDevice(device):
322
+ rng = np.random.default_rng(45)
323
+
324
+ # single layer weights, bias
325
+ weights, bias = create_layer(rng, DIM_IN, DIM_OUT, dtype=float)
326
+
327
+ input = create_array(rng, NUM_THREADS * NUM_BLOCKS, DIM_IN)
328
+ output = create_array(rng, NUM_THREADS * NUM_BLOCKS, DIM_OUT)
329
+
330
+ with wp.Tape() as tape:
331
+ wp.launch_tiled(compute, dim=[NUM_BLOCKS], inputs=[input, weights, bias, output], block_dim=NUM_THREADS)
332
+
333
+ output.grad = wp.ones_like(output)
334
+ tape.backward()
335
+
336
+ # numpy
337
+ output_np = np.maximum(weights.numpy() @ input.numpy() + bias.numpy(), 0.0)
338
+
339
+ # test numpy forward
340
+ assert_np_equal(output.numpy(), output_np, tol=1.0e-2)
341
+
342
+ # torch
343
+ weights_tc = tc.from_numpy(weights.numpy()).requires_grad_(True) # use .numpy() to avoid any memory aliasing
344
+ input_tc = tc.from_numpy(input.numpy()).requires_grad_(True)
345
+ bias_tc = tc.from_numpy(bias.numpy()).requires_grad_(True)
346
+
347
+ output_tc = tc.clamp(weights_tc @ input_tc + bias_tc, min=0.0)
348
+ output_tc.backward(tc.ones_like(output_tc))
349
+
350
+ # test torch
351
+ assert_np_equal(output_tc.detach().numpy(), output.numpy(), tol=1.0e-2)
352
+ assert_np_equal(input.grad.numpy(), input_tc.grad.detach().numpy(), tol=1.0e-2)
353
+
354
+
355
+ class TestTileMLP(unittest.TestCase):
356
+ pass
357
+
358
+
359
+ test_devices = get_test_devices()
360
+
361
+ try:
362
+ import torch
363
+
364
+ # check which Warp devices work with Torch
365
+ torch_compatible_devices = []
366
+ torch_compatible_cuda_devices = []
367
+
368
+ for d in test_devices:
369
+ try:
370
+ t = torch.arange(10, device=wp.device_to_torch(d))
371
+ t += 1
372
+ torch_compatible_devices.append(d)
373
+ if d.is_cuda:
374
+ torch_compatible_cuda_devices.append(d)
375
+ except Exception as e:
376
+ print(f"Skipping Torch tests on device '{d}' due to exception: {e}")
377
+
378
+ add_function_test(
379
+ TestTileMLP,
380
+ "test_single_layer_nn",
381
+ test_single_layer_nn,
382
+ check_output=False,
383
+ devices=torch_compatible_devices,
384
+ )
385
+ add_function_test(
386
+ TestTileMLP,
387
+ "test_multi_layer_nn",
388
+ test_multi_layer_nn,
389
+ check_output=False,
390
+ devices=torch_compatible_cuda_devices,
391
+ )
392
+
393
+ except Exception as e:
394
+ print(f"Skipping Torch tests due to exception: {e}")
395
+
396
+
397
+ if __name__ == "__main__":
398
+ wp.clear_kernel_cache()
399
+ wp.clear_lto_cache()
400
+ unittest.main(verbosity=2, failfast=True)