warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +334 -0
- warp/__init__.pyi +5856 -0
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1077 -0
- warp/_src/build.py +620 -0
- warp/_src/build_dll.py +642 -0
- warp/_src/builtins.py +10555 -0
- warp/_src/codegen.py +4361 -0
- warp/_src/config.py +178 -0
- warp/_src/constants.py +59 -0
- warp/_src/context.py +8352 -0
- warp/_src/dlpack.py +464 -0
- warp/_src/fabric.py +362 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +510 -0
- warp/_src/fem/cache.py +689 -0
- warp/_src/fem/dirichlet.py +190 -0
- warp/_src/fem/domain.py +553 -0
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +703 -0
- warp/_src/fem/field/nodal_field.py +403 -0
- warp/_src/fem/field/restriction.py +39 -0
- warp/_src/fem/field/virtual.py +1021 -0
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
- warp/_src/fem/geometry/closest_point.py +99 -0
- warp/_src/fem/geometry/deformed_geometry.py +277 -0
- warp/_src/fem/geometry/element.py +854 -0
- warp/_src/fem/geometry/geometry.py +693 -0
- warp/_src/fem/geometry/grid_2d.py +478 -0
- warp/_src/fem/geometry/grid_3d.py +539 -0
- warp/_src/fem/geometry/hexmesh.py +956 -0
- warp/_src/fem/geometry/nanogrid.py +660 -0
- warp/_src/fem/geometry/partition.py +483 -0
- warp/_src/fem/geometry/quadmesh.py +597 -0
- warp/_src/fem/geometry/tetmesh.py +762 -0
- warp/_src/fem/geometry/trimesh.py +588 -0
- warp/_src/fem/integrate.py +2507 -0
- warp/_src/fem/linalg.py +385 -0
- warp/_src/fem/operator.py +398 -0
- warp/_src/fem/polynomial.py +231 -0
- warp/_src/fem/quadrature/__init__.py +17 -0
- warp/_src/fem/quadrature/pic_quadrature.py +318 -0
- warp/_src/fem/quadrature/quadrature.py +665 -0
- warp/_src/fem/space/__init__.py +248 -0
- warp/_src/fem/space/basis_function_space.py +499 -0
- warp/_src/fem/space/basis_space.py +681 -0
- warp/_src/fem/space/dof_mapper.py +253 -0
- warp/_src/fem/space/function_space.py +312 -0
- warp/_src/fem/space/grid_2d_function_space.py +179 -0
- warp/_src/fem/space/grid_3d_function_space.py +229 -0
- warp/_src/fem/space/hexmesh_function_space.py +255 -0
- warp/_src/fem/space/nanogrid_function_space.py +199 -0
- warp/_src/fem/space/partition.py +435 -0
- warp/_src/fem/space/quadmesh_function_space.py +222 -0
- warp/_src/fem/space/restriction.py +221 -0
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
- warp/_src/fem/space/shape/shape_function.py +134 -0
- warp/_src/fem/space/shape/square_shape_function.py +928 -0
- warp/_src/fem/space/shape/tet_shape_function.py +829 -0
- warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
- warp/_src/fem/space/tetmesh_function_space.py +270 -0
- warp/_src/fem/space/topology.py +461 -0
- warp/_src/fem/space/trimesh_function_space.py +193 -0
- warp/_src/fem/types.py +114 -0
- warp/_src/fem/utils.py +488 -0
- warp/_src/jax.py +188 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +389 -0
- warp/_src/jax_experimental/ffi.py +1286 -0
- warp/_src/jax_experimental/xla_ffi.py +658 -0
- warp/_src/marching_cubes.py +710 -0
- warp/_src/math.py +416 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +165 -0
- warp/_src/optim/linear.py +1608 -0
- warp/_src/optim/sgd.py +114 -0
- warp/_src/paddle.py +408 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +291 -0
- warp/_src/render/render_opengl.py +3638 -0
- warp/_src/render/render_usd.py +939 -0
- warp/_src/render/utils.py +162 -0
- warp/_src/sparse.py +2718 -0
- warp/_src/tape.py +1208 -0
- warp/_src/thirdparty/__init__.py +0 -0
- warp/_src/thirdparty/appdirs.py +598 -0
- warp/_src/thirdparty/dlpack.py +145 -0
- warp/_src/thirdparty/unittest_parallel.py +676 -0
- warp/_src/torch.py +393 -0
- warp/_src/types.py +5888 -0
- warp/_src/utils.py +1695 -0
- warp/autograd.py +33 -0
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +29 -0
- warp/build_dll.py +24 -0
- warp/codegen.py +24 -0
- warp/constants.py +24 -0
- warp/context.py +33 -0
- warp/dlpack.py +24 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +195 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +290 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/distributed/example_jacobi_mpi.py +506 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +469 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +181 -0
- warp/examples/fem/example_convection_diffusion_dg.py +225 -0
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +225 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +242 -0
- warp/examples/fem/example_mixed_elasticity.py +293 -0
- warp/examples/fem/example_navier_stokes.py +263 -0
- warp/examples/fem/example_nonconforming_contact.py +300 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +357 -0
- warp/examples/fem/utils.py +1047 -0
- warp/examples/interop/example_jax_callable.py +146 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +232 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +88 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/examples/tile/example_tile_mlp.py +385 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/fabric.py +24 -0
- warp/fem/__init__.py +173 -0
- warp/fem/adaptivity.py +26 -0
- warp/fem/cache.py +30 -0
- warp/fem/dirichlet.py +24 -0
- warp/fem/field/__init__.py +24 -0
- warp/fem/field/field.py +26 -0
- warp/fem/geometry/__init__.py +21 -0
- warp/fem/geometry/closest_point.py +31 -0
- warp/fem/linalg.py +38 -0
- warp/fem/operator.py +32 -0
- warp/fem/polynomial.py +29 -0
- warp/fem/space/__init__.py +22 -0
- warp/fem/space/basis_space.py +24 -0
- warp/fem/space/shape/__init__.py +68 -0
- warp/fem/space/topology.py +24 -0
- warp/fem/types.py +24 -0
- warp/fem/utils.py +32 -0
- warp/jax.py +29 -0
- warp/jax_experimental/__init__.py +29 -0
- warp/jax_experimental/custom_call.py +29 -0
- warp/jax_experimental/ffi.py +39 -0
- warp/jax_experimental/xla_ffi.py +24 -0
- warp/marching_cubes.py +24 -0
- warp/math.py +37 -0
- warp/native/array.h +1687 -0
- warp/native/builtin.h +2327 -0
- warp/native/bvh.cpp +562 -0
- warp/native/bvh.cu +826 -0
- warp/native/bvh.h +555 -0
- warp/native/clang/clang.cpp +541 -0
- warp/native/coloring.cpp +622 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +568 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +677 -0
- warp/native/cuda_util.h +313 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +2023 -0
- warp/native/fabric.h +246 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +89 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1253 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +348 -0
- warp/native/mat.h +5189 -0
- warp/native/mathdx.cpp +93 -0
- warp/native/matnn.h +221 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +406 -0
- warp/native/mesh.h +2097 -0
- warp/native/nanovdb/GridHandle.h +533 -0
- warp/native/nanovdb/HostBuffer.h +591 -0
- warp/native/nanovdb/NanoVDB.h +6246 -0
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1664 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +145 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +363 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +55 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +286 -0
- warp/native/sort.h +35 -0
- warp/native/sparse.cpp +241 -0
- warp/native/sparse.cu +435 -0
- warp/native/spatial.h +1306 -0
- warp/native/svd.h +727 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +4124 -0
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +838 -0
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +2199 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +68 -0
- warp/native/volume.h +970 -0
- warp/native/volume_builder.cu +483 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1143 -0
- warp/native/warp.cu +4604 -0
- warp/native/warp.h +358 -0
- warp/optim/__init__.py +20 -0
- warp/optim/adam.py +24 -0
- warp/optim/linear.py +35 -0
- warp/optim/sgd.py +24 -0
- warp/paddle.py +24 -0
- warp/py.typed +0 -0
- warp/render/__init__.py +22 -0
- warp/render/imgui_manager.py +29 -0
- warp/render/render_opengl.py +24 -0
- warp/render/render_usd.py +24 -0
- warp/render/utils.py +24 -0
- warp/sparse.py +51 -0
- warp/tape.py +24 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_conditional_captures.py +1147 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +691 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +335 -0
- warp/tests/geometry/test_hash_grid.py +259 -0
- warp/tests/geometry/test_marching_cubes.py +294 -0
- warp/tests/geometry/test_mesh.py +318 -0
- warp/tests/geometry/test_mesh_query_aabb.py +392 -0
- warp/tests/geometry/test_mesh_query_point.py +935 -0
- warp/tests/geometry/test_mesh_query_ray.py +323 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +730 -0
- warp/tests/interop/test_jax.py +1673 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/test_adam.py +162 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +3756 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +303 -0
- warp/tests/test_atomic.py +336 -0
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +732 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +974 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +298 -0
- warp/tests/test_context.py +35 -0
- warp/tests/test_copy.py +319 -0
- warp/tests/test_ctypes.py +618 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +127 -0
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +424 -0
- warp/tests/test_fabricarray.py +998 -0
- warp/tests/test_fast_math.py +72 -0
- warp/tests/test_fem.py +2204 -0
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +501 -0
- warp/tests/test_future_annotations.py +100 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +103 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +223 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_map.py +526 -0
- warp/tests/test_mat.py +3515 -0
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +573 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +212 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +70 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +408 -0
- warp/tests/test_quat.py +2653 -0
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +303 -0
- warp/tests/test_rounding.py +157 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +133 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +845 -0
- warp/tests/test_spatial.py +2859 -0
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +640 -0
- warp/tests/test_struct.py +901 -0
- warp/tests/test_tape.py +242 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +192 -0
- warp/tests/test_tuple.py +361 -0
- warp/tests/test_types.py +615 -0
- warp/tests/test_utils.py +594 -0
- warp/tests/test_vec.py +1408 -0
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/test_version.py +75 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +1519 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +608 -0
- warp/tests/tile/test_tile_load.py +724 -0
- warp/tests/tile/test_tile_mathdx.py +156 -0
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +400 -0
- warp/tests/tile/test_tile_reduce.py +950 -0
- warp/tests/tile/test_tile_shared_memory.py +376 -0
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +430 -0
- warp/tests/unittest_utils.py +469 -0
- warp/tests/walkthrough_debug.py +95 -0
- warp/torch.py +24 -0
- warp/types.py +51 -0
- warp/utils.py +31 -0
- warp_lang-1.10.0.dist-info/METADATA +459 -0
- warp_lang-1.10.0.dist-info/RECORD +468 -0
- warp_lang-1.10.0.dist-info/WHEEL +5 -0
- warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,950 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp.tests.unittest_utils import *
|
|
22
|
+
|
|
23
|
+
TILE_M = wp.constant(8)
|
|
24
|
+
TILE_N = wp.constant(4)
|
|
25
|
+
TILE_K = wp.constant(8)
|
|
26
|
+
|
|
27
|
+
# num threads per-tile
|
|
28
|
+
TILE_DIM = 64
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@wp.kernel
|
|
32
|
+
def tile_sum_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
33
|
+
# output tile index
|
|
34
|
+
i = wp.tid()
|
|
35
|
+
|
|
36
|
+
n = input.shape[1]
|
|
37
|
+
count = int(n / TILE_DIM)
|
|
38
|
+
|
|
39
|
+
s = wp.tile_zeros(shape=1, dtype=float)
|
|
40
|
+
|
|
41
|
+
for j in range(count):
|
|
42
|
+
a = wp.tile_load(input[i], shape=TILE_DIM, offset=j * TILE_DIM)
|
|
43
|
+
s += wp.tile_sum(a) * 0.5
|
|
44
|
+
|
|
45
|
+
wp.tile_store(output, s, offset=i)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def test_tile_reduce_sum(test, device):
|
|
49
|
+
batch_count = 56
|
|
50
|
+
|
|
51
|
+
N = TILE_DIM * 3
|
|
52
|
+
|
|
53
|
+
rng = np.random.default_rng(42)
|
|
54
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
55
|
+
|
|
56
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
57
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
58
|
+
|
|
59
|
+
with wp.Tape() as tape:
|
|
60
|
+
wp.launch_tiled(
|
|
61
|
+
tile_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
sum_wp = output_wp.numpy()
|
|
65
|
+
for i in range(batch_count):
|
|
66
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
67
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
|
|
68
|
+
|
|
69
|
+
output_wp.grad.fill_(1.0)
|
|
70
|
+
|
|
71
|
+
tape.backward()
|
|
72
|
+
|
|
73
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@wp.kernel
|
|
77
|
+
def tile_sum_to_shared_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
78
|
+
i, lane = wp.tid()
|
|
79
|
+
|
|
80
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
81
|
+
s = wp.tile_sum(a)
|
|
82
|
+
v = s[0]
|
|
83
|
+
wp.tile_store(output, s * 0.5, offset=i)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def test_tile_sum_to_shared(test, device):
|
|
87
|
+
batch_count = 1
|
|
88
|
+
|
|
89
|
+
rng = np.random.default_rng(42)
|
|
90
|
+
input = rng.random((batch_count, TILE_DIM), dtype=np.float32)
|
|
91
|
+
|
|
92
|
+
input_wp = wp.array(input, requires_grad=True, device=device, dtype=float)
|
|
93
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device, dtype=float)
|
|
94
|
+
|
|
95
|
+
with wp.Tape() as tape:
|
|
96
|
+
wp.launch_tiled(
|
|
97
|
+
tile_sum_to_shared_kernel,
|
|
98
|
+
dim=[batch_count],
|
|
99
|
+
inputs=[input_wp, output_wp],
|
|
100
|
+
block_dim=TILE_DIM,
|
|
101
|
+
device=device,
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
sum_wp = output_wp.numpy()
|
|
105
|
+
for i in range(batch_count):
|
|
106
|
+
sum_np = np.sum(input[i], axis=0) * 0.5
|
|
107
|
+
assert_np_equal(sum_wp[i], sum_np, tol=0.0001)
|
|
108
|
+
|
|
109
|
+
output_wp.grad.fill_(1.0)
|
|
110
|
+
|
|
111
|
+
tape.backward()
|
|
112
|
+
|
|
113
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@wp.kernel
|
|
117
|
+
def tile_min_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
118
|
+
# output tile index
|
|
119
|
+
i = wp.tid()
|
|
120
|
+
|
|
121
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
122
|
+
m = wp.tile_min(a)
|
|
123
|
+
|
|
124
|
+
wp.tile_store(output, m, offset=i)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@wp.kernel
|
|
128
|
+
def tile_min_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
129
|
+
t = wp.tile_load(x, shape=(3, 3))
|
|
130
|
+
min = wp.tile_min(t)
|
|
131
|
+
wp.tile_store(y, min)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def test_tile_reduce_min(test, device):
|
|
135
|
+
batch_count = 56
|
|
136
|
+
|
|
137
|
+
N = TILE_DIM
|
|
138
|
+
|
|
139
|
+
rng = np.random.default_rng(42)
|
|
140
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
141
|
+
|
|
142
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
143
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
144
|
+
|
|
145
|
+
with wp.Tape():
|
|
146
|
+
wp.launch_tiled(
|
|
147
|
+
tile_min_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
min_wp = output_wp.numpy()
|
|
151
|
+
for i in range(batch_count):
|
|
152
|
+
min_np = np.min(input[i])
|
|
153
|
+
test.assertAlmostEqual(min_wp[i], min_np, places=4)
|
|
154
|
+
|
|
155
|
+
# test edge case: tile is multiple warps in size but at least one is empty
|
|
156
|
+
x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
|
|
157
|
+
y = wp.zeros(1, dtype=float, device=device)
|
|
158
|
+
|
|
159
|
+
wp.launch_tiled(tile_min_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
|
|
160
|
+
|
|
161
|
+
assert_np_equal(y.numpy(), np.array([1.0]))
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@wp.kernel
|
|
165
|
+
def tile_argmin_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
|
|
166
|
+
# output tile index
|
|
167
|
+
i = wp.tid()
|
|
168
|
+
|
|
169
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
170
|
+
m = wp.tile_argmin(a)
|
|
171
|
+
|
|
172
|
+
wp.tile_store(output, m, offset=i)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
@wp.kernel
|
|
176
|
+
def tile_argmin_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=int)):
|
|
177
|
+
t = wp.tile_load(x, shape=(3, 3))
|
|
178
|
+
min = wp.tile_argmin(t)
|
|
179
|
+
wp.tile_store(y, min)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def test_tile_reduce_argmin(test, device):
|
|
183
|
+
batch_count = 56
|
|
184
|
+
|
|
185
|
+
N = TILE_DIM
|
|
186
|
+
|
|
187
|
+
rng = np.random.default_rng(42)
|
|
188
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
189
|
+
|
|
190
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
191
|
+
output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
|
|
192
|
+
|
|
193
|
+
with wp.Tape():
|
|
194
|
+
wp.launch_tiled(
|
|
195
|
+
tile_argmin_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
argmin_wp = output_wp.numpy()
|
|
199
|
+
for i in range(batch_count):
|
|
200
|
+
argmin_np = np.argmin(input[i])
|
|
201
|
+
test.assertAlmostEqual(argmin_wp[i], argmin_np, places=4)
|
|
202
|
+
|
|
203
|
+
# test edge case: tile is multiple warps in size but at least one is empty
|
|
204
|
+
x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
|
|
205
|
+
y = wp.zeros(1, dtype=int, device=device)
|
|
206
|
+
|
|
207
|
+
wp.launch_tiled(tile_argmin_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
|
|
208
|
+
|
|
209
|
+
assert_np_equal(y.numpy(), np.array([4]))
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
@wp.kernel
|
|
213
|
+
def tile_max_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
214
|
+
# output tile index
|
|
215
|
+
i = wp.tid()
|
|
216
|
+
|
|
217
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
218
|
+
m = wp.tile_max(a)
|
|
219
|
+
|
|
220
|
+
wp.tile_store(output, m, offset=i)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def test_tile_reduce_max(test, device):
|
|
224
|
+
batch_count = 56
|
|
225
|
+
|
|
226
|
+
N = TILE_DIM
|
|
227
|
+
|
|
228
|
+
rng = np.random.default_rng(42)
|
|
229
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
230
|
+
|
|
231
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
232
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
233
|
+
|
|
234
|
+
with wp.Tape():
|
|
235
|
+
wp.launch_tiled(
|
|
236
|
+
tile_max_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
max_wp = output_wp.numpy()
|
|
240
|
+
for i in range(batch_count):
|
|
241
|
+
max_np = np.max(input[i])
|
|
242
|
+
test.assertAlmostEqual(max_wp[i], max_np, places=4)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
@wp.kernel
|
|
246
|
+
def tile_argmax_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
|
|
247
|
+
# output tile index
|
|
248
|
+
i = wp.tid()
|
|
249
|
+
|
|
250
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
251
|
+
m = wp.tile_argmax(a)
|
|
252
|
+
|
|
253
|
+
wp.tile_store(output, m, offset=i)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
def test_tile_reduce_argmax(test, device):
|
|
257
|
+
batch_count = 56
|
|
258
|
+
|
|
259
|
+
N = TILE_DIM
|
|
260
|
+
|
|
261
|
+
rng = np.random.default_rng(42)
|
|
262
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
263
|
+
|
|
264
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
265
|
+
output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
|
|
266
|
+
|
|
267
|
+
with wp.Tape():
|
|
268
|
+
wp.launch_tiled(
|
|
269
|
+
tile_argmax_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
argmax_wp = output_wp.numpy()
|
|
273
|
+
for i in range(batch_count):
|
|
274
|
+
argmax_np = np.argmax(input[i])
|
|
275
|
+
test.assertAlmostEqual(argmax_wp[i], argmax_np, places=4)
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
@wp.kernel
|
|
279
|
+
def tile_reduce_custom_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
|
|
280
|
+
# output tile index
|
|
281
|
+
i = wp.tid()
|
|
282
|
+
|
|
283
|
+
a = wp.tile_load(input[i], shape=TILE_DIM)
|
|
284
|
+
m = wp.tile_reduce(wp.mul, a)
|
|
285
|
+
|
|
286
|
+
wp.tile_store(output, m, offset=i)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def test_tile_reduce_custom(test, device):
|
|
290
|
+
batch_count = 56
|
|
291
|
+
|
|
292
|
+
N = TILE_DIM
|
|
293
|
+
|
|
294
|
+
rng = np.random.default_rng(42)
|
|
295
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
296
|
+
|
|
297
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
298
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
299
|
+
|
|
300
|
+
with wp.Tape():
|
|
301
|
+
wp.launch_tiled(
|
|
302
|
+
tile_reduce_custom_kernel,
|
|
303
|
+
dim=[batch_count],
|
|
304
|
+
inputs=[input_wp, output_wp],
|
|
305
|
+
block_dim=TILE_DIM,
|
|
306
|
+
device=device,
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
prod_wp = output_wp.numpy()
|
|
310
|
+
for i in range(batch_count):
|
|
311
|
+
prod_np = np.prod(input[i])
|
|
312
|
+
test.assertAlmostEqual(prod_wp[i], prod_np, places=4)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
def create_tile_scan_inclusive_kernel(tile_dim: int):
|
|
316
|
+
@wp.kernel(module="unique")
|
|
317
|
+
def tile_scan_inclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
318
|
+
i = wp.tid()
|
|
319
|
+
t = wp.tile_load(input[i], shape=tile_dim)
|
|
320
|
+
t = wp.tile_scan_inclusive(t)
|
|
321
|
+
wp.tile_store(output[i], t)
|
|
322
|
+
|
|
323
|
+
return tile_scan_inclusive_kernel
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
def test_tile_scan_inclusive(test, device):
|
|
327
|
+
batch_count = 56
|
|
328
|
+
N = 1234
|
|
329
|
+
|
|
330
|
+
rng = np.random.default_rng(42)
|
|
331
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
332
|
+
|
|
333
|
+
input_wp = wp.array2d(input, requires_grad=True, device=device)
|
|
334
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
335
|
+
|
|
336
|
+
with wp.Tape():
|
|
337
|
+
wp.launch_tiled(
|
|
338
|
+
create_tile_scan_inclusive_kernel(N),
|
|
339
|
+
dim=[batch_count],
|
|
340
|
+
inputs=[input_wp, output_wp],
|
|
341
|
+
block_dim=TILE_DIM,
|
|
342
|
+
device=device,
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
scan_wp = output_wp.numpy()
|
|
346
|
+
for i in range(batch_count):
|
|
347
|
+
scan_np = np.cumsum(input[i])
|
|
348
|
+
np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
def create_tile_scan_exclusive_kernel(tile_dim: int):
|
|
352
|
+
@wp.kernel(module="unique")
|
|
353
|
+
def tile_scan_exclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
|
|
354
|
+
i = wp.tid()
|
|
355
|
+
t = wp.tile_load(input[i], shape=tile_dim)
|
|
356
|
+
t = wp.tile_scan_exclusive(t)
|
|
357
|
+
wp.tile_store(output[i], t)
|
|
358
|
+
|
|
359
|
+
return tile_scan_exclusive_kernel
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
def test_tile_scan_exclusive(test, device):
|
|
363
|
+
batch_count = 56
|
|
364
|
+
N = 1234
|
|
365
|
+
|
|
366
|
+
rng = np.random.default_rng(42)
|
|
367
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
368
|
+
|
|
369
|
+
input_wp = wp.array2d(input, requires_grad=True, device=device)
|
|
370
|
+
output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
|
|
371
|
+
|
|
372
|
+
with wp.Tape():
|
|
373
|
+
wp.launch_tiled(
|
|
374
|
+
create_tile_scan_exclusive_kernel(N),
|
|
375
|
+
dim=[batch_count],
|
|
376
|
+
inputs=[input_wp, output_wp],
|
|
377
|
+
block_dim=TILE_DIM,
|
|
378
|
+
device=device,
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
scan_wp = output_wp.numpy()
|
|
382
|
+
for i in range(batch_count):
|
|
383
|
+
scan_np = np.zeros(N, dtype=np.float32)
|
|
384
|
+
scan_np[1:] = np.cumsum(input[i][:-1])
|
|
385
|
+
np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
@wp.struct
|
|
389
|
+
class KeyValue:
|
|
390
|
+
key: wp.int32
|
|
391
|
+
value: wp.float32
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
@wp.func
|
|
395
|
+
def kv_max(a: KeyValue, b: KeyValue) -> KeyValue:
|
|
396
|
+
return wp.where(a.value < b.value, b, a)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
@wp.kernel
|
|
400
|
+
def initialize_key_value(values: wp.array2d(dtype=wp.float32), keyvalues: wp.array2d(dtype=KeyValue)):
|
|
401
|
+
batch, idx = wp.tid()
|
|
402
|
+
keyvalues[batch, idx] = KeyValue(idx, values[batch, idx])
|
|
403
|
+
|
|
404
|
+
|
|
405
|
+
@wp.kernel(enable_backward=False)
|
|
406
|
+
def tile_reduce_custom_struct_kernel(values: wp.array2d(dtype=KeyValue), res: wp.array(dtype=KeyValue)):
|
|
407
|
+
# output tile index
|
|
408
|
+
i = wp.tid()
|
|
409
|
+
|
|
410
|
+
t = wp.tile_load(values, shape=(1, TILE_DIM), offset=(i, 0))
|
|
411
|
+
|
|
412
|
+
max_el = wp.tile_reduce(kv_max, t)
|
|
413
|
+
wp.tile_store(res, max_el, offset=i)
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
def test_tile_reduce_custom_struct(test, device):
|
|
417
|
+
batch_count = 56
|
|
418
|
+
|
|
419
|
+
N = TILE_DIM
|
|
420
|
+
|
|
421
|
+
rng = np.random.default_rng(42)
|
|
422
|
+
input = rng.random((batch_count, N), dtype=np.float32)
|
|
423
|
+
|
|
424
|
+
input_wp = wp.array(input, dtype=wp.float32, device=device)
|
|
425
|
+
keyvalues_wp = wp.empty(input_wp.shape, dtype=KeyValue, device=device)
|
|
426
|
+
|
|
427
|
+
wp.launch(initialize_key_value, dim=[batch_count, N], inputs=[input_wp], outputs=[keyvalues_wp], device=device)
|
|
428
|
+
|
|
429
|
+
output_wp = wp.empty(batch_count, dtype=KeyValue, device=device)
|
|
430
|
+
|
|
431
|
+
wp.launch_tiled(
|
|
432
|
+
tile_reduce_custom_struct_kernel,
|
|
433
|
+
dim=[batch_count],
|
|
434
|
+
inputs=[keyvalues_wp],
|
|
435
|
+
outputs=[output_wp],
|
|
436
|
+
block_dim=TILE_DIM,
|
|
437
|
+
device=device,
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
prod_wp = np.array([k for k, v in output_wp.numpy()])
|
|
441
|
+
expected = np.argmax(input, axis=1)
|
|
442
|
+
|
|
443
|
+
assert_np_equal(prod_wp, expected)
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
@wp.kernel
|
|
447
|
+
def tile_grouped_sum_kernel(input: wp.array3d(dtype=float), output: wp.array(dtype=float)):
|
|
448
|
+
# output tile index
|
|
449
|
+
i = wp.tid()
|
|
450
|
+
|
|
451
|
+
a = wp.tile_load(input[i], shape=(TILE_M, TILE_N))
|
|
452
|
+
s = wp.tile_sum(a) * 0.5
|
|
453
|
+
|
|
454
|
+
wp.tile_store(output, s, offset=i)
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
def test_tile_reduce_grouped_sum(test, device):
|
|
458
|
+
batch_count = 56
|
|
459
|
+
|
|
460
|
+
M = TILE_M
|
|
461
|
+
N = TILE_N
|
|
462
|
+
|
|
463
|
+
rng = np.random.default_rng(42)
|
|
464
|
+
input = rng.random((batch_count, M, N), dtype=np.float32)
|
|
465
|
+
|
|
466
|
+
input_wp = wp.array(input, requires_grad=True, device=device)
|
|
467
|
+
output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
|
|
468
|
+
|
|
469
|
+
with wp.Tape() as tape:
|
|
470
|
+
wp.launch_tiled(
|
|
471
|
+
tile_grouped_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
|
|
472
|
+
)
|
|
473
|
+
|
|
474
|
+
sum_wp = output_wp.numpy()
|
|
475
|
+
for i in range(batch_count):
|
|
476
|
+
sum_np = np.sum(input[i]) * 0.5
|
|
477
|
+
test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
|
|
478
|
+
|
|
479
|
+
output_wp.grad.fill_(1.0)
|
|
480
|
+
|
|
481
|
+
tape.backward()
|
|
482
|
+
|
|
483
|
+
assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
@wp.kernel
|
|
487
|
+
def tile_reduce_simt_kernel(output: wp.array(dtype=int)):
|
|
488
|
+
# thread index
|
|
489
|
+
i = wp.tid()
|
|
490
|
+
|
|
491
|
+
t = wp.tile(i) # convert to block wide tile
|
|
492
|
+
s = wp.tile_sum(t) # sum over block
|
|
493
|
+
|
|
494
|
+
# update global sum
|
|
495
|
+
wp.tile_atomic_add(output, s)
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
def test_tile_reduce_simt(test, device):
|
|
499
|
+
# use an unaligned grid dimension
|
|
500
|
+
N = TILE_DIM * 4 + 5
|
|
501
|
+
|
|
502
|
+
output = wp.zeros(shape=1, dtype=int, requires_grad=True, device=device)
|
|
503
|
+
|
|
504
|
+
with wp.Tape():
|
|
505
|
+
wp.launch(tile_reduce_simt_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
506
|
+
|
|
507
|
+
test.assertEqual(output.numpy()[0], np.sum(np.arange(N)))
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
# Tier 1: axis size <= 32
|
|
511
|
+
@wp.kernel
|
|
512
|
+
def tile_reduce_axis_tier1_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
513
|
+
a = wp.tile_load(x, shape=(32, 64), storage="shared")
|
|
514
|
+
b = wp.tile_sum(a, axis=0)
|
|
515
|
+
wp.tile_store(y, b)
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
@wp.kernel
|
|
519
|
+
def tile_reduce_axis_tier1_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
520
|
+
a = wp.tile_load(x, shape=(32, 8), storage="shared")
|
|
521
|
+
b = wp.tile_reduce(wp.mul, a, axis=1)
|
|
522
|
+
wp.tile_store(y, b)
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
@wp.kernel
|
|
526
|
+
def tile_reduce_axis_tier1_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
|
|
527
|
+
a = wp.tile_load(x, shape=(8, 8, 16), storage="shared")
|
|
528
|
+
b = wp.tile_sum(a, axis=2)
|
|
529
|
+
wp.tile_store(y, b)
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
# Tier 2: 32 < axis size <= 256
|
|
533
|
+
@wp.kernel
|
|
534
|
+
def tile_reduce_axis_tier2_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
535
|
+
a = wp.tile_load(x, shape=(200, 32), storage="shared")
|
|
536
|
+
b = wp.tile_sum(a, axis=0)
|
|
537
|
+
wp.tile_store(y, b)
|
|
538
|
+
|
|
539
|
+
|
|
540
|
+
@wp.kernel
|
|
541
|
+
def tile_reduce_axis_tier2_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
542
|
+
a = wp.tile_load(x, shape=(16, 64), storage="shared")
|
|
543
|
+
b = wp.tile_reduce(wp.mul, a, axis=1)
|
|
544
|
+
wp.tile_store(y, b)
|
|
545
|
+
|
|
546
|
+
|
|
547
|
+
@wp.kernel
|
|
548
|
+
def tile_reduce_axis_tier2_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
|
|
549
|
+
a = wp.tile_load(x, shape=(8, 8, 128), storage="shared")
|
|
550
|
+
b = wp.tile_sum(a, axis=2)
|
|
551
|
+
wp.tile_store(y, b)
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
# Tier 3: axis size > 256
|
|
555
|
+
@wp.kernel
|
|
556
|
+
def tile_reduce_axis_tier3_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
557
|
+
a = wp.tile_load(x, shape=(400, 16), storage="shared")
|
|
558
|
+
b = wp.tile_sum(a, axis=0)
|
|
559
|
+
wp.tile_store(y, b)
|
|
560
|
+
|
|
561
|
+
|
|
562
|
+
@wp.kernel
|
|
563
|
+
def tile_reduce_axis_tier3_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
|
|
564
|
+
a = wp.tile_load(x, shape=(8, 300), storage="shared")
|
|
565
|
+
b = wp.tile_reduce(wp.mul, a, axis=1)
|
|
566
|
+
wp.tile_store(y, b)
|
|
567
|
+
|
|
568
|
+
|
|
569
|
+
@wp.kernel
|
|
570
|
+
def tile_reduce_axis_tier3_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
|
|
571
|
+
a = wp.tile_load(x, shape=(4, 4, 384), storage="shared")
|
|
572
|
+
b = wp.tile_sum(a, axis=2)
|
|
573
|
+
wp.tile_store(y, b)
|
|
574
|
+
|
|
575
|
+
|
|
576
|
+
def test_tile_reduce_axis_tier1(test, device):
|
|
577
|
+
# 2D sum: axis=0, size 32 (forward and backward)
|
|
578
|
+
x = wp.ones((32, 64), dtype=float, requires_grad=True, device=device)
|
|
579
|
+
y = wp.zeros(64, dtype=float, requires_grad=True, device=device)
|
|
580
|
+
|
|
581
|
+
with wp.Tape() as tape:
|
|
582
|
+
wp.launch_tiled(
|
|
583
|
+
tile_reduce_axis_tier1_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
584
|
+
)
|
|
585
|
+
|
|
586
|
+
y.grad = wp.ones_like(y)
|
|
587
|
+
tape.backward()
|
|
588
|
+
|
|
589
|
+
assert_np_equal(y.numpy(), np.ones(64, dtype=float) * 32.0)
|
|
590
|
+
assert_np_equal(x.grad.numpy(), np.ones((32, 64), dtype=float))
|
|
591
|
+
|
|
592
|
+
# 2D product: axis=1, size 8
|
|
593
|
+
rng = np.random.default_rng(42)
|
|
594
|
+
x_np = rng.random((32, 8), dtype=np.float32) * 0.1 + 1.0
|
|
595
|
+
x = wp.array(x_np, dtype=float, device=device)
|
|
596
|
+
y = wp.zeros(32, dtype=float, device=device)
|
|
597
|
+
|
|
598
|
+
wp.launch_tiled(
|
|
599
|
+
tile_reduce_axis_tier1_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
600
|
+
)
|
|
601
|
+
|
|
602
|
+
assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-3)
|
|
603
|
+
|
|
604
|
+
# 3D sum: axis=2, size 16 (forward and backward)
|
|
605
|
+
x = wp.ones((8, 8, 16), dtype=float, requires_grad=True, device=device)
|
|
606
|
+
y = wp.zeros((8, 8), dtype=float, requires_grad=True, device=device)
|
|
607
|
+
|
|
608
|
+
with wp.Tape() as tape:
|
|
609
|
+
wp.launch_tiled(
|
|
610
|
+
tile_reduce_axis_tier1_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
611
|
+
)
|
|
612
|
+
|
|
613
|
+
y.grad = wp.ones_like(y)
|
|
614
|
+
tape.backward()
|
|
615
|
+
|
|
616
|
+
assert_np_equal(y.numpy(), np.ones((8, 8), dtype=float) * 16.0)
|
|
617
|
+
assert_np_equal(x.grad.numpy(), np.ones((8, 8, 16), dtype=float))
|
|
618
|
+
|
|
619
|
+
|
|
620
|
+
def test_tile_reduce_axis_tier2(test, device):
|
|
621
|
+
# 2D sum: axis=0, size 200 (forward and backward)
|
|
622
|
+
x = wp.ones((200, 32), dtype=float, requires_grad=True, device=device)
|
|
623
|
+
y = wp.zeros(32, dtype=float, requires_grad=True, device=device)
|
|
624
|
+
|
|
625
|
+
with wp.Tape() as tape:
|
|
626
|
+
wp.launch_tiled(
|
|
627
|
+
tile_reduce_axis_tier2_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
628
|
+
)
|
|
629
|
+
|
|
630
|
+
y.grad = wp.ones_like(y)
|
|
631
|
+
tape.backward()
|
|
632
|
+
|
|
633
|
+
assert_np_equal(y.numpy(), np.ones(32, dtype=float) * 200.0)
|
|
634
|
+
assert_np_equal(x.grad.numpy(), np.ones((200, 32), dtype=float))
|
|
635
|
+
|
|
636
|
+
# 2D product: axis=1, size 64
|
|
637
|
+
rng = np.random.default_rng(42)
|
|
638
|
+
x_np = rng.random((16, 64), dtype=np.float32) * 0.05 + 1.0
|
|
639
|
+
x = wp.array(x_np, dtype=float, device=device)
|
|
640
|
+
y = wp.zeros(16, dtype=float, device=device)
|
|
641
|
+
|
|
642
|
+
wp.launch_tiled(
|
|
643
|
+
tile_reduce_axis_tier2_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-2)
|
|
647
|
+
|
|
648
|
+
# 3D sum: axis=2, size 128 (forward and backward)
|
|
649
|
+
x = wp.ones((8, 8, 128), dtype=float, requires_grad=True, device=device)
|
|
650
|
+
y = wp.zeros((8, 8), dtype=float, requires_grad=True, device=device)
|
|
651
|
+
|
|
652
|
+
with wp.Tape() as tape:
|
|
653
|
+
wp.launch_tiled(
|
|
654
|
+
tile_reduce_axis_tier2_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
655
|
+
)
|
|
656
|
+
|
|
657
|
+
y.grad = wp.ones_like(y)
|
|
658
|
+
tape.backward()
|
|
659
|
+
|
|
660
|
+
assert_np_equal(y.numpy(), np.ones((8, 8), dtype=float) * 128.0)
|
|
661
|
+
assert_np_equal(x.grad.numpy(), np.ones((8, 8, 128), dtype=float))
|
|
662
|
+
|
|
663
|
+
|
|
664
|
+
def test_tile_reduce_axis_tier3(test, device):
|
|
665
|
+
# 2D sum: axis=0, size 400 (forward and backward)
|
|
666
|
+
x = wp.ones((400, 16), dtype=float, requires_grad=True, device=device)
|
|
667
|
+
y = wp.zeros(16, dtype=float, requires_grad=True, device=device)
|
|
668
|
+
|
|
669
|
+
with wp.Tape() as tape:
|
|
670
|
+
wp.launch_tiled(
|
|
671
|
+
tile_reduce_axis_tier3_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
672
|
+
)
|
|
673
|
+
|
|
674
|
+
y.grad = wp.ones_like(y)
|
|
675
|
+
tape.backward()
|
|
676
|
+
|
|
677
|
+
assert_np_equal(y.numpy(), np.ones(16, dtype=float) * 400.0, tol=2e-4)
|
|
678
|
+
assert_np_equal(x.grad.numpy(), np.ones((400, 16), dtype=float))
|
|
679
|
+
|
|
680
|
+
# 2D product: axis=1, size 300
|
|
681
|
+
rng = np.random.default_rng(42)
|
|
682
|
+
x_np = rng.random((8, 300), dtype=np.float32) * 0.01 + 1.0
|
|
683
|
+
x = wp.array(x_np, dtype=float, device=device)
|
|
684
|
+
y = wp.zeros(8, dtype=float, device=device)
|
|
685
|
+
|
|
686
|
+
wp.launch_tiled(
|
|
687
|
+
tile_reduce_axis_tier3_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
688
|
+
)
|
|
689
|
+
|
|
690
|
+
assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-1)
|
|
691
|
+
|
|
692
|
+
# 3D sum: axis=2, size 384 (forward and backward)
|
|
693
|
+
x = wp.ones((4, 4, 384), dtype=float, requires_grad=True, device=device)
|
|
694
|
+
y = wp.zeros((4, 4), dtype=float, requires_grad=True, device=device)
|
|
695
|
+
|
|
696
|
+
with wp.Tape() as tape:
|
|
697
|
+
wp.launch_tiled(
|
|
698
|
+
tile_reduce_axis_tier3_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
|
|
699
|
+
)
|
|
700
|
+
|
|
701
|
+
y.grad = wp.ones_like(y)
|
|
702
|
+
tape.backward()
|
|
703
|
+
|
|
704
|
+
assert_np_equal(y.numpy(), np.ones((4, 4), dtype=float) * 384.0, tol=2e-4)
|
|
705
|
+
assert_np_equal(x.grad.numpy(), np.ones((4, 4, 384), dtype=float))
|
|
706
|
+
|
|
707
|
+
|
|
708
|
+
@wp.kernel
|
|
709
|
+
def tile_untile_kernel(output: wp.array(dtype=int)):
|
|
710
|
+
# thread index
|
|
711
|
+
i = wp.tid()
|
|
712
|
+
|
|
713
|
+
# convert to block wide tile
|
|
714
|
+
t = wp.tile(i) * 2
|
|
715
|
+
s = wp.untile(t)
|
|
716
|
+
|
|
717
|
+
output[i] = s
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
def test_tile_untile(test, device):
|
|
721
|
+
# use an unaligned grid dimension
|
|
722
|
+
N = TILE_DIM * 4 + 5
|
|
723
|
+
|
|
724
|
+
output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
|
|
725
|
+
|
|
726
|
+
with wp.Tape():
|
|
727
|
+
wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
728
|
+
|
|
729
|
+
assert_np_equal(output.numpy(), np.arange(N) * 2)
|
|
730
|
+
|
|
731
|
+
|
|
732
|
+
@wp.kernel
|
|
733
|
+
def tile_untile_scalar_kernel(output: wp.array(dtype=int)):
|
|
734
|
+
# thread index
|
|
735
|
+
i = wp.tid()
|
|
736
|
+
|
|
737
|
+
# convert to block wide tile
|
|
738
|
+
t = wp.tile(i) * 2
|
|
739
|
+
s = wp.untile(t)
|
|
740
|
+
|
|
741
|
+
output[i] = s
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
def test_tile_untile_scalar(test, device):
|
|
745
|
+
# use an unaligned grid dimension
|
|
746
|
+
N = TILE_DIM * 4 + 5
|
|
747
|
+
|
|
748
|
+
output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
|
|
749
|
+
|
|
750
|
+
with wp.Tape():
|
|
751
|
+
wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
|
|
752
|
+
|
|
753
|
+
assert_np_equal(output.numpy(), np.arange(N) * 2)
|
|
754
|
+
|
|
755
|
+
|
|
756
|
+
@wp.kernel
|
|
757
|
+
def test_untile_vector_kernel(input: wp.array(dtype=wp.vec3), output: wp.array(dtype=wp.vec3)):
|
|
758
|
+
i = wp.tid()
|
|
759
|
+
|
|
760
|
+
v = input[i] * 0.5
|
|
761
|
+
|
|
762
|
+
t = wp.tile(v)
|
|
763
|
+
u = wp.untile(t)
|
|
764
|
+
|
|
765
|
+
output[i] = u * 2.0
|
|
766
|
+
|
|
767
|
+
|
|
768
|
+
def test_tile_untile_vector(test, device):
|
|
769
|
+
input = wp.full(TILE_DIM, wp.vec3(1.0, 2.0, 3.0), requires_grad=True, device=device)
|
|
770
|
+
output = wp.zeros_like(input, device=device)
|
|
771
|
+
|
|
772
|
+
with wp.Tape() as tape:
|
|
773
|
+
wp.launch(test_untile_vector_kernel, dim=TILE_DIM, inputs=[input, output], block_dim=TILE_DIM, device=device)
|
|
774
|
+
|
|
775
|
+
output.grad = wp.ones_like(output, device=device)
|
|
776
|
+
tape.backward()
|
|
777
|
+
|
|
778
|
+
assert_np_equal(output.numpy(), input.numpy())
|
|
779
|
+
assert_np_equal(input.grad.numpy(), np.ones((TILE_DIM, 3)))
|
|
780
|
+
|
|
781
|
+
|
|
782
|
+
@wp.kernel
|
|
783
|
+
def tile_ones_kernel(out: wp.array(dtype=float)):
|
|
784
|
+
i = wp.tid()
|
|
785
|
+
|
|
786
|
+
t = wp.tile_ones(dtype=float, shape=(16, 16))
|
|
787
|
+
s = wp.tile_sum(t)
|
|
788
|
+
|
|
789
|
+
wp.tile_store(out, s)
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
def test_tile_ones(test, device):
|
|
793
|
+
output = wp.zeros(1, dtype=float, device=device)
|
|
794
|
+
|
|
795
|
+
with wp.Tape():
|
|
796
|
+
wp.launch_tiled(tile_ones_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
|
|
797
|
+
|
|
798
|
+
test.assertAlmostEqual(output.numpy()[0], 256.0)
|
|
799
|
+
|
|
800
|
+
|
|
801
|
+
@wp.kernel
|
|
802
|
+
def tile_arange_kernel(out: wp.array2d(dtype=int)):
|
|
803
|
+
i = wp.tid()
|
|
804
|
+
|
|
805
|
+
a = wp.tile_arange(17, dtype=int)
|
|
806
|
+
b = wp.tile_arange(5, 23, dtype=int)
|
|
807
|
+
c = wp.tile_arange(0, 34, 2, dtype=int)
|
|
808
|
+
d = wp.tile_arange(-1, 16, dtype=int)
|
|
809
|
+
e = wp.tile_arange(17, 0, -1, dtype=int)
|
|
810
|
+
|
|
811
|
+
wp.tile_store(out[0], a)
|
|
812
|
+
wp.tile_store(out[1], b)
|
|
813
|
+
wp.tile_store(out[2], c)
|
|
814
|
+
wp.tile_store(out[3], d)
|
|
815
|
+
wp.tile_store(out[4], e)
|
|
816
|
+
|
|
817
|
+
|
|
818
|
+
def test_tile_arange(test, device):
|
|
819
|
+
N = 17
|
|
820
|
+
|
|
821
|
+
output = wp.zeros(shape=(5, N), dtype=int, device=device)
|
|
822
|
+
|
|
823
|
+
with wp.Tape():
|
|
824
|
+
wp.launch_tiled(tile_arange_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
|
|
825
|
+
|
|
826
|
+
assert_np_equal(output.numpy()[0], np.arange(17))
|
|
827
|
+
assert_np_equal(output.numpy()[1], np.arange(5, 22))
|
|
828
|
+
assert_np_equal(output.numpy()[2], np.arange(0, 34, 2))
|
|
829
|
+
assert_np_equal(output.numpy()[3], np.arange(-1, 16))
|
|
830
|
+
assert_np_equal(output.numpy()[4], np.arange(17, 0, -1))
|
|
831
|
+
|
|
832
|
+
|
|
833
|
+
@wp.kernel(module="unique")
|
|
834
|
+
def tile_strided_loop_kernel(arr: wp.array(dtype=float), max_val: wp.array(dtype=float)):
|
|
835
|
+
tid, lane = wp.tid()
|
|
836
|
+
|
|
837
|
+
num_threads = wp.block_dim()
|
|
838
|
+
|
|
839
|
+
thread_max = wp.float32(-wp.inf)
|
|
840
|
+
|
|
841
|
+
length = arr.shape[0]
|
|
842
|
+
upper = ((length + num_threads - 1) // num_threads) * num_threads
|
|
843
|
+
for el_id in range(lane, upper, num_threads):
|
|
844
|
+
if el_id < length:
|
|
845
|
+
val = arr[el_id]
|
|
846
|
+
else:
|
|
847
|
+
val = wp.float32(-wp.inf)
|
|
848
|
+
|
|
849
|
+
t = wp.tile(val)
|
|
850
|
+
local_max = wp.tile_max(t)
|
|
851
|
+
|
|
852
|
+
thread_max = wp.max(thread_max, local_max[0])
|
|
853
|
+
|
|
854
|
+
if lane == 0:
|
|
855
|
+
max_val[0] = thread_max
|
|
856
|
+
|
|
857
|
+
|
|
858
|
+
def test_tile_strided_loop(test, device):
|
|
859
|
+
N = 5 # Length of array
|
|
860
|
+
|
|
861
|
+
rng = np.random.default_rng(42)
|
|
862
|
+
input = rng.random(N, dtype=np.float32)
|
|
863
|
+
|
|
864
|
+
input_wp = wp.array(input, device=device)
|
|
865
|
+
output_wp = wp.zeros(1, dtype=wp.float32, device=device)
|
|
866
|
+
|
|
867
|
+
wp.launch_tiled(
|
|
868
|
+
tile_strided_loop_kernel,
|
|
869
|
+
dim=[1],
|
|
870
|
+
inputs=[input_wp, output_wp],
|
|
871
|
+
device=device,
|
|
872
|
+
block_dim=128,
|
|
873
|
+
)
|
|
874
|
+
|
|
875
|
+
max_wp = output_wp.numpy()
|
|
876
|
+
max_np = np.max(input)
|
|
877
|
+
test.assertAlmostEqual(max_wp[0], max_np, places=4)
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
@wp.kernel
|
|
881
|
+
def test_tile_reduce_matrix_kernel(y: wp.array(dtype=wp.mat33)):
|
|
882
|
+
i = wp.tid()
|
|
883
|
+
I = wp.identity(3, dtype=wp.float32)
|
|
884
|
+
m = wp.float32(i) * I
|
|
885
|
+
|
|
886
|
+
t = wp.tile(m, preserve_type=True)
|
|
887
|
+
sum = wp.tile_reduce(wp.add, t)
|
|
888
|
+
|
|
889
|
+
wp.tile_atomic_add(y, sum)
|
|
890
|
+
|
|
891
|
+
|
|
892
|
+
def test_tile_reduce_matrix(test, device):
|
|
893
|
+
y = wp.zeros(shape=1, dtype=wp.mat33, device=device)
|
|
894
|
+
|
|
895
|
+
wp.launch(test_tile_reduce_matrix_kernel, dim=TILE_DIM, inputs=[], outputs=[y], block_dim=TILE_DIM, device=device)
|
|
896
|
+
|
|
897
|
+
assert_np_equal(y.numpy().squeeze(), np.eye(3, dtype=np.float32) * 2016.0)
|
|
898
|
+
|
|
899
|
+
|
|
900
|
+
@wp.kernel
|
|
901
|
+
def test_tile_reduce_vector_kernel(out: wp.array(dtype=wp.vec3)):
|
|
902
|
+
v = wp.vec3f(1.0)
|
|
903
|
+
v_tile = wp.tile(v, preserve_type=True)
|
|
904
|
+
|
|
905
|
+
sum = wp.tile_reduce(wp.add, v_tile)
|
|
906
|
+
|
|
907
|
+
wp.tile_atomic_add(out, sum)
|
|
908
|
+
|
|
909
|
+
|
|
910
|
+
def test_tile_reduce_vector(test, device):
|
|
911
|
+
out = wp.zeros(1, dtype=wp.vec3, device=device)
|
|
912
|
+
|
|
913
|
+
wp.launch(kernel=test_tile_reduce_vector_kernel, dim=8, inputs=[], outputs=[out], block_dim=TILE_DIM, device=device)
|
|
914
|
+
|
|
915
|
+
assert_np_equal(out.numpy(), np.array([[8.0, 8.0, 8.0]]))
|
|
916
|
+
|
|
917
|
+
|
|
918
|
+
devices = get_test_devices()
|
|
919
|
+
|
|
920
|
+
|
|
921
|
+
class TestTileReduce(unittest.TestCase):
|
|
922
|
+
pass
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
add_function_test(TestTileReduce, "test_tile_reduce_sum", test_tile_reduce_sum, devices=devices)
|
|
926
|
+
add_function_test(TestTileReduce, "test_tile_sum_to_shared", test_tile_sum_to_shared, devices=devices)
|
|
927
|
+
add_function_test(TestTileReduce, "test_tile_reduce_min", test_tile_reduce_min, devices=devices)
|
|
928
|
+
add_function_test(TestTileReduce, "test_tile_reduce_max", test_tile_reduce_max, devices=devices)
|
|
929
|
+
add_function_test(TestTileReduce, "test_tile_reduce_argmin", test_tile_reduce_argmin, devices=devices)
|
|
930
|
+
add_function_test(TestTileReduce, "test_tile_reduce_argmax", test_tile_reduce_argmax, devices=devices)
|
|
931
|
+
add_function_test(TestTileReduce, "test_tile_reduce_custom", test_tile_reduce_custom, devices=devices)
|
|
932
|
+
add_function_test(TestTileReduce, "test_tile_reduce_custom_struct", test_tile_reduce_custom_struct, devices=devices)
|
|
933
|
+
add_function_test(TestTileReduce, "test_tile_reduce_grouped_sum", test_tile_reduce_grouped_sum, devices=devices)
|
|
934
|
+
add_function_test(TestTileReduce, "test_tile_reduce_simt", test_tile_reduce_simt, devices=devices)
|
|
935
|
+
add_function_test(TestTileReduce, "test_tile_reduce_axis_tier1", test_tile_reduce_axis_tier1, devices=devices)
|
|
936
|
+
add_function_test(TestTileReduce, "test_tile_reduce_axis_tier2", test_tile_reduce_axis_tier2, devices=devices)
|
|
937
|
+
add_function_test(TestTileReduce, "test_tile_reduce_axis_tier3", test_tile_reduce_axis_tier3, devices=devices)
|
|
938
|
+
add_function_test(TestTileReduce, "test_tile_ones", test_tile_ones, devices=devices)
|
|
939
|
+
add_function_test(TestTileReduce, "test_tile_arange", test_tile_arange, devices=devices)
|
|
940
|
+
add_function_test(TestTileReduce, "test_tile_untile_scalar", test_tile_untile_scalar, devices=devices)
|
|
941
|
+
add_function_test(TestTileReduce, "test_tile_untile_vector", test_tile_untile_vector, devices=devices)
|
|
942
|
+
add_function_test(TestTileReduce, "test_tile_strided_loop", test_tile_strided_loop, devices=devices)
|
|
943
|
+
add_function_test(TestTileReduce, "test_tile_scan_inclusive", test_tile_scan_inclusive, devices=devices)
|
|
944
|
+
add_function_test(TestTileReduce, "test_tile_scan_exclusive", test_tile_scan_exclusive, devices=devices)
|
|
945
|
+
add_function_test(TestTileReduce, "test_tile_reduce_matrix", test_tile_reduce_matrix, devices=devices)
|
|
946
|
+
add_function_test(TestTileReduce, "test_tile_reduce_vector", test_tile_reduce_vector, devices=devices)
|
|
947
|
+
|
|
948
|
+
if __name__ == "__main__":
|
|
949
|
+
wp.clear_kernel_cache()
|
|
950
|
+
unittest.main(verbosity=2, failfast=True)
|