warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (468) hide show
  1. warp/__init__.py +334 -0
  2. warp/__init__.pyi +5856 -0
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1077 -0
  5. warp/_src/build.py +620 -0
  6. warp/_src/build_dll.py +642 -0
  7. warp/_src/builtins.py +10555 -0
  8. warp/_src/codegen.py +4361 -0
  9. warp/_src/config.py +178 -0
  10. warp/_src/constants.py +59 -0
  11. warp/_src/context.py +8352 -0
  12. warp/_src/dlpack.py +464 -0
  13. warp/_src/fabric.py +362 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +510 -0
  16. warp/_src/fem/cache.py +689 -0
  17. warp/_src/fem/dirichlet.py +190 -0
  18. warp/_src/fem/domain.py +553 -0
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +703 -0
  21. warp/_src/fem/field/nodal_field.py +403 -0
  22. warp/_src/fem/field/restriction.py +39 -0
  23. warp/_src/fem/field/virtual.py +1021 -0
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
  26. warp/_src/fem/geometry/closest_point.py +99 -0
  27. warp/_src/fem/geometry/deformed_geometry.py +277 -0
  28. warp/_src/fem/geometry/element.py +854 -0
  29. warp/_src/fem/geometry/geometry.py +693 -0
  30. warp/_src/fem/geometry/grid_2d.py +478 -0
  31. warp/_src/fem/geometry/grid_3d.py +539 -0
  32. warp/_src/fem/geometry/hexmesh.py +956 -0
  33. warp/_src/fem/geometry/nanogrid.py +660 -0
  34. warp/_src/fem/geometry/partition.py +483 -0
  35. warp/_src/fem/geometry/quadmesh.py +597 -0
  36. warp/_src/fem/geometry/tetmesh.py +762 -0
  37. warp/_src/fem/geometry/trimesh.py +588 -0
  38. warp/_src/fem/integrate.py +2507 -0
  39. warp/_src/fem/linalg.py +385 -0
  40. warp/_src/fem/operator.py +398 -0
  41. warp/_src/fem/polynomial.py +231 -0
  42. warp/_src/fem/quadrature/__init__.py +17 -0
  43. warp/_src/fem/quadrature/pic_quadrature.py +318 -0
  44. warp/_src/fem/quadrature/quadrature.py +665 -0
  45. warp/_src/fem/space/__init__.py +248 -0
  46. warp/_src/fem/space/basis_function_space.py +499 -0
  47. warp/_src/fem/space/basis_space.py +681 -0
  48. warp/_src/fem/space/dof_mapper.py +253 -0
  49. warp/_src/fem/space/function_space.py +312 -0
  50. warp/_src/fem/space/grid_2d_function_space.py +179 -0
  51. warp/_src/fem/space/grid_3d_function_space.py +229 -0
  52. warp/_src/fem/space/hexmesh_function_space.py +255 -0
  53. warp/_src/fem/space/nanogrid_function_space.py +199 -0
  54. warp/_src/fem/space/partition.py +435 -0
  55. warp/_src/fem/space/quadmesh_function_space.py +222 -0
  56. warp/_src/fem/space/restriction.py +221 -0
  57. warp/_src/fem/space/shape/__init__.py +152 -0
  58. warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
  59. warp/_src/fem/space/shape/shape_function.py +134 -0
  60. warp/_src/fem/space/shape/square_shape_function.py +928 -0
  61. warp/_src/fem/space/shape/tet_shape_function.py +829 -0
  62. warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
  63. warp/_src/fem/space/tetmesh_function_space.py +270 -0
  64. warp/_src/fem/space/topology.py +461 -0
  65. warp/_src/fem/space/trimesh_function_space.py +193 -0
  66. warp/_src/fem/types.py +114 -0
  67. warp/_src/fem/utils.py +488 -0
  68. warp/_src/jax.py +188 -0
  69. warp/_src/jax_experimental/__init__.py +14 -0
  70. warp/_src/jax_experimental/custom_call.py +389 -0
  71. warp/_src/jax_experimental/ffi.py +1286 -0
  72. warp/_src/jax_experimental/xla_ffi.py +658 -0
  73. warp/_src/marching_cubes.py +710 -0
  74. warp/_src/math.py +416 -0
  75. warp/_src/optim/__init__.py +14 -0
  76. warp/_src/optim/adam.py +165 -0
  77. warp/_src/optim/linear.py +1608 -0
  78. warp/_src/optim/sgd.py +114 -0
  79. warp/_src/paddle.py +408 -0
  80. warp/_src/render/__init__.py +14 -0
  81. warp/_src/render/imgui_manager.py +291 -0
  82. warp/_src/render/render_opengl.py +3638 -0
  83. warp/_src/render/render_usd.py +939 -0
  84. warp/_src/render/utils.py +162 -0
  85. warp/_src/sparse.py +2718 -0
  86. warp/_src/tape.py +1208 -0
  87. warp/_src/thirdparty/__init__.py +0 -0
  88. warp/_src/thirdparty/appdirs.py +598 -0
  89. warp/_src/thirdparty/dlpack.py +145 -0
  90. warp/_src/thirdparty/unittest_parallel.py +676 -0
  91. warp/_src/torch.py +393 -0
  92. warp/_src/types.py +5888 -0
  93. warp/_src/utils.py +1695 -0
  94. warp/autograd.py +33 -0
  95. warp/bin/libwarp-clang.dylib +0 -0
  96. warp/bin/libwarp.dylib +0 -0
  97. warp/build.py +29 -0
  98. warp/build_dll.py +24 -0
  99. warp/codegen.py +24 -0
  100. warp/constants.py +24 -0
  101. warp/context.py +33 -0
  102. warp/dlpack.py +24 -0
  103. warp/examples/__init__.py +24 -0
  104. warp/examples/assets/bear.usd +0 -0
  105. warp/examples/assets/bunny.usd +0 -0
  106. warp/examples/assets/cube.usd +0 -0
  107. warp/examples/assets/nonuniform.usd +0 -0
  108. warp/examples/assets/nvidia_logo.png +0 -0
  109. warp/examples/assets/pixel.jpg +0 -0
  110. warp/examples/assets/rocks.nvdb +0 -0
  111. warp/examples/assets/rocks.usd +0 -0
  112. warp/examples/assets/sphere.usd +0 -0
  113. warp/examples/assets/square_cloth.usd +0 -0
  114. warp/examples/benchmarks/benchmark_api.py +389 -0
  115. warp/examples/benchmarks/benchmark_cloth.py +296 -0
  116. warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
  117. warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
  118. warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
  119. warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
  120. warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
  121. warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
  122. warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
  123. warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
  124. warp/examples/benchmarks/benchmark_gemm.py +164 -0
  125. warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
  126. warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
  127. warp/examples/benchmarks/benchmark_launches.py +301 -0
  128. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  129. warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
  130. warp/examples/browse.py +37 -0
  131. warp/examples/core/example_cupy.py +86 -0
  132. warp/examples/core/example_dem.py +241 -0
  133. warp/examples/core/example_fluid.py +299 -0
  134. warp/examples/core/example_graph_capture.py +150 -0
  135. warp/examples/core/example_marching_cubes.py +195 -0
  136. warp/examples/core/example_mesh.py +180 -0
  137. warp/examples/core/example_mesh_intersect.py +211 -0
  138. warp/examples/core/example_nvdb.py +182 -0
  139. warp/examples/core/example_raycast.py +111 -0
  140. warp/examples/core/example_raymarch.py +205 -0
  141. warp/examples/core/example_render_opengl.py +290 -0
  142. warp/examples/core/example_sample_mesh.py +300 -0
  143. warp/examples/core/example_sph.py +411 -0
  144. warp/examples/core/example_spin_lock.py +93 -0
  145. warp/examples/core/example_torch.py +211 -0
  146. warp/examples/core/example_wave.py +269 -0
  147. warp/examples/core/example_work_queue.py +118 -0
  148. warp/examples/distributed/example_jacobi_mpi.py +506 -0
  149. warp/examples/fem/example_adaptive_grid.py +286 -0
  150. warp/examples/fem/example_apic_fluid.py +469 -0
  151. warp/examples/fem/example_burgers.py +261 -0
  152. warp/examples/fem/example_convection_diffusion.py +181 -0
  153. warp/examples/fem/example_convection_diffusion_dg.py +225 -0
  154. warp/examples/fem/example_darcy_ls_optimization.py +489 -0
  155. warp/examples/fem/example_deformed_geometry.py +172 -0
  156. warp/examples/fem/example_diffusion.py +196 -0
  157. warp/examples/fem/example_diffusion_3d.py +225 -0
  158. warp/examples/fem/example_diffusion_mgpu.py +225 -0
  159. warp/examples/fem/example_distortion_energy.py +228 -0
  160. warp/examples/fem/example_elastic_shape_optimization.py +387 -0
  161. warp/examples/fem/example_magnetostatics.py +242 -0
  162. warp/examples/fem/example_mixed_elasticity.py +293 -0
  163. warp/examples/fem/example_navier_stokes.py +263 -0
  164. warp/examples/fem/example_nonconforming_contact.py +300 -0
  165. warp/examples/fem/example_stokes.py +213 -0
  166. warp/examples/fem/example_stokes_transfer.py +262 -0
  167. warp/examples/fem/example_streamlines.py +357 -0
  168. warp/examples/fem/utils.py +1047 -0
  169. warp/examples/interop/example_jax_callable.py +146 -0
  170. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  171. warp/examples/interop/example_jax_kernel.py +232 -0
  172. warp/examples/optim/example_diffray.py +561 -0
  173. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  174. warp/examples/tile/example_tile_block_cholesky.py +502 -0
  175. warp/examples/tile/example_tile_cholesky.py +88 -0
  176. warp/examples/tile/example_tile_convolution.py +66 -0
  177. warp/examples/tile/example_tile_fft.py +55 -0
  178. warp/examples/tile/example_tile_filtering.py +113 -0
  179. warp/examples/tile/example_tile_matmul.py +85 -0
  180. warp/examples/tile/example_tile_mcgp.py +191 -0
  181. warp/examples/tile/example_tile_mlp.py +385 -0
  182. warp/examples/tile/example_tile_nbody.py +199 -0
  183. warp/fabric.py +24 -0
  184. warp/fem/__init__.py +173 -0
  185. warp/fem/adaptivity.py +26 -0
  186. warp/fem/cache.py +30 -0
  187. warp/fem/dirichlet.py +24 -0
  188. warp/fem/field/__init__.py +24 -0
  189. warp/fem/field/field.py +26 -0
  190. warp/fem/geometry/__init__.py +21 -0
  191. warp/fem/geometry/closest_point.py +31 -0
  192. warp/fem/linalg.py +38 -0
  193. warp/fem/operator.py +32 -0
  194. warp/fem/polynomial.py +29 -0
  195. warp/fem/space/__init__.py +22 -0
  196. warp/fem/space/basis_space.py +24 -0
  197. warp/fem/space/shape/__init__.py +68 -0
  198. warp/fem/space/topology.py +24 -0
  199. warp/fem/types.py +24 -0
  200. warp/fem/utils.py +32 -0
  201. warp/jax.py +29 -0
  202. warp/jax_experimental/__init__.py +29 -0
  203. warp/jax_experimental/custom_call.py +29 -0
  204. warp/jax_experimental/ffi.py +39 -0
  205. warp/jax_experimental/xla_ffi.py +24 -0
  206. warp/marching_cubes.py +24 -0
  207. warp/math.py +37 -0
  208. warp/native/array.h +1687 -0
  209. warp/native/builtin.h +2327 -0
  210. warp/native/bvh.cpp +562 -0
  211. warp/native/bvh.cu +826 -0
  212. warp/native/bvh.h +555 -0
  213. warp/native/clang/clang.cpp +541 -0
  214. warp/native/coloring.cpp +622 -0
  215. warp/native/crt.cpp +51 -0
  216. warp/native/crt.h +568 -0
  217. warp/native/cuda_crt.h +1058 -0
  218. warp/native/cuda_util.cpp +677 -0
  219. warp/native/cuda_util.h +313 -0
  220. warp/native/error.cpp +77 -0
  221. warp/native/error.h +36 -0
  222. warp/native/exports.h +2023 -0
  223. warp/native/fabric.h +246 -0
  224. warp/native/hashgrid.cpp +311 -0
  225. warp/native/hashgrid.cu +89 -0
  226. warp/native/hashgrid.h +240 -0
  227. warp/native/initializer_array.h +41 -0
  228. warp/native/intersect.h +1253 -0
  229. warp/native/intersect_adj.h +375 -0
  230. warp/native/intersect_tri.h +348 -0
  231. warp/native/mat.h +5189 -0
  232. warp/native/mathdx.cpp +93 -0
  233. warp/native/matnn.h +221 -0
  234. warp/native/mesh.cpp +266 -0
  235. warp/native/mesh.cu +406 -0
  236. warp/native/mesh.h +2097 -0
  237. warp/native/nanovdb/GridHandle.h +533 -0
  238. warp/native/nanovdb/HostBuffer.h +591 -0
  239. warp/native/nanovdb/NanoVDB.h +6246 -0
  240. warp/native/nanovdb/NodeManager.h +323 -0
  241. warp/native/nanovdb/PNanoVDB.h +3390 -0
  242. warp/native/noise.h +859 -0
  243. warp/native/quat.h +1664 -0
  244. warp/native/rand.h +342 -0
  245. warp/native/range.h +145 -0
  246. warp/native/reduce.cpp +174 -0
  247. warp/native/reduce.cu +363 -0
  248. warp/native/runlength_encode.cpp +79 -0
  249. warp/native/runlength_encode.cu +61 -0
  250. warp/native/scan.cpp +47 -0
  251. warp/native/scan.cu +55 -0
  252. warp/native/scan.h +23 -0
  253. warp/native/solid_angle.h +466 -0
  254. warp/native/sort.cpp +251 -0
  255. warp/native/sort.cu +286 -0
  256. warp/native/sort.h +35 -0
  257. warp/native/sparse.cpp +241 -0
  258. warp/native/sparse.cu +435 -0
  259. warp/native/spatial.h +1306 -0
  260. warp/native/svd.h +727 -0
  261. warp/native/temp_buffer.h +46 -0
  262. warp/native/tile.h +4124 -0
  263. warp/native/tile_radix_sort.h +1112 -0
  264. warp/native/tile_reduce.h +838 -0
  265. warp/native/tile_scan.h +240 -0
  266. warp/native/tuple.h +189 -0
  267. warp/native/vec.h +2199 -0
  268. warp/native/version.h +23 -0
  269. warp/native/volume.cpp +501 -0
  270. warp/native/volume.cu +68 -0
  271. warp/native/volume.h +970 -0
  272. warp/native/volume_builder.cu +483 -0
  273. warp/native/volume_builder.h +52 -0
  274. warp/native/volume_impl.h +70 -0
  275. warp/native/warp.cpp +1143 -0
  276. warp/native/warp.cu +4604 -0
  277. warp/native/warp.h +358 -0
  278. warp/optim/__init__.py +20 -0
  279. warp/optim/adam.py +24 -0
  280. warp/optim/linear.py +35 -0
  281. warp/optim/sgd.py +24 -0
  282. warp/paddle.py +24 -0
  283. warp/py.typed +0 -0
  284. warp/render/__init__.py +22 -0
  285. warp/render/imgui_manager.py +29 -0
  286. warp/render/render_opengl.py +24 -0
  287. warp/render/render_usd.py +24 -0
  288. warp/render/utils.py +24 -0
  289. warp/sparse.py +51 -0
  290. warp/tape.py +24 -0
  291. warp/tests/__init__.py +1 -0
  292. warp/tests/__main__.py +4 -0
  293. warp/tests/assets/curlnoise_golden.npy +0 -0
  294. warp/tests/assets/mlp_golden.npy +0 -0
  295. warp/tests/assets/pixel.npy +0 -0
  296. warp/tests/assets/pnoise_golden.npy +0 -0
  297. warp/tests/assets/spiky.usd +0 -0
  298. warp/tests/assets/test_grid.nvdb +0 -0
  299. warp/tests/assets/test_index_grid.nvdb +0 -0
  300. warp/tests/assets/test_int32_grid.nvdb +0 -0
  301. warp/tests/assets/test_vec_grid.nvdb +0 -0
  302. warp/tests/assets/torus.nvdb +0 -0
  303. warp/tests/assets/torus.usda +105 -0
  304. warp/tests/aux_test_class_kernel.py +34 -0
  305. warp/tests/aux_test_compile_consts_dummy.py +18 -0
  306. warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
  307. warp/tests/aux_test_dependent.py +29 -0
  308. warp/tests/aux_test_grad_customs.py +29 -0
  309. warp/tests/aux_test_instancing_gc.py +26 -0
  310. warp/tests/aux_test_module_aot.py +7 -0
  311. warp/tests/aux_test_module_unload.py +23 -0
  312. warp/tests/aux_test_name_clash1.py +40 -0
  313. warp/tests/aux_test_name_clash2.py +40 -0
  314. warp/tests/aux_test_reference.py +9 -0
  315. warp/tests/aux_test_reference_reference.py +8 -0
  316. warp/tests/aux_test_square.py +16 -0
  317. warp/tests/aux_test_unresolved_func.py +22 -0
  318. warp/tests/aux_test_unresolved_symbol.py +22 -0
  319. warp/tests/cuda/__init__.py +0 -0
  320. warp/tests/cuda/test_async.py +676 -0
  321. warp/tests/cuda/test_conditional_captures.py +1147 -0
  322. warp/tests/cuda/test_ipc.py +124 -0
  323. warp/tests/cuda/test_mempool.py +233 -0
  324. warp/tests/cuda/test_multigpu.py +169 -0
  325. warp/tests/cuda/test_peer.py +139 -0
  326. warp/tests/cuda/test_pinned.py +84 -0
  327. warp/tests/cuda/test_streams.py +691 -0
  328. warp/tests/geometry/__init__.py +0 -0
  329. warp/tests/geometry/test_bvh.py +335 -0
  330. warp/tests/geometry/test_hash_grid.py +259 -0
  331. warp/tests/geometry/test_marching_cubes.py +294 -0
  332. warp/tests/geometry/test_mesh.py +318 -0
  333. warp/tests/geometry/test_mesh_query_aabb.py +392 -0
  334. warp/tests/geometry/test_mesh_query_point.py +935 -0
  335. warp/tests/geometry/test_mesh_query_ray.py +323 -0
  336. warp/tests/geometry/test_volume.py +1103 -0
  337. warp/tests/geometry/test_volume_write.py +346 -0
  338. warp/tests/interop/__init__.py +0 -0
  339. warp/tests/interop/test_dlpack.py +730 -0
  340. warp/tests/interop/test_jax.py +1673 -0
  341. warp/tests/interop/test_paddle.py +800 -0
  342. warp/tests/interop/test_torch.py +1001 -0
  343. warp/tests/run_coverage_serial.py +39 -0
  344. warp/tests/test_adam.py +162 -0
  345. warp/tests/test_arithmetic.py +1096 -0
  346. warp/tests/test_array.py +3756 -0
  347. warp/tests/test_array_reduce.py +156 -0
  348. warp/tests/test_assert.py +303 -0
  349. warp/tests/test_atomic.py +336 -0
  350. warp/tests/test_atomic_bitwise.py +209 -0
  351. warp/tests/test_atomic_cas.py +312 -0
  352. warp/tests/test_bool.py +220 -0
  353. warp/tests/test_builtins_resolution.py +732 -0
  354. warp/tests/test_closest_point_edge_edge.py +327 -0
  355. warp/tests/test_codegen.py +974 -0
  356. warp/tests/test_codegen_instancing.py +1495 -0
  357. warp/tests/test_compile_consts.py +215 -0
  358. warp/tests/test_conditional.py +298 -0
  359. warp/tests/test_context.py +35 -0
  360. warp/tests/test_copy.py +319 -0
  361. warp/tests/test_ctypes.py +618 -0
  362. warp/tests/test_dense.py +73 -0
  363. warp/tests/test_devices.py +127 -0
  364. warp/tests/test_enum.py +136 -0
  365. warp/tests/test_examples.py +424 -0
  366. warp/tests/test_fabricarray.py +998 -0
  367. warp/tests/test_fast_math.py +72 -0
  368. warp/tests/test_fem.py +2204 -0
  369. warp/tests/test_fixedarray.py +229 -0
  370. warp/tests/test_fp16.py +136 -0
  371. warp/tests/test_func.py +501 -0
  372. warp/tests/test_future_annotations.py +100 -0
  373. warp/tests/test_generics.py +656 -0
  374. warp/tests/test_grad.py +893 -0
  375. warp/tests/test_grad_customs.py +339 -0
  376. warp/tests/test_grad_debug.py +341 -0
  377. warp/tests/test_implicit_init.py +411 -0
  378. warp/tests/test_import.py +45 -0
  379. warp/tests/test_indexedarray.py +1140 -0
  380. warp/tests/test_intersect.py +103 -0
  381. warp/tests/test_iter.py +76 -0
  382. warp/tests/test_large.py +177 -0
  383. warp/tests/test_launch.py +411 -0
  384. warp/tests/test_lerp.py +151 -0
  385. warp/tests/test_linear_solvers.py +223 -0
  386. warp/tests/test_lvalue.py +427 -0
  387. warp/tests/test_map.py +526 -0
  388. warp/tests/test_mat.py +3515 -0
  389. warp/tests/test_mat_assign_copy.py +178 -0
  390. warp/tests/test_mat_constructors.py +573 -0
  391. warp/tests/test_mat_lite.py +122 -0
  392. warp/tests/test_mat_scalar_ops.py +2913 -0
  393. warp/tests/test_math.py +212 -0
  394. warp/tests/test_module_aot.py +287 -0
  395. warp/tests/test_module_hashing.py +258 -0
  396. warp/tests/test_modules_lite.py +70 -0
  397. warp/tests/test_noise.py +252 -0
  398. warp/tests/test_operators.py +299 -0
  399. warp/tests/test_options.py +129 -0
  400. warp/tests/test_overwrite.py +551 -0
  401. warp/tests/test_print.py +408 -0
  402. warp/tests/test_quat.py +2653 -0
  403. warp/tests/test_quat_assign_copy.py +145 -0
  404. warp/tests/test_rand.py +339 -0
  405. warp/tests/test_reload.py +303 -0
  406. warp/tests/test_rounding.py +157 -0
  407. warp/tests/test_runlength_encode.py +196 -0
  408. warp/tests/test_scalar_ops.py +133 -0
  409. warp/tests/test_smoothstep.py +108 -0
  410. warp/tests/test_snippet.py +318 -0
  411. warp/tests/test_sparse.py +845 -0
  412. warp/tests/test_spatial.py +2859 -0
  413. warp/tests/test_spatial_assign_copy.py +160 -0
  414. warp/tests/test_special_values.py +361 -0
  415. warp/tests/test_static.py +640 -0
  416. warp/tests/test_struct.py +901 -0
  417. warp/tests/test_tape.py +242 -0
  418. warp/tests/test_transient_module.py +93 -0
  419. warp/tests/test_triangle_closest_point.py +192 -0
  420. warp/tests/test_tuple.py +361 -0
  421. warp/tests/test_types.py +615 -0
  422. warp/tests/test_utils.py +594 -0
  423. warp/tests/test_vec.py +1408 -0
  424. warp/tests/test_vec_assign_copy.py +143 -0
  425. warp/tests/test_vec_constructors.py +325 -0
  426. warp/tests/test_vec_lite.py +80 -0
  427. warp/tests/test_vec_scalar_ops.py +2327 -0
  428. warp/tests/test_verify_fp.py +100 -0
  429. warp/tests/test_version.py +75 -0
  430. warp/tests/tile/__init__.py +0 -0
  431. warp/tests/tile/test_tile.py +1519 -0
  432. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  433. warp/tests/tile/test_tile_cholesky.py +608 -0
  434. warp/tests/tile/test_tile_load.py +724 -0
  435. warp/tests/tile/test_tile_mathdx.py +156 -0
  436. warp/tests/tile/test_tile_matmul.py +179 -0
  437. warp/tests/tile/test_tile_mlp.py +400 -0
  438. warp/tests/tile/test_tile_reduce.py +950 -0
  439. warp/tests/tile/test_tile_shared_memory.py +376 -0
  440. warp/tests/tile/test_tile_sort.py +121 -0
  441. warp/tests/tile/test_tile_view.py +173 -0
  442. warp/tests/unittest_serial.py +47 -0
  443. warp/tests/unittest_suites.py +430 -0
  444. warp/tests/unittest_utils.py +469 -0
  445. warp/tests/walkthrough_debug.py +95 -0
  446. warp/torch.py +24 -0
  447. warp/types.py +51 -0
  448. warp/utils.py +31 -0
  449. warp_lang-1.10.0.dist-info/METADATA +459 -0
  450. warp_lang-1.10.0.dist-info/RECORD +468 -0
  451. warp_lang-1.10.0.dist-info/WHEEL +5 -0
  452. warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
  453. warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  454. warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  455. warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  456. warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  457. warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  458. warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  459. warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  460. warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  461. warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  462. warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  463. warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  464. warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  465. warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  466. warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  467. warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  468. warp_lang-1.10.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,950 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import unittest
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ from warp.tests.unittest_utils import *
22
+
23
+ TILE_M = wp.constant(8)
24
+ TILE_N = wp.constant(4)
25
+ TILE_K = wp.constant(8)
26
+
27
+ # num threads per-tile
28
+ TILE_DIM = 64
29
+
30
+
31
+ @wp.kernel
32
+ def tile_sum_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
33
+ # output tile index
34
+ i = wp.tid()
35
+
36
+ n = input.shape[1]
37
+ count = int(n / TILE_DIM)
38
+
39
+ s = wp.tile_zeros(shape=1, dtype=float)
40
+
41
+ for j in range(count):
42
+ a = wp.tile_load(input[i], shape=TILE_DIM, offset=j * TILE_DIM)
43
+ s += wp.tile_sum(a) * 0.5
44
+
45
+ wp.tile_store(output, s, offset=i)
46
+
47
+
48
+ def test_tile_reduce_sum(test, device):
49
+ batch_count = 56
50
+
51
+ N = TILE_DIM * 3
52
+
53
+ rng = np.random.default_rng(42)
54
+ input = rng.random((batch_count, N), dtype=np.float32)
55
+
56
+ input_wp = wp.array(input, requires_grad=True, device=device)
57
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
58
+
59
+ with wp.Tape() as tape:
60
+ wp.launch_tiled(
61
+ tile_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
62
+ )
63
+
64
+ sum_wp = output_wp.numpy()
65
+ for i in range(batch_count):
66
+ sum_np = np.sum(input[i]) * 0.5
67
+ test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
68
+
69
+ output_wp.grad.fill_(1.0)
70
+
71
+ tape.backward()
72
+
73
+ assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
74
+
75
+
76
+ @wp.kernel
77
+ def tile_sum_to_shared_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
78
+ i, lane = wp.tid()
79
+
80
+ a = wp.tile_load(input[i], shape=TILE_DIM)
81
+ s = wp.tile_sum(a)
82
+ v = s[0]
83
+ wp.tile_store(output, s * 0.5, offset=i)
84
+
85
+
86
+ def test_tile_sum_to_shared(test, device):
87
+ batch_count = 1
88
+
89
+ rng = np.random.default_rng(42)
90
+ input = rng.random((batch_count, TILE_DIM), dtype=np.float32)
91
+
92
+ input_wp = wp.array(input, requires_grad=True, device=device, dtype=float)
93
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device, dtype=float)
94
+
95
+ with wp.Tape() as tape:
96
+ wp.launch_tiled(
97
+ tile_sum_to_shared_kernel,
98
+ dim=[batch_count],
99
+ inputs=[input_wp, output_wp],
100
+ block_dim=TILE_DIM,
101
+ device=device,
102
+ )
103
+
104
+ sum_wp = output_wp.numpy()
105
+ for i in range(batch_count):
106
+ sum_np = np.sum(input[i], axis=0) * 0.5
107
+ assert_np_equal(sum_wp[i], sum_np, tol=0.0001)
108
+
109
+ output_wp.grad.fill_(1.0)
110
+
111
+ tape.backward()
112
+
113
+ assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
114
+
115
+
116
+ @wp.kernel
117
+ def tile_min_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
118
+ # output tile index
119
+ i = wp.tid()
120
+
121
+ a = wp.tile_load(input[i], shape=TILE_DIM)
122
+ m = wp.tile_min(a)
123
+
124
+ wp.tile_store(output, m, offset=i)
125
+
126
+
127
+ @wp.kernel
128
+ def tile_min_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
129
+ t = wp.tile_load(x, shape=(3, 3))
130
+ min = wp.tile_min(t)
131
+ wp.tile_store(y, min)
132
+
133
+
134
+ def test_tile_reduce_min(test, device):
135
+ batch_count = 56
136
+
137
+ N = TILE_DIM
138
+
139
+ rng = np.random.default_rng(42)
140
+ input = rng.random((batch_count, N), dtype=np.float32)
141
+
142
+ input_wp = wp.array(input, requires_grad=True, device=device)
143
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
144
+
145
+ with wp.Tape():
146
+ wp.launch_tiled(
147
+ tile_min_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
148
+ )
149
+
150
+ min_wp = output_wp.numpy()
151
+ for i in range(batch_count):
152
+ min_np = np.min(input[i])
153
+ test.assertAlmostEqual(min_wp[i], min_np, places=4)
154
+
155
+ # test edge case: tile is multiple warps in size but at least one is empty
156
+ x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
157
+ y = wp.zeros(1, dtype=float, device=device)
158
+
159
+ wp.launch_tiled(tile_min_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
160
+
161
+ assert_np_equal(y.numpy(), np.array([1.0]))
162
+
163
+
164
+ @wp.kernel
165
+ def tile_argmin_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
166
+ # output tile index
167
+ i = wp.tid()
168
+
169
+ a = wp.tile_load(input[i], shape=TILE_DIM)
170
+ m = wp.tile_argmin(a)
171
+
172
+ wp.tile_store(output, m, offset=i)
173
+
174
+
175
+ @wp.kernel
176
+ def tile_argmin_kernel_edge_case(x: wp.array2d(dtype=float), y: wp.array(dtype=int)):
177
+ t = wp.tile_load(x, shape=(3, 3))
178
+ min = wp.tile_argmin(t)
179
+ wp.tile_store(y, min)
180
+
181
+
182
+ def test_tile_reduce_argmin(test, device):
183
+ batch_count = 56
184
+
185
+ N = TILE_DIM
186
+
187
+ rng = np.random.default_rng(42)
188
+ input = rng.random((batch_count, N), dtype=np.float32)
189
+
190
+ input_wp = wp.array(input, requires_grad=True, device=device)
191
+ output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
192
+
193
+ with wp.Tape():
194
+ wp.launch_tiled(
195
+ tile_argmin_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
196
+ )
197
+
198
+ argmin_wp = output_wp.numpy()
199
+ for i in range(batch_count):
200
+ argmin_np = np.argmin(input[i])
201
+ test.assertAlmostEqual(argmin_wp[i], argmin_np, places=4)
202
+
203
+ # test edge case: tile is multiple warps in size but at least one is empty
204
+ x = wp.array(np.array([[2.0, 2.0, 3.0], [4.0, 1.0, 6.0], [7.0, 3.0, 9.0]]), dtype=float, device=device)
205
+ y = wp.zeros(1, dtype=int, device=device)
206
+
207
+ wp.launch_tiled(tile_argmin_kernel_edge_case, dim=1, inputs=[x, y], block_dim=64, device=device)
208
+
209
+ assert_np_equal(y.numpy(), np.array([4]))
210
+
211
+
212
+ @wp.kernel
213
+ def tile_max_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
214
+ # output tile index
215
+ i = wp.tid()
216
+
217
+ a = wp.tile_load(input[i], shape=TILE_DIM)
218
+ m = wp.tile_max(a)
219
+
220
+ wp.tile_store(output, m, offset=i)
221
+
222
+
223
+ def test_tile_reduce_max(test, device):
224
+ batch_count = 56
225
+
226
+ N = TILE_DIM
227
+
228
+ rng = np.random.default_rng(42)
229
+ input = rng.random((batch_count, N), dtype=np.float32)
230
+
231
+ input_wp = wp.array(input, requires_grad=True, device=device)
232
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
233
+
234
+ with wp.Tape():
235
+ wp.launch_tiled(
236
+ tile_max_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
237
+ )
238
+
239
+ max_wp = output_wp.numpy()
240
+ for i in range(batch_count):
241
+ max_np = np.max(input[i])
242
+ test.assertAlmostEqual(max_wp[i], max_np, places=4)
243
+
244
+
245
+ @wp.kernel
246
+ def tile_argmax_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=int)):
247
+ # output tile index
248
+ i = wp.tid()
249
+
250
+ a = wp.tile_load(input[i], shape=TILE_DIM)
251
+ m = wp.tile_argmax(a)
252
+
253
+ wp.tile_store(output, m, offset=i)
254
+
255
+
256
+ def test_tile_reduce_argmax(test, device):
257
+ batch_count = 56
258
+
259
+ N = TILE_DIM
260
+
261
+ rng = np.random.default_rng(42)
262
+ input = rng.random((batch_count, N), dtype=np.float32)
263
+
264
+ input_wp = wp.array(input, requires_grad=True, device=device)
265
+ output_wp = wp.zeros(batch_count, dtype=wp.int32, requires_grad=True, device=device)
266
+
267
+ with wp.Tape():
268
+ wp.launch_tiled(
269
+ tile_argmax_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
270
+ )
271
+
272
+ argmax_wp = output_wp.numpy()
273
+ for i in range(batch_count):
274
+ argmax_np = np.argmax(input[i])
275
+ test.assertAlmostEqual(argmax_wp[i], argmax_np, places=4)
276
+
277
+
278
+ @wp.kernel
279
+ def tile_reduce_custom_kernel(input: wp.array2d(dtype=float), output: wp.array(dtype=float)):
280
+ # output tile index
281
+ i = wp.tid()
282
+
283
+ a = wp.tile_load(input[i], shape=TILE_DIM)
284
+ m = wp.tile_reduce(wp.mul, a)
285
+
286
+ wp.tile_store(output, m, offset=i)
287
+
288
+
289
+ def test_tile_reduce_custom(test, device):
290
+ batch_count = 56
291
+
292
+ N = TILE_DIM
293
+
294
+ rng = np.random.default_rng(42)
295
+ input = rng.random((batch_count, N), dtype=np.float32)
296
+
297
+ input_wp = wp.array(input, requires_grad=True, device=device)
298
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
299
+
300
+ with wp.Tape():
301
+ wp.launch_tiled(
302
+ tile_reduce_custom_kernel,
303
+ dim=[batch_count],
304
+ inputs=[input_wp, output_wp],
305
+ block_dim=TILE_DIM,
306
+ device=device,
307
+ )
308
+
309
+ prod_wp = output_wp.numpy()
310
+ for i in range(batch_count):
311
+ prod_np = np.prod(input[i])
312
+ test.assertAlmostEqual(prod_wp[i], prod_np, places=4)
313
+
314
+
315
+ def create_tile_scan_inclusive_kernel(tile_dim: int):
316
+ @wp.kernel(module="unique")
317
+ def tile_scan_inclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
318
+ i = wp.tid()
319
+ t = wp.tile_load(input[i], shape=tile_dim)
320
+ t = wp.tile_scan_inclusive(t)
321
+ wp.tile_store(output[i], t)
322
+
323
+ return tile_scan_inclusive_kernel
324
+
325
+
326
+ def test_tile_scan_inclusive(test, device):
327
+ batch_count = 56
328
+ N = 1234
329
+
330
+ rng = np.random.default_rng(42)
331
+ input = rng.random((batch_count, N), dtype=np.float32)
332
+
333
+ input_wp = wp.array2d(input, requires_grad=True, device=device)
334
+ output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
335
+
336
+ with wp.Tape():
337
+ wp.launch_tiled(
338
+ create_tile_scan_inclusive_kernel(N),
339
+ dim=[batch_count],
340
+ inputs=[input_wp, output_wp],
341
+ block_dim=TILE_DIM,
342
+ device=device,
343
+ )
344
+
345
+ scan_wp = output_wp.numpy()
346
+ for i in range(batch_count):
347
+ scan_np = np.cumsum(input[i])
348
+ np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
349
+
350
+
351
+ def create_tile_scan_exclusive_kernel(tile_dim: int):
352
+ @wp.kernel(module="unique")
353
+ def tile_scan_exclusive_kernel(input: wp.array2d(dtype=float), output: wp.array2d(dtype=float)):
354
+ i = wp.tid()
355
+ t = wp.tile_load(input[i], shape=tile_dim)
356
+ t = wp.tile_scan_exclusive(t)
357
+ wp.tile_store(output[i], t)
358
+
359
+ return tile_scan_exclusive_kernel
360
+
361
+
362
+ def test_tile_scan_exclusive(test, device):
363
+ batch_count = 56
364
+ N = 1234
365
+
366
+ rng = np.random.default_rng(42)
367
+ input = rng.random((batch_count, N), dtype=np.float32)
368
+
369
+ input_wp = wp.array2d(input, requires_grad=True, device=device)
370
+ output_wp = wp.zeros_like(input_wp, requires_grad=True, device=device)
371
+
372
+ with wp.Tape():
373
+ wp.launch_tiled(
374
+ create_tile_scan_exclusive_kernel(N),
375
+ dim=[batch_count],
376
+ inputs=[input_wp, output_wp],
377
+ block_dim=TILE_DIM,
378
+ device=device,
379
+ )
380
+
381
+ scan_wp = output_wp.numpy()
382
+ for i in range(batch_count):
383
+ scan_np = np.zeros(N, dtype=np.float32)
384
+ scan_np[1:] = np.cumsum(input[i][:-1])
385
+ np.testing.assert_allclose(scan_wp[i], scan_np, rtol=1e-5, atol=1e-6)
386
+
387
+
388
+ @wp.struct
389
+ class KeyValue:
390
+ key: wp.int32
391
+ value: wp.float32
392
+
393
+
394
+ @wp.func
395
+ def kv_max(a: KeyValue, b: KeyValue) -> KeyValue:
396
+ return wp.where(a.value < b.value, b, a)
397
+
398
+
399
+ @wp.kernel
400
+ def initialize_key_value(values: wp.array2d(dtype=wp.float32), keyvalues: wp.array2d(dtype=KeyValue)):
401
+ batch, idx = wp.tid()
402
+ keyvalues[batch, idx] = KeyValue(idx, values[batch, idx])
403
+
404
+
405
+ @wp.kernel(enable_backward=False)
406
+ def tile_reduce_custom_struct_kernel(values: wp.array2d(dtype=KeyValue), res: wp.array(dtype=KeyValue)):
407
+ # output tile index
408
+ i = wp.tid()
409
+
410
+ t = wp.tile_load(values, shape=(1, TILE_DIM), offset=(i, 0))
411
+
412
+ max_el = wp.tile_reduce(kv_max, t)
413
+ wp.tile_store(res, max_el, offset=i)
414
+
415
+
416
+ def test_tile_reduce_custom_struct(test, device):
417
+ batch_count = 56
418
+
419
+ N = TILE_DIM
420
+
421
+ rng = np.random.default_rng(42)
422
+ input = rng.random((batch_count, N), dtype=np.float32)
423
+
424
+ input_wp = wp.array(input, dtype=wp.float32, device=device)
425
+ keyvalues_wp = wp.empty(input_wp.shape, dtype=KeyValue, device=device)
426
+
427
+ wp.launch(initialize_key_value, dim=[batch_count, N], inputs=[input_wp], outputs=[keyvalues_wp], device=device)
428
+
429
+ output_wp = wp.empty(batch_count, dtype=KeyValue, device=device)
430
+
431
+ wp.launch_tiled(
432
+ tile_reduce_custom_struct_kernel,
433
+ dim=[batch_count],
434
+ inputs=[keyvalues_wp],
435
+ outputs=[output_wp],
436
+ block_dim=TILE_DIM,
437
+ device=device,
438
+ )
439
+
440
+ prod_wp = np.array([k for k, v in output_wp.numpy()])
441
+ expected = np.argmax(input, axis=1)
442
+
443
+ assert_np_equal(prod_wp, expected)
444
+
445
+
446
+ @wp.kernel
447
+ def tile_grouped_sum_kernel(input: wp.array3d(dtype=float), output: wp.array(dtype=float)):
448
+ # output tile index
449
+ i = wp.tid()
450
+
451
+ a = wp.tile_load(input[i], shape=(TILE_M, TILE_N))
452
+ s = wp.tile_sum(a) * 0.5
453
+
454
+ wp.tile_store(output, s, offset=i)
455
+
456
+
457
+ def test_tile_reduce_grouped_sum(test, device):
458
+ batch_count = 56
459
+
460
+ M = TILE_M
461
+ N = TILE_N
462
+
463
+ rng = np.random.default_rng(42)
464
+ input = rng.random((batch_count, M, N), dtype=np.float32)
465
+
466
+ input_wp = wp.array(input, requires_grad=True, device=device)
467
+ output_wp = wp.zeros(batch_count, requires_grad=True, device=device)
468
+
469
+ with wp.Tape() as tape:
470
+ wp.launch_tiled(
471
+ tile_grouped_sum_kernel, dim=[batch_count], inputs=[input_wp, output_wp], block_dim=TILE_DIM, device=device
472
+ )
473
+
474
+ sum_wp = output_wp.numpy()
475
+ for i in range(batch_count):
476
+ sum_np = np.sum(input[i]) * 0.5
477
+ test.assertAlmostEqual(sum_wp[i], sum_np, places=4)
478
+
479
+ output_wp.grad.fill_(1.0)
480
+
481
+ tape.backward()
482
+
483
+ assert_np_equal(input_wp.grad.numpy(), np.ones_like(input) * 0.5, tol=1.0e-4)
484
+
485
+
486
+ @wp.kernel
487
+ def tile_reduce_simt_kernel(output: wp.array(dtype=int)):
488
+ # thread index
489
+ i = wp.tid()
490
+
491
+ t = wp.tile(i) # convert to block wide tile
492
+ s = wp.tile_sum(t) # sum over block
493
+
494
+ # update global sum
495
+ wp.tile_atomic_add(output, s)
496
+
497
+
498
+ def test_tile_reduce_simt(test, device):
499
+ # use an unaligned grid dimension
500
+ N = TILE_DIM * 4 + 5
501
+
502
+ output = wp.zeros(shape=1, dtype=int, requires_grad=True, device=device)
503
+
504
+ with wp.Tape():
505
+ wp.launch(tile_reduce_simt_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
506
+
507
+ test.assertEqual(output.numpy()[0], np.sum(np.arange(N)))
508
+
509
+
510
+ # Tier 1: axis size <= 32
511
+ @wp.kernel
512
+ def tile_reduce_axis_tier1_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
513
+ a = wp.tile_load(x, shape=(32, 64), storage="shared")
514
+ b = wp.tile_sum(a, axis=0)
515
+ wp.tile_store(y, b)
516
+
517
+
518
+ @wp.kernel
519
+ def tile_reduce_axis_tier1_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
520
+ a = wp.tile_load(x, shape=(32, 8), storage="shared")
521
+ b = wp.tile_reduce(wp.mul, a, axis=1)
522
+ wp.tile_store(y, b)
523
+
524
+
525
+ @wp.kernel
526
+ def tile_reduce_axis_tier1_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
527
+ a = wp.tile_load(x, shape=(8, 8, 16), storage="shared")
528
+ b = wp.tile_sum(a, axis=2)
529
+ wp.tile_store(y, b)
530
+
531
+
532
+ # Tier 2: 32 < axis size <= 256
533
+ @wp.kernel
534
+ def tile_reduce_axis_tier2_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
535
+ a = wp.tile_load(x, shape=(200, 32), storage="shared")
536
+ b = wp.tile_sum(a, axis=0)
537
+ wp.tile_store(y, b)
538
+
539
+
540
+ @wp.kernel
541
+ def tile_reduce_axis_tier2_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
542
+ a = wp.tile_load(x, shape=(16, 64), storage="shared")
543
+ b = wp.tile_reduce(wp.mul, a, axis=1)
544
+ wp.tile_store(y, b)
545
+
546
+
547
+ @wp.kernel
548
+ def tile_reduce_axis_tier2_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
549
+ a = wp.tile_load(x, shape=(8, 8, 128), storage="shared")
550
+ b = wp.tile_sum(a, axis=2)
551
+ wp.tile_store(y, b)
552
+
553
+
554
+ # Tier 3: axis size > 256
555
+ @wp.kernel
556
+ def tile_reduce_axis_tier3_sum_axis0_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
557
+ a = wp.tile_load(x, shape=(400, 16), storage="shared")
558
+ b = wp.tile_sum(a, axis=0)
559
+ wp.tile_store(y, b)
560
+
561
+
562
+ @wp.kernel
563
+ def tile_reduce_axis_tier3_prod_axis1_kernel(x: wp.array2d(dtype=float), y: wp.array(dtype=float)):
564
+ a = wp.tile_load(x, shape=(8, 300), storage="shared")
565
+ b = wp.tile_reduce(wp.mul, a, axis=1)
566
+ wp.tile_store(y, b)
567
+
568
+
569
+ @wp.kernel
570
+ def tile_reduce_axis_tier3_sum_axis2_kernel(x: wp.array3d(dtype=float), y: wp.array2d(dtype=float)):
571
+ a = wp.tile_load(x, shape=(4, 4, 384), storage="shared")
572
+ b = wp.tile_sum(a, axis=2)
573
+ wp.tile_store(y, b)
574
+
575
+
576
+ def test_tile_reduce_axis_tier1(test, device):
577
+ # 2D sum: axis=0, size 32 (forward and backward)
578
+ x = wp.ones((32, 64), dtype=float, requires_grad=True, device=device)
579
+ y = wp.zeros(64, dtype=float, requires_grad=True, device=device)
580
+
581
+ with wp.Tape() as tape:
582
+ wp.launch_tiled(
583
+ tile_reduce_axis_tier1_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
584
+ )
585
+
586
+ y.grad = wp.ones_like(y)
587
+ tape.backward()
588
+
589
+ assert_np_equal(y.numpy(), np.ones(64, dtype=float) * 32.0)
590
+ assert_np_equal(x.grad.numpy(), np.ones((32, 64), dtype=float))
591
+
592
+ # 2D product: axis=1, size 8
593
+ rng = np.random.default_rng(42)
594
+ x_np = rng.random((32, 8), dtype=np.float32) * 0.1 + 1.0
595
+ x = wp.array(x_np, dtype=float, device=device)
596
+ y = wp.zeros(32, dtype=float, device=device)
597
+
598
+ wp.launch_tiled(
599
+ tile_reduce_axis_tier1_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
600
+ )
601
+
602
+ assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-3)
603
+
604
+ # 3D sum: axis=2, size 16 (forward and backward)
605
+ x = wp.ones((8, 8, 16), dtype=float, requires_grad=True, device=device)
606
+ y = wp.zeros((8, 8), dtype=float, requires_grad=True, device=device)
607
+
608
+ with wp.Tape() as tape:
609
+ wp.launch_tiled(
610
+ tile_reduce_axis_tier1_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
611
+ )
612
+
613
+ y.grad = wp.ones_like(y)
614
+ tape.backward()
615
+
616
+ assert_np_equal(y.numpy(), np.ones((8, 8), dtype=float) * 16.0)
617
+ assert_np_equal(x.grad.numpy(), np.ones((8, 8, 16), dtype=float))
618
+
619
+
620
+ def test_tile_reduce_axis_tier2(test, device):
621
+ # 2D sum: axis=0, size 200 (forward and backward)
622
+ x = wp.ones((200, 32), dtype=float, requires_grad=True, device=device)
623
+ y = wp.zeros(32, dtype=float, requires_grad=True, device=device)
624
+
625
+ with wp.Tape() as tape:
626
+ wp.launch_tiled(
627
+ tile_reduce_axis_tier2_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
628
+ )
629
+
630
+ y.grad = wp.ones_like(y)
631
+ tape.backward()
632
+
633
+ assert_np_equal(y.numpy(), np.ones(32, dtype=float) * 200.0)
634
+ assert_np_equal(x.grad.numpy(), np.ones((200, 32), dtype=float))
635
+
636
+ # 2D product: axis=1, size 64
637
+ rng = np.random.default_rng(42)
638
+ x_np = rng.random((16, 64), dtype=np.float32) * 0.05 + 1.0
639
+ x = wp.array(x_np, dtype=float, device=device)
640
+ y = wp.zeros(16, dtype=float, device=device)
641
+
642
+ wp.launch_tiled(
643
+ tile_reduce_axis_tier2_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
644
+ )
645
+
646
+ assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-2)
647
+
648
+ # 3D sum: axis=2, size 128 (forward and backward)
649
+ x = wp.ones((8, 8, 128), dtype=float, requires_grad=True, device=device)
650
+ y = wp.zeros((8, 8), dtype=float, requires_grad=True, device=device)
651
+
652
+ with wp.Tape() as tape:
653
+ wp.launch_tiled(
654
+ tile_reduce_axis_tier2_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
655
+ )
656
+
657
+ y.grad = wp.ones_like(y)
658
+ tape.backward()
659
+
660
+ assert_np_equal(y.numpy(), np.ones((8, 8), dtype=float) * 128.0)
661
+ assert_np_equal(x.grad.numpy(), np.ones((8, 8, 128), dtype=float))
662
+
663
+
664
+ def test_tile_reduce_axis_tier3(test, device):
665
+ # 2D sum: axis=0, size 400 (forward and backward)
666
+ x = wp.ones((400, 16), dtype=float, requires_grad=True, device=device)
667
+ y = wp.zeros(16, dtype=float, requires_grad=True, device=device)
668
+
669
+ with wp.Tape() as tape:
670
+ wp.launch_tiled(
671
+ tile_reduce_axis_tier3_sum_axis0_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
672
+ )
673
+
674
+ y.grad = wp.ones_like(y)
675
+ tape.backward()
676
+
677
+ assert_np_equal(y.numpy(), np.ones(16, dtype=float) * 400.0, tol=2e-4)
678
+ assert_np_equal(x.grad.numpy(), np.ones((400, 16), dtype=float))
679
+
680
+ # 2D product: axis=1, size 300
681
+ rng = np.random.default_rng(42)
682
+ x_np = rng.random((8, 300), dtype=np.float32) * 0.01 + 1.0
683
+ x = wp.array(x_np, dtype=float, device=device)
684
+ y = wp.zeros(8, dtype=float, device=device)
685
+
686
+ wp.launch_tiled(
687
+ tile_reduce_axis_tier3_prod_axis1_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
688
+ )
689
+
690
+ assert_np_equal(y.numpy(), np.prod(x_np, axis=1), tol=1e-1)
691
+
692
+ # 3D sum: axis=2, size 384 (forward and backward)
693
+ x = wp.ones((4, 4, 384), dtype=float, requires_grad=True, device=device)
694
+ y = wp.zeros((4, 4), dtype=float, requires_grad=True, device=device)
695
+
696
+ with wp.Tape() as tape:
697
+ wp.launch_tiled(
698
+ tile_reduce_axis_tier3_sum_axis2_kernel, dim=[1], inputs=[x], outputs=[y], block_dim=TILE_DIM, device=device
699
+ )
700
+
701
+ y.grad = wp.ones_like(y)
702
+ tape.backward()
703
+
704
+ assert_np_equal(y.numpy(), np.ones((4, 4), dtype=float) * 384.0, tol=2e-4)
705
+ assert_np_equal(x.grad.numpy(), np.ones((4, 4, 384), dtype=float))
706
+
707
+
708
+ @wp.kernel
709
+ def tile_untile_kernel(output: wp.array(dtype=int)):
710
+ # thread index
711
+ i = wp.tid()
712
+
713
+ # convert to block wide tile
714
+ t = wp.tile(i) * 2
715
+ s = wp.untile(t)
716
+
717
+ output[i] = s
718
+
719
+
720
+ def test_tile_untile(test, device):
721
+ # use an unaligned grid dimension
722
+ N = TILE_DIM * 4 + 5
723
+
724
+ output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
725
+
726
+ with wp.Tape():
727
+ wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
728
+
729
+ assert_np_equal(output.numpy(), np.arange(N) * 2)
730
+
731
+
732
+ @wp.kernel
733
+ def tile_untile_scalar_kernel(output: wp.array(dtype=int)):
734
+ # thread index
735
+ i = wp.tid()
736
+
737
+ # convert to block wide tile
738
+ t = wp.tile(i) * 2
739
+ s = wp.untile(t)
740
+
741
+ output[i] = s
742
+
743
+
744
+ def test_tile_untile_scalar(test, device):
745
+ # use an unaligned grid dimension
746
+ N = TILE_DIM * 4 + 5
747
+
748
+ output = wp.zeros(shape=N, dtype=int, requires_grad=True, device=device)
749
+
750
+ with wp.Tape():
751
+ wp.launch(tile_untile_kernel, dim=N, inputs=[output], block_dim=TILE_DIM, device=device)
752
+
753
+ assert_np_equal(output.numpy(), np.arange(N) * 2)
754
+
755
+
756
+ @wp.kernel
757
+ def test_untile_vector_kernel(input: wp.array(dtype=wp.vec3), output: wp.array(dtype=wp.vec3)):
758
+ i = wp.tid()
759
+
760
+ v = input[i] * 0.5
761
+
762
+ t = wp.tile(v)
763
+ u = wp.untile(t)
764
+
765
+ output[i] = u * 2.0
766
+
767
+
768
+ def test_tile_untile_vector(test, device):
769
+ input = wp.full(TILE_DIM, wp.vec3(1.0, 2.0, 3.0), requires_grad=True, device=device)
770
+ output = wp.zeros_like(input, device=device)
771
+
772
+ with wp.Tape() as tape:
773
+ wp.launch(test_untile_vector_kernel, dim=TILE_DIM, inputs=[input, output], block_dim=TILE_DIM, device=device)
774
+
775
+ output.grad = wp.ones_like(output, device=device)
776
+ tape.backward()
777
+
778
+ assert_np_equal(output.numpy(), input.numpy())
779
+ assert_np_equal(input.grad.numpy(), np.ones((TILE_DIM, 3)))
780
+
781
+
782
+ @wp.kernel
783
+ def tile_ones_kernel(out: wp.array(dtype=float)):
784
+ i = wp.tid()
785
+
786
+ t = wp.tile_ones(dtype=float, shape=(16, 16))
787
+ s = wp.tile_sum(t)
788
+
789
+ wp.tile_store(out, s)
790
+
791
+
792
+ def test_tile_ones(test, device):
793
+ output = wp.zeros(1, dtype=float, device=device)
794
+
795
+ with wp.Tape():
796
+ wp.launch_tiled(tile_ones_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
797
+
798
+ test.assertAlmostEqual(output.numpy()[0], 256.0)
799
+
800
+
801
+ @wp.kernel
802
+ def tile_arange_kernel(out: wp.array2d(dtype=int)):
803
+ i = wp.tid()
804
+
805
+ a = wp.tile_arange(17, dtype=int)
806
+ b = wp.tile_arange(5, 23, dtype=int)
807
+ c = wp.tile_arange(0, 34, 2, dtype=int)
808
+ d = wp.tile_arange(-1, 16, dtype=int)
809
+ e = wp.tile_arange(17, 0, -1, dtype=int)
810
+
811
+ wp.tile_store(out[0], a)
812
+ wp.tile_store(out[1], b)
813
+ wp.tile_store(out[2], c)
814
+ wp.tile_store(out[3], d)
815
+ wp.tile_store(out[4], e)
816
+
817
+
818
+ def test_tile_arange(test, device):
819
+ N = 17
820
+
821
+ output = wp.zeros(shape=(5, N), dtype=int, device=device)
822
+
823
+ with wp.Tape():
824
+ wp.launch_tiled(tile_arange_kernel, dim=[1], inputs=[output], block_dim=TILE_DIM, device=device)
825
+
826
+ assert_np_equal(output.numpy()[0], np.arange(17))
827
+ assert_np_equal(output.numpy()[1], np.arange(5, 22))
828
+ assert_np_equal(output.numpy()[2], np.arange(0, 34, 2))
829
+ assert_np_equal(output.numpy()[3], np.arange(-1, 16))
830
+ assert_np_equal(output.numpy()[4], np.arange(17, 0, -1))
831
+
832
+
833
+ @wp.kernel(module="unique")
834
+ def tile_strided_loop_kernel(arr: wp.array(dtype=float), max_val: wp.array(dtype=float)):
835
+ tid, lane = wp.tid()
836
+
837
+ num_threads = wp.block_dim()
838
+
839
+ thread_max = wp.float32(-wp.inf)
840
+
841
+ length = arr.shape[0]
842
+ upper = ((length + num_threads - 1) // num_threads) * num_threads
843
+ for el_id in range(lane, upper, num_threads):
844
+ if el_id < length:
845
+ val = arr[el_id]
846
+ else:
847
+ val = wp.float32(-wp.inf)
848
+
849
+ t = wp.tile(val)
850
+ local_max = wp.tile_max(t)
851
+
852
+ thread_max = wp.max(thread_max, local_max[0])
853
+
854
+ if lane == 0:
855
+ max_val[0] = thread_max
856
+
857
+
858
+ def test_tile_strided_loop(test, device):
859
+ N = 5 # Length of array
860
+
861
+ rng = np.random.default_rng(42)
862
+ input = rng.random(N, dtype=np.float32)
863
+
864
+ input_wp = wp.array(input, device=device)
865
+ output_wp = wp.zeros(1, dtype=wp.float32, device=device)
866
+
867
+ wp.launch_tiled(
868
+ tile_strided_loop_kernel,
869
+ dim=[1],
870
+ inputs=[input_wp, output_wp],
871
+ device=device,
872
+ block_dim=128,
873
+ )
874
+
875
+ max_wp = output_wp.numpy()
876
+ max_np = np.max(input)
877
+ test.assertAlmostEqual(max_wp[0], max_np, places=4)
878
+
879
+
880
+ @wp.kernel
881
+ def test_tile_reduce_matrix_kernel(y: wp.array(dtype=wp.mat33)):
882
+ i = wp.tid()
883
+ I = wp.identity(3, dtype=wp.float32)
884
+ m = wp.float32(i) * I
885
+
886
+ t = wp.tile(m, preserve_type=True)
887
+ sum = wp.tile_reduce(wp.add, t)
888
+
889
+ wp.tile_atomic_add(y, sum)
890
+
891
+
892
+ def test_tile_reduce_matrix(test, device):
893
+ y = wp.zeros(shape=1, dtype=wp.mat33, device=device)
894
+
895
+ wp.launch(test_tile_reduce_matrix_kernel, dim=TILE_DIM, inputs=[], outputs=[y], block_dim=TILE_DIM, device=device)
896
+
897
+ assert_np_equal(y.numpy().squeeze(), np.eye(3, dtype=np.float32) * 2016.0)
898
+
899
+
900
+ @wp.kernel
901
+ def test_tile_reduce_vector_kernel(out: wp.array(dtype=wp.vec3)):
902
+ v = wp.vec3f(1.0)
903
+ v_tile = wp.tile(v, preserve_type=True)
904
+
905
+ sum = wp.tile_reduce(wp.add, v_tile)
906
+
907
+ wp.tile_atomic_add(out, sum)
908
+
909
+
910
+ def test_tile_reduce_vector(test, device):
911
+ out = wp.zeros(1, dtype=wp.vec3, device=device)
912
+
913
+ wp.launch(kernel=test_tile_reduce_vector_kernel, dim=8, inputs=[], outputs=[out], block_dim=TILE_DIM, device=device)
914
+
915
+ assert_np_equal(out.numpy(), np.array([[8.0, 8.0, 8.0]]))
916
+
917
+
918
+ devices = get_test_devices()
919
+
920
+
921
+ class TestTileReduce(unittest.TestCase):
922
+ pass
923
+
924
+
925
+ add_function_test(TestTileReduce, "test_tile_reduce_sum", test_tile_reduce_sum, devices=devices)
926
+ add_function_test(TestTileReduce, "test_tile_sum_to_shared", test_tile_sum_to_shared, devices=devices)
927
+ add_function_test(TestTileReduce, "test_tile_reduce_min", test_tile_reduce_min, devices=devices)
928
+ add_function_test(TestTileReduce, "test_tile_reduce_max", test_tile_reduce_max, devices=devices)
929
+ add_function_test(TestTileReduce, "test_tile_reduce_argmin", test_tile_reduce_argmin, devices=devices)
930
+ add_function_test(TestTileReduce, "test_tile_reduce_argmax", test_tile_reduce_argmax, devices=devices)
931
+ add_function_test(TestTileReduce, "test_tile_reduce_custom", test_tile_reduce_custom, devices=devices)
932
+ add_function_test(TestTileReduce, "test_tile_reduce_custom_struct", test_tile_reduce_custom_struct, devices=devices)
933
+ add_function_test(TestTileReduce, "test_tile_reduce_grouped_sum", test_tile_reduce_grouped_sum, devices=devices)
934
+ add_function_test(TestTileReduce, "test_tile_reduce_simt", test_tile_reduce_simt, devices=devices)
935
+ add_function_test(TestTileReduce, "test_tile_reduce_axis_tier1", test_tile_reduce_axis_tier1, devices=devices)
936
+ add_function_test(TestTileReduce, "test_tile_reduce_axis_tier2", test_tile_reduce_axis_tier2, devices=devices)
937
+ add_function_test(TestTileReduce, "test_tile_reduce_axis_tier3", test_tile_reduce_axis_tier3, devices=devices)
938
+ add_function_test(TestTileReduce, "test_tile_ones", test_tile_ones, devices=devices)
939
+ add_function_test(TestTileReduce, "test_tile_arange", test_tile_arange, devices=devices)
940
+ add_function_test(TestTileReduce, "test_tile_untile_scalar", test_tile_untile_scalar, devices=devices)
941
+ add_function_test(TestTileReduce, "test_tile_untile_vector", test_tile_untile_vector, devices=devices)
942
+ add_function_test(TestTileReduce, "test_tile_strided_loop", test_tile_strided_loop, devices=devices)
943
+ add_function_test(TestTileReduce, "test_tile_scan_inclusive", test_tile_scan_inclusive, devices=devices)
944
+ add_function_test(TestTileReduce, "test_tile_scan_exclusive", test_tile_scan_exclusive, devices=devices)
945
+ add_function_test(TestTileReduce, "test_tile_reduce_matrix", test_tile_reduce_matrix, devices=devices)
946
+ add_function_test(TestTileReduce, "test_tile_reduce_vector", test_tile_reduce_vector, devices=devices)
947
+
948
+ if __name__ == "__main__":
949
+ wp.clear_kernel_cache()
950
+ unittest.main(verbosity=2, failfast=True)