warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +334 -0
- warp/__init__.pyi +5856 -0
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1077 -0
- warp/_src/build.py +620 -0
- warp/_src/build_dll.py +642 -0
- warp/_src/builtins.py +10555 -0
- warp/_src/codegen.py +4361 -0
- warp/_src/config.py +178 -0
- warp/_src/constants.py +59 -0
- warp/_src/context.py +8352 -0
- warp/_src/dlpack.py +464 -0
- warp/_src/fabric.py +362 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +510 -0
- warp/_src/fem/cache.py +689 -0
- warp/_src/fem/dirichlet.py +190 -0
- warp/_src/fem/domain.py +553 -0
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +703 -0
- warp/_src/fem/field/nodal_field.py +403 -0
- warp/_src/fem/field/restriction.py +39 -0
- warp/_src/fem/field/virtual.py +1021 -0
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
- warp/_src/fem/geometry/closest_point.py +99 -0
- warp/_src/fem/geometry/deformed_geometry.py +277 -0
- warp/_src/fem/geometry/element.py +854 -0
- warp/_src/fem/geometry/geometry.py +693 -0
- warp/_src/fem/geometry/grid_2d.py +478 -0
- warp/_src/fem/geometry/grid_3d.py +539 -0
- warp/_src/fem/geometry/hexmesh.py +956 -0
- warp/_src/fem/geometry/nanogrid.py +660 -0
- warp/_src/fem/geometry/partition.py +483 -0
- warp/_src/fem/geometry/quadmesh.py +597 -0
- warp/_src/fem/geometry/tetmesh.py +762 -0
- warp/_src/fem/geometry/trimesh.py +588 -0
- warp/_src/fem/integrate.py +2507 -0
- warp/_src/fem/linalg.py +385 -0
- warp/_src/fem/operator.py +398 -0
- warp/_src/fem/polynomial.py +231 -0
- warp/_src/fem/quadrature/__init__.py +17 -0
- warp/_src/fem/quadrature/pic_quadrature.py +318 -0
- warp/_src/fem/quadrature/quadrature.py +665 -0
- warp/_src/fem/space/__init__.py +248 -0
- warp/_src/fem/space/basis_function_space.py +499 -0
- warp/_src/fem/space/basis_space.py +681 -0
- warp/_src/fem/space/dof_mapper.py +253 -0
- warp/_src/fem/space/function_space.py +312 -0
- warp/_src/fem/space/grid_2d_function_space.py +179 -0
- warp/_src/fem/space/grid_3d_function_space.py +229 -0
- warp/_src/fem/space/hexmesh_function_space.py +255 -0
- warp/_src/fem/space/nanogrid_function_space.py +199 -0
- warp/_src/fem/space/partition.py +435 -0
- warp/_src/fem/space/quadmesh_function_space.py +222 -0
- warp/_src/fem/space/restriction.py +221 -0
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
- warp/_src/fem/space/shape/shape_function.py +134 -0
- warp/_src/fem/space/shape/square_shape_function.py +928 -0
- warp/_src/fem/space/shape/tet_shape_function.py +829 -0
- warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
- warp/_src/fem/space/tetmesh_function_space.py +270 -0
- warp/_src/fem/space/topology.py +461 -0
- warp/_src/fem/space/trimesh_function_space.py +193 -0
- warp/_src/fem/types.py +114 -0
- warp/_src/fem/utils.py +488 -0
- warp/_src/jax.py +188 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +389 -0
- warp/_src/jax_experimental/ffi.py +1286 -0
- warp/_src/jax_experimental/xla_ffi.py +658 -0
- warp/_src/marching_cubes.py +710 -0
- warp/_src/math.py +416 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +165 -0
- warp/_src/optim/linear.py +1608 -0
- warp/_src/optim/sgd.py +114 -0
- warp/_src/paddle.py +408 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +291 -0
- warp/_src/render/render_opengl.py +3638 -0
- warp/_src/render/render_usd.py +939 -0
- warp/_src/render/utils.py +162 -0
- warp/_src/sparse.py +2718 -0
- warp/_src/tape.py +1208 -0
- warp/_src/thirdparty/__init__.py +0 -0
- warp/_src/thirdparty/appdirs.py +598 -0
- warp/_src/thirdparty/dlpack.py +145 -0
- warp/_src/thirdparty/unittest_parallel.py +676 -0
- warp/_src/torch.py +393 -0
- warp/_src/types.py +5888 -0
- warp/_src/utils.py +1695 -0
- warp/autograd.py +33 -0
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +29 -0
- warp/build_dll.py +24 -0
- warp/codegen.py +24 -0
- warp/constants.py +24 -0
- warp/context.py +33 -0
- warp/dlpack.py +24 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +195 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +290 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/distributed/example_jacobi_mpi.py +506 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +469 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +181 -0
- warp/examples/fem/example_convection_diffusion_dg.py +225 -0
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +225 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +242 -0
- warp/examples/fem/example_mixed_elasticity.py +293 -0
- warp/examples/fem/example_navier_stokes.py +263 -0
- warp/examples/fem/example_nonconforming_contact.py +300 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +357 -0
- warp/examples/fem/utils.py +1047 -0
- warp/examples/interop/example_jax_callable.py +146 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +232 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +88 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/examples/tile/example_tile_mlp.py +385 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/fabric.py +24 -0
- warp/fem/__init__.py +173 -0
- warp/fem/adaptivity.py +26 -0
- warp/fem/cache.py +30 -0
- warp/fem/dirichlet.py +24 -0
- warp/fem/field/__init__.py +24 -0
- warp/fem/field/field.py +26 -0
- warp/fem/geometry/__init__.py +21 -0
- warp/fem/geometry/closest_point.py +31 -0
- warp/fem/linalg.py +38 -0
- warp/fem/operator.py +32 -0
- warp/fem/polynomial.py +29 -0
- warp/fem/space/__init__.py +22 -0
- warp/fem/space/basis_space.py +24 -0
- warp/fem/space/shape/__init__.py +68 -0
- warp/fem/space/topology.py +24 -0
- warp/fem/types.py +24 -0
- warp/fem/utils.py +32 -0
- warp/jax.py +29 -0
- warp/jax_experimental/__init__.py +29 -0
- warp/jax_experimental/custom_call.py +29 -0
- warp/jax_experimental/ffi.py +39 -0
- warp/jax_experimental/xla_ffi.py +24 -0
- warp/marching_cubes.py +24 -0
- warp/math.py +37 -0
- warp/native/array.h +1687 -0
- warp/native/builtin.h +2327 -0
- warp/native/bvh.cpp +562 -0
- warp/native/bvh.cu +826 -0
- warp/native/bvh.h +555 -0
- warp/native/clang/clang.cpp +541 -0
- warp/native/coloring.cpp +622 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +568 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +677 -0
- warp/native/cuda_util.h +313 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +2023 -0
- warp/native/fabric.h +246 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +89 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1253 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +348 -0
- warp/native/mat.h +5189 -0
- warp/native/mathdx.cpp +93 -0
- warp/native/matnn.h +221 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +406 -0
- warp/native/mesh.h +2097 -0
- warp/native/nanovdb/GridHandle.h +533 -0
- warp/native/nanovdb/HostBuffer.h +591 -0
- warp/native/nanovdb/NanoVDB.h +6246 -0
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1664 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +145 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +363 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +55 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +286 -0
- warp/native/sort.h +35 -0
- warp/native/sparse.cpp +241 -0
- warp/native/sparse.cu +435 -0
- warp/native/spatial.h +1306 -0
- warp/native/svd.h +727 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +4124 -0
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +838 -0
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +2199 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +68 -0
- warp/native/volume.h +970 -0
- warp/native/volume_builder.cu +483 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1143 -0
- warp/native/warp.cu +4604 -0
- warp/native/warp.h +358 -0
- warp/optim/__init__.py +20 -0
- warp/optim/adam.py +24 -0
- warp/optim/linear.py +35 -0
- warp/optim/sgd.py +24 -0
- warp/paddle.py +24 -0
- warp/py.typed +0 -0
- warp/render/__init__.py +22 -0
- warp/render/imgui_manager.py +29 -0
- warp/render/render_opengl.py +24 -0
- warp/render/render_usd.py +24 -0
- warp/render/utils.py +24 -0
- warp/sparse.py +51 -0
- warp/tape.py +24 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_conditional_captures.py +1147 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +691 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +335 -0
- warp/tests/geometry/test_hash_grid.py +259 -0
- warp/tests/geometry/test_marching_cubes.py +294 -0
- warp/tests/geometry/test_mesh.py +318 -0
- warp/tests/geometry/test_mesh_query_aabb.py +392 -0
- warp/tests/geometry/test_mesh_query_point.py +935 -0
- warp/tests/geometry/test_mesh_query_ray.py +323 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +730 -0
- warp/tests/interop/test_jax.py +1673 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/test_adam.py +162 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +3756 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +303 -0
- warp/tests/test_atomic.py +336 -0
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +732 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +974 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +298 -0
- warp/tests/test_context.py +35 -0
- warp/tests/test_copy.py +319 -0
- warp/tests/test_ctypes.py +618 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +127 -0
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +424 -0
- warp/tests/test_fabricarray.py +998 -0
- warp/tests/test_fast_math.py +72 -0
- warp/tests/test_fem.py +2204 -0
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +501 -0
- warp/tests/test_future_annotations.py +100 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +103 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +223 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_map.py +526 -0
- warp/tests/test_mat.py +3515 -0
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +573 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +212 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +70 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +408 -0
- warp/tests/test_quat.py +2653 -0
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +303 -0
- warp/tests/test_rounding.py +157 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +133 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +845 -0
- warp/tests/test_spatial.py +2859 -0
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +640 -0
- warp/tests/test_struct.py +901 -0
- warp/tests/test_tape.py +242 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +192 -0
- warp/tests/test_tuple.py +361 -0
- warp/tests/test_types.py +615 -0
- warp/tests/test_utils.py +594 -0
- warp/tests/test_vec.py +1408 -0
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/test_version.py +75 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +1519 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +608 -0
- warp/tests/tile/test_tile_load.py +724 -0
- warp/tests/tile/test_tile_mathdx.py +156 -0
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +400 -0
- warp/tests/tile/test_tile_reduce.py +950 -0
- warp/tests/tile/test_tile_shared_memory.py +376 -0
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +430 -0
- warp/tests/unittest_utils.py +469 -0
- warp/tests/walkthrough_debug.py +95 -0
- warp/torch.py +24 -0
- warp/types.py +51 -0
- warp/utils.py +31 -0
- warp_lang-1.10.0.dist-info/METADATA +459 -0
- warp_lang-1.10.0.dist-info/RECORD +468 -0
- warp_lang-1.10.0.dist-info/WHEEL +5 -0
- warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,608 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp.tests.unittest_utils import *
|
|
22
|
+
|
|
23
|
+
wp.init() # For wp._src.context.runtime.core.wp_is_mathdx_enabled()
|
|
24
|
+
|
|
25
|
+
TILE_M = wp.constant(8)
|
|
26
|
+
TILE_N = wp.constant(4)
|
|
27
|
+
TILE_K = wp.constant(8)
|
|
28
|
+
|
|
29
|
+
# num threads per-tile
|
|
30
|
+
TILE_DIM = 32
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@wp.kernel()
|
|
34
|
+
def tile_math_cholesky(
|
|
35
|
+
gA: wp.array2d(dtype=wp.float64),
|
|
36
|
+
gD: wp.array1d(dtype=wp.float64),
|
|
37
|
+
gL: wp.array2d(dtype=wp.float64),
|
|
38
|
+
gy: wp.array1d(dtype=wp.float64),
|
|
39
|
+
gx: wp.array1d(dtype=wp.float64),
|
|
40
|
+
):
|
|
41
|
+
i, j = wp.tid()
|
|
42
|
+
# Load A, D & y
|
|
43
|
+
a = wp.tile_load(gA, shape=(TILE_M, TILE_M), storage="shared")
|
|
44
|
+
d = wp.tile_load(gD, shape=TILE_M, storage="shared")
|
|
45
|
+
y = wp.tile_load(gy, shape=TILE_M, storage="shared")
|
|
46
|
+
# Ensure tile_diag_add() and tile_cholesky_solve() work with transposed matrices
|
|
47
|
+
a_t = wp.tile_transpose(a)
|
|
48
|
+
# Compute L st LL^T = A^T + diag(D)
|
|
49
|
+
b = wp.tile_diag_add(a_t, d)
|
|
50
|
+
l = wp.tile_cholesky(b)
|
|
51
|
+
# Solve for y in LL^T x = y
|
|
52
|
+
x = wp.tile_cholesky_solve(l, y)
|
|
53
|
+
# Store L & y
|
|
54
|
+
wp.tile_store(gL, l)
|
|
55
|
+
wp.tile_store(gx, x)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def test_tile_cholesky_cholesky(test, device):
|
|
59
|
+
A_h = np.ones((TILE_M, TILE_M), dtype=np.float64)
|
|
60
|
+
D_h = 8.0 * np.ones(TILE_M, dtype=np.float64)
|
|
61
|
+
L_h = np.zeros_like(A_h)
|
|
62
|
+
Y_h = np.arange(TILE_M, dtype=np.float64)
|
|
63
|
+
X_h = np.zeros_like(Y_h)
|
|
64
|
+
|
|
65
|
+
A_np = A_h.T + np.diag(D_h)
|
|
66
|
+
L_np = np.linalg.cholesky(A_np)
|
|
67
|
+
X_np = np.linalg.solve(A_np, Y_h)
|
|
68
|
+
|
|
69
|
+
A_wp = wp.array(A_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
70
|
+
D_wp = wp.array(D_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
71
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
72
|
+
Y_wp = wp.array(Y_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
73
|
+
X_wp = wp.array(X_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
74
|
+
|
|
75
|
+
wp.launch_tiled(
|
|
76
|
+
tile_math_cholesky, dim=[1, 1], inputs=[A_wp, D_wp, L_wp, Y_wp, X_wp], block_dim=TILE_DIM, device=device
|
|
77
|
+
)
|
|
78
|
+
wp.synchronize_device(device)
|
|
79
|
+
|
|
80
|
+
np.testing.assert_allclose(X_wp.numpy(), X_np)
|
|
81
|
+
np.testing.assert_allclose(L_wp.numpy(), L_np)
|
|
82
|
+
|
|
83
|
+
# TODO: implement and test backward pass
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
@wp.kernel()
|
|
87
|
+
def tile_math_cholesky_multiple_rhs(
|
|
88
|
+
gA: wp.array2d(dtype=wp.float64),
|
|
89
|
+
gD: wp.array1d(dtype=wp.float64),
|
|
90
|
+
gL: wp.array2d(dtype=wp.float64),
|
|
91
|
+
gy: wp.array2d(dtype=wp.float64),
|
|
92
|
+
gx: wp.array2d(dtype=wp.float64),
|
|
93
|
+
gz: wp.array2d(dtype=wp.float64),
|
|
94
|
+
):
|
|
95
|
+
i, j = wp.tid()
|
|
96
|
+
# Load A, D & y
|
|
97
|
+
a = wp.tile_load(gA, shape=(TILE_M, TILE_M), storage="shared")
|
|
98
|
+
d = wp.tile_load(gD, shape=TILE_M, storage="shared")
|
|
99
|
+
y = wp.tile_load(gy, shape=(TILE_M, TILE_M), storage="shared")
|
|
100
|
+
# Ensure tile_diag_add() and tile_cholesky_solve() work with transposed matrices
|
|
101
|
+
a_t = wp.tile_transpose(a)
|
|
102
|
+
# Compute L st LL^T = A.T + diag(D)
|
|
103
|
+
b = wp.tile_diag_add(a_t, d)
|
|
104
|
+
l = wp.tile_cholesky(b)
|
|
105
|
+
# Solve for y in LL^T x = y.T
|
|
106
|
+
y_t = wp.tile_transpose(y)
|
|
107
|
+
x = wp.tile_cholesky_solve(l, y_t)
|
|
108
|
+
# Ensure matmul receives correct layout information
|
|
109
|
+
z = wp.tile_matmul(x, x)
|
|
110
|
+
# Store L & y
|
|
111
|
+
wp.tile_store(gL, l)
|
|
112
|
+
wp.tile_store(gx, x)
|
|
113
|
+
wp.tile_store(gz, z)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def test_tile_cholesky_cholesky_multiple_rhs(test, device):
|
|
117
|
+
A_h = np.ones((TILE_M, TILE_M), dtype=np.float64)
|
|
118
|
+
D_h = 8.0 * np.ones(TILE_M, dtype=np.float64)
|
|
119
|
+
L_h = np.zeros_like(A_h)
|
|
120
|
+
Y_h = np.arange(TILE_M * TILE_M, dtype=np.float64).reshape((TILE_M, TILE_M))
|
|
121
|
+
X_h = np.zeros_like(Y_h)
|
|
122
|
+
Z_h = np.zeros_like(Y_h)
|
|
123
|
+
|
|
124
|
+
A_np = A_h.T + np.diag(D_h)
|
|
125
|
+
L_np = np.linalg.cholesky(A_np)
|
|
126
|
+
X_np = np.linalg.solve(A_np, Y_h.T)
|
|
127
|
+
Z_np = X_np @ X_np
|
|
128
|
+
|
|
129
|
+
A_wp = wp.array(A_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
130
|
+
D_wp = wp.array(D_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
131
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
132
|
+
Y_wp = wp.array(Y_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
133
|
+
X_wp = wp.array(X_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
134
|
+
Z_wp = wp.array(Z_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
135
|
+
|
|
136
|
+
wp.launch_tiled(
|
|
137
|
+
tile_math_cholesky_multiple_rhs,
|
|
138
|
+
dim=[1, 1],
|
|
139
|
+
inputs=[A_wp, D_wp, L_wp, Y_wp, X_wp, Z_wp],
|
|
140
|
+
block_dim=TILE_DIM,
|
|
141
|
+
device=device,
|
|
142
|
+
)
|
|
143
|
+
wp.synchronize_device(device)
|
|
144
|
+
|
|
145
|
+
np.testing.assert_allclose(L_wp.numpy(), L_np)
|
|
146
|
+
np.testing.assert_allclose(X_wp.numpy(), X_np)
|
|
147
|
+
np.testing.assert_allclose(Z_wp.numpy(), Z_np)
|
|
148
|
+
|
|
149
|
+
# TODO: implement and test backward pass
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
@wp.kernel
|
|
153
|
+
def tile_math_forward_substitution(
|
|
154
|
+
gL: wp.array2d(dtype=wp.float64), gx: wp.array1d(dtype=wp.float64), gz: wp.array1d(dtype=wp.float64)
|
|
155
|
+
):
|
|
156
|
+
i, j = wp.tid()
|
|
157
|
+
# Load L & x
|
|
158
|
+
L = wp.tile_load(gL, shape=(TILE_M, TILE_M), storage="shared")
|
|
159
|
+
x = wp.tile_load(gx, shape=TILE_M, storage="shared")
|
|
160
|
+
# Solve for z in Lz = x
|
|
161
|
+
# Transpose because we loaded an upper triangular matrix
|
|
162
|
+
z = wp.tile_lower_solve(wp.tile_transpose(L), x)
|
|
163
|
+
# Store z
|
|
164
|
+
wp.tile_store(gz, z)
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
def test_tile_cholesky_forward_substitution(test, device):
|
|
168
|
+
# Create test data
|
|
169
|
+
rng = np.random.default_rng(42)
|
|
170
|
+
L_h = np.triu(rng.random((TILE_M, TILE_M))) # Upper triangular matrix
|
|
171
|
+
x_h = rng.random(TILE_M)
|
|
172
|
+
z_h = np.zeros_like(x_h)
|
|
173
|
+
|
|
174
|
+
# Compute reference solution using numpy
|
|
175
|
+
z_np = np.linalg.solve(L_h.T, x_h)
|
|
176
|
+
|
|
177
|
+
# Create Warp arrays
|
|
178
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
179
|
+
x_wp = wp.array(x_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
180
|
+
z_wp = wp.array(z_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
181
|
+
|
|
182
|
+
# Run kernel
|
|
183
|
+
wp.launch_tiled(
|
|
184
|
+
tile_math_forward_substitution, dim=[1, 1], inputs=[L_wp, x_wp, z_wp], block_dim=TILE_DIM, device=device
|
|
185
|
+
)
|
|
186
|
+
wp.synchronize_device(device)
|
|
187
|
+
|
|
188
|
+
# Verify results
|
|
189
|
+
np.testing.assert_allclose(z_wp.numpy(), z_np)
|
|
190
|
+
|
|
191
|
+
# TODO: implement and test backward pass
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
@wp.kernel
|
|
195
|
+
def tile_math_back_substitution(
|
|
196
|
+
gL: wp.array2d(dtype=wp.float64), gx: wp.array1d(dtype=wp.float64), gz: wp.array1d(dtype=wp.float64)
|
|
197
|
+
):
|
|
198
|
+
i, j = wp.tid()
|
|
199
|
+
# Load L & x
|
|
200
|
+
L = wp.tile_load(gL, shape=(TILE_M, TILE_M), storage="shared")
|
|
201
|
+
x = wp.tile_load(gx, shape=TILE_M, storage="shared")
|
|
202
|
+
# Solve for z in L^T z = x
|
|
203
|
+
# Transpose because we loaded a lower triangular matrix
|
|
204
|
+
z = wp.tile_upper_solve(wp.tile_transpose(L), x)
|
|
205
|
+
# Store z
|
|
206
|
+
wp.tile_store(gz, z)
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def test_tile_cholesky_back_substitution(test, device):
|
|
210
|
+
# Create test data
|
|
211
|
+
rng = np.random.default_rng(42)
|
|
212
|
+
L_h = np.tril(rng.random((TILE_M, TILE_M))) # Lower triangular matrix
|
|
213
|
+
x_h = rng.random(TILE_M)
|
|
214
|
+
z_h = np.zeros_like(x_h)
|
|
215
|
+
|
|
216
|
+
# Compute reference solution using numpy
|
|
217
|
+
z_np = np.linalg.solve(L_h.T, x_h)
|
|
218
|
+
|
|
219
|
+
# Create Warp arrays
|
|
220
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
221
|
+
x_wp = wp.array(x_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
222
|
+
z_wp = wp.array(z_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
223
|
+
|
|
224
|
+
# Run kernel
|
|
225
|
+
wp.launch_tiled(
|
|
226
|
+
tile_math_back_substitution, dim=[1, 1], inputs=[L_wp, x_wp, z_wp], block_dim=TILE_DIM, device=device
|
|
227
|
+
)
|
|
228
|
+
wp.synchronize_device(device)
|
|
229
|
+
|
|
230
|
+
# Verify results
|
|
231
|
+
np.testing.assert_allclose(z_wp.numpy(), z_np)
|
|
232
|
+
|
|
233
|
+
# TODO: implement and test backward pass
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
@wp.kernel
|
|
237
|
+
def tile_math_forward_substitution_multiple_rhs(
|
|
238
|
+
gL: wp.array2d(dtype=wp.float64),
|
|
239
|
+
gx: wp.array2d(dtype=wp.float64),
|
|
240
|
+
gz: wp.array2d(dtype=wp.float64),
|
|
241
|
+
gc: wp.array2d(dtype=wp.float64),
|
|
242
|
+
):
|
|
243
|
+
i, j = wp.tid()
|
|
244
|
+
# Load L & x
|
|
245
|
+
L = wp.tile_load(gL, shape=(TILE_M, TILE_M), storage="shared")
|
|
246
|
+
x = wp.tile_load(gx, shape=(TILE_M, TILE_M), storage="shared")
|
|
247
|
+
# Solve for z in Lz = x.T
|
|
248
|
+
x_t = wp.tile_transpose(x)
|
|
249
|
+
z = wp.tile_lower_solve(L, x_t)
|
|
250
|
+
# Ensure matmul receives correct layout information
|
|
251
|
+
c = wp.tile_matmul(z, z)
|
|
252
|
+
# Store z and c
|
|
253
|
+
wp.tile_store(gz, z)
|
|
254
|
+
wp.tile_store(gc, c)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
def test_tile_cholesky_forward_substitution_multiple_rhs(test, device):
|
|
258
|
+
# Create test data
|
|
259
|
+
rng = np.random.default_rng(42)
|
|
260
|
+
L_h = np.tril(rng.random((TILE_M, TILE_M))) # Lower triangular matrix
|
|
261
|
+
x_h = rng.random((TILE_M, TILE_M)) # Multiple right-hand sides
|
|
262
|
+
z_h = np.zeros_like(x_h)
|
|
263
|
+
c_h = np.zeros_like(x_h)
|
|
264
|
+
|
|
265
|
+
# Compute reference solution using numpy
|
|
266
|
+
z_np = np.linalg.solve(L_h, x_h.T)
|
|
267
|
+
c_np = z_np @ z_np
|
|
268
|
+
|
|
269
|
+
# Create Warp arrays
|
|
270
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
271
|
+
x_wp = wp.array(x_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
272
|
+
z_wp = wp.array(z_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
273
|
+
c_wp = wp.array(c_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
274
|
+
|
|
275
|
+
# Run kernel
|
|
276
|
+
wp.launch_tiled(
|
|
277
|
+
tile_math_forward_substitution_multiple_rhs,
|
|
278
|
+
dim=[1, 1],
|
|
279
|
+
inputs=[L_wp, x_wp, z_wp, c_wp],
|
|
280
|
+
block_dim=TILE_DIM,
|
|
281
|
+
device=device,
|
|
282
|
+
)
|
|
283
|
+
wp.synchronize_device(device)
|
|
284
|
+
|
|
285
|
+
# Verify results
|
|
286
|
+
test.assertTrue(np.allclose(z_wp.numpy(), z_np))
|
|
287
|
+
test.assertTrue(np.allclose(c_wp.numpy(), c_np))
|
|
288
|
+
|
|
289
|
+
# TODO: implement and test backward pass
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
@wp.kernel
|
|
293
|
+
def tile_math_back_substitution_multiple_rhs(
|
|
294
|
+
gL: wp.array2d(dtype=wp.float64),
|
|
295
|
+
gx: wp.array2d(dtype=wp.float64),
|
|
296
|
+
gz: wp.array2d(dtype=wp.float64),
|
|
297
|
+
gc: wp.array2d(dtype=wp.float64),
|
|
298
|
+
):
|
|
299
|
+
i, j = wp.tid()
|
|
300
|
+
# Load L & x
|
|
301
|
+
L = wp.tile_load(gL, shape=(TILE_M, TILE_M), storage="shared")
|
|
302
|
+
x = wp.tile_load(gx, shape=(TILE_M, TILE_M), storage="shared")
|
|
303
|
+
# Solve for z in L^T z = x.T
|
|
304
|
+
x_t = wp.tile_transpose(x)
|
|
305
|
+
z = wp.tile_upper_solve(wp.tile_transpose(L), x_t)
|
|
306
|
+
# Ensure matmul receives correct layout information
|
|
307
|
+
c = wp.tile_matmul(z, z)
|
|
308
|
+
# Store z and c
|
|
309
|
+
wp.tile_store(gz, z)
|
|
310
|
+
wp.tile_store(gc, c)
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
def test_tile_cholesky_back_substitution_multiple_rhs(test, device):
|
|
314
|
+
# Create test data
|
|
315
|
+
rng = np.random.default_rng(42)
|
|
316
|
+
L_h = np.tril(rng.random((TILE_M, TILE_M))) # Lower triangular matrix
|
|
317
|
+
x_h = rng.random((TILE_M, TILE_M)) # Multiple right-hand sides
|
|
318
|
+
z_h = np.zeros_like(x_h)
|
|
319
|
+
c_h = np.zeros_like(x_h)
|
|
320
|
+
|
|
321
|
+
# Compute reference solution using numpy
|
|
322
|
+
z_np = np.linalg.solve(L_h.T, x_h.T)
|
|
323
|
+
c_np = z_np @ z_np
|
|
324
|
+
|
|
325
|
+
# Create Warp arrays
|
|
326
|
+
L_wp = wp.array(L_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
327
|
+
x_wp = wp.array(x_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
328
|
+
z_wp = wp.array(z_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
329
|
+
c_wp = wp.array(c_h, requires_grad=True, dtype=wp.float64, device=device)
|
|
330
|
+
|
|
331
|
+
# Run kernel
|
|
332
|
+
wp.launch_tiled(
|
|
333
|
+
tile_math_back_substitution_multiple_rhs,
|
|
334
|
+
dim=[1, 1],
|
|
335
|
+
inputs=[L_wp, x_wp, z_wp, c_wp],
|
|
336
|
+
block_dim=TILE_DIM,
|
|
337
|
+
device=device,
|
|
338
|
+
)
|
|
339
|
+
wp.synchronize_device(device)
|
|
340
|
+
|
|
341
|
+
# Verify results
|
|
342
|
+
test.assertTrue(np.allclose(z_wp.numpy(), z_np))
|
|
343
|
+
test.assertTrue(np.allclose(c_wp.numpy(), c_np))
|
|
344
|
+
|
|
345
|
+
# TODO: implement and test backward pass
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
# tests a complex composition of most libmathdx calls
|
|
349
|
+
def test_tile_cholesky_block_cholesky(test, device):
|
|
350
|
+
BLOCK_SIZE = wp.constant(TILE_M // 2)
|
|
351
|
+
|
|
352
|
+
@wp.kernel(module="unique")
|
|
353
|
+
def block_cholesky_kernel(
|
|
354
|
+
A: wp.array2d(dtype=float),
|
|
355
|
+
L: wp.array2d(dtype=float),
|
|
356
|
+
):
|
|
357
|
+
"""
|
|
358
|
+
Computes the Cholesky factorization of a symmetric positive definite matrix A in blocks.
|
|
359
|
+
It returns a lower-triangular matrix L such that A = L L^T.
|
|
360
|
+
"""
|
|
361
|
+
|
|
362
|
+
# Process the matrix in blocks along its leading dimension.
|
|
363
|
+
for k in range(0, TILE_M, BLOCK_SIZE):
|
|
364
|
+
end = k + BLOCK_SIZE
|
|
365
|
+
|
|
366
|
+
# Load current diagonal block A[k:end, k:end]
|
|
367
|
+
# and update with contributions from previously computed blocks.
|
|
368
|
+
A_kk_tile = wp.tile_load(A, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(k, k), storage="shared")
|
|
369
|
+
|
|
370
|
+
for j in range(0, k, BLOCK_SIZE):
|
|
371
|
+
L_block = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(k, j))
|
|
372
|
+
L_block_T = wp.tile_transpose(L_block)
|
|
373
|
+
L_L_T_block = wp.tile_matmul(L_block, L_block_T)
|
|
374
|
+
A_kk_tile -= L_L_T_block
|
|
375
|
+
|
|
376
|
+
# Compute the Cholesky factorization for the block
|
|
377
|
+
# print(A_kk_tile)
|
|
378
|
+
L_kk_tile = wp.tile_cholesky(A_kk_tile)
|
|
379
|
+
wp.tile_store(L, L_kk_tile, offset=(k, k))
|
|
380
|
+
|
|
381
|
+
# Process the blocks below the current block
|
|
382
|
+
for i in range(end, TILE_M, BLOCK_SIZE):
|
|
383
|
+
A_ik_tile = wp.tile_load(A, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(i, k), storage="shared")
|
|
384
|
+
|
|
385
|
+
for j in range(0, k, BLOCK_SIZE):
|
|
386
|
+
L_tile = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(i, j))
|
|
387
|
+
L_2_tile = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(k, j))
|
|
388
|
+
L_T_tile = wp.tile_transpose(L_2_tile)
|
|
389
|
+
L_L_T_tile = wp.tile_matmul(L_tile, L_T_tile)
|
|
390
|
+
A_ik_tile -= L_L_T_tile
|
|
391
|
+
|
|
392
|
+
A_ik_T_tile = wp.tile_transpose(A_ik_tile)
|
|
393
|
+
sol_T_tile = wp.tile_lower_solve(L_kk_tile, A_ik_T_tile)
|
|
394
|
+
sol_tile = wp.tile_transpose(sol_T_tile)
|
|
395
|
+
|
|
396
|
+
wp.tile_store(L, sol_tile, offset=(i, k))
|
|
397
|
+
|
|
398
|
+
@wp.kernel(module="unique")
|
|
399
|
+
def block_cholesky_solve_kernel(
|
|
400
|
+
L: wp.array2d(dtype=float),
|
|
401
|
+
b: wp.array2d(dtype=float),
|
|
402
|
+
scratch: wp.array2d(dtype=float),
|
|
403
|
+
x: wp.array2d(dtype=float),
|
|
404
|
+
):
|
|
405
|
+
"""
|
|
406
|
+
Solves A x = b given the Cholesky factor L (A = L L^T) using
|
|
407
|
+
blocked forward and backward substitution.
|
|
408
|
+
"""
|
|
409
|
+
|
|
410
|
+
# Forward substitution: solve L y = b
|
|
411
|
+
for i in range(0, TILE_M, BLOCK_SIZE):
|
|
412
|
+
i_end = i + BLOCK_SIZE
|
|
413
|
+
rhs_tile = wp.tile_load(b, shape=(BLOCK_SIZE, 1), offset=(i, 0))
|
|
414
|
+
for j in range(0, i, BLOCK_SIZE):
|
|
415
|
+
L_block = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(i, j))
|
|
416
|
+
y_block = wp.tile_load(scratch, shape=(BLOCK_SIZE, 1), offset=(j, 0))
|
|
417
|
+
Ly_block = wp.tile_matmul(L_block, y_block)
|
|
418
|
+
rhs_tile -= Ly_block
|
|
419
|
+
L_tile = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(i, i))
|
|
420
|
+
y_tile = wp.tile_lower_solve(L_tile, rhs_tile)
|
|
421
|
+
wp.tile_store(scratch, y_tile, offset=(i, 0))
|
|
422
|
+
|
|
423
|
+
# Backward substitution: solve L^T x = y
|
|
424
|
+
for i in range(TILE_M - BLOCK_SIZE, -1, -BLOCK_SIZE):
|
|
425
|
+
i_start = i
|
|
426
|
+
i_end = i_start + BLOCK_SIZE
|
|
427
|
+
rhs_tile = wp.tile_load(scratch, shape=(BLOCK_SIZE, 1), offset=(i_start, 0))
|
|
428
|
+
for j in range(i_end, TILE_M, BLOCK_SIZE):
|
|
429
|
+
L_tile = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(j, i_start))
|
|
430
|
+
L_T_tile = wp.tile_transpose(L_tile)
|
|
431
|
+
x_tile = wp.tile_load(x, shape=(BLOCK_SIZE, 1), offset=(j, 0))
|
|
432
|
+
L_T_x_tile = wp.tile_matmul(L_T_tile, x_tile)
|
|
433
|
+
rhs_tile -= L_T_x_tile
|
|
434
|
+
L_tile = wp.tile_load(L, shape=(BLOCK_SIZE, BLOCK_SIZE), offset=(i_start, i_start))
|
|
435
|
+
x_tile = wp.tile_upper_solve(wp.tile_transpose(L_tile), rhs_tile)
|
|
436
|
+
wp.tile_store(x, x_tile, offset=(i_start, 0))
|
|
437
|
+
|
|
438
|
+
# check block cholesky decomposition
|
|
439
|
+
|
|
440
|
+
rng = np.random.default_rng(42)
|
|
441
|
+
|
|
442
|
+
M = np.array(rng.random((TILE_M, TILE_M)), dtype=float)
|
|
443
|
+
|
|
444
|
+
A_np = M.T @ M + np.eye(TILE_M, TILE_M)
|
|
445
|
+
L_np = np.linalg.cholesky(A_np)
|
|
446
|
+
|
|
447
|
+
A_wp = wp.array(A_np, dtype=float, device=device)
|
|
448
|
+
L_wp = wp.zeros_like(A_wp)
|
|
449
|
+
|
|
450
|
+
wp.launch_tiled(block_cholesky_kernel, dim=1, inputs=[A_wp], outputs=[L_wp], block_dim=TILE_DIM, device=device)
|
|
451
|
+
|
|
452
|
+
# check block cholesky solve
|
|
453
|
+
|
|
454
|
+
assert_np_equal(L_wp.numpy(), L_np, tol=1e-6)
|
|
455
|
+
|
|
456
|
+
b_np = np.array(rng.random((TILE_M, 1)), dtype=float)
|
|
457
|
+
b_wp = wp.array(b_np, dtype=float, device=device)
|
|
458
|
+
|
|
459
|
+
scratch = wp.zeros_like(b_wp)
|
|
460
|
+
|
|
461
|
+
x_np = np.linalg.solve(L_np.T, np.linalg.solve(L_np, b_np))
|
|
462
|
+
x_wp = wp.zeros_like(b_wp)
|
|
463
|
+
|
|
464
|
+
wp.launch_tiled(
|
|
465
|
+
block_cholesky_solve_kernel,
|
|
466
|
+
dim=1,
|
|
467
|
+
inputs=[L_wp, b_wp, scratch],
|
|
468
|
+
outputs=[x_wp],
|
|
469
|
+
block_dim=TILE_DIM,
|
|
470
|
+
device=device,
|
|
471
|
+
)
|
|
472
|
+
|
|
473
|
+
assert_np_equal(x_wp.numpy(), x_np, tol=1e-6)
|
|
474
|
+
|
|
475
|
+
|
|
476
|
+
@wp.kernel
|
|
477
|
+
def test_tile_lower_solve(L: wp.array2d(dtype=float), y: wp.array(dtype=float), x: wp.array(dtype=float)):
|
|
478
|
+
L_tile = wp.tile_load(L, shape=(TILE_M, TILE_M))
|
|
479
|
+
y_tile = wp.tile_load(x, shape=(TILE_M,))
|
|
480
|
+
sol = wp.tile_lower_solve(L_tile, y_tile)
|
|
481
|
+
wp.tile_store(x, sol)
|
|
482
|
+
|
|
483
|
+
|
|
484
|
+
@wp.kernel
|
|
485
|
+
def test_tile_upper_solve(L: wp.array2d(dtype=float), y: wp.array(dtype=float), x: wp.array(dtype=float)):
|
|
486
|
+
L_tile = wp.tile_load(L, shape=(TILE_M, TILE_M))
|
|
487
|
+
y_tile = wp.tile_load(x, shape=(TILE_M,))
|
|
488
|
+
sol = wp.tile_upper_solve(L_tile, y_tile)
|
|
489
|
+
wp.tile_store(x, sol)
|
|
490
|
+
|
|
491
|
+
|
|
492
|
+
def test_tile_cholesky_singular_matrices(test, device):
|
|
493
|
+
if not wp._src.context.runtime.core.wp_is_mathdx_enabled():
|
|
494
|
+
test.skipTest("MathDx is not enabled")
|
|
495
|
+
|
|
496
|
+
rng = np.random.default_rng(42)
|
|
497
|
+
L_np = np.tril(rng.random((TILE_M, TILE_M))) # Lower triangular matrix
|
|
498
|
+
L_np[-1, -1] = 0.0 # Make it singular
|
|
499
|
+
y_np = rng.random(TILE_M)
|
|
500
|
+
|
|
501
|
+
L_wp = wp.array2d(L_np, dtype=float, device=device)
|
|
502
|
+
y_wp = wp.array(y_np, dtype=float, device=device)
|
|
503
|
+
x_wp = wp.zeros_like(y_wp)
|
|
504
|
+
|
|
505
|
+
wp.launch_tiled(
|
|
506
|
+
test_tile_lower_solve, dim=1, inputs=[L_wp, y_wp], outputs=[x_wp], block_dim=TILE_DIM, device=device
|
|
507
|
+
)
|
|
508
|
+
|
|
509
|
+
test.assertTrue(np.isnan(x_wp.numpy()).any())
|
|
510
|
+
|
|
511
|
+
L_np = np.triu(rng.random((TILE_M, TILE_M))) # Upper triangular matrix
|
|
512
|
+
L_np[-1, -1] = 0.0 # Make it singular
|
|
513
|
+
|
|
514
|
+
L_wp = wp.array2d(L_np, dtype=float, device=device)
|
|
515
|
+
y_wp = wp.array(y_np, dtype=float, device=device)
|
|
516
|
+
x_wp = wp.zeros_like(y_wp)
|
|
517
|
+
|
|
518
|
+
wp.launch_tiled(
|
|
519
|
+
test_tile_upper_solve, dim=1, inputs=[L_wp, y_wp], outputs=[x_wp], block_dim=TILE_DIM, device=device
|
|
520
|
+
)
|
|
521
|
+
|
|
522
|
+
test.assertTrue(np.isnan(x_wp.numpy()).any())
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
all_devices = get_test_devices()
|
|
526
|
+
cuda_devices = get_cuda_test_devices()
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
@unittest.skipUnless(
|
|
530
|
+
not wp._src.context.runtime.core.wp_is_mathdx_enabled()
|
|
531
|
+
or (
|
|
532
|
+
wp._src.context.runtime.core.wp_is_mathdx_enabled()
|
|
533
|
+
and wp._src.context.runtime.core.wp_cuda_toolkit_version() >= 12060
|
|
534
|
+
),
|
|
535
|
+
"MathDx is not enabled or is enabled but CUDA toolkit version is less than 12.6",
|
|
536
|
+
)
|
|
537
|
+
class TestTileCholesky(unittest.TestCase):
|
|
538
|
+
pass
|
|
539
|
+
|
|
540
|
+
|
|
541
|
+
add_function_test(
|
|
542
|
+
TestTileCholesky,
|
|
543
|
+
"test_tile_cholesky_cholesky",
|
|
544
|
+
test_tile_cholesky_cholesky,
|
|
545
|
+
devices=all_devices,
|
|
546
|
+
check_output=False,
|
|
547
|
+
)
|
|
548
|
+
add_function_test(
|
|
549
|
+
TestTileCholesky,
|
|
550
|
+
"test_tile_cholesky_cholesky_multiple_rhs",
|
|
551
|
+
test_tile_cholesky_cholesky_multiple_rhs,
|
|
552
|
+
devices=all_devices,
|
|
553
|
+
check_output=False,
|
|
554
|
+
)
|
|
555
|
+
|
|
556
|
+
|
|
557
|
+
add_function_test(
|
|
558
|
+
TestTileCholesky,
|
|
559
|
+
"test_tile_cholesky_forward_substitution",
|
|
560
|
+
test_tile_cholesky_forward_substitution,
|
|
561
|
+
devices=cuda_devices,
|
|
562
|
+
check_output=False,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
add_function_test(
|
|
566
|
+
TestTileCholesky,
|
|
567
|
+
"test_tile_cholesky_back_substitution",
|
|
568
|
+
test_tile_cholesky_back_substitution,
|
|
569
|
+
devices=cuda_devices,
|
|
570
|
+
check_output=False,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
add_function_test(
|
|
574
|
+
TestTileCholesky,
|
|
575
|
+
"test_tile_cholesky_forward_substitution_multiple_rhs",
|
|
576
|
+
test_tile_cholesky_forward_substitution_multiple_rhs,
|
|
577
|
+
devices=cuda_devices,
|
|
578
|
+
check_output=False,
|
|
579
|
+
)
|
|
580
|
+
|
|
581
|
+
add_function_test(
|
|
582
|
+
TestTileCholesky,
|
|
583
|
+
"test_tile_cholesky_back_substitution_multiple_rhs",
|
|
584
|
+
test_tile_cholesky_back_substitution_multiple_rhs,
|
|
585
|
+
devices=cuda_devices,
|
|
586
|
+
check_output=False,
|
|
587
|
+
)
|
|
588
|
+
|
|
589
|
+
add_function_test(
|
|
590
|
+
TestTileCholesky,
|
|
591
|
+
"test_tile_cholesky_block_cholesky",
|
|
592
|
+
test_tile_cholesky_block_cholesky,
|
|
593
|
+
devices=cuda_devices,
|
|
594
|
+
check_output=False,
|
|
595
|
+
)
|
|
596
|
+
|
|
597
|
+
add_function_test(
|
|
598
|
+
TestTileCholesky,
|
|
599
|
+
"test_tile_cholesky_singular_matrices",
|
|
600
|
+
test_tile_cholesky_singular_matrices,
|
|
601
|
+
devices=cuda_devices,
|
|
602
|
+
check_output=False,
|
|
603
|
+
)
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
if __name__ == "__main__":
|
|
607
|
+
wp.clear_kernel_cache()
|
|
608
|
+
unittest.main(verbosity=2, failfast=True)
|