warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +334 -0
- warp/__init__.pyi +5856 -0
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1077 -0
- warp/_src/build.py +620 -0
- warp/_src/build_dll.py +642 -0
- warp/_src/builtins.py +10555 -0
- warp/_src/codegen.py +4361 -0
- warp/_src/config.py +178 -0
- warp/_src/constants.py +59 -0
- warp/_src/context.py +8352 -0
- warp/_src/dlpack.py +464 -0
- warp/_src/fabric.py +362 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +510 -0
- warp/_src/fem/cache.py +689 -0
- warp/_src/fem/dirichlet.py +190 -0
- warp/_src/fem/domain.py +553 -0
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +703 -0
- warp/_src/fem/field/nodal_field.py +403 -0
- warp/_src/fem/field/restriction.py +39 -0
- warp/_src/fem/field/virtual.py +1021 -0
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
- warp/_src/fem/geometry/closest_point.py +99 -0
- warp/_src/fem/geometry/deformed_geometry.py +277 -0
- warp/_src/fem/geometry/element.py +854 -0
- warp/_src/fem/geometry/geometry.py +693 -0
- warp/_src/fem/geometry/grid_2d.py +478 -0
- warp/_src/fem/geometry/grid_3d.py +539 -0
- warp/_src/fem/geometry/hexmesh.py +956 -0
- warp/_src/fem/geometry/nanogrid.py +660 -0
- warp/_src/fem/geometry/partition.py +483 -0
- warp/_src/fem/geometry/quadmesh.py +597 -0
- warp/_src/fem/geometry/tetmesh.py +762 -0
- warp/_src/fem/geometry/trimesh.py +588 -0
- warp/_src/fem/integrate.py +2507 -0
- warp/_src/fem/linalg.py +385 -0
- warp/_src/fem/operator.py +398 -0
- warp/_src/fem/polynomial.py +231 -0
- warp/_src/fem/quadrature/__init__.py +17 -0
- warp/_src/fem/quadrature/pic_quadrature.py +318 -0
- warp/_src/fem/quadrature/quadrature.py +665 -0
- warp/_src/fem/space/__init__.py +248 -0
- warp/_src/fem/space/basis_function_space.py +499 -0
- warp/_src/fem/space/basis_space.py +681 -0
- warp/_src/fem/space/dof_mapper.py +253 -0
- warp/_src/fem/space/function_space.py +312 -0
- warp/_src/fem/space/grid_2d_function_space.py +179 -0
- warp/_src/fem/space/grid_3d_function_space.py +229 -0
- warp/_src/fem/space/hexmesh_function_space.py +255 -0
- warp/_src/fem/space/nanogrid_function_space.py +199 -0
- warp/_src/fem/space/partition.py +435 -0
- warp/_src/fem/space/quadmesh_function_space.py +222 -0
- warp/_src/fem/space/restriction.py +221 -0
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
- warp/_src/fem/space/shape/shape_function.py +134 -0
- warp/_src/fem/space/shape/square_shape_function.py +928 -0
- warp/_src/fem/space/shape/tet_shape_function.py +829 -0
- warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
- warp/_src/fem/space/tetmesh_function_space.py +270 -0
- warp/_src/fem/space/topology.py +461 -0
- warp/_src/fem/space/trimesh_function_space.py +193 -0
- warp/_src/fem/types.py +114 -0
- warp/_src/fem/utils.py +488 -0
- warp/_src/jax.py +188 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +389 -0
- warp/_src/jax_experimental/ffi.py +1286 -0
- warp/_src/jax_experimental/xla_ffi.py +658 -0
- warp/_src/marching_cubes.py +710 -0
- warp/_src/math.py +416 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +165 -0
- warp/_src/optim/linear.py +1608 -0
- warp/_src/optim/sgd.py +114 -0
- warp/_src/paddle.py +408 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +291 -0
- warp/_src/render/render_opengl.py +3638 -0
- warp/_src/render/render_usd.py +939 -0
- warp/_src/render/utils.py +162 -0
- warp/_src/sparse.py +2718 -0
- warp/_src/tape.py +1208 -0
- warp/_src/thirdparty/__init__.py +0 -0
- warp/_src/thirdparty/appdirs.py +598 -0
- warp/_src/thirdparty/dlpack.py +145 -0
- warp/_src/thirdparty/unittest_parallel.py +676 -0
- warp/_src/torch.py +393 -0
- warp/_src/types.py +5888 -0
- warp/_src/utils.py +1695 -0
- warp/autograd.py +33 -0
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +29 -0
- warp/build_dll.py +24 -0
- warp/codegen.py +24 -0
- warp/constants.py +24 -0
- warp/context.py +33 -0
- warp/dlpack.py +24 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +195 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +290 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_spin_lock.py +93 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/core/example_work_queue.py +118 -0
- warp/examples/distributed/example_jacobi_mpi.py +506 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +469 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +181 -0
- warp/examples/fem/example_convection_diffusion_dg.py +225 -0
- warp/examples/fem/example_darcy_ls_optimization.py +489 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +225 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_elastic_shape_optimization.py +387 -0
- warp/examples/fem/example_magnetostatics.py +242 -0
- warp/examples/fem/example_mixed_elasticity.py +293 -0
- warp/examples/fem/example_navier_stokes.py +263 -0
- warp/examples/fem/example_nonconforming_contact.py +300 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +357 -0
- warp/examples/fem/utils.py +1047 -0
- warp/examples/interop/example_jax_callable.py +146 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +232 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/tile/example_tile_block_cholesky.py +502 -0
- warp/examples/tile/example_tile_cholesky.py +88 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/examples/tile/example_tile_mlp.py +385 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/fabric.py +24 -0
- warp/fem/__init__.py +173 -0
- warp/fem/adaptivity.py +26 -0
- warp/fem/cache.py +30 -0
- warp/fem/dirichlet.py +24 -0
- warp/fem/field/__init__.py +24 -0
- warp/fem/field/field.py +26 -0
- warp/fem/geometry/__init__.py +21 -0
- warp/fem/geometry/closest_point.py +31 -0
- warp/fem/linalg.py +38 -0
- warp/fem/operator.py +32 -0
- warp/fem/polynomial.py +29 -0
- warp/fem/space/__init__.py +22 -0
- warp/fem/space/basis_space.py +24 -0
- warp/fem/space/shape/__init__.py +68 -0
- warp/fem/space/topology.py +24 -0
- warp/fem/types.py +24 -0
- warp/fem/utils.py +32 -0
- warp/jax.py +29 -0
- warp/jax_experimental/__init__.py +29 -0
- warp/jax_experimental/custom_call.py +29 -0
- warp/jax_experimental/ffi.py +39 -0
- warp/jax_experimental/xla_ffi.py +24 -0
- warp/marching_cubes.py +24 -0
- warp/math.py +37 -0
- warp/native/array.h +1687 -0
- warp/native/builtin.h +2327 -0
- warp/native/bvh.cpp +562 -0
- warp/native/bvh.cu +826 -0
- warp/native/bvh.h +555 -0
- warp/native/clang/clang.cpp +541 -0
- warp/native/coloring.cpp +622 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +568 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +677 -0
- warp/native/cuda_util.h +313 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +2023 -0
- warp/native/fabric.h +246 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +89 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1253 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +348 -0
- warp/native/mat.h +5189 -0
- warp/native/mathdx.cpp +93 -0
- warp/native/matnn.h +221 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +406 -0
- warp/native/mesh.h +2097 -0
- warp/native/nanovdb/GridHandle.h +533 -0
- warp/native/nanovdb/HostBuffer.h +591 -0
- warp/native/nanovdb/NanoVDB.h +6246 -0
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1664 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +145 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +363 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +55 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +286 -0
- warp/native/sort.h +35 -0
- warp/native/sparse.cpp +241 -0
- warp/native/sparse.cu +435 -0
- warp/native/spatial.h +1306 -0
- warp/native/svd.h +727 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +4124 -0
- warp/native/tile_radix_sort.h +1112 -0
- warp/native/tile_reduce.h +838 -0
- warp/native/tile_scan.h +240 -0
- warp/native/tuple.h +189 -0
- warp/native/vec.h +2199 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +68 -0
- warp/native/volume.h +970 -0
- warp/native/volume_builder.cu +483 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1143 -0
- warp/native/warp.cu +4604 -0
- warp/native/warp.h +358 -0
- warp/optim/__init__.py +20 -0
- warp/optim/adam.py +24 -0
- warp/optim/linear.py +35 -0
- warp/optim/sgd.py +24 -0
- warp/paddle.py +24 -0
- warp/py.typed +0 -0
- warp/render/__init__.py +22 -0
- warp/render/imgui_manager.py +29 -0
- warp/render/render_opengl.py +24 -0
- warp/render/render_usd.py +24 -0
- warp/render/utils.py +24 -0
- warp/sparse.py +51 -0
- warp/tape.py +24 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_conditional_captures.py +1147 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +691 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +335 -0
- warp/tests/geometry/test_hash_grid.py +259 -0
- warp/tests/geometry/test_marching_cubes.py +294 -0
- warp/tests/geometry/test_mesh.py +318 -0
- warp/tests/geometry/test_mesh_query_aabb.py +392 -0
- warp/tests/geometry/test_mesh_query_point.py +935 -0
- warp/tests/geometry/test_mesh_query_ray.py +323 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +730 -0
- warp/tests/interop/test_jax.py +1673 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/test_adam.py +162 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +3756 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +303 -0
- warp/tests/test_atomic.py +336 -0
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +312 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +732 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +974 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +298 -0
- warp/tests/test_context.py +35 -0
- warp/tests/test_copy.py +319 -0
- warp/tests/test_ctypes.py +618 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +127 -0
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +424 -0
- warp/tests/test_fabricarray.py +998 -0
- warp/tests/test_fast_math.py +72 -0
- warp/tests/test_fem.py +2204 -0
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +501 -0
- warp/tests/test_future_annotations.py +100 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +103 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +223 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_map.py +526 -0
- warp/tests/test_mat.py +3515 -0
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +573 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +212 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +70 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +408 -0
- warp/tests/test_quat.py +2653 -0
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +303 -0
- warp/tests/test_rounding.py +157 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +133 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +845 -0
- warp/tests/test_spatial.py +2859 -0
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +640 -0
- warp/tests/test_struct.py +901 -0
- warp/tests/test_tape.py +242 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +192 -0
- warp/tests/test_tuple.py +361 -0
- warp/tests/test_types.py +615 -0
- warp/tests/test_utils.py +594 -0
- warp/tests/test_vec.py +1408 -0
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/test_version.py +75 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +1519 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +608 -0
- warp/tests/tile/test_tile_load.py +724 -0
- warp/tests/tile/test_tile_mathdx.py +156 -0
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +400 -0
- warp/tests/tile/test_tile_reduce.py +950 -0
- warp/tests/tile/test_tile_shared_memory.py +376 -0
- warp/tests/tile/test_tile_sort.py +121 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +430 -0
- warp/tests/unittest_utils.py +469 -0
- warp/tests/walkthrough_debug.py +95 -0
- warp/torch.py +24 -0
- warp/types.py +51 -0
- warp/utils.py +31 -0
- warp_lang-1.10.0.dist-info/METADATA +459 -0
- warp_lang-1.10.0.dist-info/RECORD +468 -0
- warp_lang-1.10.0.dist-info/WHEEL +5 -0
- warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp_lang-1.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,845 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp._src.sparse import bsr_set_zero
|
|
22
|
+
from warp.sparse import (
|
|
23
|
+
bsr_assign,
|
|
24
|
+
bsr_axpy,
|
|
25
|
+
bsr_axpy_work_arrays,
|
|
26
|
+
bsr_copy,
|
|
27
|
+
bsr_diag,
|
|
28
|
+
bsr_from_triplets,
|
|
29
|
+
bsr_get_diag,
|
|
30
|
+
bsr_identity,
|
|
31
|
+
bsr_mm,
|
|
32
|
+
bsr_mm_work_arrays,
|
|
33
|
+
bsr_mv,
|
|
34
|
+
bsr_scale,
|
|
35
|
+
bsr_set_from_triplets,
|
|
36
|
+
bsr_set_transpose,
|
|
37
|
+
bsr_transposed,
|
|
38
|
+
bsr_zeros,
|
|
39
|
+
)
|
|
40
|
+
from warp.tests.unittest_utils import *
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def _get_block(mat, row, col, block_shape):
|
|
44
|
+
return mat[row * block_shape[0] : (row + 1) * block_shape[0], col * block_shape[1] : (col + 1) * block_shape[1]]
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _triplets_to_dense(shape, rows, cols, values):
|
|
48
|
+
mat = np.zeros(shape)
|
|
49
|
+
|
|
50
|
+
rows = rows.numpy()
|
|
51
|
+
cols = cols.numpy()
|
|
52
|
+
values = values.numpy()
|
|
53
|
+
|
|
54
|
+
block_shape = values.shape[1:] if values.ndim == 3 else (1, 1)
|
|
55
|
+
|
|
56
|
+
for row, col, val in zip(rows, cols, values):
|
|
57
|
+
mat_block = _get_block(mat, row, col, block_shape)
|
|
58
|
+
mat_block += val
|
|
59
|
+
|
|
60
|
+
return mat
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def _bsr_pruned(bsr):
|
|
64
|
+
return bsr_from_triplets(
|
|
65
|
+
rows_of_blocks=bsr.nrow,
|
|
66
|
+
cols_of_blocks=bsr.ncol,
|
|
67
|
+
rows=bsr.uncompress_rows(),
|
|
68
|
+
columns=bsr.columns,
|
|
69
|
+
values=bsr.values,
|
|
70
|
+
prune_numerical_zeros=True,
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _bsr_to_dense(bsr):
|
|
75
|
+
mat = np.zeros(bsr.shape)
|
|
76
|
+
|
|
77
|
+
offsets = bsr.offsets.numpy()
|
|
78
|
+
columns = bsr.columns.numpy()
|
|
79
|
+
values = bsr.values.numpy()
|
|
80
|
+
|
|
81
|
+
for row in range(bsr.nrow):
|
|
82
|
+
beg = offsets[row]
|
|
83
|
+
end = offsets[row + 1]
|
|
84
|
+
|
|
85
|
+
for block in range(beg, end):
|
|
86
|
+
mat_block = _get_block(mat, row, columns[block], bsr.block_shape)
|
|
87
|
+
mat_block += values[block]
|
|
88
|
+
|
|
89
|
+
return mat
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def test_csr_from_triplets(test, device):
|
|
93
|
+
rng = np.random.default_rng(123)
|
|
94
|
+
|
|
95
|
+
shape = (8, 6)
|
|
96
|
+
n = 100
|
|
97
|
+
|
|
98
|
+
rows = wp.array(rng.integers(0, high=shape[0], size=n, dtype=int), dtype=int, device=device)
|
|
99
|
+
cols = wp.array(rng.integers(0, high=shape[1], size=n, dtype=int), dtype=int, device=device)
|
|
100
|
+
vals = wp.array(rng.random(size=n), dtype=float, device=device)
|
|
101
|
+
|
|
102
|
+
ref = _triplets_to_dense(shape, rows, cols, vals)
|
|
103
|
+
|
|
104
|
+
csr = bsr_zeros(shape[0], shape[1], float, device=device)
|
|
105
|
+
bsr_set_from_triplets(csr, rows, cols, vals)
|
|
106
|
+
test.assertEqual(csr.block_size, 1)
|
|
107
|
+
|
|
108
|
+
res = _bsr_to_dense(csr)
|
|
109
|
+
|
|
110
|
+
assert_np_equal(res, ref, 0.0001)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def test_bsr_from_triplets(test, device):
|
|
114
|
+
rng = np.random.default_rng(123)
|
|
115
|
+
|
|
116
|
+
block_shape = (3, 2)
|
|
117
|
+
nrow = 4
|
|
118
|
+
ncol = 9
|
|
119
|
+
shape = (block_shape[0] * nrow, block_shape[1] * ncol)
|
|
120
|
+
n = 50
|
|
121
|
+
|
|
122
|
+
rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
|
|
123
|
+
cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
|
|
124
|
+
vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
|
|
125
|
+
|
|
126
|
+
ref = _triplets_to_dense(shape, rows, cols, vals)
|
|
127
|
+
|
|
128
|
+
bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
|
|
129
|
+
bsr_set_from_triplets(bsr, rows, cols, vals)
|
|
130
|
+
test.assertEqual(bsr.block_size, block_shape[0] * block_shape[1])
|
|
131
|
+
|
|
132
|
+
res = _bsr_to_dense(bsr)
|
|
133
|
+
|
|
134
|
+
assert_np_equal(res, ref, 0.0001)
|
|
135
|
+
|
|
136
|
+
# test zero-length inputs
|
|
137
|
+
bsr_set_from_triplets(
|
|
138
|
+
bsr,
|
|
139
|
+
wp.array([], dtype=int, device=device),
|
|
140
|
+
wp.array([], dtype=int, device=device),
|
|
141
|
+
wp.array([], shape=(0, block_shape[0], block_shape[1]), dtype=float, device=device),
|
|
142
|
+
)
|
|
143
|
+
test.assertEqual(bsr.nnz, 0)
|
|
144
|
+
|
|
145
|
+
# test passing indices with wrong data ty[e]
|
|
146
|
+
rows = wp.array(rows.numpy().astype(float), dtype=float, device=device)
|
|
147
|
+
cols = wp.array(cols.numpy().astype(float), dtype=float, device=device)
|
|
148
|
+
with test.assertRaisesRegex(
|
|
149
|
+
TypeError,
|
|
150
|
+
r"Rows and columns arrays must be of type int32$",
|
|
151
|
+
):
|
|
152
|
+
bsr_set_from_triplets(bsr, rows, cols, vals)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def test_bsr_from_triplets_prune_numerical_zeros(test, device):
|
|
156
|
+
rows = wp.array([1, 0, 2, 3], dtype=int)
|
|
157
|
+
cols = wp.array([0, 1, 2, 3], dtype=int)
|
|
158
|
+
vals = wp.zeros(len(rows), dtype=float)
|
|
159
|
+
|
|
160
|
+
A = bsr_from_triplets(
|
|
161
|
+
rows_of_blocks=12, # Number of rows of blocks
|
|
162
|
+
cols_of_blocks=12, # Number of columns of blocks
|
|
163
|
+
rows=rows, # Row indices
|
|
164
|
+
columns=cols, # Column indices
|
|
165
|
+
values=vals, # Block values
|
|
166
|
+
prune_numerical_zeros=False,
|
|
167
|
+
)
|
|
168
|
+
assert A.nnz_sync() == 4
|
|
169
|
+
|
|
170
|
+
A = bsr_from_triplets(
|
|
171
|
+
rows_of_blocks=12, # Number of rows of blocks
|
|
172
|
+
cols_of_blocks=12, # Number of columns of blocks
|
|
173
|
+
rows=rows, # Row indices
|
|
174
|
+
columns=cols, # Column indices
|
|
175
|
+
values=vals, # Block values
|
|
176
|
+
prune_numerical_zeros=True,
|
|
177
|
+
)
|
|
178
|
+
assert A.nnz_sync() == 0
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def test_bsr_from_triplets_gradient(test, device):
|
|
182
|
+
rng = np.random.default_rng(123)
|
|
183
|
+
|
|
184
|
+
block_shape = (3, 3)
|
|
185
|
+
nrow = 2
|
|
186
|
+
ncol = 2
|
|
187
|
+
|
|
188
|
+
n = 4
|
|
189
|
+
rows = wp.array([1, 0, 0, 1], dtype=int, device=device)
|
|
190
|
+
cols = wp.array([0, 1, 0, 0], dtype=int, device=device)
|
|
191
|
+
|
|
192
|
+
vals = wp.array(
|
|
193
|
+
rng.random(size=(n, block_shape[0], block_shape[1])), dtype=wp.mat33, device=device, requires_grad=True
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
with wp.Tape() as tape:
|
|
197
|
+
mat = bsr_from_triplets(nrow, ncol, rows, cols, vals)
|
|
198
|
+
|
|
199
|
+
assert mat.nnz_sync() == 3
|
|
200
|
+
|
|
201
|
+
zero_block = np.zeros((3, 3))
|
|
202
|
+
ones_block = np.ones((3, 3))
|
|
203
|
+
|
|
204
|
+
mat.values.grad[0:1].fill_(1.0)
|
|
205
|
+
tape.backward()
|
|
206
|
+
assert_np_equal(vals.grad.numpy(), np.stack((zero_block, zero_block, ones_block, zero_block)))
|
|
207
|
+
tape.zero()
|
|
208
|
+
|
|
209
|
+
mat.values.grad[1:2].fill_(1.0)
|
|
210
|
+
tape.backward()
|
|
211
|
+
assert_np_equal(vals.grad.numpy(), np.stack((zero_block, ones_block, zero_block, zero_block)))
|
|
212
|
+
tape.zero()
|
|
213
|
+
|
|
214
|
+
mat.values.grad[2:3].fill_(1.0)
|
|
215
|
+
tape.backward()
|
|
216
|
+
assert_np_equal(vals.grad.numpy(), np.stack((ones_block, zero_block, zero_block, ones_block)))
|
|
217
|
+
tape.zero()
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
def test_bsr_get_set_diag(test, device):
|
|
221
|
+
rng = np.random.default_rng(123)
|
|
222
|
+
|
|
223
|
+
block_shape = (3, 3)
|
|
224
|
+
nrow = 4
|
|
225
|
+
ncol = 4
|
|
226
|
+
nnz = 6
|
|
227
|
+
|
|
228
|
+
rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device)
|
|
229
|
+
cols = wp.array([1, 1, 1, 3, 2, 2], dtype=int, device=device)
|
|
230
|
+
vals_np = rng.random(size=(nnz, block_shape[0], block_shape[1]))
|
|
231
|
+
vals = wp.array(vals_np, dtype=float, device=device)
|
|
232
|
+
|
|
233
|
+
bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
|
|
234
|
+
bsr_set_from_triplets(bsr, rows, cols, vals)
|
|
235
|
+
|
|
236
|
+
diag = bsr_get_diag(bsr)
|
|
237
|
+
diag_np = diag.numpy()
|
|
238
|
+
|
|
239
|
+
assert_np_equal(diag_np[0], np.zeros(block_shape))
|
|
240
|
+
assert_np_equal(diag_np[1], vals_np[1], tol=0.00001)
|
|
241
|
+
assert_np_equal(diag_np[2], vals_np[4], tol=0.00001)
|
|
242
|
+
assert_np_equal(diag_np[3], vals_np[3], tol=0.00001)
|
|
243
|
+
|
|
244
|
+
# Test set_diag/get_diag round-trips with various block types
|
|
245
|
+
|
|
246
|
+
# Array of blocks
|
|
247
|
+
diag_bsr = bsr_diag(diag)
|
|
248
|
+
bsr_get_diag(diag_bsr, out=diag)
|
|
249
|
+
assert_np_equal(diag_np, diag.numpy())
|
|
250
|
+
|
|
251
|
+
diag_scalar_np = rng.random(size=nrow)
|
|
252
|
+
diag_scalar = wp.array(diag_scalar_np, device=device)
|
|
253
|
+
diag_bsr = bsr_diag(diag_scalar)
|
|
254
|
+
diag = bsr_get_diag(diag_bsr)
|
|
255
|
+
assert_np_equal(diag_scalar_np, diag.numpy(), tol=0.000001)
|
|
256
|
+
|
|
257
|
+
diag = bsr_get_diag(2.0 * diag_bsr)
|
|
258
|
+
assert_np_equal(2.0 * diag_scalar_np, diag.numpy(), tol=0.000001)
|
|
259
|
+
|
|
260
|
+
# Uniform block diagonal
|
|
261
|
+
|
|
262
|
+
with test.assertRaisesRegex(ValueError, "BsrMatrix block type must be either warp matrix or scalar"):
|
|
263
|
+
# 1d block type -- invalid
|
|
264
|
+
diag_bsr = bsr_diag(diag=vals_np[0, 0], rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
|
|
265
|
+
|
|
266
|
+
diag_bsr = bsr_diag(diag=vals_np[0], rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
|
|
267
|
+
assert diag_bsr.values.shape[0] == nrow
|
|
268
|
+
assert_np_equal(diag_bsr.values.numpy(), np.broadcast_to(vals_np[0], shape=(nrow, *block_shape)), tol=0.000001)
|
|
269
|
+
|
|
270
|
+
diag_bsr = bsr_diag(diag=float(diag_scalar_np[0]), rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
|
|
271
|
+
assert diag_bsr.values.shape[0] == nrow
|
|
272
|
+
assert_np_equal(diag_bsr.values.numpy(), np.full(nrow, diag_scalar_np[0]), tol=0.000001)
|
|
273
|
+
|
|
274
|
+
# Identity matrix
|
|
275
|
+
diag_bsr = bsr_identity(nrow, block_type=wp.mat44, device=device)
|
|
276
|
+
assert diag_bsr.values.shape[0] == nrow
|
|
277
|
+
assert_np_equal(diag_bsr.values.numpy(), np.broadcast_to(np.eye(4), shape=(nrow, 4, 4)), tol=0.000001)
|
|
278
|
+
|
|
279
|
+
diag_csr = bsr_identity(nrow, block_type=wp.float64, device=device)
|
|
280
|
+
np.testing.assert_array_equal(diag_csr.values.numpy(), np.ones(nrow, dtype=float))
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
def test_bsr_split_merge(test, device):
|
|
284
|
+
rng = np.random.default_rng(123)
|
|
285
|
+
|
|
286
|
+
block_shape = (4, 2)
|
|
287
|
+
nrow = 4
|
|
288
|
+
ncol = 8
|
|
289
|
+
n = 20
|
|
290
|
+
|
|
291
|
+
rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
|
|
292
|
+
cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
|
|
293
|
+
vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
|
|
294
|
+
|
|
295
|
+
bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
|
|
296
|
+
bsr_set_from_triplets(bsr, rows, cols, vals)
|
|
297
|
+
ref = _bsr_to_dense(bsr)
|
|
298
|
+
|
|
299
|
+
bsr_split = bsr_copy(bsr, block_shape=(2, 2))
|
|
300
|
+
test.assertEqual(bsr_split.block_size, 4)
|
|
301
|
+
res = _bsr_to_dense(bsr_split)
|
|
302
|
+
assert_np_equal(res, ref, 0.0001)
|
|
303
|
+
|
|
304
|
+
bsr_split = bsr_copy(bsr, block_shape=(1, 1))
|
|
305
|
+
test.assertEqual(bsr_split.block_size, 1)
|
|
306
|
+
res = _bsr_to_dense(bsr_split)
|
|
307
|
+
assert_np_equal(res, ref, 0.0001)
|
|
308
|
+
|
|
309
|
+
bsr_merge = bsr_copy(bsr, block_shape=(4, 4))
|
|
310
|
+
test.assertEqual(bsr_merge.block_size, 16)
|
|
311
|
+
res = _bsr_to_dense(bsr_merge)
|
|
312
|
+
assert_np_equal(res, ref, 0.0001)
|
|
313
|
+
|
|
314
|
+
bsr_merge = bsr_copy(bsr, block_shape=(8, 8))
|
|
315
|
+
test.assertEqual(bsr_merge.block_size, 64)
|
|
316
|
+
res = _bsr_to_dense(bsr_merge)
|
|
317
|
+
assert_np_equal(res, ref, 0.0001)
|
|
318
|
+
|
|
319
|
+
with test.assertRaisesRegex(ValueError, "Incompatible dest and src block shapes"):
|
|
320
|
+
bsr_copy(bsr, block_shape=(3, 3))
|
|
321
|
+
|
|
322
|
+
with test.assertRaisesRegex(ValueError, "Incompatible dest and src block shapes"):
|
|
323
|
+
bsr_copy(bsr, block_shape=(5, 5))
|
|
324
|
+
|
|
325
|
+
with test.assertRaisesRegex(
|
|
326
|
+
ValueError,
|
|
327
|
+
r"The requested block shape \(32, 32\) does not evenly divide the source matrix of total size \(16, 16\)",
|
|
328
|
+
):
|
|
329
|
+
bsr_copy(bsr, block_shape=(32, 32))
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def test_bsr_assign_masked(test, device):
|
|
333
|
+
rng = np.random.default_rng(123)
|
|
334
|
+
|
|
335
|
+
block_shape = (1, 2)
|
|
336
|
+
nrow = 16
|
|
337
|
+
ncol = 8
|
|
338
|
+
shape = (block_shape[0] * nrow, block_shape[1] * ncol)
|
|
339
|
+
n = 20
|
|
340
|
+
|
|
341
|
+
rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
|
|
342
|
+
cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
|
|
343
|
+
vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
|
|
344
|
+
|
|
345
|
+
A = bsr_from_triplets(nrow, ncol, rows, cols, vals)
|
|
346
|
+
|
|
347
|
+
# Extract coarse diagonal with copy + diag funcs, for reference
|
|
348
|
+
A_coarse = bsr_copy(A, block_shape=(4, 4))
|
|
349
|
+
ref = _bsr_to_dense(bsr_diag(bsr_get_diag(A_coarse)))
|
|
350
|
+
|
|
351
|
+
# Extract coarse diagonal with masked assign (more memory efficient)
|
|
352
|
+
diag_masked = bsr_diag(rows_of_blocks=shape[0] // 4, block_type=A_coarse.dtype, device=device)
|
|
353
|
+
bsr_assign(src=A, dest=diag_masked, masked=True)
|
|
354
|
+
res = _bsr_to_dense(diag_masked)
|
|
355
|
+
|
|
356
|
+
assert_np_equal(res, ref, 0.0001)
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
def make_test_bsr_transpose(block_shape, scalar_type):
|
|
360
|
+
def test_bsr_transpose(test, device):
|
|
361
|
+
rng = np.random.default_rng(123)
|
|
362
|
+
|
|
363
|
+
nrow = 4
|
|
364
|
+
ncol = 5
|
|
365
|
+
nnz = 6
|
|
366
|
+
|
|
367
|
+
rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device)
|
|
368
|
+
cols = wp.array([1, 4, 1, 3, 0, 2], dtype=int, device=device)
|
|
369
|
+
|
|
370
|
+
vals_np = rng.random(size=(nnz, block_shape[0], block_shape[1]))
|
|
371
|
+
vals = wp.array(vals_np, dtype=scalar_type, device=device).reshape((nnz, block_shape[0], block_shape[1]))
|
|
372
|
+
|
|
373
|
+
bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
|
|
374
|
+
bsr_set_from_triplets(bsr, rows, cols, vals)
|
|
375
|
+
ref = 2.0 * np.transpose(_bsr_to_dense(bsr))
|
|
376
|
+
|
|
377
|
+
bsr_transposed = (2.0 * bsr).transpose().eval()
|
|
378
|
+
|
|
379
|
+
res = _bsr_to_dense(bsr_transposed)
|
|
380
|
+
assert_np_equal(res, ref, 0.0001)
|
|
381
|
+
|
|
382
|
+
if block_shape[0] != block_shape[-1]:
|
|
383
|
+
# test incompatible block shape
|
|
384
|
+
with test.assertRaisesRegex(ValueError, "Destination block shape must be"):
|
|
385
|
+
bsr_set_transpose(dest=bsr, src=bsr)
|
|
386
|
+
|
|
387
|
+
# test masked transpose
|
|
388
|
+
# remove some non zeros from src and dest matrices
|
|
389
|
+
bsr_set_from_triplets(bsr, rows[:3], cols[:3], vals[:3])
|
|
390
|
+
bsr_transposed = bsr_from_triplets(
|
|
391
|
+
bsr_transposed.nrow,
|
|
392
|
+
bsr_transposed.ncol,
|
|
393
|
+
bsr_transposed.uncompress_rows()[:3],
|
|
394
|
+
bsr_transposed.columns[:3],
|
|
395
|
+
bsr_transposed.values[:3],
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
assert_np_equal(bsr_transposed.uncompress_rows().numpy()[:3], [0, 1, 1])
|
|
399
|
+
assert_np_equal(bsr_transposed.columns.numpy()[:3], [2, 0, 2])
|
|
400
|
+
bsr_set_transpose(bsr_transposed, bsr, masked=True)
|
|
401
|
+
assert _bsr_pruned(bsr_transposed).nnz_sync() == 2
|
|
402
|
+
|
|
403
|
+
return test_bsr_transpose
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
def make_test_bsr_axpy(block_shape, scalar_type):
|
|
407
|
+
def test_bsr_axpy(test, device):
|
|
408
|
+
rng = np.random.default_rng(123)
|
|
409
|
+
|
|
410
|
+
nrow = 2
|
|
411
|
+
ncol = 3
|
|
412
|
+
nnz = 6
|
|
413
|
+
|
|
414
|
+
alphas = [-1.0, 0.0, 1.0]
|
|
415
|
+
betas = [2.0, -1.0, 0.0]
|
|
416
|
+
|
|
417
|
+
x_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
418
|
+
x_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
419
|
+
x_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
|
|
420
|
+
x_vals = x_vals.reshape((nnz, block_shape[0], block_shape[1]))
|
|
421
|
+
|
|
422
|
+
x = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
|
|
423
|
+
bsr_set_from_triplets(x, x_rows, x_cols, x_vals)
|
|
424
|
+
|
|
425
|
+
y_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
426
|
+
y_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
427
|
+
y_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
|
|
428
|
+
y_vals = y_vals.reshape((nnz, block_shape[0], block_shape[1]))
|
|
429
|
+
|
|
430
|
+
y = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
|
|
431
|
+
bsr_set_from_triplets(y, y_rows, y_cols, y_vals)
|
|
432
|
+
|
|
433
|
+
work_arrays = bsr_axpy_work_arrays()
|
|
434
|
+
for alpha, beta in zip(alphas, betas):
|
|
435
|
+
ref = alpha * _bsr_to_dense(x) + beta * _bsr_to_dense(y)
|
|
436
|
+
bsr_axpy(x, y, alpha, beta, work_arrays=work_arrays)
|
|
437
|
+
|
|
438
|
+
res = _bsr_to_dense(y)
|
|
439
|
+
assert_np_equal(res, ref, 0.0001)
|
|
440
|
+
|
|
441
|
+
# test aliasing
|
|
442
|
+
ref = 3.0 * _bsr_to_dense(y)
|
|
443
|
+
y += y * 2.0
|
|
444
|
+
res = _bsr_to_dense(y)
|
|
445
|
+
assert_np_equal(res, ref, 0.0001)
|
|
446
|
+
|
|
447
|
+
# test masked
|
|
448
|
+
y_mask = bsr_from_triplets(nrow, ncol, y.uncompress_rows()[:1], y.columns[:1], y.values[:1])
|
|
449
|
+
bsr_axpy(y, y_mask, masked=True)
|
|
450
|
+
assert y_mask.nnz_sync() == 1
|
|
451
|
+
assert_np_equal(y_mask.values.numpy(), 2.0 * y.values[:1].numpy(), 0.0001)
|
|
452
|
+
|
|
453
|
+
# test incompatible shapes
|
|
454
|
+
y.ncol = y.ncol + 1
|
|
455
|
+
with test.assertRaisesRegex(ValueError, "Matrices must have the same number of rows and columns"):
|
|
456
|
+
bsr_axpy(x, y)
|
|
457
|
+
|
|
458
|
+
return test_bsr_axpy
|
|
459
|
+
|
|
460
|
+
|
|
461
|
+
def make_test_bsr_mm(block_shape, scalar_type):
|
|
462
|
+
def test_bsr_mm(test, device):
|
|
463
|
+
rng = np.random.default_rng(123)
|
|
464
|
+
|
|
465
|
+
x_nrow = 3
|
|
466
|
+
x_ncol = 2
|
|
467
|
+
x_block_shape = block_shape
|
|
468
|
+
|
|
469
|
+
y_nrow = 2
|
|
470
|
+
y_ncol = 3
|
|
471
|
+
y_block_shape = block_shape[::-1]
|
|
472
|
+
|
|
473
|
+
z_nrow = x_nrow
|
|
474
|
+
z_ncol = y_ncol
|
|
475
|
+
z_block_shape = (x_block_shape[0], y_block_shape[1])
|
|
476
|
+
|
|
477
|
+
nnz = 6
|
|
478
|
+
|
|
479
|
+
alphas = [-1.0, 0.0, 2.0]
|
|
480
|
+
betas = [2.0, -1.0, 0.0]
|
|
481
|
+
|
|
482
|
+
x_rows = wp.array(rng.integers(0, high=x_nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
483
|
+
x_cols = wp.array(rng.integers(0, high=x_ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
484
|
+
x_vals = wp.array(rng.random(size=(nnz, x_block_shape[0], x_block_shape[1])), dtype=scalar_type, device=device)
|
|
485
|
+
x_vals = x_vals.reshape((nnz, x_block_shape[0], x_block_shape[1]))
|
|
486
|
+
|
|
487
|
+
x = bsr_zeros(x_nrow, x_ncol, wp._src.types.matrix(shape=x_block_shape, dtype=scalar_type), device=device)
|
|
488
|
+
bsr_set_from_triplets(x, x_rows, x_cols, x_vals)
|
|
489
|
+
|
|
490
|
+
y_rows = wp.array(rng.integers(0, high=y_nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
491
|
+
y_cols = wp.array(rng.integers(0, high=y_ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
492
|
+
y_vals = wp.array(rng.random(size=(nnz, y_block_shape[0], y_block_shape[1])), dtype=scalar_type, device=device)
|
|
493
|
+
y_vals = y_vals.reshape((nnz, y_block_shape[0], y_block_shape[1]))
|
|
494
|
+
|
|
495
|
+
y = bsr_zeros(y_nrow, y_ncol, wp._src.types.matrix(shape=y_block_shape, dtype=scalar_type), device=device)
|
|
496
|
+
bsr_set_from_triplets(y, y_rows, y_cols, y_vals)
|
|
497
|
+
|
|
498
|
+
z_rows = wp.array(rng.integers(0, high=z_nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
499
|
+
z_cols = wp.array(rng.integers(0, high=z_ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
500
|
+
z_vals = wp.array(rng.random(size=(nnz, z_block_shape[0], z_block_shape[1])), dtype=scalar_type, device=device)
|
|
501
|
+
z_vals = z_vals.reshape((nnz, z_block_shape[0], z_block_shape[1]))
|
|
502
|
+
|
|
503
|
+
z = bsr_zeros(z_nrow, z_ncol, wp._src.types.matrix(shape=z_block_shape, dtype=scalar_type), device=device)
|
|
504
|
+
bsr_set_from_triplets(z, z_rows, z_cols, z_vals)
|
|
505
|
+
|
|
506
|
+
work_arrays = bsr_mm_work_arrays()
|
|
507
|
+
for alpha, beta in zip(alphas, betas):
|
|
508
|
+
ref = alpha * (_bsr_to_dense(x) @ _bsr_to_dense(y)) + beta * _bsr_to_dense(z)
|
|
509
|
+
|
|
510
|
+
bsr_mm(x, y, z, alpha, beta, work_arrays=work_arrays)
|
|
511
|
+
|
|
512
|
+
res = _bsr_to_dense(z)
|
|
513
|
+
assert_np_equal(res, ref, 0.0001)
|
|
514
|
+
|
|
515
|
+
# test reusing topology from work arrays
|
|
516
|
+
# (assumes betas[-1] = 0)
|
|
517
|
+
bsr_mm(x, y, z, alpha, beta, work_arrays=work_arrays, reuse_topology=True)
|
|
518
|
+
assert_np_equal(res, ref, 0.0001)
|
|
519
|
+
|
|
520
|
+
# test masked mm
|
|
521
|
+
z = bsr_diag(rows_of_blocks=z.nrow, block_type=z.dtype, device=z.device)
|
|
522
|
+
bsr_mm(x, y, z, masked=True)
|
|
523
|
+
res = _bsr_to_dense(z)
|
|
524
|
+
ref = _bsr_to_dense(bsr_diag(bsr_get_diag(x @ y)))
|
|
525
|
+
assert_np_equal(res, ref, 0.0001)
|
|
526
|
+
|
|
527
|
+
# using overloaded operators
|
|
528
|
+
x = (alpha * x) @ y
|
|
529
|
+
assert_np_equal(res, ref, 0.0001)
|
|
530
|
+
|
|
531
|
+
# test aliasing of matrix arguments
|
|
532
|
+
# x = alpha * z * x + beta * x
|
|
533
|
+
alpha, beta = alphas[0], betas[0]
|
|
534
|
+
ref = alpha * (_bsr_to_dense(z) @ _bsr_to_dense(x)) + beta * _bsr_to_dense(x)
|
|
535
|
+
bsr_mm(z, x, x, alpha, beta)
|
|
536
|
+
|
|
537
|
+
res = _bsr_to_dense(x)
|
|
538
|
+
assert_np_equal(res, ref, 0.0001)
|
|
539
|
+
|
|
540
|
+
# z = alpha * z * z + beta * z
|
|
541
|
+
ref = alpha * (_bsr_to_dense(z) @ _bsr_to_dense(z)) + beta * _bsr_to_dense(z)
|
|
542
|
+
bsr_mm(z, z, z, alpha, beta)
|
|
543
|
+
|
|
544
|
+
res = _bsr_to_dense(z)
|
|
545
|
+
assert_np_equal(res, ref, 0.0001)
|
|
546
|
+
|
|
547
|
+
# test incompatible shapes
|
|
548
|
+
if block_shape[0] != block_shape[-1]:
|
|
549
|
+
with test.assertRaisesRegex(ValueError, "Incompatible block sizes"):
|
|
550
|
+
bsr_mm(z, y)
|
|
551
|
+
|
|
552
|
+
y.ncol = y.ncol * 2
|
|
553
|
+
with test.assertRaisesRegex(ValueError, "Incompatible number of rows/columns"):
|
|
554
|
+
bsr_mm(y, z)
|
|
555
|
+
|
|
556
|
+
return test_bsr_mm
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
def make_test_bsr_mv(block_shape, scalar_type):
|
|
560
|
+
def test_bsr_mv(test, device):
|
|
561
|
+
rng = np.random.default_rng(123)
|
|
562
|
+
|
|
563
|
+
nrow = 2
|
|
564
|
+
ncol = 3
|
|
565
|
+
nnz = 6
|
|
566
|
+
|
|
567
|
+
alphas = [-1.0, 0.0, 1.0]
|
|
568
|
+
betas = [2.0, -1.0, 0.0]
|
|
569
|
+
A_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
|
|
570
|
+
A_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
|
|
571
|
+
A_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
|
|
572
|
+
A_vals = A_vals.reshape((nnz, block_shape[0], block_shape[1]))
|
|
573
|
+
|
|
574
|
+
A = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
|
|
575
|
+
bsr_set_from_triplets(A, A_rows, A_cols, A_vals)
|
|
576
|
+
|
|
577
|
+
if block_shape[1] == 1:
|
|
578
|
+
x = wp.array(rng.random(size=ncol), dtype=scalar_type, device=device)
|
|
579
|
+
else:
|
|
580
|
+
x = wp.array(
|
|
581
|
+
rng.random(size=(ncol, block_shape[1])),
|
|
582
|
+
dtype=wp.vec(length=block_shape[1], dtype=scalar_type),
|
|
583
|
+
device=device,
|
|
584
|
+
)
|
|
585
|
+
|
|
586
|
+
if block_shape[0] == 1:
|
|
587
|
+
y = wp.array(rng.random(size=nrow), dtype=scalar_type, device=device)
|
|
588
|
+
else:
|
|
589
|
+
y = wp.array(
|
|
590
|
+
rng.random(size=(nrow, block_shape[0])),
|
|
591
|
+
dtype=wp.vec(length=block_shape[0], dtype=scalar_type),
|
|
592
|
+
device=device,
|
|
593
|
+
)
|
|
594
|
+
|
|
595
|
+
work_buffer = wp.empty_like(y)
|
|
596
|
+
for alpha, beta in zip(alphas, betas):
|
|
597
|
+
ref = alpha * _bsr_to_dense(A) @ x.numpy().flatten() + beta * y.numpy().flatten()
|
|
598
|
+
|
|
599
|
+
if beta == 0.0:
|
|
600
|
+
y = A @ x
|
|
601
|
+
else:
|
|
602
|
+
bsr_mv(A, x, y, alpha, beta, work_buffer=work_buffer)
|
|
603
|
+
|
|
604
|
+
res = y.numpy().flatten()
|
|
605
|
+
assert_np_equal(res, ref, 0.0001)
|
|
606
|
+
|
|
607
|
+
# test transposed product
|
|
608
|
+
ref = alpha * y.numpy().flatten() @ _bsr_to_dense(A)
|
|
609
|
+
x = y @ (A * alpha)
|
|
610
|
+
res = x.numpy().flatten()
|
|
611
|
+
assert_np_equal(res, ref, 0.0001)
|
|
612
|
+
|
|
613
|
+
# test aliasing
|
|
614
|
+
AAt = bsr_mm(A, bsr_transposed(A))
|
|
615
|
+
assert_np_equal(_bsr_to_dense(AAt), _bsr_to_dense(A) @ _bsr_to_dense(A).T, 0.0001)
|
|
616
|
+
|
|
617
|
+
alpha, beta = alphas[0], betas[0]
|
|
618
|
+
ref = alpha * _bsr_to_dense(AAt) @ y.numpy().flatten() + beta * y.numpy().flatten()
|
|
619
|
+
bsr_mv(AAt, y, y, alpha, beta)
|
|
620
|
+
res = y.numpy().flatten()
|
|
621
|
+
assert_np_equal(res, ref, 0.0001)
|
|
622
|
+
|
|
623
|
+
A.ncol = A.ncol + 1
|
|
624
|
+
with test.assertRaisesRegex(ValueError, "Incompatible 'x'"):
|
|
625
|
+
bsr_mv(A, x, y)
|
|
626
|
+
|
|
627
|
+
A.ncol = A.ncol - 1
|
|
628
|
+
A.nrow = A.nrow - 1
|
|
629
|
+
with test.assertRaisesRegex(ValueError, "Incompatible 'y'"):
|
|
630
|
+
bsr_mv(A, x, y)
|
|
631
|
+
|
|
632
|
+
return test_bsr_mv
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
def make_test_bsr_multiply_deep(block_shape, scalar_type):
|
|
636
|
+
def test_bsr_multiply_deep(test, device):
|
|
637
|
+
"""Test BSR matrix multiplication with deep matrices (many columns > 256)"""
|
|
638
|
+
rng = np.random.default_rng(123)
|
|
639
|
+
|
|
640
|
+
# Generate a dense matrix with few rows and many columns (> 256)
|
|
641
|
+
nrow = (4 + block_shape[0] - 1) // block_shape[0]
|
|
642
|
+
ncol = (600 + block_shape[1] - 1) // block_shape[1]
|
|
643
|
+
|
|
644
|
+
# Create a dense "sparse" matrix
|
|
645
|
+
values = rng.random(size=(nrow * ncol, block_shape[0], block_shape[1]))
|
|
646
|
+
rows, cols = np.meshgrid(np.arange(nrow), np.arange(ncol))
|
|
647
|
+
|
|
648
|
+
# Convert to warp arrays
|
|
649
|
+
rows = wp.array(rows.flatten(), dtype=int, device=device)
|
|
650
|
+
cols = wp.array(cols.flatten(), dtype=int, device=device)
|
|
651
|
+
vals = wp.array(values, dtype=scalar_type, device=device)
|
|
652
|
+
|
|
653
|
+
# Convert to BSR using bsr_from_triplets
|
|
654
|
+
A = bsr_from_triplets(nrow, ncol, rows, cols, vals)
|
|
655
|
+
|
|
656
|
+
# Get dense representation for numpy reference
|
|
657
|
+
A_dense = _bsr_to_dense(A)
|
|
658
|
+
|
|
659
|
+
# Multiply with itself transpose using bsr_mm
|
|
660
|
+
# A @ A.T should result in a nrow x nrow matrix
|
|
661
|
+
At = bsr_transposed(A)
|
|
662
|
+
|
|
663
|
+
result = bsr_mm(A, At)
|
|
664
|
+
|
|
665
|
+
# Check that the result is correct against numpy reference
|
|
666
|
+
result_dense = _bsr_to_dense(result)
|
|
667
|
+
ref_dense = A_dense @ A_dense.T
|
|
668
|
+
|
|
669
|
+
assert_np_equal(result_dense, ref_dense, 0.0001)
|
|
670
|
+
|
|
671
|
+
# Additional test: multiply A.T @ A (should be ncol x ncol)
|
|
672
|
+
result2 = bsr_mm(At, A)
|
|
673
|
+
result2_dense = _bsr_to_dense(result2)
|
|
674
|
+
ref2_dense = A_dense.T @ A_dense
|
|
675
|
+
|
|
676
|
+
assert_np_equal(result2_dense, ref2_dense, 0.0001)
|
|
677
|
+
|
|
678
|
+
# Test matrix vector products
|
|
679
|
+
x = wp.array(rng.random(size=A.shape[1]), dtype=A.scalar_type, device=device)
|
|
680
|
+
y = wp.array(rng.random(size=A.shape[0]), dtype=A.scalar_type, device=device)
|
|
681
|
+
bsr_mv(A, x, y)
|
|
682
|
+
res = y.numpy().flatten()
|
|
683
|
+
ref = A_dense @ x.numpy().flatten()
|
|
684
|
+
assert_np_equal(res, ref, 0.0001 * block_shape[1])
|
|
685
|
+
|
|
686
|
+
bsr_mv(A, y, x, transpose=True)
|
|
687
|
+
res = x.numpy().flatten()
|
|
688
|
+
ref = A_dense.T @ y.numpy().flatten()
|
|
689
|
+
assert_np_equal(res, ref, 0.0001 * block_shape[1])
|
|
690
|
+
|
|
691
|
+
return test_bsr_multiply_deep
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
def test_bsr_mm_max_new_nnz(test, device):
|
|
695
|
+
"""Test that BSR matrix multiplication with max_new_nnz works"""
|
|
696
|
+
A = bsr_from_triplets(
|
|
697
|
+
2,
|
|
698
|
+
2,
|
|
699
|
+
wp.array([0, 0, 1, 1], dtype=int, device=device),
|
|
700
|
+
wp.array([0, 1, 0, 1], dtype=int, device=device),
|
|
701
|
+
wp.array([1.0, 2.0, 3.0, 4.0], dtype=wp.float32, device=device),
|
|
702
|
+
)
|
|
703
|
+
B = bsr_from_triplets(
|
|
704
|
+
2,
|
|
705
|
+
2,
|
|
706
|
+
wp.array([0, 0, 1, 1], dtype=int, device=device),
|
|
707
|
+
wp.array([0, 1, 0, 1], dtype=int, device=device),
|
|
708
|
+
wp.array([1.0, 2.0, 3.0, 4.0], dtype=wp.float32, device=device),
|
|
709
|
+
)
|
|
710
|
+
C = bsr_zeros(2, 2, wp.float32, device=device)
|
|
711
|
+
|
|
712
|
+
# max_new_nnz big enough
|
|
713
|
+
bsr_mm(A, B, C, max_new_nnz=4)
|
|
714
|
+
test.assertEqual(C.nnz_sync(), 4)
|
|
715
|
+
|
|
716
|
+
bsr_set_zero(C)
|
|
717
|
+
test.assertEqual(C.nnz_sync(), 0)
|
|
718
|
+
|
|
719
|
+
# max_new_nnz too small, check warning
|
|
720
|
+
capture = StdOutCapture()
|
|
721
|
+
capture.begin()
|
|
722
|
+
bsr_mm(A, B, C, max_new_nnz=2)
|
|
723
|
+
test.assertEqual(C.nnz_sync(), 2)
|
|
724
|
+
output = capture.end()
|
|
725
|
+
|
|
726
|
+
# Check that the output contains warnings about "max_new_nnz" being exceeded.
|
|
727
|
+
# Older Windows C runtimes have a bug where stdout sometimes does not get properly flushed.
|
|
728
|
+
if output != "" or sys.platform != "win32":
|
|
729
|
+
test.assertRegex(output, r"exceeded")
|
|
730
|
+
|
|
731
|
+
|
|
732
|
+
def test_capturability(test, device):
|
|
733
|
+
"""Test that BSR operations are graph-capturable"""
|
|
734
|
+
|
|
735
|
+
N = 5
|
|
736
|
+
M = 3
|
|
737
|
+
|
|
738
|
+
C = bsr_diag(wp.zeros(N, dtype=wp.mat33, device=device))
|
|
739
|
+
|
|
740
|
+
rows = wp.array([3, 4, 2, 0, 1], dtype=int, device=device)
|
|
741
|
+
columns = wp.array([2, 0, 1, 2, 1], dtype=int, device=device)
|
|
742
|
+
values = wp.ones(5, dtype=wp.mat33, device=device)
|
|
743
|
+
|
|
744
|
+
def test_body():
|
|
745
|
+
A = bsr_from_triplets(
|
|
746
|
+
N,
|
|
747
|
+
M,
|
|
748
|
+
rows=rows,
|
|
749
|
+
columns=columns,
|
|
750
|
+
values=values,
|
|
751
|
+
)
|
|
752
|
+
B = A + bsr_copy(A * 2.0)
|
|
753
|
+
bsr_mm(A, bsr_transposed(B), C, max_new_nnz=N * N)
|
|
754
|
+
|
|
755
|
+
# ensure necessary modules are loaded and reset result
|
|
756
|
+
test_body()
|
|
757
|
+
bsr_set_zero(C)
|
|
758
|
+
test.assertEqual(C.nnz_sync(), 0)
|
|
759
|
+
|
|
760
|
+
with wp.ScopedDevice(device):
|
|
761
|
+
with wp.ScopedCapture(force_module_load=False) as capture:
|
|
762
|
+
test_body()
|
|
763
|
+
|
|
764
|
+
assert_array_equal(bsr_get_diag(C), wp.zeros(N, dtype=wp.mat33, device=device))
|
|
765
|
+
|
|
766
|
+
wp.capture_launch(capture.graph)
|
|
767
|
+
test.assertEqual(C.nnz_sync(), 9)
|
|
768
|
+
assert_array_equal(bsr_get_diag(C), wp.full(N, value=wp.mat33(9.0), dtype=wp.mat33, device=device))
|
|
769
|
+
|
|
770
|
+
|
|
771
|
+
devices = get_test_devices()
|
|
772
|
+
cuda_test_devices = get_selected_cuda_test_devices()
|
|
773
|
+
|
|
774
|
+
|
|
775
|
+
class TestSparse(unittest.TestCase):
|
|
776
|
+
def test_bsr_copy_scale(self):
|
|
777
|
+
nrow = 6
|
|
778
|
+
bsize = 2
|
|
779
|
+
|
|
780
|
+
diag_bsr = bsr_diag(diag=np.eye(bsize, dtype=float) * 2.0, rows_of_blocks=nrow)
|
|
781
|
+
diag_copy = bsr_copy(diag_bsr, scalar_type=wp.float64)
|
|
782
|
+
|
|
783
|
+
self.assertTrue(
|
|
784
|
+
wp._src.types.types_equal(diag_copy.values.dtype, wp.mat(shape=(bsize, bsize), dtype=wp.float64))
|
|
785
|
+
)
|
|
786
|
+
bsr_scale(x=diag_copy, alpha=0.5)
|
|
787
|
+
|
|
788
|
+
res = _bsr_to_dense(diag_copy)
|
|
789
|
+
ref = np.eye(nrow * bsize)
|
|
790
|
+
assert_np_equal(res, ref, 0.0001)
|
|
791
|
+
|
|
792
|
+
bsr_scale(x=diag_copy, alpha=0.0)
|
|
793
|
+
self.assertEqual(diag_copy.nrow, nrow)
|
|
794
|
+
self.assertEqual(diag_copy.ncol, nrow)
|
|
795
|
+
self.assertEqual(diag_copy.nnz, diag_bsr.nnz)
|
|
796
|
+
|
|
797
|
+
diag_pruned = _bsr_pruned(diag_copy)
|
|
798
|
+
self.assertEqual(diag_pruned.nnz_sync(), 0)
|
|
799
|
+
|
|
800
|
+
|
|
801
|
+
add_function_test(TestSparse, "test_csr_from_triplets", test_csr_from_triplets, devices=devices)
|
|
802
|
+
add_function_test(TestSparse, "test_bsr_from_triplets", test_bsr_from_triplets, devices=devices)
|
|
803
|
+
add_function_test(
|
|
804
|
+
TestSparse,
|
|
805
|
+
"test_bsr_from_triplets_prune_numerical_zeros",
|
|
806
|
+
test_bsr_from_triplets_prune_numerical_zeros,
|
|
807
|
+
devices=devices,
|
|
808
|
+
)
|
|
809
|
+
add_function_test(TestSparse, "test_bsr_get_diag", test_bsr_get_set_diag, devices=devices)
|
|
810
|
+
add_function_test(TestSparse, "test_bsr_split_merge", test_bsr_split_merge, devices=devices)
|
|
811
|
+
add_function_test(TestSparse, "test_bsr_assign_masked", test_bsr_assign_masked, devices=devices)
|
|
812
|
+
add_function_test(TestSparse, "test_bsr_from_triplets_gradient", test_bsr_from_triplets_gradient, devices=devices)
|
|
813
|
+
|
|
814
|
+
add_function_test(TestSparse, "test_csr_transpose", make_test_bsr_transpose((1, 1), wp.float32), devices=devices)
|
|
815
|
+
add_function_test(TestSparse, "test_bsr_transpose_1_3", make_test_bsr_transpose((1, 3), wp.float32), devices=devices)
|
|
816
|
+
add_function_test(TestSparse, "test_bsr_transpose_3_3", make_test_bsr_transpose((3, 3), wp.float64), devices=devices)
|
|
817
|
+
|
|
818
|
+
add_function_test(TestSparse, "test_csr_axpy", make_test_bsr_axpy((1, 1), wp.float32), devices=devices)
|
|
819
|
+
add_function_test(TestSparse, "test_bsr_axpy_1_3", make_test_bsr_axpy((1, 3), wp.float32), devices=devices)
|
|
820
|
+
add_function_test(TestSparse, "test_bsr_axpy_3_3", make_test_bsr_axpy((3, 3), wp.float64), devices=devices)
|
|
821
|
+
|
|
822
|
+
add_function_test(TestSparse, "test_csr_mm", make_test_bsr_mm((1, 1), wp.float32), devices=devices)
|
|
823
|
+
add_function_test(TestSparse, "test_bsr_mm_1_3", make_test_bsr_mm((1, 3), wp.float32), devices=devices)
|
|
824
|
+
add_function_test(TestSparse, "test_bsr_mm_3_3", make_test_bsr_mm((3, 3), wp.float64), devices=devices)
|
|
825
|
+
|
|
826
|
+
add_function_test(
|
|
827
|
+
TestSparse, "test_bsr_multiply_deep_2_2", make_test_bsr_multiply_deep((2, 2), wp.float64), devices=devices
|
|
828
|
+
)
|
|
829
|
+
add_function_test(
|
|
830
|
+
TestSparse,
|
|
831
|
+
"test_bsr_multiply_deep_30_30",
|
|
832
|
+
make_test_bsr_multiply_deep((30, 30), wp.float32),
|
|
833
|
+
devices=cuda_test_devices,
|
|
834
|
+
)
|
|
835
|
+
|
|
836
|
+
add_function_test(TestSparse, "test_csr_mv", make_test_bsr_mv((1, 1), wp.float32), devices=devices)
|
|
837
|
+
add_function_test(TestSparse, "test_bsr_mv_1_3", make_test_bsr_mv((1, 3), wp.float32), devices=devices)
|
|
838
|
+
add_function_test(TestSparse, "test_bsr_mv_3_3", make_test_bsr_mv((3, 3), wp.float64), devices=devices)
|
|
839
|
+
|
|
840
|
+
add_function_test(TestSparse, "test_capturability", test_capturability, devices=cuda_test_devices)
|
|
841
|
+
add_function_test(TestSparse, "test_bsr_mm_max_new_nnz", test_bsr_mm_max_new_nnz, devices=devices, check_output=False)
|
|
842
|
+
|
|
843
|
+
if __name__ == "__main__":
|
|
844
|
+
wp.clear_kernel_cache()
|
|
845
|
+
unittest.main(verbosity=2)
|