warp-lang 1.10.0__py3-none-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (468) hide show
  1. warp/__init__.py +334 -0
  2. warp/__init__.pyi +5856 -0
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1077 -0
  5. warp/_src/build.py +620 -0
  6. warp/_src/build_dll.py +642 -0
  7. warp/_src/builtins.py +10555 -0
  8. warp/_src/codegen.py +4361 -0
  9. warp/_src/config.py +178 -0
  10. warp/_src/constants.py +59 -0
  11. warp/_src/context.py +8352 -0
  12. warp/_src/dlpack.py +464 -0
  13. warp/_src/fabric.py +362 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +510 -0
  16. warp/_src/fem/cache.py +689 -0
  17. warp/_src/fem/dirichlet.py +190 -0
  18. warp/_src/fem/domain.py +553 -0
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +703 -0
  21. warp/_src/fem/field/nodal_field.py +403 -0
  22. warp/_src/fem/field/restriction.py +39 -0
  23. warp/_src/fem/field/virtual.py +1021 -0
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/_src/fem/geometry/adaptive_nanogrid.py +782 -0
  26. warp/_src/fem/geometry/closest_point.py +99 -0
  27. warp/_src/fem/geometry/deformed_geometry.py +277 -0
  28. warp/_src/fem/geometry/element.py +854 -0
  29. warp/_src/fem/geometry/geometry.py +693 -0
  30. warp/_src/fem/geometry/grid_2d.py +478 -0
  31. warp/_src/fem/geometry/grid_3d.py +539 -0
  32. warp/_src/fem/geometry/hexmesh.py +956 -0
  33. warp/_src/fem/geometry/nanogrid.py +660 -0
  34. warp/_src/fem/geometry/partition.py +483 -0
  35. warp/_src/fem/geometry/quadmesh.py +597 -0
  36. warp/_src/fem/geometry/tetmesh.py +762 -0
  37. warp/_src/fem/geometry/trimesh.py +588 -0
  38. warp/_src/fem/integrate.py +2507 -0
  39. warp/_src/fem/linalg.py +385 -0
  40. warp/_src/fem/operator.py +398 -0
  41. warp/_src/fem/polynomial.py +231 -0
  42. warp/_src/fem/quadrature/__init__.py +17 -0
  43. warp/_src/fem/quadrature/pic_quadrature.py +318 -0
  44. warp/_src/fem/quadrature/quadrature.py +665 -0
  45. warp/_src/fem/space/__init__.py +248 -0
  46. warp/_src/fem/space/basis_function_space.py +499 -0
  47. warp/_src/fem/space/basis_space.py +681 -0
  48. warp/_src/fem/space/dof_mapper.py +253 -0
  49. warp/_src/fem/space/function_space.py +312 -0
  50. warp/_src/fem/space/grid_2d_function_space.py +179 -0
  51. warp/_src/fem/space/grid_3d_function_space.py +229 -0
  52. warp/_src/fem/space/hexmesh_function_space.py +255 -0
  53. warp/_src/fem/space/nanogrid_function_space.py +199 -0
  54. warp/_src/fem/space/partition.py +435 -0
  55. warp/_src/fem/space/quadmesh_function_space.py +222 -0
  56. warp/_src/fem/space/restriction.py +221 -0
  57. warp/_src/fem/space/shape/__init__.py +152 -0
  58. warp/_src/fem/space/shape/cube_shape_function.py +1107 -0
  59. warp/_src/fem/space/shape/shape_function.py +134 -0
  60. warp/_src/fem/space/shape/square_shape_function.py +928 -0
  61. warp/_src/fem/space/shape/tet_shape_function.py +829 -0
  62. warp/_src/fem/space/shape/triangle_shape_function.py +674 -0
  63. warp/_src/fem/space/tetmesh_function_space.py +270 -0
  64. warp/_src/fem/space/topology.py +461 -0
  65. warp/_src/fem/space/trimesh_function_space.py +193 -0
  66. warp/_src/fem/types.py +114 -0
  67. warp/_src/fem/utils.py +488 -0
  68. warp/_src/jax.py +188 -0
  69. warp/_src/jax_experimental/__init__.py +14 -0
  70. warp/_src/jax_experimental/custom_call.py +389 -0
  71. warp/_src/jax_experimental/ffi.py +1286 -0
  72. warp/_src/jax_experimental/xla_ffi.py +658 -0
  73. warp/_src/marching_cubes.py +710 -0
  74. warp/_src/math.py +416 -0
  75. warp/_src/optim/__init__.py +14 -0
  76. warp/_src/optim/adam.py +165 -0
  77. warp/_src/optim/linear.py +1608 -0
  78. warp/_src/optim/sgd.py +114 -0
  79. warp/_src/paddle.py +408 -0
  80. warp/_src/render/__init__.py +14 -0
  81. warp/_src/render/imgui_manager.py +291 -0
  82. warp/_src/render/render_opengl.py +3638 -0
  83. warp/_src/render/render_usd.py +939 -0
  84. warp/_src/render/utils.py +162 -0
  85. warp/_src/sparse.py +2718 -0
  86. warp/_src/tape.py +1208 -0
  87. warp/_src/thirdparty/__init__.py +0 -0
  88. warp/_src/thirdparty/appdirs.py +598 -0
  89. warp/_src/thirdparty/dlpack.py +145 -0
  90. warp/_src/thirdparty/unittest_parallel.py +676 -0
  91. warp/_src/torch.py +393 -0
  92. warp/_src/types.py +5888 -0
  93. warp/_src/utils.py +1695 -0
  94. warp/autograd.py +33 -0
  95. warp/bin/libwarp-clang.dylib +0 -0
  96. warp/bin/libwarp.dylib +0 -0
  97. warp/build.py +29 -0
  98. warp/build_dll.py +24 -0
  99. warp/codegen.py +24 -0
  100. warp/constants.py +24 -0
  101. warp/context.py +33 -0
  102. warp/dlpack.py +24 -0
  103. warp/examples/__init__.py +24 -0
  104. warp/examples/assets/bear.usd +0 -0
  105. warp/examples/assets/bunny.usd +0 -0
  106. warp/examples/assets/cube.usd +0 -0
  107. warp/examples/assets/nonuniform.usd +0 -0
  108. warp/examples/assets/nvidia_logo.png +0 -0
  109. warp/examples/assets/pixel.jpg +0 -0
  110. warp/examples/assets/rocks.nvdb +0 -0
  111. warp/examples/assets/rocks.usd +0 -0
  112. warp/examples/assets/sphere.usd +0 -0
  113. warp/examples/assets/square_cloth.usd +0 -0
  114. warp/examples/benchmarks/benchmark_api.py +389 -0
  115. warp/examples/benchmarks/benchmark_cloth.py +296 -0
  116. warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
  117. warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
  118. warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
  119. warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
  120. warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
  121. warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
  122. warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
  123. warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
  124. warp/examples/benchmarks/benchmark_gemm.py +164 -0
  125. warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
  126. warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
  127. warp/examples/benchmarks/benchmark_launches.py +301 -0
  128. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  129. warp/examples/benchmarks/benchmark_tile_sort.py +155 -0
  130. warp/examples/browse.py +37 -0
  131. warp/examples/core/example_cupy.py +86 -0
  132. warp/examples/core/example_dem.py +241 -0
  133. warp/examples/core/example_fluid.py +299 -0
  134. warp/examples/core/example_graph_capture.py +150 -0
  135. warp/examples/core/example_marching_cubes.py +195 -0
  136. warp/examples/core/example_mesh.py +180 -0
  137. warp/examples/core/example_mesh_intersect.py +211 -0
  138. warp/examples/core/example_nvdb.py +182 -0
  139. warp/examples/core/example_raycast.py +111 -0
  140. warp/examples/core/example_raymarch.py +205 -0
  141. warp/examples/core/example_render_opengl.py +290 -0
  142. warp/examples/core/example_sample_mesh.py +300 -0
  143. warp/examples/core/example_sph.py +411 -0
  144. warp/examples/core/example_spin_lock.py +93 -0
  145. warp/examples/core/example_torch.py +211 -0
  146. warp/examples/core/example_wave.py +269 -0
  147. warp/examples/core/example_work_queue.py +118 -0
  148. warp/examples/distributed/example_jacobi_mpi.py +506 -0
  149. warp/examples/fem/example_adaptive_grid.py +286 -0
  150. warp/examples/fem/example_apic_fluid.py +469 -0
  151. warp/examples/fem/example_burgers.py +261 -0
  152. warp/examples/fem/example_convection_diffusion.py +181 -0
  153. warp/examples/fem/example_convection_diffusion_dg.py +225 -0
  154. warp/examples/fem/example_darcy_ls_optimization.py +489 -0
  155. warp/examples/fem/example_deformed_geometry.py +172 -0
  156. warp/examples/fem/example_diffusion.py +196 -0
  157. warp/examples/fem/example_diffusion_3d.py +225 -0
  158. warp/examples/fem/example_diffusion_mgpu.py +225 -0
  159. warp/examples/fem/example_distortion_energy.py +228 -0
  160. warp/examples/fem/example_elastic_shape_optimization.py +387 -0
  161. warp/examples/fem/example_magnetostatics.py +242 -0
  162. warp/examples/fem/example_mixed_elasticity.py +293 -0
  163. warp/examples/fem/example_navier_stokes.py +263 -0
  164. warp/examples/fem/example_nonconforming_contact.py +300 -0
  165. warp/examples/fem/example_stokes.py +213 -0
  166. warp/examples/fem/example_stokes_transfer.py +262 -0
  167. warp/examples/fem/example_streamlines.py +357 -0
  168. warp/examples/fem/utils.py +1047 -0
  169. warp/examples/interop/example_jax_callable.py +146 -0
  170. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  171. warp/examples/interop/example_jax_kernel.py +232 -0
  172. warp/examples/optim/example_diffray.py +561 -0
  173. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  174. warp/examples/tile/example_tile_block_cholesky.py +502 -0
  175. warp/examples/tile/example_tile_cholesky.py +88 -0
  176. warp/examples/tile/example_tile_convolution.py +66 -0
  177. warp/examples/tile/example_tile_fft.py +55 -0
  178. warp/examples/tile/example_tile_filtering.py +113 -0
  179. warp/examples/tile/example_tile_matmul.py +85 -0
  180. warp/examples/tile/example_tile_mcgp.py +191 -0
  181. warp/examples/tile/example_tile_mlp.py +385 -0
  182. warp/examples/tile/example_tile_nbody.py +199 -0
  183. warp/fabric.py +24 -0
  184. warp/fem/__init__.py +173 -0
  185. warp/fem/adaptivity.py +26 -0
  186. warp/fem/cache.py +30 -0
  187. warp/fem/dirichlet.py +24 -0
  188. warp/fem/field/__init__.py +24 -0
  189. warp/fem/field/field.py +26 -0
  190. warp/fem/geometry/__init__.py +21 -0
  191. warp/fem/geometry/closest_point.py +31 -0
  192. warp/fem/linalg.py +38 -0
  193. warp/fem/operator.py +32 -0
  194. warp/fem/polynomial.py +29 -0
  195. warp/fem/space/__init__.py +22 -0
  196. warp/fem/space/basis_space.py +24 -0
  197. warp/fem/space/shape/__init__.py +68 -0
  198. warp/fem/space/topology.py +24 -0
  199. warp/fem/types.py +24 -0
  200. warp/fem/utils.py +32 -0
  201. warp/jax.py +29 -0
  202. warp/jax_experimental/__init__.py +29 -0
  203. warp/jax_experimental/custom_call.py +29 -0
  204. warp/jax_experimental/ffi.py +39 -0
  205. warp/jax_experimental/xla_ffi.py +24 -0
  206. warp/marching_cubes.py +24 -0
  207. warp/math.py +37 -0
  208. warp/native/array.h +1687 -0
  209. warp/native/builtin.h +2327 -0
  210. warp/native/bvh.cpp +562 -0
  211. warp/native/bvh.cu +826 -0
  212. warp/native/bvh.h +555 -0
  213. warp/native/clang/clang.cpp +541 -0
  214. warp/native/coloring.cpp +622 -0
  215. warp/native/crt.cpp +51 -0
  216. warp/native/crt.h +568 -0
  217. warp/native/cuda_crt.h +1058 -0
  218. warp/native/cuda_util.cpp +677 -0
  219. warp/native/cuda_util.h +313 -0
  220. warp/native/error.cpp +77 -0
  221. warp/native/error.h +36 -0
  222. warp/native/exports.h +2023 -0
  223. warp/native/fabric.h +246 -0
  224. warp/native/hashgrid.cpp +311 -0
  225. warp/native/hashgrid.cu +89 -0
  226. warp/native/hashgrid.h +240 -0
  227. warp/native/initializer_array.h +41 -0
  228. warp/native/intersect.h +1253 -0
  229. warp/native/intersect_adj.h +375 -0
  230. warp/native/intersect_tri.h +348 -0
  231. warp/native/mat.h +5189 -0
  232. warp/native/mathdx.cpp +93 -0
  233. warp/native/matnn.h +221 -0
  234. warp/native/mesh.cpp +266 -0
  235. warp/native/mesh.cu +406 -0
  236. warp/native/mesh.h +2097 -0
  237. warp/native/nanovdb/GridHandle.h +533 -0
  238. warp/native/nanovdb/HostBuffer.h +591 -0
  239. warp/native/nanovdb/NanoVDB.h +6246 -0
  240. warp/native/nanovdb/NodeManager.h +323 -0
  241. warp/native/nanovdb/PNanoVDB.h +3390 -0
  242. warp/native/noise.h +859 -0
  243. warp/native/quat.h +1664 -0
  244. warp/native/rand.h +342 -0
  245. warp/native/range.h +145 -0
  246. warp/native/reduce.cpp +174 -0
  247. warp/native/reduce.cu +363 -0
  248. warp/native/runlength_encode.cpp +79 -0
  249. warp/native/runlength_encode.cu +61 -0
  250. warp/native/scan.cpp +47 -0
  251. warp/native/scan.cu +55 -0
  252. warp/native/scan.h +23 -0
  253. warp/native/solid_angle.h +466 -0
  254. warp/native/sort.cpp +251 -0
  255. warp/native/sort.cu +286 -0
  256. warp/native/sort.h +35 -0
  257. warp/native/sparse.cpp +241 -0
  258. warp/native/sparse.cu +435 -0
  259. warp/native/spatial.h +1306 -0
  260. warp/native/svd.h +727 -0
  261. warp/native/temp_buffer.h +46 -0
  262. warp/native/tile.h +4124 -0
  263. warp/native/tile_radix_sort.h +1112 -0
  264. warp/native/tile_reduce.h +838 -0
  265. warp/native/tile_scan.h +240 -0
  266. warp/native/tuple.h +189 -0
  267. warp/native/vec.h +2199 -0
  268. warp/native/version.h +23 -0
  269. warp/native/volume.cpp +501 -0
  270. warp/native/volume.cu +68 -0
  271. warp/native/volume.h +970 -0
  272. warp/native/volume_builder.cu +483 -0
  273. warp/native/volume_builder.h +52 -0
  274. warp/native/volume_impl.h +70 -0
  275. warp/native/warp.cpp +1143 -0
  276. warp/native/warp.cu +4604 -0
  277. warp/native/warp.h +358 -0
  278. warp/optim/__init__.py +20 -0
  279. warp/optim/adam.py +24 -0
  280. warp/optim/linear.py +35 -0
  281. warp/optim/sgd.py +24 -0
  282. warp/paddle.py +24 -0
  283. warp/py.typed +0 -0
  284. warp/render/__init__.py +22 -0
  285. warp/render/imgui_manager.py +29 -0
  286. warp/render/render_opengl.py +24 -0
  287. warp/render/render_usd.py +24 -0
  288. warp/render/utils.py +24 -0
  289. warp/sparse.py +51 -0
  290. warp/tape.py +24 -0
  291. warp/tests/__init__.py +1 -0
  292. warp/tests/__main__.py +4 -0
  293. warp/tests/assets/curlnoise_golden.npy +0 -0
  294. warp/tests/assets/mlp_golden.npy +0 -0
  295. warp/tests/assets/pixel.npy +0 -0
  296. warp/tests/assets/pnoise_golden.npy +0 -0
  297. warp/tests/assets/spiky.usd +0 -0
  298. warp/tests/assets/test_grid.nvdb +0 -0
  299. warp/tests/assets/test_index_grid.nvdb +0 -0
  300. warp/tests/assets/test_int32_grid.nvdb +0 -0
  301. warp/tests/assets/test_vec_grid.nvdb +0 -0
  302. warp/tests/assets/torus.nvdb +0 -0
  303. warp/tests/assets/torus.usda +105 -0
  304. warp/tests/aux_test_class_kernel.py +34 -0
  305. warp/tests/aux_test_compile_consts_dummy.py +18 -0
  306. warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
  307. warp/tests/aux_test_dependent.py +29 -0
  308. warp/tests/aux_test_grad_customs.py +29 -0
  309. warp/tests/aux_test_instancing_gc.py +26 -0
  310. warp/tests/aux_test_module_aot.py +7 -0
  311. warp/tests/aux_test_module_unload.py +23 -0
  312. warp/tests/aux_test_name_clash1.py +40 -0
  313. warp/tests/aux_test_name_clash2.py +40 -0
  314. warp/tests/aux_test_reference.py +9 -0
  315. warp/tests/aux_test_reference_reference.py +8 -0
  316. warp/tests/aux_test_square.py +16 -0
  317. warp/tests/aux_test_unresolved_func.py +22 -0
  318. warp/tests/aux_test_unresolved_symbol.py +22 -0
  319. warp/tests/cuda/__init__.py +0 -0
  320. warp/tests/cuda/test_async.py +676 -0
  321. warp/tests/cuda/test_conditional_captures.py +1147 -0
  322. warp/tests/cuda/test_ipc.py +124 -0
  323. warp/tests/cuda/test_mempool.py +233 -0
  324. warp/tests/cuda/test_multigpu.py +169 -0
  325. warp/tests/cuda/test_peer.py +139 -0
  326. warp/tests/cuda/test_pinned.py +84 -0
  327. warp/tests/cuda/test_streams.py +691 -0
  328. warp/tests/geometry/__init__.py +0 -0
  329. warp/tests/geometry/test_bvh.py +335 -0
  330. warp/tests/geometry/test_hash_grid.py +259 -0
  331. warp/tests/geometry/test_marching_cubes.py +294 -0
  332. warp/tests/geometry/test_mesh.py +318 -0
  333. warp/tests/geometry/test_mesh_query_aabb.py +392 -0
  334. warp/tests/geometry/test_mesh_query_point.py +935 -0
  335. warp/tests/geometry/test_mesh_query_ray.py +323 -0
  336. warp/tests/geometry/test_volume.py +1103 -0
  337. warp/tests/geometry/test_volume_write.py +346 -0
  338. warp/tests/interop/__init__.py +0 -0
  339. warp/tests/interop/test_dlpack.py +730 -0
  340. warp/tests/interop/test_jax.py +1673 -0
  341. warp/tests/interop/test_paddle.py +800 -0
  342. warp/tests/interop/test_torch.py +1001 -0
  343. warp/tests/run_coverage_serial.py +39 -0
  344. warp/tests/test_adam.py +162 -0
  345. warp/tests/test_arithmetic.py +1096 -0
  346. warp/tests/test_array.py +3756 -0
  347. warp/tests/test_array_reduce.py +156 -0
  348. warp/tests/test_assert.py +303 -0
  349. warp/tests/test_atomic.py +336 -0
  350. warp/tests/test_atomic_bitwise.py +209 -0
  351. warp/tests/test_atomic_cas.py +312 -0
  352. warp/tests/test_bool.py +220 -0
  353. warp/tests/test_builtins_resolution.py +732 -0
  354. warp/tests/test_closest_point_edge_edge.py +327 -0
  355. warp/tests/test_codegen.py +974 -0
  356. warp/tests/test_codegen_instancing.py +1495 -0
  357. warp/tests/test_compile_consts.py +215 -0
  358. warp/tests/test_conditional.py +298 -0
  359. warp/tests/test_context.py +35 -0
  360. warp/tests/test_copy.py +319 -0
  361. warp/tests/test_ctypes.py +618 -0
  362. warp/tests/test_dense.py +73 -0
  363. warp/tests/test_devices.py +127 -0
  364. warp/tests/test_enum.py +136 -0
  365. warp/tests/test_examples.py +424 -0
  366. warp/tests/test_fabricarray.py +998 -0
  367. warp/tests/test_fast_math.py +72 -0
  368. warp/tests/test_fem.py +2204 -0
  369. warp/tests/test_fixedarray.py +229 -0
  370. warp/tests/test_fp16.py +136 -0
  371. warp/tests/test_func.py +501 -0
  372. warp/tests/test_future_annotations.py +100 -0
  373. warp/tests/test_generics.py +656 -0
  374. warp/tests/test_grad.py +893 -0
  375. warp/tests/test_grad_customs.py +339 -0
  376. warp/tests/test_grad_debug.py +341 -0
  377. warp/tests/test_implicit_init.py +411 -0
  378. warp/tests/test_import.py +45 -0
  379. warp/tests/test_indexedarray.py +1140 -0
  380. warp/tests/test_intersect.py +103 -0
  381. warp/tests/test_iter.py +76 -0
  382. warp/tests/test_large.py +177 -0
  383. warp/tests/test_launch.py +411 -0
  384. warp/tests/test_lerp.py +151 -0
  385. warp/tests/test_linear_solvers.py +223 -0
  386. warp/tests/test_lvalue.py +427 -0
  387. warp/tests/test_map.py +526 -0
  388. warp/tests/test_mat.py +3515 -0
  389. warp/tests/test_mat_assign_copy.py +178 -0
  390. warp/tests/test_mat_constructors.py +573 -0
  391. warp/tests/test_mat_lite.py +122 -0
  392. warp/tests/test_mat_scalar_ops.py +2913 -0
  393. warp/tests/test_math.py +212 -0
  394. warp/tests/test_module_aot.py +287 -0
  395. warp/tests/test_module_hashing.py +258 -0
  396. warp/tests/test_modules_lite.py +70 -0
  397. warp/tests/test_noise.py +252 -0
  398. warp/tests/test_operators.py +299 -0
  399. warp/tests/test_options.py +129 -0
  400. warp/tests/test_overwrite.py +551 -0
  401. warp/tests/test_print.py +408 -0
  402. warp/tests/test_quat.py +2653 -0
  403. warp/tests/test_quat_assign_copy.py +145 -0
  404. warp/tests/test_rand.py +339 -0
  405. warp/tests/test_reload.py +303 -0
  406. warp/tests/test_rounding.py +157 -0
  407. warp/tests/test_runlength_encode.py +196 -0
  408. warp/tests/test_scalar_ops.py +133 -0
  409. warp/tests/test_smoothstep.py +108 -0
  410. warp/tests/test_snippet.py +318 -0
  411. warp/tests/test_sparse.py +845 -0
  412. warp/tests/test_spatial.py +2859 -0
  413. warp/tests/test_spatial_assign_copy.py +160 -0
  414. warp/tests/test_special_values.py +361 -0
  415. warp/tests/test_static.py +640 -0
  416. warp/tests/test_struct.py +901 -0
  417. warp/tests/test_tape.py +242 -0
  418. warp/tests/test_transient_module.py +93 -0
  419. warp/tests/test_triangle_closest_point.py +192 -0
  420. warp/tests/test_tuple.py +361 -0
  421. warp/tests/test_types.py +615 -0
  422. warp/tests/test_utils.py +594 -0
  423. warp/tests/test_vec.py +1408 -0
  424. warp/tests/test_vec_assign_copy.py +143 -0
  425. warp/tests/test_vec_constructors.py +325 -0
  426. warp/tests/test_vec_lite.py +80 -0
  427. warp/tests/test_vec_scalar_ops.py +2327 -0
  428. warp/tests/test_verify_fp.py +100 -0
  429. warp/tests/test_version.py +75 -0
  430. warp/tests/tile/__init__.py +0 -0
  431. warp/tests/tile/test_tile.py +1519 -0
  432. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  433. warp/tests/tile/test_tile_cholesky.py +608 -0
  434. warp/tests/tile/test_tile_load.py +724 -0
  435. warp/tests/tile/test_tile_mathdx.py +156 -0
  436. warp/tests/tile/test_tile_matmul.py +179 -0
  437. warp/tests/tile/test_tile_mlp.py +400 -0
  438. warp/tests/tile/test_tile_reduce.py +950 -0
  439. warp/tests/tile/test_tile_shared_memory.py +376 -0
  440. warp/tests/tile/test_tile_sort.py +121 -0
  441. warp/tests/tile/test_tile_view.py +173 -0
  442. warp/tests/unittest_serial.py +47 -0
  443. warp/tests/unittest_suites.py +430 -0
  444. warp/tests/unittest_utils.py +469 -0
  445. warp/tests/walkthrough_debug.py +95 -0
  446. warp/torch.py +24 -0
  447. warp/types.py +51 -0
  448. warp/utils.py +31 -0
  449. warp_lang-1.10.0.dist-info/METADATA +459 -0
  450. warp_lang-1.10.0.dist-info/RECORD +468 -0
  451. warp_lang-1.10.0.dist-info/WHEEL +5 -0
  452. warp_lang-1.10.0.dist-info/licenses/LICENSE.md +176 -0
  453. warp_lang-1.10.0.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  454. warp_lang-1.10.0.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  455. warp_lang-1.10.0.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  456. warp_lang-1.10.0.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  457. warp_lang-1.10.0.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  458. warp_lang-1.10.0.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  459. warp_lang-1.10.0.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  460. warp_lang-1.10.0.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  461. warp_lang-1.10.0.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  462. warp_lang-1.10.0.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  463. warp_lang-1.10.0.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  464. warp_lang-1.10.0.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  465. warp_lang-1.10.0.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  466. warp_lang-1.10.0.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  467. warp_lang-1.10.0.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  468. warp_lang-1.10.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,845 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import unittest
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ from warp._src.sparse import bsr_set_zero
22
+ from warp.sparse import (
23
+ bsr_assign,
24
+ bsr_axpy,
25
+ bsr_axpy_work_arrays,
26
+ bsr_copy,
27
+ bsr_diag,
28
+ bsr_from_triplets,
29
+ bsr_get_diag,
30
+ bsr_identity,
31
+ bsr_mm,
32
+ bsr_mm_work_arrays,
33
+ bsr_mv,
34
+ bsr_scale,
35
+ bsr_set_from_triplets,
36
+ bsr_set_transpose,
37
+ bsr_transposed,
38
+ bsr_zeros,
39
+ )
40
+ from warp.tests.unittest_utils import *
41
+
42
+
43
+ def _get_block(mat, row, col, block_shape):
44
+ return mat[row * block_shape[0] : (row + 1) * block_shape[0], col * block_shape[1] : (col + 1) * block_shape[1]]
45
+
46
+
47
+ def _triplets_to_dense(shape, rows, cols, values):
48
+ mat = np.zeros(shape)
49
+
50
+ rows = rows.numpy()
51
+ cols = cols.numpy()
52
+ values = values.numpy()
53
+
54
+ block_shape = values.shape[1:] if values.ndim == 3 else (1, 1)
55
+
56
+ for row, col, val in zip(rows, cols, values):
57
+ mat_block = _get_block(mat, row, col, block_shape)
58
+ mat_block += val
59
+
60
+ return mat
61
+
62
+
63
+ def _bsr_pruned(bsr):
64
+ return bsr_from_triplets(
65
+ rows_of_blocks=bsr.nrow,
66
+ cols_of_blocks=bsr.ncol,
67
+ rows=bsr.uncompress_rows(),
68
+ columns=bsr.columns,
69
+ values=bsr.values,
70
+ prune_numerical_zeros=True,
71
+ )
72
+
73
+
74
+ def _bsr_to_dense(bsr):
75
+ mat = np.zeros(bsr.shape)
76
+
77
+ offsets = bsr.offsets.numpy()
78
+ columns = bsr.columns.numpy()
79
+ values = bsr.values.numpy()
80
+
81
+ for row in range(bsr.nrow):
82
+ beg = offsets[row]
83
+ end = offsets[row + 1]
84
+
85
+ for block in range(beg, end):
86
+ mat_block = _get_block(mat, row, columns[block], bsr.block_shape)
87
+ mat_block += values[block]
88
+
89
+ return mat
90
+
91
+
92
+ def test_csr_from_triplets(test, device):
93
+ rng = np.random.default_rng(123)
94
+
95
+ shape = (8, 6)
96
+ n = 100
97
+
98
+ rows = wp.array(rng.integers(0, high=shape[0], size=n, dtype=int), dtype=int, device=device)
99
+ cols = wp.array(rng.integers(0, high=shape[1], size=n, dtype=int), dtype=int, device=device)
100
+ vals = wp.array(rng.random(size=n), dtype=float, device=device)
101
+
102
+ ref = _triplets_to_dense(shape, rows, cols, vals)
103
+
104
+ csr = bsr_zeros(shape[0], shape[1], float, device=device)
105
+ bsr_set_from_triplets(csr, rows, cols, vals)
106
+ test.assertEqual(csr.block_size, 1)
107
+
108
+ res = _bsr_to_dense(csr)
109
+
110
+ assert_np_equal(res, ref, 0.0001)
111
+
112
+
113
+ def test_bsr_from_triplets(test, device):
114
+ rng = np.random.default_rng(123)
115
+
116
+ block_shape = (3, 2)
117
+ nrow = 4
118
+ ncol = 9
119
+ shape = (block_shape[0] * nrow, block_shape[1] * ncol)
120
+ n = 50
121
+
122
+ rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
123
+ cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
124
+ vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
125
+
126
+ ref = _triplets_to_dense(shape, rows, cols, vals)
127
+
128
+ bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
129
+ bsr_set_from_triplets(bsr, rows, cols, vals)
130
+ test.assertEqual(bsr.block_size, block_shape[0] * block_shape[1])
131
+
132
+ res = _bsr_to_dense(bsr)
133
+
134
+ assert_np_equal(res, ref, 0.0001)
135
+
136
+ # test zero-length inputs
137
+ bsr_set_from_triplets(
138
+ bsr,
139
+ wp.array([], dtype=int, device=device),
140
+ wp.array([], dtype=int, device=device),
141
+ wp.array([], shape=(0, block_shape[0], block_shape[1]), dtype=float, device=device),
142
+ )
143
+ test.assertEqual(bsr.nnz, 0)
144
+
145
+ # test passing indices with wrong data ty[e]
146
+ rows = wp.array(rows.numpy().astype(float), dtype=float, device=device)
147
+ cols = wp.array(cols.numpy().astype(float), dtype=float, device=device)
148
+ with test.assertRaisesRegex(
149
+ TypeError,
150
+ r"Rows and columns arrays must be of type int32$",
151
+ ):
152
+ bsr_set_from_triplets(bsr, rows, cols, vals)
153
+
154
+
155
+ def test_bsr_from_triplets_prune_numerical_zeros(test, device):
156
+ rows = wp.array([1, 0, 2, 3], dtype=int)
157
+ cols = wp.array([0, 1, 2, 3], dtype=int)
158
+ vals = wp.zeros(len(rows), dtype=float)
159
+
160
+ A = bsr_from_triplets(
161
+ rows_of_blocks=12, # Number of rows of blocks
162
+ cols_of_blocks=12, # Number of columns of blocks
163
+ rows=rows, # Row indices
164
+ columns=cols, # Column indices
165
+ values=vals, # Block values
166
+ prune_numerical_zeros=False,
167
+ )
168
+ assert A.nnz_sync() == 4
169
+
170
+ A = bsr_from_triplets(
171
+ rows_of_blocks=12, # Number of rows of blocks
172
+ cols_of_blocks=12, # Number of columns of blocks
173
+ rows=rows, # Row indices
174
+ columns=cols, # Column indices
175
+ values=vals, # Block values
176
+ prune_numerical_zeros=True,
177
+ )
178
+ assert A.nnz_sync() == 0
179
+
180
+
181
+ def test_bsr_from_triplets_gradient(test, device):
182
+ rng = np.random.default_rng(123)
183
+
184
+ block_shape = (3, 3)
185
+ nrow = 2
186
+ ncol = 2
187
+
188
+ n = 4
189
+ rows = wp.array([1, 0, 0, 1], dtype=int, device=device)
190
+ cols = wp.array([0, 1, 0, 0], dtype=int, device=device)
191
+
192
+ vals = wp.array(
193
+ rng.random(size=(n, block_shape[0], block_shape[1])), dtype=wp.mat33, device=device, requires_grad=True
194
+ )
195
+
196
+ with wp.Tape() as tape:
197
+ mat = bsr_from_triplets(nrow, ncol, rows, cols, vals)
198
+
199
+ assert mat.nnz_sync() == 3
200
+
201
+ zero_block = np.zeros((3, 3))
202
+ ones_block = np.ones((3, 3))
203
+
204
+ mat.values.grad[0:1].fill_(1.0)
205
+ tape.backward()
206
+ assert_np_equal(vals.grad.numpy(), np.stack((zero_block, zero_block, ones_block, zero_block)))
207
+ tape.zero()
208
+
209
+ mat.values.grad[1:2].fill_(1.0)
210
+ tape.backward()
211
+ assert_np_equal(vals.grad.numpy(), np.stack((zero_block, ones_block, zero_block, zero_block)))
212
+ tape.zero()
213
+
214
+ mat.values.grad[2:3].fill_(1.0)
215
+ tape.backward()
216
+ assert_np_equal(vals.grad.numpy(), np.stack((ones_block, zero_block, zero_block, ones_block)))
217
+ tape.zero()
218
+
219
+
220
+ def test_bsr_get_set_diag(test, device):
221
+ rng = np.random.default_rng(123)
222
+
223
+ block_shape = (3, 3)
224
+ nrow = 4
225
+ ncol = 4
226
+ nnz = 6
227
+
228
+ rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device)
229
+ cols = wp.array([1, 1, 1, 3, 2, 2], dtype=int, device=device)
230
+ vals_np = rng.random(size=(nnz, block_shape[0], block_shape[1]))
231
+ vals = wp.array(vals_np, dtype=float, device=device)
232
+
233
+ bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
234
+ bsr_set_from_triplets(bsr, rows, cols, vals)
235
+
236
+ diag = bsr_get_diag(bsr)
237
+ diag_np = diag.numpy()
238
+
239
+ assert_np_equal(diag_np[0], np.zeros(block_shape))
240
+ assert_np_equal(diag_np[1], vals_np[1], tol=0.00001)
241
+ assert_np_equal(diag_np[2], vals_np[4], tol=0.00001)
242
+ assert_np_equal(diag_np[3], vals_np[3], tol=0.00001)
243
+
244
+ # Test set_diag/get_diag round-trips with various block types
245
+
246
+ # Array of blocks
247
+ diag_bsr = bsr_diag(diag)
248
+ bsr_get_diag(diag_bsr, out=diag)
249
+ assert_np_equal(diag_np, diag.numpy())
250
+
251
+ diag_scalar_np = rng.random(size=nrow)
252
+ diag_scalar = wp.array(diag_scalar_np, device=device)
253
+ diag_bsr = bsr_diag(diag_scalar)
254
+ diag = bsr_get_diag(diag_bsr)
255
+ assert_np_equal(diag_scalar_np, diag.numpy(), tol=0.000001)
256
+
257
+ diag = bsr_get_diag(2.0 * diag_bsr)
258
+ assert_np_equal(2.0 * diag_scalar_np, diag.numpy(), tol=0.000001)
259
+
260
+ # Uniform block diagonal
261
+
262
+ with test.assertRaisesRegex(ValueError, "BsrMatrix block type must be either warp matrix or scalar"):
263
+ # 1d block type -- invalid
264
+ diag_bsr = bsr_diag(diag=vals_np[0, 0], rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
265
+
266
+ diag_bsr = bsr_diag(diag=vals_np[0], rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
267
+ assert diag_bsr.values.shape[0] == nrow
268
+ assert_np_equal(diag_bsr.values.numpy(), np.broadcast_to(vals_np[0], shape=(nrow, *block_shape)), tol=0.000001)
269
+
270
+ diag_bsr = bsr_diag(diag=float(diag_scalar_np[0]), rows_of_blocks=nrow, cols_of_blocks=nrow + 1)
271
+ assert diag_bsr.values.shape[0] == nrow
272
+ assert_np_equal(diag_bsr.values.numpy(), np.full(nrow, diag_scalar_np[0]), tol=0.000001)
273
+
274
+ # Identity matrix
275
+ diag_bsr = bsr_identity(nrow, block_type=wp.mat44, device=device)
276
+ assert diag_bsr.values.shape[0] == nrow
277
+ assert_np_equal(diag_bsr.values.numpy(), np.broadcast_to(np.eye(4), shape=(nrow, 4, 4)), tol=0.000001)
278
+
279
+ diag_csr = bsr_identity(nrow, block_type=wp.float64, device=device)
280
+ np.testing.assert_array_equal(diag_csr.values.numpy(), np.ones(nrow, dtype=float))
281
+
282
+
283
+ def test_bsr_split_merge(test, device):
284
+ rng = np.random.default_rng(123)
285
+
286
+ block_shape = (4, 2)
287
+ nrow = 4
288
+ ncol = 8
289
+ n = 20
290
+
291
+ rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
292
+ cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
293
+ vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
294
+
295
+ bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=float), device=device)
296
+ bsr_set_from_triplets(bsr, rows, cols, vals)
297
+ ref = _bsr_to_dense(bsr)
298
+
299
+ bsr_split = bsr_copy(bsr, block_shape=(2, 2))
300
+ test.assertEqual(bsr_split.block_size, 4)
301
+ res = _bsr_to_dense(bsr_split)
302
+ assert_np_equal(res, ref, 0.0001)
303
+
304
+ bsr_split = bsr_copy(bsr, block_shape=(1, 1))
305
+ test.assertEqual(bsr_split.block_size, 1)
306
+ res = _bsr_to_dense(bsr_split)
307
+ assert_np_equal(res, ref, 0.0001)
308
+
309
+ bsr_merge = bsr_copy(bsr, block_shape=(4, 4))
310
+ test.assertEqual(bsr_merge.block_size, 16)
311
+ res = _bsr_to_dense(bsr_merge)
312
+ assert_np_equal(res, ref, 0.0001)
313
+
314
+ bsr_merge = bsr_copy(bsr, block_shape=(8, 8))
315
+ test.assertEqual(bsr_merge.block_size, 64)
316
+ res = _bsr_to_dense(bsr_merge)
317
+ assert_np_equal(res, ref, 0.0001)
318
+
319
+ with test.assertRaisesRegex(ValueError, "Incompatible dest and src block shapes"):
320
+ bsr_copy(bsr, block_shape=(3, 3))
321
+
322
+ with test.assertRaisesRegex(ValueError, "Incompatible dest and src block shapes"):
323
+ bsr_copy(bsr, block_shape=(5, 5))
324
+
325
+ with test.assertRaisesRegex(
326
+ ValueError,
327
+ r"The requested block shape \(32, 32\) does not evenly divide the source matrix of total size \(16, 16\)",
328
+ ):
329
+ bsr_copy(bsr, block_shape=(32, 32))
330
+
331
+
332
+ def test_bsr_assign_masked(test, device):
333
+ rng = np.random.default_rng(123)
334
+
335
+ block_shape = (1, 2)
336
+ nrow = 16
337
+ ncol = 8
338
+ shape = (block_shape[0] * nrow, block_shape[1] * ncol)
339
+ n = 20
340
+
341
+ rows = wp.array(rng.integers(0, high=nrow, size=n, dtype=int), dtype=int, device=device)
342
+ cols = wp.array(rng.integers(0, high=ncol, size=n, dtype=int), dtype=int, device=device)
343
+ vals = wp.array(rng.random(size=(n, block_shape[0], block_shape[1])), dtype=float, device=device)
344
+
345
+ A = bsr_from_triplets(nrow, ncol, rows, cols, vals)
346
+
347
+ # Extract coarse diagonal with copy + diag funcs, for reference
348
+ A_coarse = bsr_copy(A, block_shape=(4, 4))
349
+ ref = _bsr_to_dense(bsr_diag(bsr_get_diag(A_coarse)))
350
+
351
+ # Extract coarse diagonal with masked assign (more memory efficient)
352
+ diag_masked = bsr_diag(rows_of_blocks=shape[0] // 4, block_type=A_coarse.dtype, device=device)
353
+ bsr_assign(src=A, dest=diag_masked, masked=True)
354
+ res = _bsr_to_dense(diag_masked)
355
+
356
+ assert_np_equal(res, ref, 0.0001)
357
+
358
+
359
+ def make_test_bsr_transpose(block_shape, scalar_type):
360
+ def test_bsr_transpose(test, device):
361
+ rng = np.random.default_rng(123)
362
+
363
+ nrow = 4
364
+ ncol = 5
365
+ nnz = 6
366
+
367
+ rows = wp.array([0, 1, 2, 3, 2, 1], dtype=int, device=device)
368
+ cols = wp.array([1, 4, 1, 3, 0, 2], dtype=int, device=device)
369
+
370
+ vals_np = rng.random(size=(nnz, block_shape[0], block_shape[1]))
371
+ vals = wp.array(vals_np, dtype=scalar_type, device=device).reshape((nnz, block_shape[0], block_shape[1]))
372
+
373
+ bsr = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
374
+ bsr_set_from_triplets(bsr, rows, cols, vals)
375
+ ref = 2.0 * np.transpose(_bsr_to_dense(bsr))
376
+
377
+ bsr_transposed = (2.0 * bsr).transpose().eval()
378
+
379
+ res = _bsr_to_dense(bsr_transposed)
380
+ assert_np_equal(res, ref, 0.0001)
381
+
382
+ if block_shape[0] != block_shape[-1]:
383
+ # test incompatible block shape
384
+ with test.assertRaisesRegex(ValueError, "Destination block shape must be"):
385
+ bsr_set_transpose(dest=bsr, src=bsr)
386
+
387
+ # test masked transpose
388
+ # remove some non zeros from src and dest matrices
389
+ bsr_set_from_triplets(bsr, rows[:3], cols[:3], vals[:3])
390
+ bsr_transposed = bsr_from_triplets(
391
+ bsr_transposed.nrow,
392
+ bsr_transposed.ncol,
393
+ bsr_transposed.uncompress_rows()[:3],
394
+ bsr_transposed.columns[:3],
395
+ bsr_transposed.values[:3],
396
+ )
397
+
398
+ assert_np_equal(bsr_transposed.uncompress_rows().numpy()[:3], [0, 1, 1])
399
+ assert_np_equal(bsr_transposed.columns.numpy()[:3], [2, 0, 2])
400
+ bsr_set_transpose(bsr_transposed, bsr, masked=True)
401
+ assert _bsr_pruned(bsr_transposed).nnz_sync() == 2
402
+
403
+ return test_bsr_transpose
404
+
405
+
406
+ def make_test_bsr_axpy(block_shape, scalar_type):
407
+ def test_bsr_axpy(test, device):
408
+ rng = np.random.default_rng(123)
409
+
410
+ nrow = 2
411
+ ncol = 3
412
+ nnz = 6
413
+
414
+ alphas = [-1.0, 0.0, 1.0]
415
+ betas = [2.0, -1.0, 0.0]
416
+
417
+ x_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
418
+ x_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
419
+ x_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
420
+ x_vals = x_vals.reshape((nnz, block_shape[0], block_shape[1]))
421
+
422
+ x = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
423
+ bsr_set_from_triplets(x, x_rows, x_cols, x_vals)
424
+
425
+ y_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
426
+ y_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
427
+ y_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
428
+ y_vals = y_vals.reshape((nnz, block_shape[0], block_shape[1]))
429
+
430
+ y = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
431
+ bsr_set_from_triplets(y, y_rows, y_cols, y_vals)
432
+
433
+ work_arrays = bsr_axpy_work_arrays()
434
+ for alpha, beta in zip(alphas, betas):
435
+ ref = alpha * _bsr_to_dense(x) + beta * _bsr_to_dense(y)
436
+ bsr_axpy(x, y, alpha, beta, work_arrays=work_arrays)
437
+
438
+ res = _bsr_to_dense(y)
439
+ assert_np_equal(res, ref, 0.0001)
440
+
441
+ # test aliasing
442
+ ref = 3.0 * _bsr_to_dense(y)
443
+ y += y * 2.0
444
+ res = _bsr_to_dense(y)
445
+ assert_np_equal(res, ref, 0.0001)
446
+
447
+ # test masked
448
+ y_mask = bsr_from_triplets(nrow, ncol, y.uncompress_rows()[:1], y.columns[:1], y.values[:1])
449
+ bsr_axpy(y, y_mask, masked=True)
450
+ assert y_mask.nnz_sync() == 1
451
+ assert_np_equal(y_mask.values.numpy(), 2.0 * y.values[:1].numpy(), 0.0001)
452
+
453
+ # test incompatible shapes
454
+ y.ncol = y.ncol + 1
455
+ with test.assertRaisesRegex(ValueError, "Matrices must have the same number of rows and columns"):
456
+ bsr_axpy(x, y)
457
+
458
+ return test_bsr_axpy
459
+
460
+
461
+ def make_test_bsr_mm(block_shape, scalar_type):
462
+ def test_bsr_mm(test, device):
463
+ rng = np.random.default_rng(123)
464
+
465
+ x_nrow = 3
466
+ x_ncol = 2
467
+ x_block_shape = block_shape
468
+
469
+ y_nrow = 2
470
+ y_ncol = 3
471
+ y_block_shape = block_shape[::-1]
472
+
473
+ z_nrow = x_nrow
474
+ z_ncol = y_ncol
475
+ z_block_shape = (x_block_shape[0], y_block_shape[1])
476
+
477
+ nnz = 6
478
+
479
+ alphas = [-1.0, 0.0, 2.0]
480
+ betas = [2.0, -1.0, 0.0]
481
+
482
+ x_rows = wp.array(rng.integers(0, high=x_nrow, size=nnz, dtype=int), dtype=int, device=device)
483
+ x_cols = wp.array(rng.integers(0, high=x_ncol, size=nnz, dtype=int), dtype=int, device=device)
484
+ x_vals = wp.array(rng.random(size=(nnz, x_block_shape[0], x_block_shape[1])), dtype=scalar_type, device=device)
485
+ x_vals = x_vals.reshape((nnz, x_block_shape[0], x_block_shape[1]))
486
+
487
+ x = bsr_zeros(x_nrow, x_ncol, wp._src.types.matrix(shape=x_block_shape, dtype=scalar_type), device=device)
488
+ bsr_set_from_triplets(x, x_rows, x_cols, x_vals)
489
+
490
+ y_rows = wp.array(rng.integers(0, high=y_nrow, size=nnz, dtype=int), dtype=int, device=device)
491
+ y_cols = wp.array(rng.integers(0, high=y_ncol, size=nnz, dtype=int), dtype=int, device=device)
492
+ y_vals = wp.array(rng.random(size=(nnz, y_block_shape[0], y_block_shape[1])), dtype=scalar_type, device=device)
493
+ y_vals = y_vals.reshape((nnz, y_block_shape[0], y_block_shape[1]))
494
+
495
+ y = bsr_zeros(y_nrow, y_ncol, wp._src.types.matrix(shape=y_block_shape, dtype=scalar_type), device=device)
496
+ bsr_set_from_triplets(y, y_rows, y_cols, y_vals)
497
+
498
+ z_rows = wp.array(rng.integers(0, high=z_nrow, size=nnz, dtype=int), dtype=int, device=device)
499
+ z_cols = wp.array(rng.integers(0, high=z_ncol, size=nnz, dtype=int), dtype=int, device=device)
500
+ z_vals = wp.array(rng.random(size=(nnz, z_block_shape[0], z_block_shape[1])), dtype=scalar_type, device=device)
501
+ z_vals = z_vals.reshape((nnz, z_block_shape[0], z_block_shape[1]))
502
+
503
+ z = bsr_zeros(z_nrow, z_ncol, wp._src.types.matrix(shape=z_block_shape, dtype=scalar_type), device=device)
504
+ bsr_set_from_triplets(z, z_rows, z_cols, z_vals)
505
+
506
+ work_arrays = bsr_mm_work_arrays()
507
+ for alpha, beta in zip(alphas, betas):
508
+ ref = alpha * (_bsr_to_dense(x) @ _bsr_to_dense(y)) + beta * _bsr_to_dense(z)
509
+
510
+ bsr_mm(x, y, z, alpha, beta, work_arrays=work_arrays)
511
+
512
+ res = _bsr_to_dense(z)
513
+ assert_np_equal(res, ref, 0.0001)
514
+
515
+ # test reusing topology from work arrays
516
+ # (assumes betas[-1] = 0)
517
+ bsr_mm(x, y, z, alpha, beta, work_arrays=work_arrays, reuse_topology=True)
518
+ assert_np_equal(res, ref, 0.0001)
519
+
520
+ # test masked mm
521
+ z = bsr_diag(rows_of_blocks=z.nrow, block_type=z.dtype, device=z.device)
522
+ bsr_mm(x, y, z, masked=True)
523
+ res = _bsr_to_dense(z)
524
+ ref = _bsr_to_dense(bsr_diag(bsr_get_diag(x @ y)))
525
+ assert_np_equal(res, ref, 0.0001)
526
+
527
+ # using overloaded operators
528
+ x = (alpha * x) @ y
529
+ assert_np_equal(res, ref, 0.0001)
530
+
531
+ # test aliasing of matrix arguments
532
+ # x = alpha * z * x + beta * x
533
+ alpha, beta = alphas[0], betas[0]
534
+ ref = alpha * (_bsr_to_dense(z) @ _bsr_to_dense(x)) + beta * _bsr_to_dense(x)
535
+ bsr_mm(z, x, x, alpha, beta)
536
+
537
+ res = _bsr_to_dense(x)
538
+ assert_np_equal(res, ref, 0.0001)
539
+
540
+ # z = alpha * z * z + beta * z
541
+ ref = alpha * (_bsr_to_dense(z) @ _bsr_to_dense(z)) + beta * _bsr_to_dense(z)
542
+ bsr_mm(z, z, z, alpha, beta)
543
+
544
+ res = _bsr_to_dense(z)
545
+ assert_np_equal(res, ref, 0.0001)
546
+
547
+ # test incompatible shapes
548
+ if block_shape[0] != block_shape[-1]:
549
+ with test.assertRaisesRegex(ValueError, "Incompatible block sizes"):
550
+ bsr_mm(z, y)
551
+
552
+ y.ncol = y.ncol * 2
553
+ with test.assertRaisesRegex(ValueError, "Incompatible number of rows/columns"):
554
+ bsr_mm(y, z)
555
+
556
+ return test_bsr_mm
557
+
558
+
559
+ def make_test_bsr_mv(block_shape, scalar_type):
560
+ def test_bsr_mv(test, device):
561
+ rng = np.random.default_rng(123)
562
+
563
+ nrow = 2
564
+ ncol = 3
565
+ nnz = 6
566
+
567
+ alphas = [-1.0, 0.0, 1.0]
568
+ betas = [2.0, -1.0, 0.0]
569
+ A_rows = wp.array(rng.integers(0, high=nrow, size=nnz, dtype=int), dtype=int, device=device)
570
+ A_cols = wp.array(rng.integers(0, high=ncol, size=nnz, dtype=int), dtype=int, device=device)
571
+ A_vals = wp.array(rng.random(size=(nnz, block_shape[0], block_shape[1])), dtype=scalar_type, device=device)
572
+ A_vals = A_vals.reshape((nnz, block_shape[0], block_shape[1]))
573
+
574
+ A = bsr_zeros(nrow, ncol, wp._src.types.matrix(shape=block_shape, dtype=scalar_type), device=device)
575
+ bsr_set_from_triplets(A, A_rows, A_cols, A_vals)
576
+
577
+ if block_shape[1] == 1:
578
+ x = wp.array(rng.random(size=ncol), dtype=scalar_type, device=device)
579
+ else:
580
+ x = wp.array(
581
+ rng.random(size=(ncol, block_shape[1])),
582
+ dtype=wp.vec(length=block_shape[1], dtype=scalar_type),
583
+ device=device,
584
+ )
585
+
586
+ if block_shape[0] == 1:
587
+ y = wp.array(rng.random(size=nrow), dtype=scalar_type, device=device)
588
+ else:
589
+ y = wp.array(
590
+ rng.random(size=(nrow, block_shape[0])),
591
+ dtype=wp.vec(length=block_shape[0], dtype=scalar_type),
592
+ device=device,
593
+ )
594
+
595
+ work_buffer = wp.empty_like(y)
596
+ for alpha, beta in zip(alphas, betas):
597
+ ref = alpha * _bsr_to_dense(A) @ x.numpy().flatten() + beta * y.numpy().flatten()
598
+
599
+ if beta == 0.0:
600
+ y = A @ x
601
+ else:
602
+ bsr_mv(A, x, y, alpha, beta, work_buffer=work_buffer)
603
+
604
+ res = y.numpy().flatten()
605
+ assert_np_equal(res, ref, 0.0001)
606
+
607
+ # test transposed product
608
+ ref = alpha * y.numpy().flatten() @ _bsr_to_dense(A)
609
+ x = y @ (A * alpha)
610
+ res = x.numpy().flatten()
611
+ assert_np_equal(res, ref, 0.0001)
612
+
613
+ # test aliasing
614
+ AAt = bsr_mm(A, bsr_transposed(A))
615
+ assert_np_equal(_bsr_to_dense(AAt), _bsr_to_dense(A) @ _bsr_to_dense(A).T, 0.0001)
616
+
617
+ alpha, beta = alphas[0], betas[0]
618
+ ref = alpha * _bsr_to_dense(AAt) @ y.numpy().flatten() + beta * y.numpy().flatten()
619
+ bsr_mv(AAt, y, y, alpha, beta)
620
+ res = y.numpy().flatten()
621
+ assert_np_equal(res, ref, 0.0001)
622
+
623
+ A.ncol = A.ncol + 1
624
+ with test.assertRaisesRegex(ValueError, "Incompatible 'x'"):
625
+ bsr_mv(A, x, y)
626
+
627
+ A.ncol = A.ncol - 1
628
+ A.nrow = A.nrow - 1
629
+ with test.assertRaisesRegex(ValueError, "Incompatible 'y'"):
630
+ bsr_mv(A, x, y)
631
+
632
+ return test_bsr_mv
633
+
634
+
635
+ def make_test_bsr_multiply_deep(block_shape, scalar_type):
636
+ def test_bsr_multiply_deep(test, device):
637
+ """Test BSR matrix multiplication with deep matrices (many columns > 256)"""
638
+ rng = np.random.default_rng(123)
639
+
640
+ # Generate a dense matrix with few rows and many columns (> 256)
641
+ nrow = (4 + block_shape[0] - 1) // block_shape[0]
642
+ ncol = (600 + block_shape[1] - 1) // block_shape[1]
643
+
644
+ # Create a dense "sparse" matrix
645
+ values = rng.random(size=(nrow * ncol, block_shape[0], block_shape[1]))
646
+ rows, cols = np.meshgrid(np.arange(nrow), np.arange(ncol))
647
+
648
+ # Convert to warp arrays
649
+ rows = wp.array(rows.flatten(), dtype=int, device=device)
650
+ cols = wp.array(cols.flatten(), dtype=int, device=device)
651
+ vals = wp.array(values, dtype=scalar_type, device=device)
652
+
653
+ # Convert to BSR using bsr_from_triplets
654
+ A = bsr_from_triplets(nrow, ncol, rows, cols, vals)
655
+
656
+ # Get dense representation for numpy reference
657
+ A_dense = _bsr_to_dense(A)
658
+
659
+ # Multiply with itself transpose using bsr_mm
660
+ # A @ A.T should result in a nrow x nrow matrix
661
+ At = bsr_transposed(A)
662
+
663
+ result = bsr_mm(A, At)
664
+
665
+ # Check that the result is correct against numpy reference
666
+ result_dense = _bsr_to_dense(result)
667
+ ref_dense = A_dense @ A_dense.T
668
+
669
+ assert_np_equal(result_dense, ref_dense, 0.0001)
670
+
671
+ # Additional test: multiply A.T @ A (should be ncol x ncol)
672
+ result2 = bsr_mm(At, A)
673
+ result2_dense = _bsr_to_dense(result2)
674
+ ref2_dense = A_dense.T @ A_dense
675
+
676
+ assert_np_equal(result2_dense, ref2_dense, 0.0001)
677
+
678
+ # Test matrix vector products
679
+ x = wp.array(rng.random(size=A.shape[1]), dtype=A.scalar_type, device=device)
680
+ y = wp.array(rng.random(size=A.shape[0]), dtype=A.scalar_type, device=device)
681
+ bsr_mv(A, x, y)
682
+ res = y.numpy().flatten()
683
+ ref = A_dense @ x.numpy().flatten()
684
+ assert_np_equal(res, ref, 0.0001 * block_shape[1])
685
+
686
+ bsr_mv(A, y, x, transpose=True)
687
+ res = x.numpy().flatten()
688
+ ref = A_dense.T @ y.numpy().flatten()
689
+ assert_np_equal(res, ref, 0.0001 * block_shape[1])
690
+
691
+ return test_bsr_multiply_deep
692
+
693
+
694
+ def test_bsr_mm_max_new_nnz(test, device):
695
+ """Test that BSR matrix multiplication with max_new_nnz works"""
696
+ A = bsr_from_triplets(
697
+ 2,
698
+ 2,
699
+ wp.array([0, 0, 1, 1], dtype=int, device=device),
700
+ wp.array([0, 1, 0, 1], dtype=int, device=device),
701
+ wp.array([1.0, 2.0, 3.0, 4.0], dtype=wp.float32, device=device),
702
+ )
703
+ B = bsr_from_triplets(
704
+ 2,
705
+ 2,
706
+ wp.array([0, 0, 1, 1], dtype=int, device=device),
707
+ wp.array([0, 1, 0, 1], dtype=int, device=device),
708
+ wp.array([1.0, 2.0, 3.0, 4.0], dtype=wp.float32, device=device),
709
+ )
710
+ C = bsr_zeros(2, 2, wp.float32, device=device)
711
+
712
+ # max_new_nnz big enough
713
+ bsr_mm(A, B, C, max_new_nnz=4)
714
+ test.assertEqual(C.nnz_sync(), 4)
715
+
716
+ bsr_set_zero(C)
717
+ test.assertEqual(C.nnz_sync(), 0)
718
+
719
+ # max_new_nnz too small, check warning
720
+ capture = StdOutCapture()
721
+ capture.begin()
722
+ bsr_mm(A, B, C, max_new_nnz=2)
723
+ test.assertEqual(C.nnz_sync(), 2)
724
+ output = capture.end()
725
+
726
+ # Check that the output contains warnings about "max_new_nnz" being exceeded.
727
+ # Older Windows C runtimes have a bug where stdout sometimes does not get properly flushed.
728
+ if output != "" or sys.platform != "win32":
729
+ test.assertRegex(output, r"exceeded")
730
+
731
+
732
+ def test_capturability(test, device):
733
+ """Test that BSR operations are graph-capturable"""
734
+
735
+ N = 5
736
+ M = 3
737
+
738
+ C = bsr_diag(wp.zeros(N, dtype=wp.mat33, device=device))
739
+
740
+ rows = wp.array([3, 4, 2, 0, 1], dtype=int, device=device)
741
+ columns = wp.array([2, 0, 1, 2, 1], dtype=int, device=device)
742
+ values = wp.ones(5, dtype=wp.mat33, device=device)
743
+
744
+ def test_body():
745
+ A = bsr_from_triplets(
746
+ N,
747
+ M,
748
+ rows=rows,
749
+ columns=columns,
750
+ values=values,
751
+ )
752
+ B = A + bsr_copy(A * 2.0)
753
+ bsr_mm(A, bsr_transposed(B), C, max_new_nnz=N * N)
754
+
755
+ # ensure necessary modules are loaded and reset result
756
+ test_body()
757
+ bsr_set_zero(C)
758
+ test.assertEqual(C.nnz_sync(), 0)
759
+
760
+ with wp.ScopedDevice(device):
761
+ with wp.ScopedCapture(force_module_load=False) as capture:
762
+ test_body()
763
+
764
+ assert_array_equal(bsr_get_diag(C), wp.zeros(N, dtype=wp.mat33, device=device))
765
+
766
+ wp.capture_launch(capture.graph)
767
+ test.assertEqual(C.nnz_sync(), 9)
768
+ assert_array_equal(bsr_get_diag(C), wp.full(N, value=wp.mat33(9.0), dtype=wp.mat33, device=device))
769
+
770
+
771
+ devices = get_test_devices()
772
+ cuda_test_devices = get_selected_cuda_test_devices()
773
+
774
+
775
+ class TestSparse(unittest.TestCase):
776
+ def test_bsr_copy_scale(self):
777
+ nrow = 6
778
+ bsize = 2
779
+
780
+ diag_bsr = bsr_diag(diag=np.eye(bsize, dtype=float) * 2.0, rows_of_blocks=nrow)
781
+ diag_copy = bsr_copy(diag_bsr, scalar_type=wp.float64)
782
+
783
+ self.assertTrue(
784
+ wp._src.types.types_equal(diag_copy.values.dtype, wp.mat(shape=(bsize, bsize), dtype=wp.float64))
785
+ )
786
+ bsr_scale(x=diag_copy, alpha=0.5)
787
+
788
+ res = _bsr_to_dense(diag_copy)
789
+ ref = np.eye(nrow * bsize)
790
+ assert_np_equal(res, ref, 0.0001)
791
+
792
+ bsr_scale(x=diag_copy, alpha=0.0)
793
+ self.assertEqual(diag_copy.nrow, nrow)
794
+ self.assertEqual(diag_copy.ncol, nrow)
795
+ self.assertEqual(diag_copy.nnz, diag_bsr.nnz)
796
+
797
+ diag_pruned = _bsr_pruned(diag_copy)
798
+ self.assertEqual(diag_pruned.nnz_sync(), 0)
799
+
800
+
801
+ add_function_test(TestSparse, "test_csr_from_triplets", test_csr_from_triplets, devices=devices)
802
+ add_function_test(TestSparse, "test_bsr_from_triplets", test_bsr_from_triplets, devices=devices)
803
+ add_function_test(
804
+ TestSparse,
805
+ "test_bsr_from_triplets_prune_numerical_zeros",
806
+ test_bsr_from_triplets_prune_numerical_zeros,
807
+ devices=devices,
808
+ )
809
+ add_function_test(TestSparse, "test_bsr_get_diag", test_bsr_get_set_diag, devices=devices)
810
+ add_function_test(TestSparse, "test_bsr_split_merge", test_bsr_split_merge, devices=devices)
811
+ add_function_test(TestSparse, "test_bsr_assign_masked", test_bsr_assign_masked, devices=devices)
812
+ add_function_test(TestSparse, "test_bsr_from_triplets_gradient", test_bsr_from_triplets_gradient, devices=devices)
813
+
814
+ add_function_test(TestSparse, "test_csr_transpose", make_test_bsr_transpose((1, 1), wp.float32), devices=devices)
815
+ add_function_test(TestSparse, "test_bsr_transpose_1_3", make_test_bsr_transpose((1, 3), wp.float32), devices=devices)
816
+ add_function_test(TestSparse, "test_bsr_transpose_3_3", make_test_bsr_transpose((3, 3), wp.float64), devices=devices)
817
+
818
+ add_function_test(TestSparse, "test_csr_axpy", make_test_bsr_axpy((1, 1), wp.float32), devices=devices)
819
+ add_function_test(TestSparse, "test_bsr_axpy_1_3", make_test_bsr_axpy((1, 3), wp.float32), devices=devices)
820
+ add_function_test(TestSparse, "test_bsr_axpy_3_3", make_test_bsr_axpy((3, 3), wp.float64), devices=devices)
821
+
822
+ add_function_test(TestSparse, "test_csr_mm", make_test_bsr_mm((1, 1), wp.float32), devices=devices)
823
+ add_function_test(TestSparse, "test_bsr_mm_1_3", make_test_bsr_mm((1, 3), wp.float32), devices=devices)
824
+ add_function_test(TestSparse, "test_bsr_mm_3_3", make_test_bsr_mm((3, 3), wp.float64), devices=devices)
825
+
826
+ add_function_test(
827
+ TestSparse, "test_bsr_multiply_deep_2_2", make_test_bsr_multiply_deep((2, 2), wp.float64), devices=devices
828
+ )
829
+ add_function_test(
830
+ TestSparse,
831
+ "test_bsr_multiply_deep_30_30",
832
+ make_test_bsr_multiply_deep((30, 30), wp.float32),
833
+ devices=cuda_test_devices,
834
+ )
835
+
836
+ add_function_test(TestSparse, "test_csr_mv", make_test_bsr_mv((1, 1), wp.float32), devices=devices)
837
+ add_function_test(TestSparse, "test_bsr_mv_1_3", make_test_bsr_mv((1, 3), wp.float32), devices=devices)
838
+ add_function_test(TestSparse, "test_bsr_mv_3_3", make_test_bsr_mv((3, 3), wp.float64), devices=devices)
839
+
840
+ add_function_test(TestSparse, "test_capturability", test_capturability, devices=cuda_test_devices)
841
+ add_function_test(TestSparse, "test_bsr_mm_max_new_nnz", test_bsr_mm_max_new_nnz, devices=devices, check_output=False)
842
+
843
+ if __name__ == "__main__":
844
+ wp.clear_kernel_cache()
845
+ unittest.main(verbosity=2)