vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1506 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Attention layer with Dual chunk flash attention and sparse attention.
4
+ """
5
+ import math
6
+ from dataclasses import dataclass
7
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
8
+
9
+ import torch
10
+ import torch.distributed
11
+ import torch.nn.functional as F
12
+
13
+ from vllm import _custom_ops as ops
14
+ from vllm.attention.backends.abstract import AttentionLayer, AttentionType
15
+ from vllm.attention.backends.flash_attn import (FlashAttentionBackend,
16
+ FlashAttentionImpl,
17
+ FlashAttentionMetadata,
18
+ FlashAttentionMetadataBuilder)
19
+ from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
20
+ from vllm.logger import init_logger
21
+ from vllm.utils import async_tensor_h2d
22
+ from vllm.vllm_flash_attn import (flash_attn_varlen_func,
23
+ flash_attn_with_kvcache, sparse_attn_func)
24
+
25
+ if TYPE_CHECKING:
26
+ from vllm.worker.model_runner import ModelInputForGPUBuilder
27
+
28
+ logger = init_logger(__name__)
29
+
30
+
31
+ class DualChunkFlashAttentionBackend(FlashAttentionBackend):
32
+
33
+ accept_output_buffer: bool = False
34
+
35
+ @staticmethod
36
+ def get_name() -> str:
37
+ return "DUAL_CHUNK_FLASH_ATTN"
38
+
39
+ @staticmethod
40
+ def get_impl_cls() -> Type["DualChunkFlashAttentionImpl"]:
41
+ return DualChunkFlashAttentionImpl
42
+
43
+ @staticmethod
44
+ def get_metadata_cls() -> Type["DualChunkFlashAttentionMetadata"]:
45
+ return DualChunkFlashAttentionMetadata
46
+
47
+ @staticmethod
48
+ def get_builder_cls() -> Type["DualChunkFlashAttentionMetadataBuilder"]:
49
+ return DualChunkFlashAttentionMetadataBuilder
50
+
51
+
52
+ @dataclass
53
+ class DualChunkFlashAttentionMetadata(FlashAttentionMetadata):
54
+ # Block size of the paged kv cache.
55
+ block_size: int = 16
56
+
57
+ # Original max position embeddings.
58
+ original_max_position_embeddings: int = 0
59
+
60
+ # Chunk size
61
+ chunk_size: int = 8192
62
+
63
+ # Local size
64
+ local_size: int = 1024
65
+
66
+ # (batch_size,). The orig sequence length per sequence.
67
+ orig_seq_lens: Optional[List[int]] = None
68
+
69
+ # orig_seq_lens stored as a tensor.
70
+ orig_seq_lens_tensor: Optional[torch.Tensor] = None
71
+
72
+ # Length scaling factor
73
+ scaling_factor: Optional[torch.Tensor] = None
74
+
75
+ # (batch_size,). Sequence lengths for intra attention.
76
+ seq_lens_intra: Optional[torch.Tensor] = None
77
+
78
+ # Max sequence length for intra attention.
79
+ max_seq_len_intra: Optional[int] = None
80
+
81
+ # (batch_size, num_blocks). Block table for intra attention.
82
+ block_tables_intra: Optional[torch.Tensor] = None
83
+
84
+ # (batch_size,). Sequence lengths for succ attention.
85
+ seq_lens_succ: Optional[torch.Tensor] = None
86
+
87
+ # Max sequence length for succ attention.
88
+ max_seq_len_succ: Optional[int] = None
89
+
90
+ # (batch_size, num_blocks). Block table for succ attention.
91
+ block_tables_succ: Optional[torch.Tensor] = None
92
+
93
+ # (batch_size,). Sequence lengths for inter attention.
94
+ seq_lens_inter: Optional[torch.Tensor] = None
95
+
96
+ # Max sequence length for inter attention.
97
+ max_seq_len_inter: Optional[int] = None
98
+
99
+ _cached_prefill_metadata: Optional[
100
+ "DualChunkFlashAttentionMetadata"] = None
101
+ _cached_decode_metadata: Optional["DualChunkFlashAttentionMetadata"] = None
102
+
103
+ @property
104
+ def prefill_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
105
+ if self.num_prefills == 0:
106
+ return None
107
+
108
+ if self._cached_prefill_metadata is not None:
109
+ return self._cached_prefill_metadata
110
+
111
+ prefill_metadata = super().prefill_metadata
112
+ if prefill_metadata is None:
113
+ return None
114
+
115
+ prefill_metadata = DualChunkFlashAttentionMetadata(
116
+ **prefill_metadata.asdict_zerocopy())
117
+
118
+ prefill_metadata.orig_seq_lens = (
119
+ None if self.orig_seq_lens is None else
120
+ self.orig_seq_lens[:self.num_prefills])
121
+ prefill_metadata.orig_seq_lens_tensor = (
122
+ None if self.orig_seq_lens_tensor is None else
123
+ self.orig_seq_lens_tensor[:self.num_prefills])
124
+
125
+ if self.original_max_position_embeddings > 0:
126
+ assert prefill_metadata.orig_seq_lens_tensor is not None
127
+ prefill_metadata.scaling_factor = (
128
+ 0.1 * torch.log(prefill_metadata.orig_seq_lens_tensor /
129
+ self.original_max_position_embeddings) +
130
+ 1.0).clip(min=1)
131
+
132
+ self._cached_prefill_metadata = prefill_metadata
133
+ return prefill_metadata
134
+
135
+ @property
136
+ def decode_metadata(self) -> Optional["DualChunkFlashAttentionMetadata"]:
137
+ if self.num_decode_tokens == 0:
138
+ return None
139
+
140
+ if self._cached_decode_metadata is not None:
141
+ return self._cached_decode_metadata
142
+
143
+ decode_metadata = super().decode_metadata
144
+ if decode_metadata is None:
145
+ return None
146
+
147
+ decode_metadata = DualChunkFlashAttentionMetadata(
148
+ **decode_metadata.asdict_zerocopy())
149
+
150
+ decode_metadata.orig_seq_lens_tensor = (
151
+ None if self.orig_seq_lens_tensor is None else
152
+ self.orig_seq_lens_tensor[self.num_prefills:])
153
+
154
+ assert decode_metadata.orig_seq_lens_tensor is not None
155
+ assert decode_metadata.block_tables is not None
156
+
157
+ cache_seq_lens = decode_metadata.orig_seq_lens_tensor
158
+ chunk_len = self.chunk_size - self.local_size
159
+ chunk_num_curr = (cache_seq_lens - 1) // chunk_len
160
+ batch_size = decode_metadata.num_decode_tokens
161
+
162
+ if self.original_max_position_embeddings > 0:
163
+ decode_metadata.scaling_factor = (0.1 * torch.log(
164
+ cache_seq_lens / self.original_max_position_embeddings) +
165
+ 1.0).clip(min=1)
166
+
167
+ seq_lens_intra = cache_seq_lens - chunk_num_curr * chunk_len
168
+ max_seq_len_intra = seq_lens_intra.max().item()
169
+ decode_metadata.seq_lens_intra = seq_lens_intra
170
+ decode_metadata.max_seq_len_intra = max_seq_len_intra
171
+
172
+ block_tables_intra = torch.zeros(
173
+ batch_size,
174
+ (max_seq_len_intra - 1) // self.block_size + 1,
175
+ dtype=decode_metadata.block_tables.dtype,
176
+ device=decode_metadata.block_tables.device,
177
+ )
178
+ for i in range(batch_size):
179
+ st = chunk_num_curr[i] * chunk_len // self.block_size
180
+ ed = min(
181
+ st + (max_seq_len_intra - 1) // self.block_size + 1,
182
+ (cache_seq_lens[i] - 1) // self.block_size + 1,
183
+ )
184
+ block_tables_intra[i, :ed -
185
+ st] = decode_metadata.block_tables[i, st:ed]
186
+ decode_metadata.block_tables_intra = block_tables_intra
187
+
188
+ seq_lens_succ = (chunk_num_curr -
189
+ (chunk_num_curr - 1).clip(min=0)) * chunk_len
190
+ max_seq_len_succ = seq_lens_succ.max().item()
191
+ decode_metadata.seq_lens_succ = seq_lens_succ
192
+ decode_metadata.max_seq_len_succ = max_seq_len_succ
193
+ if max_seq_len_succ:
194
+ block_tables_succ = torch.zeros(
195
+ batch_size,
196
+ (max_seq_len_succ - 1) // self.block_size + 1,
197
+ dtype=decode_metadata.block_tables.dtype,
198
+ device=decode_metadata.block_tables.device,
199
+ )
200
+ for i in range(batch_size):
201
+ start = ((chunk_num_curr[i] - 1).clip(min=0) * chunk_len //
202
+ self.block_size)
203
+ end = min(
204
+ start + (max_seq_len_succ - 1) // self.block_size + 1,
205
+ (cache_seq_lens[i] - 1) // self.block_size + 1,
206
+ )
207
+ block_tables_succ[
208
+ i, :end - start] = decode_metadata.block_tables[i,
209
+ start:end]
210
+ decode_metadata.block_tables_succ = block_tables_succ
211
+
212
+ seq_lens_inter = (chunk_num_curr - 1).clip(min=0) * chunk_len
213
+ max_seq_len_inter = seq_lens_inter.max().item()
214
+ decode_metadata.seq_lens_inter = seq_lens_inter
215
+ decode_metadata.max_seq_len_inter = max_seq_len_inter
216
+
217
+ self._cached_decode_metadata = decode_metadata
218
+ return decode_metadata
219
+
220
+
221
+ class DualChunkFlashAttentionMetadataBuilder(FlashAttentionMetadataBuilder):
222
+
223
+ def prepare(self):
224
+ super().prepare()
225
+ self.orig_seq_lens: List[int] = []
226
+
227
+ def _add_seq_group(
228
+ self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
229
+ chunked_prefill_enabled: bool, prefix_cache_hit: bool):
230
+ super()._add_seq_group(inter_data, chunked_prefill_enabled,
231
+ prefix_cache_hit)
232
+ for prompt_len, seq_len in zip(inter_data.prompt_lens,
233
+ inter_data.seq_lens):
234
+ self.orig_seq_lens.append(max(prompt_len, seq_len))
235
+
236
+ def build(self, seq_lens: List[int], query_lens: List[int],
237
+ cuda_graph_pad_size: int, batch_size: int):
238
+ attn_metadata = super().build(seq_lens, query_lens,
239
+ cuda_graph_pad_size, batch_size)
240
+ attn_metadata = DualChunkFlashAttentionMetadata(
241
+ **attn_metadata.asdict_zerocopy())
242
+
243
+ device = self.runner.device
244
+ attn_metadata.orig_seq_lens = self.orig_seq_lens
245
+ attn_metadata.orig_seq_lens_tensor = async_tensor_h2d(
246
+ self.orig_seq_lens, torch.int, device, self.runner.pin_memory)
247
+
248
+ attn_metadata.block_size = self.runner.block_size
249
+ dual_chunk_attn_config = getattr(self.runner.model_config.hf_config,
250
+ "dual_chunk_attention_config", {})
251
+ attn_metadata.original_max_position_embeddings = \
252
+ dual_chunk_attn_config.get("original_max_position_embeddings", 0)
253
+ attn_metadata.chunk_size = dual_chunk_attn_config.get(
254
+ "chunk_size", 8192)
255
+ attn_metadata.local_size = dual_chunk_attn_config.get(
256
+ "local_size", 1024)
257
+
258
+ return attn_metadata
259
+
260
+
261
+ class DualChunkFlashAttentionImpl(FlashAttentionImpl):
262
+ """
263
+ If the input tensors contain prompt tokens, the layout is as follows:
264
+ |<--------------- num_prefill_tokens ----------------->|
265
+ |<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
266
+ Otherwise, the layout is as follows:
267
+ |<----------------- num_decode_tokens ------------------>|
268
+ |<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
269
+ Generation tokens can contain padding when cuda-graph is used.
270
+ Currently, prompt tokens don't contain any padding.
271
+ The prompts might have different lengths, while the generation tokens
272
+ always have length 1.
273
+ If chunked prefill is enabled, prefill tokens and decode tokens can be
274
+ batched together in a flattened 1D query.
275
+ |<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
276
+ |<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
277
+ Currently, cuda graph is disabled for chunked prefill, meaning there's no
278
+ padding between prefill and decode tokens.
279
+ """
280
+
281
+ def __init__(
282
+ self,
283
+ num_heads: int,
284
+ head_size: int,
285
+ scale: float,
286
+ num_kv_heads: int,
287
+ alibi_slopes: Optional[List[float]],
288
+ sliding_window: Optional[int],
289
+ kv_cache_dtype: str,
290
+ blocksparse_params: Optional[Dict[str, Any]] = None,
291
+ logits_soft_cap: Optional[float] = None,
292
+ attn_type: str = AttentionType.DECODER,
293
+ kv_sharing_target_layer_name: Optional[str] = None,
294
+ layer_idx: int = -1,
295
+ dual_chunk_attention_config: Optional[Dict[str, Any]] = None,
296
+ ) -> None:
297
+ if kv_sharing_target_layer_name is not None:
298
+ raise NotImplementedError("KV sharing is not supported in V0.")
299
+ self.num_heads = num_heads
300
+ self.head_size = head_size
301
+ self.scale = float(scale)
302
+ self.num_kv_heads = num_kv_heads
303
+ if alibi_slopes is not None:
304
+ alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
305
+ self.alibi_slopes = alibi_slopes
306
+ self.sliding_window = ((sliding_window, sliding_window)
307
+ if sliding_window is not None else (-1, -1))
308
+ self.kv_cache_dtype = kv_cache_dtype
309
+
310
+ self.num_queries_per_kv = self.num_heads // self.num_kv_heads
311
+ if sliding_window is not None:
312
+ # NOTE(woosuk): flash-attn's sliding window does not work with
313
+ # paged KV cache.
314
+ raise ValueError(
315
+ "Sliding window is not supported in FlashAttention.")
316
+
317
+ support_head_sizes = (
318
+ DualChunkFlashAttentionBackend.get_supported_head_sizes())
319
+
320
+ if head_size not in support_head_sizes:
321
+ raise ValueError(
322
+ f"Head size {head_size} is not supported by FlashAttention. "
323
+ f"Supported head sizes are: {support_head_sizes}.")
324
+
325
+ assert dual_chunk_attention_config is not None
326
+ self.chunk_size = dual_chunk_attention_config.get("chunk_size", 8192)
327
+ self.local_size = dual_chunk_attention_config.get("local_size", 1024)
328
+ self.original_max_position_embeddings = dual_chunk_attention_config.get(
329
+ "original_max_position_embeddings", 0)
330
+ self.sparse_attention_config = dual_chunk_attention_config.get(
331
+ "sparse_attention_config", None)
332
+ if not self.sparse_attention_config:
333
+ logger.warning_once("Sparse attention will not be enabled as "
334
+ "sparse attention config is not provided.")
335
+ self.sparse_attention_enabled = dual_chunk_attention_config.get(
336
+ "sparse_attention_enabled", self.sparse_attention_config
337
+ is not None)
338
+ self.sparse_attention_threshold = dual_chunk_attention_config.get(
339
+ "sparse_attention_threshold", 32768)
340
+ self.sparse_attention_last_q = dual_chunk_attention_config.get(
341
+ "sparse_attention_last_q", 64)
342
+ self.layer_idx = layer_idx
343
+ self.dual_chunk_attention_config = dual_chunk_attention_config
344
+
345
+ if self.sparse_attention_config:
346
+ self.sparse_attention_config = {
347
+ int(i): j
348
+ for i, j in self.sparse_attention_config[
349
+ self.layer_idx].items()
350
+ }
351
+ start_head = self.num_heads * get_tensor_model_parallel_rank()
352
+ end_head = start_head + self.num_heads
353
+ self.sparse_attention_config = [
354
+ self.sparse_attention_config[i]
355
+ for i in range(start_head, end_head)
356
+ ]
357
+
358
+ if self.sparse_attention_enabled:
359
+ self.arange = torch.arange(self.sparse_attention_last_q,
360
+ device="cuda")
361
+ self.last_q_mask = (self.arange[None, None, :, None]
362
+ >= self.arange[None, None, None, :])
363
+
364
+ def forward( # type: ignore
365
+ self,
366
+ layer: AttentionLayer,
367
+ query: torch.Tensor,
368
+ key: torch.Tensor,
369
+ value: torch.Tensor,
370
+ kv_cache: torch.Tensor,
371
+ attn_metadata: DualChunkFlashAttentionMetadata,
372
+ output: Optional[torch.Tensor] = None,
373
+ output_scale: Optional[torch.Tensor] = None,
374
+ ) -> torch.Tensor:
375
+ """Forward pass with DualChunkFlashAttention.
376
+ Args:
377
+ query: shape = [num_tokens, num_heads * head_size]
378
+ query_succ: shape = [num_tokens, num_heads * head_size]
379
+ query_inter: shape = [num_tokens, num_heads * head_size]
380
+ key: shape = [num_tokens, num_kv_heads * head_size]
381
+ value: shape = [num_tokens, num_kv_heads * head_size]
382
+ kv_cache = [2, num_blocks, block_size, num_kv_heads * head_size]
383
+ attn_metadata: Metadata for attention.
384
+ Returns:
385
+ shape = [num_tokens, num_heads * head_size]
386
+ """
387
+ assert output is None, "Output tensor not supported for DualChunk"
388
+
389
+ if output_scale is not None:
390
+ raise NotImplementedError(
391
+ "fused output quantization is not yet supported"
392
+ " for FlashAttentionImpl")
393
+
394
+ (
395
+ query,
396
+ query_succ,
397
+ query_inter,
398
+ query_succ_critical,
399
+ query_inter_critical,
400
+ ) = torch.split(query, query.shape[-1] // 5, dim=-1)
401
+
402
+ assert (
403
+ query_succ is not None and query_inter is not None
404
+ ), "query_succ and query_inter are required in Dual Chunk Attention."
405
+
406
+ num_tokens, hidden_size = query.shape
407
+
408
+ # Reshape the query, key, and value tensors.
409
+ query = query.view(-1, self.num_heads, self.head_size)
410
+ query_succ = query_succ.view(-1, self.num_heads, self.head_size)
411
+ query_inter = query_inter.view(-1, self.num_heads, self.head_size)
412
+ query_succ_critical = query_succ_critical.view(-1, self.num_heads,
413
+ self.head_size)
414
+ query_inter_critical = query_inter_critical.view(
415
+ -1, self.num_heads, self.head_size)
416
+ key = key.view(-1, self.num_kv_heads, self.head_size)
417
+ value = value.view(-1, self.num_kv_heads, self.head_size)
418
+
419
+ if self.original_max_position_embeddings > 0:
420
+ if prefill_meta := attn_metadata.prefill_metadata:
421
+ assert prefill_meta.scaling_factor is not None
422
+ assert prefill_meta.query_start_loc is not None
423
+ assert prefill_meta.orig_seq_lens is not None
424
+ current_start = 0
425
+ query_start_loc_cpu = prefill_meta.query_start_loc.cpu()
426
+ for i in range(len(prefill_meta.orig_seq_lens)):
427
+ current_end = (current_start +
428
+ (query_start_loc_cpu[i + 1] -
429
+ query_start_loc_cpu[i]).item())
430
+ key[current_start:current_end].mul_(
431
+ prefill_meta.scaling_factor[i])
432
+ current_start = current_end
433
+ assert current_end <= attn_metadata.num_prefill_tokens
434
+ if decode_meta := attn_metadata.decode_metadata:
435
+ assert decode_meta.scaling_factor is not None
436
+ scaling_factor = decode_meta.scaling_factor
437
+ key[attn_metadata.num_prefill_tokens:].mul_(
438
+ scaling_factor.unsqueeze(-1).unsqueeze(-1))
439
+
440
+ if kv_cache is not None and kv_cache.numel() > 0:
441
+ key_cache = kv_cache[0]
442
+ value_cache = kv_cache[1]
443
+
444
+ # Reshape the input keys and values and store them in the cache.
445
+ # If kv_cache is not provided, the new key and value tensors are
446
+ # not cached. This happens during the initial memory profiling run.
447
+ ops.reshape_and_cache_flash(
448
+ key,
449
+ value,
450
+ key_cache,
451
+ value_cache,
452
+ attn_metadata.slot_mapping.flatten(),
453
+ self.kv_cache_dtype,
454
+ layer._k_scale,
455
+ layer._v_scale,
456
+ )
457
+
458
+ num_prefill_tokens = attn_metadata.num_prefill_tokens
459
+ num_decode_tokens = attn_metadata.num_decode_tokens
460
+ assert key.shape[0] == num_prefill_tokens + num_decode_tokens
461
+ assert value.shape[0] == num_prefill_tokens + num_decode_tokens
462
+ output = torch.empty_like(query)
463
+
464
+ # Query for decode. KV is not needed because it is already cached.
465
+ decode_query = query[num_prefill_tokens:]
466
+ decode_query_succ = query_succ[num_prefill_tokens:]
467
+ decode_query_inter = query_inter[num_prefill_tokens:]
468
+
469
+ # QKV for prefill.
470
+ query = query[:num_prefill_tokens]
471
+ query_succ = query_succ[:num_prefill_tokens]
472
+ query_inter = query_inter[:num_prefill_tokens]
473
+ query_succ_critical = query_succ_critical[:num_prefill_tokens]
474
+ query_inter_critical = query_inter_critical[:num_prefill_tokens]
475
+ key = key[:num_prefill_tokens]
476
+ value = value[:num_prefill_tokens]
477
+ assert query.shape[0] == num_prefill_tokens
478
+ assert decode_query.shape[0] == num_decode_tokens
479
+
480
+ if prefill_meta := attn_metadata.prefill_metadata:
481
+ # Prompt run.
482
+ if (kv_cache is None or prefill_meta.block_tables is None
483
+ or prefill_meta.block_tables.numel() == 0):
484
+ # normal attention, called during the profiling run.
485
+ out = flash_attn_varlen_func(
486
+ q=query,
487
+ k=key,
488
+ v=value,
489
+ cu_seqlens_q=prefill_meta.seq_start_loc,
490
+ cu_seqlens_k=prefill_meta.seq_start_loc,
491
+ max_seqlen_q=prefill_meta.max_prefill_seq_len,
492
+ max_seqlen_k=prefill_meta.max_prefill_seq_len,
493
+ softmax_scale=self.scale,
494
+ causal=True,
495
+ window_size=self.sliding_window,
496
+ alibi_slopes=self.alibi_slopes,
497
+ )
498
+ assert output[:num_prefill_tokens].shape == out.shape
499
+ output[:num_prefill_tokens] = out
500
+ else:
501
+ # prefix-enabled attention
502
+ assert prefill_meta.seq_lens is not None
503
+ assert prefill_meta.orig_seq_lens is not None
504
+ output[:num_prefill_tokens] = (
505
+ self._dual_chunk_flash_attn_prefill(
506
+ q=query,
507
+ q_succ=query_succ,
508
+ q_inter=query_inter,
509
+ q_succ_critical=query_succ_critical,
510
+ q_inter_critical=query_inter_critical,
511
+ k=key_cache,
512
+ v=value_cache,
513
+ cu_seqlens_q=prefill_meta.query_start_loc,
514
+ cu_seqlens_k=prefill_meta.seq_start_loc,
515
+ orig_seq_lens=prefill_meta.orig_seq_lens,
516
+ scaling_factor=prefill_meta.scaling_factor,
517
+ softmax_scale=self.scale,
518
+ causal=True,
519
+ window_size=(-1, -1),
520
+ alibi_slopes=self.alibi_slopes,
521
+ block_table=prefill_meta.block_tables,
522
+ chunk_size=self.chunk_size,
523
+ local_size=self.local_size,
524
+ ))
525
+
526
+ if decode_meta := attn_metadata.decode_metadata:
527
+ # Decoding run.
528
+ output[num_prefill_tokens:] = (
529
+ self._dual_chunk_flash_attn_decoding(
530
+ decode_query.unsqueeze(1),
531
+ decode_query_succ.unsqueeze(1),
532
+ decode_query_inter.unsqueeze(1),
533
+ key_cache,
534
+ value_cache,
535
+ block_table=decode_meta.block_tables,
536
+ cache_seqlens=decode_meta.seq_lens_tensor,
537
+ softmax_scale=self.scale,
538
+ causal=True,
539
+ alibi_slopes=self.alibi_slopes,
540
+ chunk_size=self.chunk_size,
541
+ local_size=self.local_size,
542
+ original_max_position_embeddings=self.
543
+ original_max_position_embeddings,
544
+ decode_meta=decode_meta,
545
+ ).squeeze(1))
546
+ # Reshape the output tensor.
547
+ return output.view(num_tokens, hidden_size)
548
+
549
+ def _dual_chunk_flash_attn_prefill(
550
+ self,
551
+ q,
552
+ q_succ,
553
+ q_inter,
554
+ q_succ_critical,
555
+ q_inter_critical,
556
+ k,
557
+ v,
558
+ cu_seqlens_q,
559
+ cu_seqlens_k,
560
+ orig_seq_lens: List[int],
561
+ scaling_factor: torch.Tensor,
562
+ softmax_scale: float,
563
+ causal: Optional[bool] = True,
564
+ window_size: Tuple[int, int] = (-1, -1),
565
+ alibi_slopes: Optional[torch.Tensor] = None,
566
+ block_table: Optional[torch.Tensor] = None,
567
+ chunk_size: int = 8192,
568
+ local_size: int = 1024,
569
+ ):
570
+ if alibi_slopes is not None:
571
+ raise ValueError(
572
+ "Dual Chunk Attention does not support alibi_slopes")
573
+ if not causal:
574
+ raise ValueError(
575
+ "Dual Chunk Attention does not support causal=False")
576
+ if window_size != (-1, -1):
577
+ raise ValueError(
578
+ "Dual Chunk Attention does not support window_size")
579
+
580
+ cu_seqlens_q_cpu = cu_seqlens_q.cpu().tolist()
581
+ cu_seqlens_k_cpu = cu_seqlens_k.cpu().tolist()
582
+ all_outputs = []
583
+
584
+ for i in range(0, len(cu_seqlens_q_cpu) - 1):
585
+ qs = cu_seqlens_q_cpu[i]
586
+ qe = cu_seqlens_q_cpu[i:i + 2][-1]
587
+ ks = cu_seqlens_k_cpu[i]
588
+ ke = cu_seqlens_k_cpu[i:i + 2][-1]
589
+
590
+ current_q = q[qs:qe]
591
+ current_q_succ = q_succ[qs:qe]
592
+ current_q_inter = q_inter[qs:qe]
593
+ current_q_succ_critical = q_succ_critical[qs:qe]
594
+ current_q_inter_critical = q_inter_critical[qs:qe]
595
+
596
+ if block_table is None:
597
+ current_k = k[ks:ke]
598
+ current_v = v[ks:ke]
599
+ current_block_table = None
600
+ current_orig_seq_len = orig_seq_lens[i]
601
+ else:
602
+ current_block_table = block_table[i]
603
+ current_orig_seq_len = orig_seq_lens[i]
604
+ current_k = k
605
+ current_v = v
606
+ sparse_attn_enabled = (self.sparse_attention_enabled
607
+ and current_orig_seq_len
608
+ > self.sparse_attention_threshold)
609
+
610
+ if current_q.shape[0] == 0:
611
+ continue
612
+
613
+ if current_k.shape[0] == 0:
614
+ all_outputs.append(
615
+ torch.zeros(
616
+ (current_q.shape[0], current_q.shape[1], v.shape[2]),
617
+ device=q.device,
618
+ dtype=q.dtype,
619
+ ))
620
+ continue
621
+
622
+ current_output = torch.empty_like(current_q)
623
+ group_size = int(current_q.size(-2) / current_k.size(-2))
624
+
625
+ if sparse_attn_enabled:
626
+ num_device_q_heads = current_q.size(-2)
627
+ heads_vertical_size = torch.empty(size=(num_device_q_heads, ),
628
+ dtype=torch.int32)
629
+ heads_slash_size = torch.empty(size=(num_device_q_heads, ),
630
+ dtype=torch.int32)
631
+ for head_id in range(current_q.size(-2)):
632
+ (
633
+ ty,
634
+ vertical_size,
635
+ slash_size,
636
+ _,
637
+ ) = self.sparse_attention_config[head_id]
638
+ assert ty == "vertical_and_slash", "only support slash mode"
639
+
640
+ if vertical_size == 30:
641
+ vertical_size += 100
642
+ heads_vertical_size[head_id] = vertical_size
643
+ heads_slash_size[head_id] = slash_size
644
+
645
+ current_output = self._dual_chunk_flash_attn_prefill_func(
646
+ current_q, # allheads
647
+ current_q_succ,
648
+ current_q_inter,
649
+ current_q_succ_critical,
650
+ current_q_inter_critical,
651
+ current_k,
652
+ current_v,
653
+ current_block_table,
654
+ softmax_scale,
655
+ chunk_size,
656
+ local_size,
657
+ scaling_factor[i].item(),
658
+ ke - ks,
659
+ sparse_attn_enabled=sparse_attn_enabled,
660
+ heads_vertical_size=heads_vertical_size,
661
+ heads_slash_size=heads_slash_size,
662
+ group_size=group_size)
663
+ else:
664
+ for head_id in range(current_q.size(-2)):
665
+ # (seq_len, num_heads, head_size)
666
+ current_q_head = current_q[:, head_id, :].unsqueeze(1)
667
+ current_q_succ_head = \
668
+ current_q_succ[:, head_id, :].unsqueeze(1)
669
+ current_q_inter_head = \
670
+ current_q_inter[:, head_id, :].unsqueeze(1)
671
+ current_q_succ_head_critical = \
672
+ current_q_succ_critical[:, head_id, :].unsqueeze(1)
673
+ current_q_inter_head_critical = \
674
+ current_q_inter_critical[:, head_id, :].unsqueeze(1)
675
+ if block_table is not None:
676
+ current_k_head = current_k[..., head_id //
677
+ group_size, :].unsqueeze(2)
678
+ current_v_head = current_v[..., head_id //
679
+ group_size, :].unsqueeze(2)
680
+
681
+ else:
682
+ current_k_head = current_k[:, head_id, :].unsqueeze(1)
683
+ current_v_head = current_v[:, head_id, :].unsqueeze(1)
684
+
685
+ current_out = self._dual_chunk_flash_attn_prefill_func(
686
+ current_q_head,
687
+ current_q_succ_head,
688
+ current_q_inter_head,
689
+ current_q_succ_head_critical,
690
+ current_q_inter_head_critical,
691
+ current_k_head,
692
+ current_v_head,
693
+ current_block_table,
694
+ softmax_scale,
695
+ chunk_size,
696
+ local_size,
697
+ scaling_factor[i].item(),
698
+ ke - ks,
699
+ sparse_attn_enabled=sparse_attn_enabled,
700
+ )
701
+ current_output[:, head_id:head_id + 1, :] = current_out
702
+ all_outputs.append(current_output)
703
+ return torch.cat(all_outputs, dim=0)
704
+
705
+ def _dual_chunk_flash_attn_prefill_func(
706
+ self,
707
+ q,
708
+ q_succ,
709
+ q_inter,
710
+ q_succ_critical,
711
+ q_inter_critical,
712
+ k,
713
+ v,
714
+ block_table,
715
+ softmax_scale: float,
716
+ chunk_size: int,
717
+ local_size: int,
718
+ scaling_factor: float,
719
+ k_length: int,
720
+ sparse_attn_enabled: Optional[bool] = True,
721
+ heads_vertical_size=None,
722
+ heads_slash_size=None,
723
+ group_size=None,
724
+ ):
725
+ flash_results = []
726
+ chunk_len = chunk_size - local_size
727
+
728
+ if block_table is not None:
729
+ block_size = v.shape[1]
730
+ if chunk_len % block_size != 0:
731
+ raise ValueError("chunk_len must be divisible by block_size.")
732
+ else:
733
+ block_size = 1
734
+
735
+ if self.original_max_position_embeddings > 0:
736
+ softmax_scale = softmax_scale * scaling_factor
737
+
738
+ begin = k_length - q.shape[0]
739
+ while begin < k_length:
740
+ flash_per_chunk = []
741
+
742
+ prev_chunk_end_pos = (begin // chunk_len) * chunk_len
743
+ next_chunk_end_pos = prev_chunk_end_pos + chunk_len
744
+ end = min(next_chunk_end_pos, k_length)
745
+ qbegin = begin - (k_length - q.shape[0])
746
+ qend = end - (k_length - q.shape[0])
747
+
748
+ qk_chunks = []
749
+ q_states_intra = q[qbegin:qend]
750
+ # choose critical token
751
+ if block_table is not None:
752
+ block_tables_intra = _get_block(block_table, block_size,
753
+ prev_chunk_end_pos, end)
754
+ k_states_intra = k[block_tables_intra].view(
755
+ -1, *k.shape[-2:])[:(end - prev_chunk_end_pos)]
756
+ v_states_intra = v[block_tables_intra].view(
757
+ -1, *v.shape[-2:])[:(end - prev_chunk_end_pos)]
758
+ else:
759
+ block_tables_intra = None
760
+ k_states_intra = k[prev_chunk_end_pos:end]
761
+ v_states_intra = v[prev_chunk_end_pos:end]
762
+
763
+ if sparse_attn_enabled:
764
+ last_q_size = min(qend - qbegin, self.sparse_attention_last_q)
765
+ _, num_device_k_heads, head_dim = k_states_intra.shape
766
+ k_states_intra = (k_states_intra.unsqueeze(2).repeat(
767
+ 1, 1, group_size,
768
+ 1).reshape(-1, num_device_k_heads * group_size, head_dim))
769
+ v_states_intra = (v_states_intra.unsqueeze(2).repeat(
770
+ 1, 1, group_size,
771
+ 1).reshape(-1, num_device_k_heads * group_size, head_dim))
772
+ qk_chunks.append(
773
+ (q_states_intra.transpose(0, 1)[:, -last_q_size:] *
774
+ softmax_scale) @ k_states_intra.permute(1, 2, 0))
775
+
776
+ if prev_chunk_end_pos - chunk_len >= 0:
777
+ q_states_succ = q_succ[qbegin:qend]
778
+ q_states_succ_critical = q_succ_critical[qbegin:qend]
779
+ if block_table is not None:
780
+ block_tables_succ = _get_block(
781
+ block_table, block_size,
782
+ prev_chunk_end_pos - chunk_len, prev_chunk_end_pos)
783
+ k_states_succ = k[block_tables_succ].view(
784
+ -1, *k.shape[-2:])[:chunk_len]
785
+ v_states_succ = v[block_tables_succ].view(
786
+ -1, *v.shape[-2:])[:chunk_len]
787
+ else:
788
+ k_states_succ = k[prev_chunk_end_pos -
789
+ chunk_len:prev_chunk_end_pos]
790
+ v_states_succ = v[prev_chunk_end_pos -
791
+ chunk_len:prev_chunk_end_pos]
792
+
793
+ if sparse_attn_enabled:
794
+ k_states_succ = (k_states_succ.unsqueeze(2).repeat(
795
+ 1, 1, group_size,
796
+ 1).reshape(-1, num_device_k_heads * group_size,
797
+ head_dim))
798
+ v_states_succ = (v_states_succ.unsqueeze(2).repeat(
799
+ 1, 1, group_size,
800
+ 1).reshape(-1, num_device_k_heads * group_size,
801
+ head_dim))
802
+ qk_chunks.append((q_states_succ_critical.transpose(
803
+ 0, 1)[:, -last_q_size:] * softmax_scale)
804
+ @ k_states_succ.permute(1, 2, 0))
805
+
806
+ if prev_chunk_end_pos - chunk_len * 2 >= 0:
807
+ q_states_inter = q_inter[qbegin:qend]
808
+ q_states_inter_critical = q_inter_critical[qbegin:qend]
809
+ if block_table is not None:
810
+ block_tables_inter = _get_block(
811
+ block_table, block_size, 0,
812
+ prev_chunk_end_pos - chunk_len)
813
+ k_states_inter = k[block_tables_inter].view(
814
+ -1, *k.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
815
+ v_states_inter = v[block_tables_inter].view(
816
+ -1, *v.shape[-2:])[:(prev_chunk_end_pos - chunk_len)]
817
+ else:
818
+ k_states_inter = k[:prev_chunk_end_pos - chunk_len]
819
+ v_states_inter = v[:prev_chunk_end_pos - chunk_len]
820
+
821
+ if sparse_attn_enabled:
822
+ k_states_inter = (k_states_inter.unsqueeze(2).repeat(
823
+ 1, 1, group_size,
824
+ 1).reshape(-1, num_device_k_heads * group_size,
825
+ head_dim))
826
+ v_states_inter = (v_states_inter.unsqueeze(2).repeat(
827
+ 1, 1, group_size,
828
+ 1).reshape(-1, num_device_k_heads * group_size,
829
+ head_dim))
830
+ qk_chunks.append((q_states_inter_critical.transpose(
831
+ 0, 1)[:, -last_q_size:] * softmax_scale)
832
+ @ k_states_inter.permute(1, 2, 0))
833
+
834
+ if sparse_attn_enabled:
835
+ reversed_qk = qk_chunks[::-1]
836
+ qk = torch.cat(reversed_qk, dim=-1)
837
+
838
+ qk[:, :, -last_q_size:] = torch.where(
839
+ self.last_q_mask[..., -last_q_size:,
840
+ -last_q_size:].to(qk.device),
841
+ qk[:, :, -last_q_size:], -torch.inf)
842
+ qk = F.softmax(qk, dim=-1, dtype=torch.float32)
843
+
844
+ vertical = qk.sum(-2, keepdim=True)
845
+ vertical[..., :30] = torch.inf
846
+
847
+ # Avoid sorting by using the min/max ints to fill the indexer
848
+ # buffers.
849
+ int32_max = torch.iinfo(torch.int32).max
850
+ int32_min = torch.iinfo(torch.int32).min
851
+ n_heads = qk.size()[0]
852
+ max_slash_topk = torch.max(heads_slash_size).item()
853
+ max_vertical_topk = torch.max(heads_vertical_size).item()
854
+ # store each head's slash topk, vertical topk
855
+ vertical = vertical.reshape((n_heads, -1))
856
+ # prevent out of range when prompt size < max_vertical_topk
857
+ max_vertical_topk = min(vertical.shape[-1], max_vertical_topk)
858
+ vertical_topk_buffer = torch.topk(vertical, max_vertical_topk,
859
+ -1).indices
860
+ slash_topk_buffer = torch.empty(size=(n_heads, max_slash_topk),
861
+ dtype=torch.int64,
862
+ device=qk.device)
863
+ for head_i in range(n_heads):
864
+ # (nqheads=1, lastq, k_len)
865
+ head_score = qk[head_i:head_i + 1, :, :]
866
+ slash_scores = _sum_all_diagonal_matrix(head_score)
867
+ if head_score.size(1) != 1:
868
+ # drop right up corner
869
+ slash_scores = slash_scores[..., :-last_q_size + 1]
870
+ slash_scores[..., -100:] = torch.inf
871
+
872
+ head_slash_size = heads_slash_size[head_i]
873
+ head_slash_size = min(head_slash_size, vertical.size(-1))
874
+ slash_topk = torch.topk(slash_scores, head_slash_size,
875
+ -1).indices
876
+ #(nheads, max_topk)
877
+ slash_topk_buffer[head_i, :head_slash_size] = slash_topk
878
+
879
+ # reset heads topk
880
+ heads_slash_size[head_i] = head_slash_size
881
+ heads_vertical_size[head_i] = min(
882
+ heads_vertical_size[head_i], max_vertical_topk)
883
+
884
+ # store
885
+ vertical_buffer = torch.full((n_heads, max_vertical_topk),
886
+ int32_max,
887
+ dtype=torch.int64,
888
+ device=q.device)
889
+ slash_buffer = torch.full((n_heads, max_slash_topk),
890
+ int32_min,
891
+ dtype=torch.int64,
892
+ device=q.device)
893
+ succ_vertical_buffer = torch.full((n_heads, max_vertical_topk),
894
+ int32_max,
895
+ dtype=torch.int64,
896
+ device=q.device)
897
+ succ_slash_buffer = torch.full((n_heads, max_slash_topk),
898
+ int32_min,
899
+ dtype=torch.int64,
900
+ device=q.device)
901
+ inter_vertical_buffer = torch.full(
902
+ (n_heads, max_vertical_topk),
903
+ int32_max,
904
+ dtype=torch.int64,
905
+ device=q.device)
906
+ inter_slash_buffer = torch.full((n_heads, max_slash_topk),
907
+ int32_min,
908
+ dtype=torch.int64,
909
+ device=q.device)
910
+
911
+ vertical_size_buffer = torch.empty(size=(n_heads, ),
912
+ dtype=torch.int32,
913
+ device=q.device)
914
+ slash_sizes_buffer = torch.empty(size=(n_heads, ),
915
+ dtype=torch.int32,
916
+ device=q.device)
917
+ succ_vertical_size_buffer = torch.empty(size=(n_heads, ),
918
+ dtype=torch.int32,
919
+ device=q.device)
920
+ succ_slash_sizes_buffer = torch.empty(size=(n_heads, ),
921
+ dtype=torch.int32,
922
+ device=q.device)
923
+ inter_vertical_size_buffer = torch.empty(size=(n_heads, ),
924
+ dtype=torch.int32,
925
+ device=q.device)
926
+ inter_slash_sizes_buffer = torch.empty(size=(n_heads, ),
927
+ dtype=torch.int32,
928
+ device=q.device)
929
+
930
+ for head_i in range(n_heads):
931
+ vertical_topk = vertical_topk_buffer[
932
+ head_i, :heads_vertical_size[head_i]]
933
+ # intra
934
+ intra_vertical_indices = vertical_topk[
935
+ vertical_topk >=
936
+ prev_chunk_end_pos] - prev_chunk_end_pos
937
+ if intra_vertical_indices.nelement() == 0:
938
+ intra_vertical_indices = torch.cat([
939
+ intra_vertical_indices,
940
+ torch.arange(0,
941
+ k_states_intra.size(0),
942
+ max(1,
943
+ k_states_intra.size(0) / 5),
944
+ dtype=torch.int32,
945
+ device=intra_vertical_indices.device)
946
+ ])
947
+ slash_topk = slash_topk_buffer[
948
+ head_i, :heads_slash_size[head_i]]
949
+ intra_slash_indices = (
950
+ (qk.size(-1) - 1) -
951
+ slash_topk[slash_topk >= prev_chunk_end_pos])
952
+ # fill buffer
953
+ v_count = intra_vertical_indices.nelement()
954
+ s_count = intra_slash_indices.nelement()
955
+ vertical_size_buffer[head_i] = v_count
956
+ slash_sizes_buffer[head_i] = s_count
957
+ vertical_buffer[head_i, :v_count].copy_(
958
+ intra_vertical_indices)
959
+ slash_buffer[head_i, :s_count].copy_(intra_slash_indices)
960
+ # succ
961
+ if prev_chunk_end_pos - chunk_len >= 0:
962
+ succ_vertical_indices = vertical_topk[
963
+ (vertical_topk < prev_chunk_end_pos)
964
+ & (vertical_topk >= prev_chunk_end_pos -
965
+ chunk_len)] - (prev_chunk_end_pos - chunk_len)
966
+ # TODO: support no vertical
967
+ if succ_vertical_indices.nelement() == 0:
968
+ succ_vertical_indices = torch.cat([
969
+ succ_vertical_indices,
970
+ torch.arange(
971
+ 0,
972
+ k_states_succ.size(0),
973
+ max(1,
974
+ k_states_succ.size(0) / 5),
975
+ dtype=torch.int32,
976
+ device=intra_vertical_indices.device)
977
+ ])
978
+ succ_slash_indices = (
979
+ (prev_chunk_end_pos + (qend - qbegin) - 1) -
980
+ slash_topk[((slash_topk >=
981
+ (prev_chunk_end_pos - chunk_len)) &
982
+ (slash_topk < (prev_chunk_end_pos +
983
+ (qend - qbegin))))])
984
+ if succ_slash_indices.nelement() == 0:
985
+ succ_slash_indices = torch.cat([
986
+ succ_slash_indices,
987
+ torch.arange(
988
+ 0,
989
+ k_states_succ.size(0),
990
+ max(1,
991
+ k_states_succ.size(0) / 5),
992
+ dtype=torch.int32,
993
+ device=intra_vertical_indices.device)
994
+ ])
995
+ # fill buffer
996
+ v_count = succ_vertical_indices.nelement()
997
+ s_count = succ_slash_indices.nelement()
998
+ succ_vertical_size_buffer[head_i] = v_count
999
+ succ_slash_sizes_buffer[head_i] = s_count
1000
+ succ_vertical_buffer[head_i, :v_count].copy_(
1001
+ succ_vertical_indices)
1002
+ succ_slash_buffer[head_i, :s_count].copy_(
1003
+ succ_slash_indices)
1004
+
1005
+ if prev_chunk_end_pos - 2 * chunk_len >= 0:
1006
+ inter_vertical_indices = vertical_topk[
1007
+ vertical_topk < prev_chunk_end_pos - chunk_len]
1008
+
1009
+ if inter_vertical_indices.nelement() == 0:
1010
+ inter_vertical_indices = torch.cat([
1011
+ inter_vertical_indices,
1012
+ torch.arange(
1013
+ 0,
1014
+ k_states_inter.size(0),
1015
+ max(1,
1016
+ k_states_inter.size(0) / 5),
1017
+ dtype=torch.int32,
1018
+ device=intra_vertical_indices.device)
1019
+ ])
1020
+ inter_slash_indices = (
1021
+ (prev_chunk_end_pos - chunk_len +
1022
+ (qend - qbegin) - 1) -
1023
+ slash_topk[slash_topk < (prev_chunk_end_pos -
1024
+ chunk_len +
1025
+ (qend - qbegin))])
1026
+ if inter_slash_indices.nelement() == 0:
1027
+ inter_slash_indices = torch.cat([
1028
+ inter_slash_indices,
1029
+ torch.arange(
1030
+ 0,
1031
+ k_states_inter.size(0),
1032
+ max(1,
1033
+ k_states_inter.size(0) / 5),
1034
+ dtype=torch.int32,
1035
+ device=intra_vertical_indices.device)
1036
+ ])
1037
+ # fill buffer
1038
+ v_count = inter_vertical_indices.nelement()
1039
+ s_count = inter_slash_indices.nelement()
1040
+ inter_vertical_size_buffer[head_i] = v_count
1041
+ inter_slash_sizes_buffer[head_i] = s_count
1042
+ inter_vertical_buffer[head_i, :v_count].copy_(
1043
+ inter_vertical_indices)
1044
+ inter_slash_buffer[head_i, :s_count].copy_(
1045
+ inter_slash_indices)
1046
+ else:
1047
+ intra_vertical_indices, intra_slash_indices = None, None
1048
+ succ_vertical_indices, succ_slash_indices = None, None
1049
+ inter_vertical_indices, inter_slash_indices = None, None
1050
+
1051
+ if sparse_attn_enabled:
1052
+ flash_result = self._do_flash_attn(
1053
+ q_states_intra,
1054
+ k_states_intra,
1055
+ v_states_intra,
1056
+ softmax_scale=softmax_scale,
1057
+ causal=True,
1058
+ block_table=block_table,
1059
+ stage="intra",
1060
+ vertical_indices=vertical_buffer,
1061
+ slash_indices=slash_buffer,
1062
+ vertical_indices_count=vertical_size_buffer,
1063
+ slash_indices_count=slash_sizes_buffer,
1064
+ mergehead_softmax_scale=softmax_scale,
1065
+ sparse_attn_enabled=sparse_attn_enabled)
1066
+ else:
1067
+ flash_result = self._do_flash_attn(
1068
+ q_states_intra,
1069
+ k_states_intra,
1070
+ v_states_intra,
1071
+ softmax_scale=softmax_scale,
1072
+ causal=True,
1073
+ block_table=block_table,
1074
+ stage="intra",
1075
+ vertical_indices=intra_vertical_indices,
1076
+ slash_indices=intra_slash_indices,
1077
+ sparse_attn_enabled=sparse_attn_enabled)
1078
+ flash_per_chunk.append(flash_result)
1079
+
1080
+ if prev_chunk_end_pos - chunk_len >= 0:
1081
+ if sparse_attn_enabled:
1082
+ flash_result = self._do_flash_attn(
1083
+ q_states_succ,
1084
+ k_states_succ,
1085
+ v_states_succ,
1086
+ softmax_scale=softmax_scale,
1087
+ causal=False,
1088
+ block_table=block_table,
1089
+ stage="succ",
1090
+ vertical_indices=succ_vertical_buffer,
1091
+ slash_indices=succ_slash_buffer,
1092
+ vertical_indices_count=succ_vertical_size_buffer,
1093
+ slash_indices_count=succ_slash_sizes_buffer,
1094
+ mergehead_softmax_scale=softmax_scale,
1095
+ sparse_attn_enabled=sparse_attn_enabled)
1096
+ else:
1097
+ flash_result = self._do_flash_attn(
1098
+ q_states_succ,
1099
+ k_states_succ,
1100
+ v_states_succ,
1101
+ softmax_scale=softmax_scale,
1102
+ causal=False,
1103
+ block_table=block_table,
1104
+ stage="succ",
1105
+ vertical_indices=succ_vertical_indices,
1106
+ slash_indices=succ_slash_indices,
1107
+ sparse_attn_enabled=sparse_attn_enabled)
1108
+ flash_per_chunk.append(flash_result)
1109
+
1110
+ if prev_chunk_end_pos - chunk_len * 2 >= 0:
1111
+ if sparse_attn_enabled:
1112
+ flash_result = self._do_flash_attn(
1113
+ q_states_inter,
1114
+ k_states_inter,
1115
+ v_states_inter,
1116
+ softmax_scale=softmax_scale,
1117
+ causal=False,
1118
+ block_table=block_table,
1119
+ stage="inter",
1120
+ vertical_indices=inter_vertical_buffer,
1121
+ slash_indices=inter_slash_buffer,
1122
+ vertical_indices_count=inter_vertical_size_buffer,
1123
+ slash_indices_count=inter_slash_sizes_buffer,
1124
+ mergehead_softmax_scale=softmax_scale,
1125
+ sparse_attn_enabled=sparse_attn_enabled)
1126
+ else:
1127
+ flash_result = self._do_flash_attn(
1128
+ q_states_inter,
1129
+ k_states_inter,
1130
+ v_states_inter,
1131
+ softmax_scale=softmax_scale,
1132
+ causal=False,
1133
+ block_table=block_table,
1134
+ stage="inter",
1135
+ vertical_indices=inter_vertical_indices,
1136
+ slash_indices=inter_slash_indices,
1137
+ sparse_attn_enabled=sparse_attn_enabled)
1138
+ flash_per_chunk.append(flash_result)
1139
+
1140
+ flash_results.append(flash_per_chunk)
1141
+ begin = end
1142
+
1143
+ attn_output = self._merge_attn_outputs(flash_results)
1144
+ del flash_results
1145
+ return attn_output
1146
+
1147
+ def _do_flash_attn(
1148
+ self,
1149
+ query_states: torch.Tensor,
1150
+ key_states: torch.Tensor,
1151
+ value_states: torch.Tensor,
1152
+ softmax_scale: float,
1153
+ causal: bool = True,
1154
+ block_table: torch.Tensor = None,
1155
+ max_seqlen_k: Optional[int] = None,
1156
+ stage: str = "intra",
1157
+ vertical_indices: Optional[torch.Tensor] = None,
1158
+ slash_indices: Optional[torch.Tensor] = None,
1159
+ vertical_indices_count: Optional[torch.Tensor] = None,
1160
+ slash_indices_count: Optional[torch.Tensor] = None,
1161
+ mergehead_softmax_scale: Optional[float] = None,
1162
+ sparse_attn_enabled: Optional[bool] = False,
1163
+ ):
1164
+ if max_seqlen_k is None:
1165
+ max_seqlen_k = key_states.shape[0]
1166
+
1167
+ q_len = query_states.shape[0]
1168
+ q_heads = query_states.shape[1]
1169
+ h_dim = query_states.shape[-1]
1170
+
1171
+ if sparse_attn_enabled:
1172
+ assert slash_indices is not None
1173
+ if stage == "intra":
1174
+ assert causal
1175
+ else:
1176
+ assert not causal
1177
+
1178
+ query_states = query_states.unsqueeze(0).transpose(1, 2)
1179
+ key_states = key_states.unsqueeze(0).transpose(1, 2)
1180
+ value_states = value_states.unsqueeze(0).transpose(1, 2)
1181
+
1182
+ q = query_states
1183
+ k = key_states
1184
+ v = value_states
1185
+
1186
+ if (vertical_indices_count is not None and \
1187
+ slash_indices_count is not None):
1188
+ assert mergehead_softmax_scale is not None
1189
+
1190
+ res, s_lse = _vertical_slash_sparse_attention(
1191
+ q,
1192
+ k,
1193
+ v,
1194
+ vertical_indices,
1195
+ slash_indices,
1196
+ mergehead_softmax_scale,
1197
+ causal=causal,
1198
+ stage=stage,
1199
+ vertical_indices_count=vertical_indices_count,
1200
+ slash_indices_count=slash_indices_count)
1201
+ res = res.view(q_heads, q_len,
1202
+ h_dim).transpose(0, 1) # (qlen,nhead,h_dim)
1203
+ s_lse = s_lse.view(
1204
+ q_heads, q_len,
1205
+ 1).squeeze(-1).unsqueeze(0).float() # (1, nhead,qlen)
1206
+ else:
1207
+ res, s_lse = _vertical_slash_sparse_attention(q,
1208
+ k,
1209
+ v,
1210
+ vertical_indices,
1211
+ slash_indices,
1212
+ softmax_scale,
1213
+ causal=causal,
1214
+ stage=stage)
1215
+ res = res.view(q_len, q_heads, h_dim)
1216
+ s_lse = s_lse.view(q_len, q_heads, 1).transpose(0, 2).float()
1217
+ return res, s_lse
1218
+
1219
+ output, softmax_lse = flash_attn_varlen_func(
1220
+ q=query_states,
1221
+ k=key_states,
1222
+ v=value_states,
1223
+ softmax_scale=softmax_scale,
1224
+ cu_seqlens_q=torch.tensor([0, query_states.shape[0]],
1225
+ dtype=torch.int32,
1226
+ device=query_states.device),
1227
+ max_seqlen_q=query_states.shape[0],
1228
+ cu_seqlens_k=torch.tensor([0, max_seqlen_k],
1229
+ dtype=torch.int32,
1230
+ device=query_states.device),
1231
+ max_seqlen_k=max_seqlen_k,
1232
+ causal=causal,
1233
+ block_table=block_table.unsqueeze(0),
1234
+ return_softmax_lse=True,
1235
+ )
1236
+ softmax_lse = softmax_lse.view(q_len, q_heads, 1).transpose(0,
1237
+ 2).float()
1238
+ return output, softmax_lse
1239
+
1240
+ def _merge_attn_outputs(
1241
+ self,
1242
+ flash_results: List[List[Tuple[torch.Tensor, torch.Tensor]]],
1243
+ return_lse: Optional[bool] = False,
1244
+ ) -> torch.Tensor:
1245
+ attn_outputs_all = []
1246
+ logits_all = []
1247
+
1248
+ for flash_per_chunk in flash_results:
1249
+ if len(flash_per_chunk) == 1:
1250
+ attn_outputs_all.append(flash_per_chunk[0][0])
1251
+ if return_lse:
1252
+ logits_all.append(flash_per_chunk[0][1])
1253
+ continue
1254
+
1255
+ attn_outputs = torch.stack([
1256
+ flash_attn_output[0] for flash_attn_output in flash_per_chunk
1257
+ ])
1258
+ logits = torch.stack([
1259
+ flash_attn_output[1] for flash_attn_output in flash_per_chunk
1260
+ ])
1261
+ logits = logits.to(torch.float32)
1262
+
1263
+ if return_lse:
1264
+ max_val = torch.max(logits, dim=0).values
1265
+ diff = torch.abs(logits[0] - logits[1])
1266
+ log_sum_exp = max_val + torch.log1p(torch.exp(-diff))
1267
+ logits_all.append(log_sum_exp)
1268
+
1269
+ max_logits = torch.max(logits, dim=0).values
1270
+ stable_logits = logits - max_logits.unsqueeze(0)
1271
+ lse_s = torch.exp(stable_logits).detach()
1272
+ lse_sum = torch.sum(lse_s, dim=0)
1273
+ lse_s /= lse_sum
1274
+ attn_outputs *= lse_s.unsqueeze(-1).transpose(2, 3).squeeze(1)
1275
+ attn_outputs_all.append(attn_outputs.sum(dim=0))
1276
+
1277
+ if return_lse:
1278
+ return (torch.cat(attn_outputs_all,
1279
+ dim=0), torch.cat(logits_all, dim=-1))
1280
+ else:
1281
+ return torch.cat(attn_outputs_all, dim=0)
1282
+
1283
+ def _dual_chunk_flash_attn_decoding(
1284
+ self,
1285
+ query: torch.Tensor,
1286
+ query_succ: torch.Tensor,
1287
+ query_inter: torch.Tensor,
1288
+ key_cache: torch.Tensor,
1289
+ value_cache: torch.Tensor,
1290
+ block_table: torch.Tensor,
1291
+ cache_seqlens: torch.Tensor,
1292
+ softmax_scale: float,
1293
+ causal: bool,
1294
+ alibi_slopes: Optional[torch.Tensor],
1295
+ chunk_size: int,
1296
+ local_size: int,
1297
+ original_max_position_embeddings: int,
1298
+ decode_meta: DualChunkFlashAttentionMetadata,
1299
+ ):
1300
+ if not causal:
1301
+ raise ValueError(
1302
+ "Dual Chunk Attention does not support causal=False")
1303
+
1304
+ block_size = value_cache.shape[1]
1305
+ chunk_len = chunk_size - local_size
1306
+ if chunk_len % block_size != 0:
1307
+ raise ValueError("chunk_len must be divisible by block_size.")
1308
+ if original_max_position_embeddings > 0:
1309
+ assert decode_meta.scaling_factor is not None
1310
+ scaling_factor = decode_meta.scaling_factor
1311
+ query = (query * scaling_factor.view(-1, 1, 1, 1)).to(
1312
+ query.dtype
1313
+ ) # possible for numerical issue, need to fused in the kernel
1314
+ query_succ = (query_succ * scaling_factor.view(-1, 1, 1, 1)).to(
1315
+ query.dtype)
1316
+ query_inter = (query_inter * scaling_factor.view(-1, 1, 1, 1)).to(
1317
+ query.dtype)
1318
+ outputs_list = []
1319
+ softmax_lses_list = []
1320
+
1321
+ # intra-attention
1322
+ intra_output, intra_softmax_lse = (
1323
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1324
+ query,
1325
+ key_cache,
1326
+ value_cache,
1327
+ decode_meta.block_tables_intra,
1328
+ decode_meta.seq_lens_intra,
1329
+ softmax_scale,
1330
+ alibi_slopes,
1331
+ causal=False,
1332
+ ))
1333
+ outputs_list.append(intra_output)
1334
+ softmax_lses_list.append(intra_softmax_lse)
1335
+
1336
+ # succ-attention
1337
+ if decode_meta.max_seq_len_succ:
1338
+ succ_output, succ_softmax_lse = (
1339
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1340
+ query_succ,
1341
+ key_cache,
1342
+ value_cache,
1343
+ decode_meta.block_tables_succ,
1344
+ decode_meta.seq_lens_succ,
1345
+ softmax_scale,
1346
+ alibi_slopes,
1347
+ causal=False,
1348
+ ))
1349
+ outputs_list.append(succ_output)
1350
+ softmax_lses_list.append(succ_softmax_lse)
1351
+
1352
+ # inter-attention
1353
+ if decode_meta.max_seq_len_inter:
1354
+ inter_output, inter_softmax_lse = (
1355
+ self._dual_chunk_flash_attn_decoding_with_exp_sums(
1356
+ query_inter,
1357
+ key_cache,
1358
+ value_cache,
1359
+ block_table[:, :decode_meta.max_seq_len_inter],
1360
+ decode_meta.seq_lens_inter,
1361
+ softmax_scale,
1362
+ alibi_slopes,
1363
+ causal=False,
1364
+ ))
1365
+ outputs_list.append(inter_output)
1366
+ softmax_lses_list.append(inter_softmax_lse)
1367
+ outputs = torch.stack(outputs_list, dim=0)
1368
+ del outputs_list
1369
+ softmax_lses = torch.stack(softmax_lses_list, dim=0).to(torch.float32)
1370
+ del softmax_lses_list
1371
+ max_logits = torch.max(softmax_lses, dim=0).values
1372
+ stable_logits = softmax_lses - max_logits.unsqueeze(0)
1373
+ lse_s = torch.exp(stable_logits).detach()
1374
+ lse_sum = torch.sum(lse_s, dim=0)
1375
+ lse_s /= lse_sum
1376
+ outputs *= lse_s.unsqueeze(-1).transpose(2, 3)
1377
+ return outputs.sum(0)
1378
+
1379
+ def _dual_chunk_flash_attn_decoding_with_exp_sums(
1380
+ self,
1381
+ query: torch.Tensor,
1382
+ key_cache: torch.Tensor,
1383
+ value_cache: torch.Tensor,
1384
+ block_table: torch.Tensor,
1385
+ cache_seqlens: torch.Tensor,
1386
+ softmax_scale: float,
1387
+ alibi_slopes: Optional[torch.Tensor],
1388
+ causal: bool,
1389
+ ):
1390
+ out, softmax_lse = flash_attn_with_kvcache(
1391
+ q=query,
1392
+ k_cache=key_cache,
1393
+ v_cache=value_cache,
1394
+ block_table=block_table,
1395
+ cache_seqlens=cache_seqlens,
1396
+ softmax_scale=softmax_scale,
1397
+ alibi_slopes=alibi_slopes,
1398
+ causal=causal,
1399
+ return_softmax_lse=True,
1400
+ )
1401
+ mask = (cache_seqlens == 0)
1402
+ out[mask] = 0
1403
+ softmax_lse[mask] = -float("inf")
1404
+ return out, softmax_lse
1405
+
1406
+
1407
+ def _vertical_slash_sparse_attention(
1408
+ query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
1409
+ key: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
1410
+ value: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
1411
+ v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
1412
+ s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
1413
+ softmax_scale: float,
1414
+ causal: bool = True,
1415
+ stage: str = "intra",
1416
+ block_size_M: int = 64,
1417
+ block_size_N: int = 64,
1418
+ vertical_indices_count: torch.Tensor = None, # [N_HEADS,]
1419
+ slash_indices_count: torch.Tensor = None,
1420
+ ):
1421
+ if stage == "intra":
1422
+ assert causal
1423
+ else:
1424
+ assert not causal
1425
+
1426
+ batch_size, num_heads, context_size, head_dim = query.shape
1427
+ _, _, kv_seq_len, _ = key.shape
1428
+
1429
+ if head_dim not in [16, 32, 64, 128, 256, 512]:
1430
+ target_dim = 2**math.ceil(math.log2(head_dim)) - head_dim
1431
+ query = F.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0])
1432
+ key = F.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0])
1433
+ value = F.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0])
1434
+
1435
+ v_idx = v_idx.to(torch.int32).reshape(
1436
+ (batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0]
1437
+ s_idx = s_idx.to(torch.int32).reshape(
1438
+ (batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0]
1439
+ q_seqlens = torch.tensor([context_size],
1440
+ dtype=torch.int32,
1441
+ device=query.device)
1442
+ kv_seqlens = torch.tensor([kv_seq_len],
1443
+ dtype=torch.int32,
1444
+ device=query.device)
1445
+
1446
+ if vertical_indices_count is not None and slash_indices_count is not None:
1447
+ (
1448
+ block_count,
1449
+ block_offset,
1450
+ column_count,
1451
+ column_index,
1452
+ ) = ops.convert_vertical_slash_indexes_mergehead(
1453
+ q_seqlens, kv_seqlens, v_idx, s_idx, vertical_indices_count,
1454
+ slash_indices_count, context_size, block_size_M, block_size_N,
1455
+ causal)
1456
+ else:
1457
+ (
1458
+ block_count,
1459
+ block_offset,
1460
+ column_count,
1461
+ column_index,
1462
+ ) = ops.convert_vertical_slash_indexes(q_seqlens, kv_seqlens, v_idx,
1463
+ s_idx, context_size,
1464
+ block_size_M, block_size_N,
1465
+ causal)
1466
+
1467
+ q = query.transpose(1, 2).contiguous()
1468
+ k = key.transpose(1, 2).contiguous()
1469
+ v = value.transpose(1, 2).contiguous()
1470
+ out, lse = sparse_attn_func(
1471
+ q,
1472
+ k,
1473
+ v,
1474
+ block_count,
1475
+ block_offset,
1476
+ column_count,
1477
+ column_index,
1478
+ causal=causal,
1479
+ softmax_scale=softmax_scale,
1480
+ return_softmax_lse=True,
1481
+ )
1482
+ out = out.transpose(1, 2).contiguous()
1483
+ softmax_lse = lse.reshape(*lse.shape, 1)
1484
+ return (out[..., :context_size, :head_dim],
1485
+ softmax_lse[..., :context_size, :])
1486
+
1487
+
1488
+ def _sum_all_diagonal_matrix(mat: torch.tensor):
1489
+ h, n, m = mat.shape
1490
+ # Zero matrix used for padding
1491
+ zero_mat = torch.zeros((h, n, n), device=mat.device)
1492
+ # pads the matrix on left and right
1493
+ mat_padded = torch.cat((zero_mat, mat, zero_mat), -1)
1494
+ # Change the strides
1495
+ mat_strided = mat_padded.as_strided((1, n, n + m),
1496
+ (n * (2 * n + m), 2 * n + m + 1, 1))
1497
+ # Sums the resulting matrix's columns
1498
+ sum_diags = torch.sum(mat_strided, 1)
1499
+ return sum_diags[:, 1:] # drop left bottom corner
1500
+
1501
+
1502
+ def _get_block(block_table: torch.Tensor, block_size: int, begin: int,
1503
+ end: int):
1504
+ begin_block = begin // block_size
1505
+ end_block = (end - 1) // block_size + 1
1506
+ return block_table[begin_block:end_block]