vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1613 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from enum import Enum
6
+ from typing import Callable, Optional
7
+
8
+ import torch
9
+ from compressed_tensors import CompressionFormat
10
+ from compressed_tensors.quantization import (ActivationOrdering,
11
+ QuantizationStrategy)
12
+
13
+ import vllm.envs as envs
14
+ from vllm import _custom_ops as ops
15
+ from vllm.logger import init_logger
16
+ from vllm.model_executor.layers.fused_moe import (
17
+ FusedMoE, FusedMoEActivationFormat, FusedMoEConfig, FusedMoEMethodBase,
18
+ FusedMoEPermuteExpertsUnpermute, FusedMoEPrepareAndFinalize,
19
+ FusedMoeWeightScaleSupported)
20
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
21
+ WNA16_SUPPORTED_BITS, WNA16_SUPPORTED_TYPES_MAP)
22
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
23
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
24
+ check_moe_marlin_supports_layer, marlin_make_workspace_new,
25
+ marlin_moe_permute_scales)
26
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
27
+ prepare_moe_fp4_layer_for_marlin)
28
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
29
+ prepare_moe_fp8_layer_for_marlin)
30
+ from vllm.model_executor.layers.quantization.utils.nvfp4_emulation_utils import ( # noqa: E501
31
+ cutlass_fp4_supported)
32
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
33
+ all_close_1d, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize)
34
+ from vllm.model_executor.utils import set_weight_attrs
35
+ from vllm.platforms import current_platform
36
+ from vllm.scalar_type import scalar_types
37
+
38
+ logger = init_logger(__name__)
39
+
40
+
41
+ class GPTQMarlinState(Enum):
42
+ REPACK = enum.auto()
43
+ READY = enum.auto()
44
+
45
+
46
+ __all__ = [
47
+ "CompressedTensorsMoEMethod", "CompressedTensorsW8A8Fp8MoEMethod",
48
+ "CompressedTensorsW8A8Fp8MoECutlassMethod",
49
+ "CompressedTensorsW8A8Int8MoEMethod",
50
+ "CompressedTensorsWNA16MarlinMoEMethod", "CompressedTensorsWNA16MoEMethod",
51
+ "CompressedTensorsW4A4MoeMethod"
52
+ ]
53
+
54
+
55
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
56
+
57
+ @staticmethod
58
+ def get_moe_method(
59
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
60
+ layer: torch.nn.Module,
61
+ ) -> "CompressedTensorsMoEMethod":
62
+ # TODO: @dsikka: refactor this to use schemes as other kernels
63
+ # are supported + check if the layer is being ignored.
64
+ weight_quant = quant_config.target_scheme_map["Linear"].get("weights")
65
+ input_quant = quant_config.target_scheme_map["Linear"].get(
66
+ "input_activations")
67
+
68
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
69
+ # group_size=None means channelwise
70
+ group_size = weight_quant.group_size or -1
71
+ # Prefer to use the MarlinMoE kernel when it is supported.
72
+ if not check_moe_marlin_supports_layer(layer, group_size):
73
+ if (weight_quant.strategy in QuantizationStrategy.GROUP and
74
+ weight_quant.actorder in (ActivationOrdering.GROUP,
75
+ ActivationOrdering.DYNAMIC)):
76
+ raise ValueError(
77
+ "WNA16MoE is not supported with actorder=group/dynamic."
78
+ )
79
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
80
+ return CompressedTensorsWNA16MoEMethod(quant_config)
81
+ else:
82
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
83
+ return CompressedTensorsWNA16MarlinMoEMethod(quant_config)
84
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
85
+ return CompressedTensorsW4A4MoeMethod()
86
+ elif quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant):
87
+ return CompressedTensorsW8A8Fp8MoECutlassMethod(quant_config)
88
+ elif quant_config._is_fp8_w8a8(weight_quant, input_quant):
89
+ return CompressedTensorsW8A8Fp8MoEMethod(quant_config)
90
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
91
+ return CompressedTensorsW8A8Int8MoEMethod(quant_config)
92
+ else:
93
+ raise RuntimeError(
94
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}")
95
+
96
+
97
+ class CompressedTensorsW4A4MoeMethod(CompressedTensorsMoEMethod):
98
+
99
+ def __init__(self):
100
+ self.use_marlin = not cutlass_fp4_supported()
101
+ self.group_size = 16
102
+
103
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
104
+ hidden_size: int, intermediate_size_per_partition: int,
105
+ params_dtype: torch.dtype, **extra_weight_attrs):
106
+
107
+ layer.num_experts = num_experts
108
+ layer.params_dtype = params_dtype
109
+
110
+ w13_weight = torch.nn.Parameter(
111
+ torch.empty(
112
+ num_experts,
113
+ 2 * intermediate_size_per_partition,
114
+ # 2 fp4 items are packed in the input dimension
115
+ hidden_size // 2,
116
+ requires_grad=False,
117
+ dtype=torch.uint8),
118
+ requires_grad=False)
119
+ layer.register_parameter("w13_weight_packed", w13_weight)
120
+ set_weight_attrs(w13_weight, extra_weight_attrs)
121
+
122
+ w2_weight = torch.nn.Parameter(
123
+ torch.empty(
124
+ num_experts,
125
+ hidden_size,
126
+ # 2 fp4 items are packed in the input dimension
127
+ intermediate_size_per_partition // 2,
128
+ dtype=torch.uint8),
129
+ requires_grad=False)
130
+ layer.register_parameter("w2_weight_packed", w2_weight)
131
+ set_weight_attrs(w2_weight, extra_weight_attrs)
132
+
133
+ # Weight Scales
134
+ w13_weight_scale = torch.nn.Parameter(
135
+ torch.empty(
136
+ num_experts,
137
+ 2 * intermediate_size_per_partition,
138
+ # 2 fp4 items are packed in the input dimension
139
+ hidden_size // self.group_size,
140
+ dtype=torch.float8_e4m3fn),
141
+ requires_grad=False)
142
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
143
+ extra_weight_attrs.update(
144
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
145
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
146
+
147
+ w2_weight_scale = torch.nn.Parameter(
148
+ torch.empty(
149
+ num_experts,
150
+ hidden_size,
151
+ # 2 fp4 items are packed in the input dimension
152
+ intermediate_size_per_partition // self.group_size,
153
+ dtype=torch.float8_e4m3fn),
154
+ requires_grad=False)
155
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
156
+ extra_weight_attrs.update(
157
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
158
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
159
+
160
+ # Weight Global Scales
161
+ w13_weight_scale_2 = torch.nn.Parameter(torch.empty(
162
+ num_experts, 2, dtype=torch.float32),
163
+ requires_grad=False)
164
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
165
+ extra_weight_attrs.update(
166
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
167
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
168
+
169
+ w2_weight_scale_2 = torch.nn.Parameter(torch.empty(
170
+ num_experts, dtype=torch.float32),
171
+ requires_grad=False)
172
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
173
+ extra_weight_attrs.update(
174
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
175
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
176
+
177
+ # Input Global Scales
178
+ w13_input_scale = torch.nn.Parameter(torch.empty(num_experts,
179
+ 2,
180
+ dtype=torch.float32),
181
+ requires_grad=False)
182
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
183
+ extra_weight_attrs.update(
184
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
185
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
186
+
187
+ w2_input_scale = torch.nn.Parameter(torch.empty(num_experts,
188
+ dtype=torch.float32),
189
+ requires_grad=False)
190
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
191
+ extra_weight_attrs.update(
192
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
193
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
194
+
195
+ def swizzle_blockscale(self, scale: torch.tensor):
196
+ assert (scale.dtype == torch.float8_e4m3fn)
197
+ # Pad and blockwise interleave weight_scale
198
+ scale_ndim = scale.ndim
199
+ if scale.ndim == 2:
200
+ scale = scale.unsqueeze(0)
201
+ assert scale.ndim == 3
202
+ B, M, K = scale.shape
203
+ round_up_multiple = lambda x, m: (x + m - 1) // m * m
204
+ M_padded = round_up_multiple(M, 128)
205
+ K_padded = round_up_multiple(K, 4)
206
+ padded_scale = torch.zeros((B, M_padded, K_padded), dtype=scale.dtype)
207
+ padded_scale[:B, :M, :K] = scale
208
+ batches, rows, cols = padded_scale.shape
209
+ assert rows % 128 == 0
210
+ assert cols % 4 == 0
211
+ padded_scale = padded_scale.reshape(batches, rows // 128, 4, 32,
212
+ cols // 4, 4)
213
+ swizzled_scale = padded_scale.permute((0, 1, 4, 3, 2, 5))
214
+ swizzled_scale = swizzled_scale.contiguous().cuda()
215
+ return (swizzled_scale.reshape(M, K)
216
+ if scale_ndim == 2 else swizzled_scale.reshape(B, M, K))
217
+
218
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
219
+
220
+ # From packed to weight
221
+ layer.w13_weight = torch.nn.Parameter(layer.w13_weight_packed.data,
222
+ requires_grad=False)
223
+
224
+ layer.w2_weight = torch.nn.Parameter(layer.w2_weight_packed.data,
225
+ requires_grad=False)
226
+
227
+ if not torch.allclose(layer.w13_weight_global_scale[:, 0],
228
+ layer.w13_weight_global_scale[:, 1]):
229
+ logger.warning_once(
230
+ "w1_weight_global_scale must match w3_weight_global_scale. "
231
+ "Accuracy may be affected.")
232
+
233
+ # Take inverse of global scale saved to disk
234
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
235
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False)
236
+
237
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
238
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False)
239
+
240
+ if self.use_marlin:
241
+ prepare_moe_fp4_layer_for_marlin(layer)
242
+ return
243
+
244
+ # swizzle weight scales
245
+ layer.w13_blockscale_swizzled = torch.nn.Parameter(
246
+ self.swizzle_blockscale(layer.w13_weight_scale),
247
+ requires_grad=False)
248
+
249
+ layer.w2_blockscale_swizzled = torch.nn.Parameter(
250
+ self.swizzle_blockscale(layer.w2_weight_scale),
251
+ requires_grad=False)
252
+
253
+ # w13
254
+ w13_input_global_scale = layer.w13_input_global_scale.max(
255
+ dim=1).values.to(torch.float32)
256
+
257
+ layer.g1_alphas = torch.nn.Parameter(
258
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
259
+ requires_grad=False)
260
+
261
+ layer.w13_input_scale_quant = torch.nn.Parameter(
262
+ (w13_input_global_scale), requires_grad=False)
263
+
264
+ # w2
265
+ layer.g2_alphas = torch.nn.Parameter(
266
+ ((1 / layer.w2_input_global_scale) * layer.w2_weight_scale_2).to(
267
+ torch.float32),
268
+ requires_grad=False)
269
+
270
+ layer.w2_input_scale_quant = torch.nn.Parameter(
271
+ (layer.w2_input_global_scale), requires_grad=False)
272
+
273
+ def apply(
274
+ self,
275
+ layer: torch.nn.Module,
276
+ x: torch.Tensor,
277
+ router_logits: torch.Tensor,
278
+ top_k: int,
279
+ renormalize: bool,
280
+ use_grouped_topk: bool = False,
281
+ topk_group: Optional[int] = None,
282
+ num_expert_group: Optional[int] = None,
283
+ global_num_experts: int = -1,
284
+ expert_map: Optional[torch.Tensor] = None,
285
+ custom_routing_function: Optional[Callable] = None,
286
+ scoring_func: str = "softmax",
287
+ e_score_correction_bias: Optional[torch.Tensor] = None,
288
+ apply_router_weight_on_input: bool = False,
289
+ activation: str = "silu",
290
+ enable_eplb: bool = False,
291
+ expert_load_view: Optional[torch.Tensor] = None,
292
+ logical_to_physical_map: Optional[torch.Tensor] = None,
293
+ logical_replica_count: Optional[torch.Tensor] = None,
294
+ ) -> torch.Tensor:
295
+ if enable_eplb:
296
+ raise NotImplementedError("EPLB not supported for "
297
+ "`CompressedTensorsW4A4MoeMethod` yet.")
298
+
299
+ topk_weights, topk_ids = FusedMoE.select_experts(
300
+ hidden_states=x,
301
+ router_logits=router_logits,
302
+ use_grouped_topk=use_grouped_topk,
303
+ top_k=top_k,
304
+ renormalize=renormalize,
305
+ topk_group=topk_group,
306
+ num_expert_group=num_expert_group,
307
+ custom_routing_function=custom_routing_function,
308
+ scoring_func=scoring_func,
309
+ e_score_correction_bias=e_score_correction_bias,
310
+ )
311
+
312
+ if self.use_marlin:
313
+ return torch.ops.vllm.fused_marlin_moe(
314
+ x,
315
+ layer.w13_weight,
316
+ layer.w2_weight,
317
+ layer.w13_weight_scale,
318
+ layer.w2_weight_scale,
319
+ router_logits,
320
+ topk_weights,
321
+ topk_ids,
322
+ global_scale1=layer.w13_weight_scale_2,
323
+ global_scale2=layer.w2_weight_scale_2,
324
+ quant_type_id=scalar_types.float4_e2m1f.id,
325
+ apply_router_weight_on_input=apply_router_weight_on_input,
326
+ global_num_experts=global_num_experts,
327
+ expert_map=expert_map)
328
+
329
+ assert activation == "silu", "Only SiLU activation is supported."
330
+ assert not apply_router_weight_on_input, (
331
+ "Router weight on input is not "
332
+ "supported for CompressedTensorsW4A4MoeMethod.")
333
+ assert expert_map is None, ("Expert Parallelism / expert_map "
334
+ "is currently not supported for "
335
+ "CompressedTensorsW4A4MoeMethod.")
336
+
337
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
338
+ cutlass_moe_fp4)
339
+
340
+ # Cutlass moe takes in activations in BF16/Half precision
341
+ # and fp4 quantized weights loaded from the checkpoint
342
+ return cutlass_moe_fp4(a=x,
343
+ w1_fp4=layer.w13_weight,
344
+ w1_blockscale=layer.w13_blockscale_swizzled,
345
+ w1_alphas=layer.g1_alphas,
346
+ w2_fp4=layer.w2_weight,
347
+ w2_blockscale=layer.w2_blockscale_swizzled,
348
+ w2_alphas=layer.g2_alphas,
349
+ topk_weights=topk_weights,
350
+ topk_ids=topk_ids,
351
+ m=x.shape[0],
352
+ n=layer.w2_weight.shape[2] * 2,
353
+ k=x.shape[1],
354
+ e=layer.w13_weight.shape[0],
355
+ a1_gscale=layer.w13_input_scale_quant,
356
+ a2_gscale=layer.w2_input_scale_quant,
357
+ device=x.device).to(x.dtype)
358
+
359
+
360
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
361
+
362
+ def __init__(
363
+ self,
364
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
365
+ ):
366
+ self.quant_config = quant_config
367
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
368
+ "weights")
369
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
370
+ "input_activations")
371
+ self.topk_indices_dtype = None
372
+
373
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
374
+ and self.input_quant.strategy
375
+ == QuantizationStrategy.TENSOR)
376
+ per_channel = (
377
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
378
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
379
+ if not (per_tensor or per_channel):
380
+ raise ValueError(
381
+ "For FP8 Fused MoE layers, we require per tensor "
382
+ "or channelwise, dynamic per token quantization. Found "
383
+ f"{self.weight_quant}, {self.input_quant}")
384
+
385
+ self.static_input_scales = not self.input_quant.dynamic
386
+ if self.static_input_scales and per_channel:
387
+ raise ValueError(
388
+ "For FP8 Fused MoE layer, we require either per tensor or "
389
+ "channelwise, dynamic per token quantization.")
390
+
391
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
392
+ # kernel for fast weight-only FP8 quantization
393
+ self.use_marlin = (not current_platform.has_device_capability(89)
394
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN)
395
+ # Disable marlin for rocm
396
+ if current_platform.is_rocm():
397
+ self.use_marlin = False
398
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
399
+ is_rocm_aiter_moe_enabled)
400
+
401
+ self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
402
+
403
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
404
+ hidden_size: int, intermediate_size_per_partition: int,
405
+ params_dtype: torch.dtype, **extra_weight_attrs):
406
+
407
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
408
+ layer.hidden_size = hidden_size
409
+ layer.num_experts = num_experts
410
+ layer.orig_dtype = params_dtype
411
+ layer.weight_block_size = None
412
+
413
+ params_dtype = torch.float8_e4m3fn
414
+
415
+ # WEIGHTS
416
+ w13_weight = torch.nn.Parameter(torch.empty(
417
+ num_experts,
418
+ 2 * intermediate_size_per_partition,
419
+ hidden_size,
420
+ dtype=params_dtype),
421
+ requires_grad=False)
422
+ layer.register_parameter("w13_weight", w13_weight)
423
+ set_weight_attrs(w13_weight, extra_weight_attrs)
424
+
425
+ w2_weight = torch.nn.Parameter(torch.empty(
426
+ num_experts,
427
+ hidden_size,
428
+ intermediate_size_per_partition,
429
+ dtype=params_dtype),
430
+ requires_grad=False)
431
+ layer.register_parameter("w2_weight", w2_weight)
432
+ set_weight_attrs(w2_weight, extra_weight_attrs)
433
+
434
+ # WEIGHT_SCALES
435
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
436
+ # Allocate 2 scales for w1 and w3 respectively.
437
+ # They are combined to a single scale after weight loading.
438
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
439
+ num_experts, 2, dtype=torch.float32),
440
+ requires_grad=False)
441
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
442
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
443
+ num_experts, dtype=torch.float32),
444
+ requires_grad=False)
445
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
446
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
447
+ extra_weight_attrs.update(
448
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
449
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
450
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
451
+
452
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
453
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
454
+ num_experts,
455
+ 2 * intermediate_size_per_partition,
456
+ 1,
457
+ dtype=torch.float32),
458
+ requires_grad=False)
459
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
460
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
461
+ num_experts, hidden_size, 1, dtype=torch.float32),
462
+ requires_grad=False)
463
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
464
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
465
+ extra_weight_attrs.update(
466
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
467
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
468
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
469
+
470
+ # INPUT_SCALES
471
+ if self.static_input_scales:
472
+ w13_input_scale = torch.nn.Parameter(torch.ones(
473
+ num_experts, dtype=torch.float32),
474
+ requires_grad=False)
475
+ layer.register_parameter("w13_input_scale", w13_input_scale)
476
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
477
+
478
+ w2_input_scale = torch.nn.Parameter(torch.ones(
479
+ num_experts, dtype=torch.float32),
480
+ requires_grad=False)
481
+ layer.register_parameter("w2_input_scale", w2_input_scale)
482
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
483
+ else:
484
+ layer.w13_input_scale = None
485
+ layer.w2_input_scale = None
486
+
487
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
488
+ # Fp8 moe kernels require a single activation scale.
489
+ # We take the max of all the scales in case they differ.
490
+ if self.static_input_scales:
491
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
492
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
493
+ raise ValueError(
494
+ "QuantConfig has static quantization, but found "
495
+ "activation scales are None.")
496
+ if (not all_close_1d(layer.w13_input_scale)
497
+ or not all_close_1d(layer.w2_input_scale)):
498
+ logger.warning_once(
499
+ "Found input_scales that are not equal for "
500
+ "fp8 MoE layer. Using the maximum across experts "
501
+ "for each layer.")
502
+ layer.w13_input_scale = torch.nn.Parameter(
503
+ layer.w13_input_scale.max(), requires_grad=False)
504
+ layer.w2_input_scale = torch.nn.Parameter(
505
+ layer.w2_input_scale.max(), requires_grad=False)
506
+
507
+ if current_platform.is_fp8_fnuz():
508
+ # Normalize the weights and scales
509
+ w13_weight, w13_weight_scale, w13_input_scale = \
510
+ normalize_e4m3fn_to_e4m3fnuz(
511
+ layer.w13_weight, layer.w13_weight_scale,
512
+ layer.w13_input_scale)
513
+ w2_weight, w2_weight_scale, w2_input_scale = \
514
+ normalize_e4m3fn_to_e4m3fnuz(
515
+ layer.w2_weight, layer.w2_weight_scale,
516
+ layer.w2_input_scale)
517
+ # Reset the parameter
518
+ layer.w13_weight = torch.nn.Parameter(w13_weight,
519
+ requires_grad=False)
520
+ layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
521
+ requires_grad=False)
522
+ if w13_input_scale is not None:
523
+ layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
524
+ requires_grad=False)
525
+ layer.w2_weight = torch.nn.Parameter(w2_weight,
526
+ requires_grad=False)
527
+ layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
528
+ requires_grad=False)
529
+ if w2_input_scale is not None:
530
+ layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
531
+ requires_grad=False)
532
+
533
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
534
+ # for w13 per expert. Use max then dequant and requant each expert.
535
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
536
+ assert layer.w13_weight_scale is not None
537
+ shard_size = layer.intermediate_size_per_partition
538
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
539
+ for expert_id in range(layer.local_num_experts):
540
+ start = 0
541
+ for shard_id in range(2):
542
+ dq_weight = per_tensor_dequantize(
543
+ layer.w13_weight[expert_id][start:start +
544
+ shard_size, :],
545
+ layer.w13_weight_scale[expert_id][shard_id])
546
+ layer.w13_weight[expert_id][
547
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
548
+ dq_weight, max_w13_scales[expert_id])
549
+ start += shard_size
550
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
551
+ requires_grad=False)
552
+
553
+ # Property to determine if AITER is used
554
+ if self.rocm_aiter_moe_enabled:
555
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
556
+ rocm_aiter_fused_experts, shuffle_weights)
557
+
558
+ # reshaping weights is required for aiter moe kernel.
559
+ shuffled_w13, shuffled_w2 = shuffle_weights(
560
+ layer.w13_weight.data, layer.w2_weight.data)
561
+
562
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13,
563
+ requires_grad=False)
564
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2,
565
+ requires_grad=False)
566
+
567
+ self.rocm_aiter_fused_experts_func = rocm_aiter_fused_experts
568
+ elif self.use_marlin:
569
+ prepare_moe_fp8_layer_for_marlin(layer, False)
570
+ # Activations not quantized for marlin.
571
+ del layer.w13_input_scale
572
+ del layer.w2_input_scale
573
+ self.fused_experts_func = None
574
+ else:
575
+ from vllm.model_executor.layers.fused_moe import fused_experts
576
+ self.fused_experts_func = fused_experts
577
+
578
+ def select_gemm_impl(
579
+ self,
580
+ prepare_finalize: FusedMoEPrepareAndFinalize,
581
+ moe: FusedMoEConfig,
582
+ ) -> FusedMoEPermuteExpertsUnpermute:
583
+ from vllm.model_executor.layers.fused_moe import TritonExperts
584
+ from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
585
+ BatchedTritonExperts)
586
+
587
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
588
+
589
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
590
+
591
+ if (prepare_finalize.activation_format ==
592
+ FusedMoEActivationFormat.BatchedExperts):
593
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank(
594
+ )
595
+ assert max_num_tokens_per_rank is not None
596
+
597
+ return BatchedTritonExperts(
598
+ max_num_tokens=max_num_tokens_per_rank,
599
+ num_dispatchers=prepare_finalize.num_dispatchers(),
600
+ use_fp8_w8a8=True,
601
+ block_shape=self.quant_config.weight_block_size,
602
+ per_act_token_quant=(
603
+ self.input_quant.strategy == QuantizationStrategy.TOKEN),
604
+ )
605
+ else:
606
+ return TritonExperts(
607
+ use_fp8_w8a8=True,
608
+ block_shape=self.quant_config.weight_block_size,
609
+ per_act_token_quant=(
610
+ self.input_quant.strategy == QuantizationStrategy.TOKEN),
611
+ )
612
+
613
+ def apply(
614
+ self,
615
+ layer: torch.nn.Module,
616
+ x: torch.Tensor,
617
+ router_logits: torch.Tensor,
618
+ top_k: int,
619
+ renormalize: bool,
620
+ use_grouped_topk: bool = False,
621
+ topk_group: Optional[int] = None,
622
+ num_expert_group: Optional[int] = None,
623
+ global_num_experts: int = -1,
624
+ expert_map: Optional[torch.Tensor] = None,
625
+ custom_routing_function: Optional[Callable] = None,
626
+ scoring_func: str = "softmax",
627
+ e_score_correction_bias: Optional[torch.Tensor] = None,
628
+ apply_router_weight_on_input: bool = False,
629
+ activation: str = "silu",
630
+ enable_eplb: bool = False,
631
+ expert_load_view: Optional[torch.Tensor] = None,
632
+ logical_to_physical_map: Optional[torch.Tensor] = None,
633
+ logical_replica_count: Optional[torch.Tensor] = None,
634
+ ) -> torch.Tensor:
635
+ if enable_eplb:
636
+ raise NotImplementedError(
637
+ "EPLB not supported for "
638
+ "`CompressedTensorsW8A8Fp8MoEMethod` yet.")
639
+
640
+ topk_weights, topk_ids = FusedMoE.select_experts(
641
+ hidden_states=x,
642
+ router_logits=router_logits,
643
+ use_grouped_topk=use_grouped_topk,
644
+ top_k=top_k,
645
+ renormalize=renormalize,
646
+ topk_group=topk_group,
647
+ num_expert_group=num_expert_group,
648
+ custom_routing_function=custom_routing_function,
649
+ scoring_func=scoring_func,
650
+ e_score_correction_bias=e_score_correction_bias,
651
+ indices_type=self.topk_indices_dtype,
652
+ )
653
+
654
+ if self.rocm_aiter_moe_enabled:
655
+ return self.rocm_aiter_fused_experts_func(
656
+ hidden_states=x,
657
+ w1=layer.w13_weight,
658
+ w2=layer.w2_weight,
659
+ topk_weights=topk_weights,
660
+ topk_ids=topk_ids,
661
+ activation=activation,
662
+ apply_router_weight_on_input=apply_router_weight_on_input,
663
+ use_fp8_w8a8=True,
664
+ per_channel_quant=self.weight_quant.strategy ==
665
+ QuantizationStrategy.CHANNEL,
666
+ w1_scale=layer.w13_weight_scale,
667
+ w2_scale=layer.w2_weight_scale,
668
+ a1_scale=layer.w13_input_scale,
669
+ a2_scale=layer.w2_input_scale,
670
+ expert_map=expert_map)
671
+ if self.use_marlin:
672
+ assert activation == "silu", (
673
+ f"{activation} not supported for Marlin MoE.")
674
+ return torch.ops.vllm.fused_marlin_moe(
675
+ x,
676
+ layer.w13_weight,
677
+ layer.w2_weight,
678
+ layer.w13_weight_scale,
679
+ layer.w2_weight_scale,
680
+ router_logits,
681
+ topk_weights,
682
+ topk_ids,
683
+ quant_type_id=scalar_types.float8_e4m3fn.id,
684
+ apply_router_weight_on_input=apply_router_weight_on_input,
685
+ global_num_experts=global_num_experts,
686
+ expert_map=expert_map)
687
+
688
+ assert self.fused_experts_func is not None
689
+
690
+ return self.fused_experts_func(
691
+ hidden_states=x,
692
+ w1=layer.w13_weight,
693
+ w2=layer.w2_weight,
694
+ topk_weights=topk_weights,
695
+ topk_ids=topk_ids,
696
+ inplace=True,
697
+ activation=activation,
698
+ apply_router_weight_on_input=apply_router_weight_on_input,
699
+ use_fp8_w8a8=True,
700
+ per_channel_quant=self.weight_quant.strategy ==
701
+ QuantizationStrategy.CHANNEL,
702
+ global_num_experts=global_num_experts,
703
+ expert_map=expert_map,
704
+ w1_scale=layer.w13_weight_scale,
705
+ w2_scale=layer.w2_weight_scale,
706
+ a1_scale=layer.w13_input_scale,
707
+ a2_scale=layer.w2_input_scale)
708
+
709
+
710
+ class CompressedTensorsW8A8Fp8MoECutlassMethod(CompressedTensorsMoEMethod):
711
+
712
+ def __init__(
713
+ self,
714
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
715
+ ):
716
+ self.quant_config = quant_config
717
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
718
+ "weights")
719
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
720
+ "input_activations")
721
+
722
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
723
+ and self.input_quant.strategy
724
+ == QuantizationStrategy.TENSOR)
725
+ per_channel = (
726
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
727
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
728
+ if not (per_tensor or per_channel):
729
+ raise ValueError(
730
+ "For FP8 Fused MoE layers, we require per tensor "
731
+ "or channelwise, dynamic per token quantization. Found "
732
+ f"{self.weight_quant}, {self.input_quant}")
733
+
734
+ self.static_input_scales = not self.input_quant.dynamic
735
+ if self.static_input_scales and per_channel:
736
+ raise ValueError(
737
+ "For FP8 Fused MoE layer, we require either per tensor or "
738
+ "channelwise, dynamic per token quantization.")
739
+
740
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
741
+ cutlass_moe_fp8)
742
+ self.topk_indices_dtype = None
743
+ self.fused_experts = cutlass_moe_fp8 # type: ignore
744
+ self.disable_expert_map = False
745
+
746
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
747
+ hidden_size: int, intermediate_size_per_partition: int,
748
+ params_dtype: torch.dtype, **extra_weight_attrs):
749
+
750
+ params_dtype = torch.float8_e4m3fn
751
+
752
+ # WEIGHTS
753
+ w13_weight = torch.nn.Parameter(torch.empty(
754
+ num_experts,
755
+ 2 * intermediate_size_per_partition,
756
+ hidden_size,
757
+ dtype=params_dtype),
758
+ requires_grad=False)
759
+ layer.register_parameter("w13_weight", w13_weight)
760
+ set_weight_attrs(w13_weight, extra_weight_attrs)
761
+
762
+ w2_weight = torch.nn.Parameter(torch.empty(
763
+ num_experts,
764
+ hidden_size,
765
+ intermediate_size_per_partition,
766
+ dtype=params_dtype),
767
+ requires_grad=False)
768
+ layer.register_parameter("w2_weight", w2_weight)
769
+ set_weight_attrs(w2_weight, extra_weight_attrs)
770
+
771
+ # WEIGHT_SCALES
772
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
773
+ # Allocate 2 scales for w1 and w3 respectively.
774
+ # They are combined to a single scale after weight loading.
775
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
776
+ num_experts, 2, dtype=torch.float32),
777
+ requires_grad=False)
778
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
779
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
780
+ num_experts, dtype=torch.float32),
781
+ requires_grad=False)
782
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
783
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
784
+ extra_weight_attrs.update(
785
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
786
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
787
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
788
+
789
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
790
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
791
+ num_experts,
792
+ 2 * intermediate_size_per_partition,
793
+ 1,
794
+ dtype=torch.float32),
795
+ requires_grad=False)
796
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
797
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
798
+ num_experts, hidden_size, 1, dtype=torch.float32),
799
+ requires_grad=False)
800
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
801
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
802
+ extra_weight_attrs.update(
803
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
804
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
805
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
806
+
807
+ # INPUT_SCALES
808
+ if self.static_input_scales:
809
+ w13_input_scale = torch.nn.Parameter(torch.ones(
810
+ num_experts, dtype=torch.float32),
811
+ requires_grad=False)
812
+ layer.register_parameter("w13_input_scale", w13_input_scale)
813
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
814
+
815
+ w2_input_scale = torch.nn.Parameter(torch.ones(
816
+ num_experts, dtype=torch.float32),
817
+ requires_grad=False)
818
+ layer.register_parameter("w2_input_scale", w2_input_scale)
819
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
820
+ else:
821
+ layer.w13_input_scale = None
822
+ layer.w2_input_scale = None
823
+
824
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
825
+ # Fp8 moe kernels require a single activation scale.
826
+ # We take the max of all the scales in case they differ.
827
+ if self.static_input_scales:
828
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
829
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
830
+ raise ValueError(
831
+ "QuantConfig has static quantization, but found "
832
+ "activation scales are None.")
833
+ if (not all_close_1d(layer.w13_input_scale)
834
+ or not all_close_1d(layer.w2_input_scale)):
835
+ logger.warning_once(
836
+ "Found input_scales that are not equal for "
837
+ "fp8 MoE layer. Using the maximum across experts "
838
+ "for each layer.")
839
+ layer.w13_input_scale = torch.nn.Parameter(
840
+ layer.w13_input_scale.max(), requires_grad=False)
841
+ layer.w2_input_scale = torch.nn.Parameter(
842
+ layer.w2_input_scale.max(), requires_grad=False)
843
+
844
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
845
+ # for w13 per expert. Use max then dequant and requant each expert.
846
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
847
+ assert layer.w13_weight_scale is not None
848
+ shard_size = layer.intermediate_size_per_partition
849
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
850
+ for expert_id in range(layer.local_num_experts):
851
+ start = 0
852
+ for shard_id in range(2):
853
+ dq_weight = per_tensor_dequantize(
854
+ layer.w13_weight[expert_id][start:start +
855
+ shard_size, :],
856
+ layer.w13_weight_scale[expert_id][shard_id])
857
+ layer.w13_weight[expert_id][
858
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
859
+ dq_weight, max_w13_scales[expert_id])
860
+ start += shard_size
861
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
862
+ requires_grad=False)
863
+
864
+ def select_gemm_impl(
865
+ self,
866
+ prepare_finalize: FusedMoEPrepareAndFinalize,
867
+ moe: FusedMoEConfig,
868
+ ) -> FusedMoEPermuteExpertsUnpermute:
869
+ from vllm.model_executor.layers.fused_moe import CutlassExpertsFp8
870
+
871
+ use_batched_format = (prepare_finalize.activation_format ==
872
+ FusedMoEActivationFormat.BatchedExperts)
873
+
874
+ num_dispatchers = prepare_finalize.num_dispatchers()
875
+
876
+ num_experts = (moe.num_local_experts
877
+ if use_batched_format else moe.num_experts)
878
+
879
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
880
+
881
+ experts = CutlassExpertsFp8(
882
+ num_experts,
883
+ moe.in_dtype,
884
+ self.input_quant.strategy == QuantizationStrategy.TOKEN,
885
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL,
886
+ num_dispatchers=num_dispatchers,
887
+ use_batched_format=use_batched_format,
888
+ )
889
+
890
+ self.disable_expert_map = (num_dispatchers > 1
891
+ or not experts.supports_expert_map())
892
+
893
+ return experts
894
+
895
+ def apply(
896
+ self,
897
+ layer: torch.nn.Module,
898
+ x: torch.Tensor,
899
+ router_logits: torch.Tensor,
900
+ top_k: int,
901
+ renormalize: bool,
902
+ use_grouped_topk: bool = False,
903
+ topk_group: Optional[int] = None,
904
+ num_expert_group: Optional[int] = None,
905
+ global_num_experts: int = -1,
906
+ expert_map: Optional[torch.Tensor] = None,
907
+ custom_routing_function: Optional[Callable] = None,
908
+ scoring_func: str = "softmax",
909
+ e_score_correction_bias: Optional[torch.Tensor] = None,
910
+ apply_router_weight_on_input: bool = False,
911
+ activation: str = "silu",
912
+ enable_eplb: bool = False,
913
+ expert_load_view: Optional[torch.Tensor] = None,
914
+ logical_to_physical_map: Optional[torch.Tensor] = None,
915
+ logical_replica_count: Optional[torch.Tensor] = None,
916
+ ) -> torch.Tensor:
917
+ if enable_eplb:
918
+ raise NotImplementedError(
919
+ "EPLB not supported for "
920
+ "`CompressedTensorsW8A8Fp8MoECutlassMethod` yet.")
921
+
922
+ topk_weights, topk_ids = FusedMoE.select_experts(
923
+ hidden_states=x,
924
+ router_logits=router_logits,
925
+ use_grouped_topk=use_grouped_topk,
926
+ top_k=top_k,
927
+ renormalize=renormalize,
928
+ topk_group=topk_group,
929
+ num_expert_group=num_expert_group,
930
+ custom_routing_function=custom_routing_function,
931
+ scoring_func=scoring_func,
932
+ e_score_correction_bias=e_score_correction_bias,
933
+ indices_type=self.topk_indices_dtype,
934
+ )
935
+
936
+ return self.fused_experts(
937
+ x,
938
+ layer.w13_weight,
939
+ layer.w2_weight,
940
+ topk_weights,
941
+ topk_ids,
942
+ activation=activation,
943
+ global_num_experts=global_num_experts,
944
+ expert_map=None if self.disable_expert_map else expert_map,
945
+ w1_scale=layer.w13_weight_scale,
946
+ w2_scale=layer.w2_weight_scale,
947
+ a1_scale=layer.w13_input_scale,
948
+ a2_scale=layer.w2_input_scale,
949
+ )
950
+
951
+
952
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
953
+
954
+ def __init__(
955
+ self,
956
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
957
+ ):
958
+ self.quant_config = quant_config
959
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
960
+ "weights")
961
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
962
+ "input_activations")
963
+
964
+ per_channel = (
965
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
966
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
967
+ if not per_channel:
968
+ raise ValueError(
969
+ "For INT8 Fused MoE layers, we require channelwise, "
970
+ "dynamic per token quantization. Found "
971
+ f"{self.weight_quant}, {self.input_quant}")
972
+
973
+ self.static_input_scales = not self.input_quant.dynamic
974
+ if self.static_input_scales:
975
+ raise ValueError(
976
+ "For INT8 Fused MoE layers, we require channelwise, "
977
+ "dynamic per token quantization. Found static input scales.")
978
+
979
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
980
+ hidden_size: int, intermediate_size_per_partition: int,
981
+ params_dtype: torch.dtype, **extra_weight_attrs):
982
+
983
+ params_dtype = torch.int8
984
+
985
+ # WEIGHTS
986
+ w13_weight = torch.nn.Parameter(torch.empty(
987
+ num_experts,
988
+ 2 * intermediate_size_per_partition,
989
+ hidden_size,
990
+ dtype=params_dtype),
991
+ requires_grad=False)
992
+ layer.register_parameter("w13_weight", w13_weight)
993
+ set_weight_attrs(w13_weight, extra_weight_attrs)
994
+
995
+ w2_weight = torch.nn.Parameter(torch.empty(
996
+ num_experts,
997
+ hidden_size,
998
+ intermediate_size_per_partition,
999
+ dtype=params_dtype),
1000
+ requires_grad=False)
1001
+ layer.register_parameter("w2_weight", w2_weight)
1002
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1003
+
1004
+ # WEIGHT_SCALES
1005
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1006
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
1007
+ num_experts,
1008
+ 2 * intermediate_size_per_partition,
1009
+ 1,
1010
+ dtype=torch.float32),
1011
+ requires_grad=False)
1012
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1013
+ w2_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
1014
+ hidden_size,
1015
+ 1,
1016
+ dtype=torch.float32),
1017
+ requires_grad=False)
1018
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1019
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1020
+ extra_weight_attrs.update(
1021
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
1022
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1023
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1024
+
1025
+ # INPUT_SCALES
1026
+ assert not self.static_input_scales
1027
+ layer.w13_input_scale = None
1028
+ layer.w2_input_scale = None
1029
+
1030
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1031
+ pass
1032
+
1033
+ def apply(
1034
+ self,
1035
+ layer: torch.nn.Module,
1036
+ x: torch.Tensor,
1037
+ router_logits: torch.Tensor,
1038
+ top_k: int,
1039
+ renormalize: bool,
1040
+ use_grouped_topk: bool = False,
1041
+ topk_group: Optional[int] = None,
1042
+ num_expert_group: Optional[int] = None,
1043
+ global_num_experts: int = -1,
1044
+ expert_map: Optional[torch.Tensor] = None,
1045
+ custom_routing_function: Optional[Callable] = None,
1046
+ scoring_func: str = "softmax",
1047
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1048
+ apply_router_weight_on_input: bool = False,
1049
+ activation: str = "silu",
1050
+ enable_eplb: bool = False,
1051
+ expert_load_view: Optional[torch.Tensor] = None,
1052
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1053
+ logical_replica_count: Optional[torch.Tensor] = None,
1054
+ ) -> torch.Tensor:
1055
+ if enable_eplb:
1056
+ raise NotImplementedError(
1057
+ "EPLB not supported for "
1058
+ "`CompressedTensorsW8A8Int8MoEMethod` yet.")
1059
+
1060
+ from vllm.model_executor.layers.fused_moe import fused_experts
1061
+
1062
+ topk_weights, topk_ids = FusedMoE.select_experts(
1063
+ hidden_states=x,
1064
+ router_logits=router_logits,
1065
+ use_grouped_topk=use_grouped_topk,
1066
+ top_k=top_k,
1067
+ renormalize=renormalize,
1068
+ topk_group=topk_group,
1069
+ num_expert_group=num_expert_group,
1070
+ custom_routing_function=custom_routing_function,
1071
+ scoring_func=scoring_func,
1072
+ e_score_correction_bias=e_score_correction_bias)
1073
+
1074
+ return fused_experts(
1075
+ hidden_states=x,
1076
+ w1=layer.w13_weight,
1077
+ w2=layer.w2_weight,
1078
+ topk_weights=topk_weights,
1079
+ topk_ids=topk_ids,
1080
+ inplace=True,
1081
+ activation=activation,
1082
+ apply_router_weight_on_input=apply_router_weight_on_input,
1083
+ use_int8_w8a8=True,
1084
+ per_channel_quant=True,
1085
+ global_num_experts=global_num_experts,
1086
+ expert_map=expert_map,
1087
+ w1_scale=layer.w13_weight_scale,
1088
+ w2_scale=layer.w2_weight_scale,
1089
+ a1_scale=layer.w13_input_scale,
1090
+ a2_scale=layer.w2_input_scale)
1091
+
1092
+
1093
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1094
+
1095
+ def __init__(
1096
+ self,
1097
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
1098
+ ):
1099
+ self.quant_config = quant_config
1100
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1101
+ # are supported + check if the layer is being ignored.
1102
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1103
+ self.num_bits = config.num_bits
1104
+ self.packed_factor = 32 // config.num_bits
1105
+ self.strategy = config.strategy
1106
+ self.group_size = config.group_size
1107
+ self.actorder = config.actorder
1108
+ assert config.symmetric, (
1109
+ "Only symmetric quantization is supported for MoE")
1110
+
1111
+ if not (self.quant_config.quant_format
1112
+ == CompressionFormat.pack_quantized.value
1113
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1114
+ raise ValueError("For Fused MoE layers, only ",
1115
+ f"{CompressionFormat.pack_quantized.value} ",
1116
+ "is supported for the following bits: ",
1117
+ f"{WNA16_SUPPORTED_BITS}")
1118
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1119
+
1120
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1121
+ hidden_size: int, intermediate_size_per_partition: int,
1122
+ params_dtype: torch.dtype, **extra_weight_attrs):
1123
+
1124
+ intermediate_size_full = extra_weight_attrs.pop(
1125
+ "intermediate_size_full")
1126
+
1127
+ # Will transpose the loaded weight along the
1128
+ # intermediate and hidden dim sizes. Will
1129
+ # shard for TP along the transposed dims
1130
+ extra_weight_attrs.update({
1131
+ "is_transposed": True,
1132
+ "quant_method": self.strategy
1133
+ })
1134
+ w13_weight = torch.nn.Parameter(torch.empty(
1135
+ num_experts,
1136
+ hidden_size // self.packed_factor,
1137
+ 2 * intermediate_size_per_partition,
1138
+ dtype=torch.int32),
1139
+ requires_grad=False)
1140
+ layer.register_parameter("w13_weight_packed", w13_weight)
1141
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1142
+
1143
+ w2_weight = torch.nn.Parameter(torch.empty(
1144
+ num_experts,
1145
+ intermediate_size_per_partition // self.packed_factor,
1146
+ hidden_size,
1147
+ dtype=torch.int32),
1148
+ requires_grad=False)
1149
+ layer.register_parameter("w2_weight_packed", w2_weight)
1150
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1151
+
1152
+ # In the case where we have actorder/g_idx,
1153
+ # we do not partition the w2 scales
1154
+ load_full_w2 = self.actorder and self.group_size != -1
1155
+ w2_scales_size = (intermediate_size_full
1156
+ if load_full_w2 else intermediate_size_per_partition)
1157
+
1158
+ self.is_k_full = (not self.actorder) or (
1159
+ intermediate_size_per_partition == intermediate_size_full)
1160
+
1161
+ if self.strategy == "channel":
1162
+ num_groups_w2 = num_groups_w13 = 1
1163
+ self.group_size = -1
1164
+ else:
1165
+ num_groups_w2 = w2_scales_size // self.group_size
1166
+ num_groups_w13 = hidden_size // self.group_size
1167
+
1168
+ w13_scale = torch.nn.Parameter(torch.ones(
1169
+ num_experts,
1170
+ num_groups_w13,
1171
+ 2 * intermediate_size_per_partition,
1172
+ dtype=params_dtype),
1173
+ requires_grad=False)
1174
+ layer.register_parameter("w13_weight_scale", w13_scale)
1175
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1176
+
1177
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1178
+ num_groups_w2,
1179
+ hidden_size,
1180
+ dtype=params_dtype),
1181
+ requires_grad=False)
1182
+ layer.register_parameter("w2_weight_scale", w2_scale)
1183
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1184
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1185
+
1186
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1187
+ requires_grad=False)
1188
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1189
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1190
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1191
+ requires_grad=False)
1192
+
1193
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1194
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1195
+
1196
+ w13_g_idx = torch.nn.Parameter(
1197
+ torch.empty(
1198
+ num_experts,
1199
+ hidden_size,
1200
+ dtype=torch.int32,
1201
+ ),
1202
+ requires_grad=False,
1203
+ )
1204
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1205
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1206
+
1207
+ w2_g_idx = torch.nn.Parameter(
1208
+ torch.empty(
1209
+ num_experts,
1210
+ intermediate_size_per_partition,
1211
+ dtype=torch.int32,
1212
+ ),
1213
+ requires_grad=False,
1214
+ )
1215
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1216
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1217
+
1218
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1219
+ torch.empty(
1220
+ num_experts,
1221
+ hidden_size,
1222
+ dtype=torch.int32,
1223
+ ),
1224
+ requires_grad=False,
1225
+ )
1226
+ layer.register_parameter("w13_g_idx_sort_indices",
1227
+ w13_g_idx_sort_indices)
1228
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1229
+
1230
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1231
+ torch.empty(
1232
+ num_experts,
1233
+ intermediate_size_per_partition,
1234
+ dtype=torch.int32,
1235
+ ),
1236
+ requires_grad=False,
1237
+ )
1238
+ layer.register_parameter("w2_g_idx_sort_indices",
1239
+ w2_g_idx_sort_indices)
1240
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1241
+
1242
+ layer.a13_scale = None
1243
+ layer.a2_scale = None
1244
+ layer.marlin_state = GPTQMarlinState.REPACK
1245
+
1246
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1247
+ num_experts = layer.w13_weight_g_idx.shape[0]
1248
+ device = layer.w13_weight_g_idx.device
1249
+
1250
+ # when running models with grouped act order,
1251
+ # resort to g_idx values provided in checkpoint
1252
+ if self.actorder == "group":
1253
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1254
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1255
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1256
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1257
+
1258
+ for e in range(num_experts):
1259
+ w13_g_idx_sort_indices[e] = torch.argsort(
1260
+ layer.w13_weight_g_idx[e]).to(torch.int32)
1261
+ w2_g_idx_sort_indices[e] = torch.argsort(
1262
+ layer.w2_weight_g_idx[e]).to(torch.int32)
1263
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1264
+ w13_g_idx_sort_indices[e]]
1265
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][
1266
+ w2_g_idx_sort_indices[e]]
1267
+
1268
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1269
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1270
+ replace_parameter(layer, "w13_g_idx_sort_indices",
1271
+ w13_g_idx_sort_indices)
1272
+ replace_parameter(layer, "w2_g_idx_sort_indices",
1273
+ w2_g_idx_sort_indices)
1274
+
1275
+ else:
1276
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1277
+ torch.empty((num_experts, 0), dtype=torch.int32,
1278
+ device=device),
1279
+ requires_grad=False,
1280
+ )
1281
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1282
+ torch.empty((num_experts, 0), dtype=torch.int32,
1283
+ device=device),
1284
+ requires_grad=False,
1285
+ )
1286
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1287
+ torch.empty((num_experts, 0), dtype=torch.int32,
1288
+ device=device),
1289
+ requires_grad=False,
1290
+ )
1291
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1292
+ torch.empty((num_experts, 0), dtype=torch.int32,
1293
+ device=device),
1294
+ requires_grad=False,
1295
+ )
1296
+
1297
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1298
+ layer.w13_weight_packed,
1299
+ layer.w13_g_idx_sort_indices,
1300
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1301
+ layer.w13_weight_packed.shape[2],
1302
+ self.num_bits,
1303
+ )
1304
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1305
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1306
+ layer.w2_weight_packed,
1307
+ layer.w2_g_idx_sort_indices,
1308
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1309
+ layer.w2_weight_packed.shape[2],
1310
+ self.num_bits,
1311
+ )
1312
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1313
+ # Repack scales
1314
+ marlin_w13_scales = marlin_moe_permute_scales(
1315
+ s=layer.w13_weight_scale,
1316
+ size_k=layer.w13_weight_packed.shape[2],
1317
+ size_n=layer.w13_weight_scale.shape[2],
1318
+ group_size=self.group_size,
1319
+ )
1320
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1321
+ marlin_w2_scales = marlin_moe_permute_scales(
1322
+ s=layer.w2_weight_scale,
1323
+ size_k=layer.w2_weight_scale.shape[1] *
1324
+ (self.group_size if self.group_size != -1 else self.packed_factor),
1325
+ size_n=layer.w2_weight_scale.shape[2],
1326
+ group_size=self.group_size,
1327
+ )
1328
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1329
+
1330
+ layer.workspace = marlin_make_workspace_new(device, 4)
1331
+
1332
+ def apply(
1333
+ self,
1334
+ layer: torch.nn.Module,
1335
+ x: torch.Tensor,
1336
+ router_logits: torch.Tensor,
1337
+ top_k: int,
1338
+ renormalize: bool,
1339
+ use_grouped_topk: bool = False,
1340
+ topk_group: Optional[int] = None,
1341
+ num_expert_group: Optional[int] = None,
1342
+ global_num_experts: int = -1,
1343
+ expert_map: Optional[torch.Tensor] = None,
1344
+ custom_routing_function: Optional[Callable] = None,
1345
+ scoring_func: str = "softmax",
1346
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1347
+ apply_router_weight_on_input: bool = False,
1348
+ activation: str = "silu",
1349
+ enable_eplb: bool = False,
1350
+ expert_load_view: Optional[torch.Tensor] = None,
1351
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1352
+ logical_replica_count: Optional[torch.Tensor] = None,
1353
+ ) -> torch.Tensor:
1354
+ if enable_eplb:
1355
+ raise NotImplementedError(
1356
+ "EPLB not supported for "
1357
+ "`CompressedTensorsWNA16MarlinMoEMethod` yet.")
1358
+
1359
+ assert activation == "silu", (
1360
+ f"{activation} not supported for Marlin MoE.")
1361
+
1362
+ topk_weights, topk_ids = FusedMoE.select_experts(
1363
+ hidden_states=x,
1364
+ router_logits=router_logits,
1365
+ use_grouped_topk=use_grouped_topk,
1366
+ top_k=top_k,
1367
+ renormalize=renormalize,
1368
+ topk_group=topk_group,
1369
+ num_expert_group=num_expert_group,
1370
+ custom_routing_function=custom_routing_function,
1371
+ scoring_func=scoring_func,
1372
+ e_score_correction_bias=e_score_correction_bias)
1373
+
1374
+ return torch.ops.vllm.fused_marlin_moe(
1375
+ x,
1376
+ layer.w13_weight_packed,
1377
+ layer.w2_weight_packed,
1378
+ layer.w13_weight_scale,
1379
+ layer.w2_weight_scale,
1380
+ router_logits,
1381
+ topk_weights,
1382
+ topk_ids,
1383
+ quant_type_id=self.quant_type.id,
1384
+ apply_router_weight_on_input=apply_router_weight_on_input,
1385
+ global_num_experts=global_num_experts,
1386
+ expert_map=expert_map,
1387
+ g_idx1=layer.w13_weight_g_idx,
1388
+ g_idx2=layer.w2_weight_g_idx,
1389
+ sort_indices1=layer.w13_g_idx_sort_indices,
1390
+ sort_indices2=layer.w2_g_idx_sort_indices,
1391
+ workspace=layer.workspace,
1392
+ is_k_full=self.is_k_full)
1393
+
1394
+
1395
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1396
+
1397
+ def __init__(
1398
+ self,
1399
+ quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
1400
+ ):
1401
+ self.quant_config = quant_config
1402
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1403
+ # are supported + check if the layer is being ignored.
1404
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1405
+ self.num_bits = config.num_bits
1406
+ self.packed_factor = 32 // config.num_bits
1407
+ self.strategy = config.strategy
1408
+ # channelwise is not supported by this kernel
1409
+ assert config.strategy == "group"
1410
+ self.group_size = config.group_size
1411
+ # grouped actorder isn't supported by this kernel
1412
+ assert config.actorder != "group"
1413
+ assert config.symmetric, (
1414
+ "Only symmetric quantization is supported for MoE")
1415
+
1416
+ if not (self.quant_config.quant_format
1417
+ == CompressionFormat.pack_quantized.value
1418
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1419
+ raise ValueError("For Fused MoE layers, only ",
1420
+ f"{CompressionFormat.pack_quantized.value} ",
1421
+ "is supported for the following bits: ",
1422
+ f"{WNA16_SUPPORTED_BITS}")
1423
+
1424
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1425
+ hidden_size: int, intermediate_size_per_partition: int,
1426
+ params_dtype: torch.dtype, **extra_weight_attrs):
1427
+
1428
+ # Will transpose the loaded weight along the
1429
+ # intermediate and hidden dim sizes. Will
1430
+ # shard for TP along the transposed dims
1431
+ extra_weight_attrs.update({
1432
+ "is_transposed": True,
1433
+ "quant_method": self.strategy
1434
+ })
1435
+ w13_weight = torch.nn.Parameter(torch.empty(
1436
+ num_experts,
1437
+ hidden_size // self.packed_factor,
1438
+ 2 * intermediate_size_per_partition,
1439
+ dtype=torch.int32),
1440
+ requires_grad=False)
1441
+ layer.register_parameter("w13_weight_packed", w13_weight)
1442
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1443
+
1444
+ w2_weight = torch.nn.Parameter(torch.empty(
1445
+ num_experts,
1446
+ intermediate_size_per_partition // self.packed_factor,
1447
+ hidden_size,
1448
+ dtype=torch.int32),
1449
+ requires_grad=False)
1450
+ layer.register_parameter("w2_weight_packed", w2_weight)
1451
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1452
+
1453
+ w2_scales_size = intermediate_size_per_partition
1454
+
1455
+ if self.strategy == "channel":
1456
+ num_groups_w2 = num_groups_w13 = 1
1457
+ self.group_size = -1
1458
+ else:
1459
+ num_groups_w2 = w2_scales_size // self.group_size
1460
+ num_groups_w13 = hidden_size // self.group_size
1461
+
1462
+ w13_scale = torch.nn.Parameter(torch.ones(
1463
+ num_experts,
1464
+ num_groups_w13,
1465
+ 2 * intermediate_size_per_partition,
1466
+ dtype=params_dtype),
1467
+ requires_grad=False)
1468
+ layer.register_parameter("w13_weight_scale", w13_scale)
1469
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1470
+
1471
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1472
+ num_groups_w2,
1473
+ hidden_size,
1474
+ dtype=params_dtype),
1475
+ requires_grad=False)
1476
+ layer.register_parameter("w2_weight_scale", w2_scale)
1477
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1478
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1479
+
1480
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1481
+ requires_grad=False)
1482
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1483
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1484
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1485
+ requires_grad=False)
1486
+
1487
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1488
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1489
+
1490
+ w13_g_idx = torch.nn.Parameter(
1491
+ torch.empty(
1492
+ num_experts,
1493
+ hidden_size,
1494
+ dtype=torch.int32,
1495
+ ),
1496
+ requires_grad=False,
1497
+ )
1498
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1499
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1500
+
1501
+ w2_g_idx = torch.nn.Parameter(
1502
+ torch.empty(
1503
+ num_experts,
1504
+ intermediate_size_per_partition,
1505
+ dtype=torch.int32,
1506
+ ),
1507
+ requires_grad=False,
1508
+ )
1509
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1510
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1511
+
1512
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1513
+ torch.empty(
1514
+ num_experts,
1515
+ hidden_size,
1516
+ dtype=torch.int32,
1517
+ ),
1518
+ requires_grad=False,
1519
+ )
1520
+ layer.register_parameter("w13_g_idx_sort_indices",
1521
+ w13_g_idx_sort_indices)
1522
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1523
+
1524
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1525
+ torch.empty(
1526
+ num_experts,
1527
+ intermediate_size_per_partition,
1528
+ dtype=torch.int32,
1529
+ ),
1530
+ requires_grad=False,
1531
+ )
1532
+ layer.register_parameter("w2_g_idx_sort_indices",
1533
+ w2_g_idx_sort_indices)
1534
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1535
+
1536
+ layer.a13_scale = None
1537
+ layer.a2_scale = None
1538
+
1539
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1540
+ # Reconfigure packed weights and scales to match moe_wna16 format
1541
+ layer.w13_weight_packed = torch.nn.Parameter(
1542
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(
1543
+ torch.uint8),
1544
+ requires_grad=False)
1545
+ layer.w2_weight_packed = torch.nn.Parameter(
1546
+ layer.w2_weight_packed.transpose(1,
1547
+ 2).contiguous().view(torch.uint8),
1548
+ requires_grad=False)
1549
+ layer.w13_weight_scale = torch.nn.Parameter(
1550
+ layer.w13_weight_scale.transpose(1, 2).contiguous(),
1551
+ requires_grad=False)
1552
+ layer.w2_weight_scale = torch.nn.Parameter(
1553
+ layer.w2_weight_scale.transpose(1, 2).contiguous(),
1554
+ requires_grad=False)
1555
+
1556
+ def apply(
1557
+ self,
1558
+ layer: torch.nn.Module,
1559
+ x: torch.Tensor,
1560
+ router_logits: torch.Tensor,
1561
+ top_k: int,
1562
+ renormalize: bool,
1563
+ use_grouped_topk: bool = False,
1564
+ topk_group: Optional[int] = None,
1565
+ num_expert_group: Optional[int] = None,
1566
+ global_num_experts: int = -1,
1567
+ expert_map: Optional[torch.Tensor] = None,
1568
+ custom_routing_function: Optional[Callable] = None,
1569
+ scoring_func: str = "softmax",
1570
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1571
+ apply_router_weight_on_input: bool = False,
1572
+ activation: str = "silu",
1573
+ enable_eplb: bool = False,
1574
+ expert_load_view: Optional[torch.Tensor] = None,
1575
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1576
+ logical_replica_count: Optional[torch.Tensor] = None,
1577
+ ) -> torch.Tensor:
1578
+ if enable_eplb:
1579
+ raise NotImplementedError("EPLB not supported for "
1580
+ "`CompressedTensorsWNA16MoEMethod` yet.")
1581
+
1582
+ from vllm.model_executor.layers.fused_moe import fused_experts
1583
+
1584
+ topk_weights, topk_ids = FusedMoE.select_experts(
1585
+ hidden_states=x,
1586
+ router_logits=router_logits,
1587
+ use_grouped_topk=use_grouped_topk,
1588
+ top_k=top_k,
1589
+ renormalize=renormalize,
1590
+ topk_group=topk_group,
1591
+ num_expert_group=num_expert_group,
1592
+ custom_routing_function=custom_routing_function,
1593
+ scoring_func=scoring_func,
1594
+ e_score_correction_bias=e_score_correction_bias)
1595
+
1596
+ return fused_experts(
1597
+ x,
1598
+ layer.w13_weight_packed,
1599
+ layer.w2_weight_packed,
1600
+ topk_weights=topk_weights,
1601
+ topk_ids=topk_ids,
1602
+ inplace=True,
1603
+ activation=activation,
1604
+ use_int4_w4a16=self.num_bits == 4,
1605
+ use_int8_w8a16=self.num_bits == 8,
1606
+ global_num_experts=global_num_experts,
1607
+ apply_router_weight_on_input=apply_router_weight_on_input,
1608
+ expert_map=expert_map,
1609
+ w1_scale=layer.w13_weight_scale,
1610
+ w2_scale=layer.w2_weight_scale,
1611
+ w1_zp=None,
1612
+ w2_zp=None,
1613
+ block_shape=[0, self.group_size])