vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1736 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import math
4
+ from collections.abc import Iterable, Mapping, Sequence
5
+ from functools import partial
6
+ from typing import Any, Literal, Optional, TypedDict, Union
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn as nn
11
+ from einops import rearrange
12
+ from transformers import PretrainedConfig
13
+ from transformers.activations import GELUActivation
14
+ from transformers.feature_extraction_utils import BatchFeature
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.utils import torch_int
18
+
19
+ from vllm.config import VllmConfig
20
+ from vllm.distributed import get_tensor_model_parallel_world_size
21
+ from vllm.logger import init_logger
22
+ from vllm.model_executor import SamplingMetadata
23
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
24
+ QKVParallelLinear,
25
+ RowParallelLinear)
26
+ from vllm.model_executor.layers.quantization import QuantizationConfig
27
+ from vllm.model_executor.layers.quantization.gptq import GPTQConfig
28
+ from vllm.model_executor.layers.quantization.gptq_marlin import (
29
+ GPTQMarlinConfig)
30
+ from vllm.model_executor.model_loader.weight_utils import (
31
+ default_weight_loader, maybe_remap_kv_scale_name)
32
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
33
+ from vllm.multimodal import MULTIMODAL_REGISTRY
34
+ from vllm.multimodal.inputs import (ImageItem, ModalityData,
35
+ MultiModalDataDict, MultiModalFieldConfig,
36
+ MultiModalKwargs, VideoItem)
37
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
38
+ ModalityDataItems, MultiModalDataItems,
39
+ MultiModalDataParser)
40
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
41
+ BaseProcessingInfo, PromptReplacement,
42
+ PromptUpdate)
43
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
44
+ from vllm.platforms import _Backend
45
+ from vllm.sequence import IntermediateTensors
46
+ from vllm.transformers_utils.config import uses_mrope
47
+ from vllm.transformers_utils.processor import (
48
+ cached_image_processor_from_config)
49
+
50
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
51
+ SupportsMultiModal, SupportsPP)
52
+ from .siglip import SiglipMLP
53
+ from .utils import (AutoWeightsLoader, WeightsMapper,
54
+ init_vllm_registered_model, is_pp_missing_parameter,
55
+ maybe_prefix, merge_multimodal_embeddings)
56
+ from .vision import get_vit_attn_backend
57
+
58
+ logger = init_logger(__name__)
59
+
60
+ _MAX_FRAMES_PER_VIDEO = 16
61
+ _MAX_IMAGE_SIZE = 9999999
62
+
63
+
64
+ def smart_resize(
65
+ height: int,
66
+ width: int,
67
+ factor: int = 28,
68
+ min_pixels: int = 28 * 28 * 130,
69
+ max_pixels: int = 28 * 28 * 1280,
70
+ ):
71
+ if height < factor:
72
+ logger.warning(
73
+ "smart_resize: height=%s < factor=%s, reset height=factor",
74
+ height,
75
+ factor,
76
+ )
77
+ width = round((width * factor) / height)
78
+ height = factor
79
+
80
+ if width < factor:
81
+ logger.warning(
82
+ "smart_resize: width=%s < factor=%s, reset width=factor",
83
+ width,
84
+ factor,
85
+ )
86
+ height = round((height * factor) / width)
87
+ width = factor
88
+
89
+ if max(height, width) / min(height, width) > 200:
90
+ raise ValueError("absolute aspect ratio must be smaller than 200, got "
91
+ "{max(height, width) / min(height, width)}")
92
+ h_bar = round(height / factor) * factor
93
+ w_bar = round(width / factor) * factor
94
+ if h_bar * w_bar > max_pixels:
95
+ beta = math.sqrt((height * width) / max_pixels)
96
+ h_bar = math.floor(height / beta / factor) * factor
97
+ w_bar = math.floor(width / beta / factor) * factor
98
+ elif h_bar * w_bar < min_pixels:
99
+ beta = math.sqrt(min_pixels / (height * width))
100
+ h_bar = math.ceil(height * beta / factor) * factor
101
+ w_bar = math.ceil(width * beta / factor) * factor
102
+ return h_bar, w_bar
103
+
104
+
105
+ class KeyeImagePixelInputs(TypedDict):
106
+ type: Literal["pixel_values"]
107
+ pixel_values: torch.Tensor
108
+ """Shape:
109
+ `(num_patches, num_channels * patch_size * patch_size)`
110
+ """
111
+
112
+ image_grid_thw: torch.Tensor
113
+ """Shape: `(num_images, 3)`
114
+ This should be in `(grid_t, grid_h, grid_w)` format.
115
+ """
116
+
117
+
118
+ class KeyeImageEmbeddingInputs(TypedDict):
119
+ type: Literal["image_embeds"]
120
+ image_embeds: torch.Tensor
121
+ """Supported types:
122
+ - list[`torch.Tensor`]: A list of tensors holding all images' features.
123
+ Each tensor holds an image's features.
124
+ - `torch.Tensor`: A tensor holding all images' features
125
+ (concatenation of all images' feature tensors).
126
+
127
+ Tensor shape: `(num_image_features, hidden_size)`
128
+ - `num_image_features` varies based on
129
+ the number and resolution of the images.
130
+ - `hidden_size` must match the hidden size of language model backbone.
131
+ """
132
+
133
+ image_grid_thw: torch.Tensor
134
+ """Shape: `(num_images, 3)`
135
+ This should be in `(grid_t, grid_h, grid_w)` format.
136
+ """
137
+
138
+
139
+ KeyeImageInputs = Union[KeyeImagePixelInputs, KeyeImageEmbeddingInputs]
140
+
141
+
142
+ class KeyeVideoPixelInputs(TypedDict):
143
+ type: Literal["pixel_values_videos"]
144
+ pixel_values_videos: torch.Tensor
145
+ """Shape:
146
+ `(num_patches,
147
+ num_channels * temporal_patch_size * patch_size * patch_size)`
148
+ """
149
+
150
+ video_grid_thw: torch.Tensor
151
+ """Shape: `(num_videos, 3)`
152
+
153
+ This should be in `(grid_t, grid_h, grid_w)` format.
154
+ """
155
+
156
+
157
+ class KeyeVideoEmbeddingInputs(TypedDict):
158
+ type: Literal["video_embeds"]
159
+ video_embeds: torch.Tensor
160
+ """Supported types:
161
+ - list[`torch.Tensor`]: A list of tensors holding all videos' features.
162
+ Each tensor holds an video's features.
163
+ - `torch.Tensor`: A tensor holding all videos' features
164
+ (concatenation of all videos' feature tensors).
165
+
166
+ Tensor shape: `(num_image_features, hidden_size)`
167
+ - `num_image_features` varies based on
168
+ the number and resolution of the videos.
169
+ - `hidden_size` must match the hidden size of language model backbone.
170
+ """
171
+
172
+ video_grid_thw: torch.Tensor
173
+ """Shape: `(num_videos, 3)`
174
+ This should be in `(grid_t, grid_h, grid_w)` format.
175
+ """
176
+
177
+
178
+ KeyeVideoInputs = Union[KeyeVideoPixelInputs, KeyeVideoEmbeddingInputs]
179
+
180
+
181
+ class KeyeVisionEmbeddings(nn.Module):
182
+
183
+ def __init__(self, config: PretrainedConfig):
184
+ super().__init__()
185
+ self.config = config
186
+ self.embed_dim = config.hidden_size
187
+ self.image_size = config.image_size
188
+ self.patch_size = config.patch_size
189
+
190
+ self.patch_embedding = nn.Conv2d(
191
+ in_channels=config.num_channels,
192
+ out_channels=self.embed_dim,
193
+ kernel_size=self.patch_size,
194
+ stride=self.patch_size,
195
+ padding="valid",
196
+ )
197
+
198
+ self.num_patches = (self.image_size // self.patch_size)**2
199
+ self.num_positions = self.num_patches
200
+ self.cache_position_embedding = dict()
201
+ self.cache_position_count = dict()
202
+ self.position_embedding = nn.Embedding(self.num_positions,
203
+ self.embed_dim)
204
+ self.packing_position_embedding = nn.Embedding(32768, self.embed_dim)
205
+
206
+ self.register_buffer(
207
+ "position_ids",
208
+ torch.arange(self.num_positions).expand((1, -1)),
209
+ persistent=False,
210
+ )
211
+
212
+ def interpolate_pos_encoding(
213
+ self,
214
+ embeddings: torch.Tensor,
215
+ height: int,
216
+ width: int,
217
+ is_after_patchify: bool = False,
218
+ ) -> torch.Tensor:
219
+
220
+ num_positions = self.position_embedding.weight.shape[0]
221
+
222
+ patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
223
+
224
+ dim = embeddings.shape[-1]
225
+
226
+ if is_after_patchify:
227
+ new_height = height
228
+ new_width = width
229
+ else:
230
+ new_height = height // self.patch_size
231
+ new_width = width // self.patch_size
232
+
233
+ sqrt_num_positions = torch_int(num_positions**0.5)
234
+ patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions,
235
+ sqrt_num_positions, dim)
236
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
237
+
238
+ patch_pos_embed = nn.functional.interpolate(
239
+ patch_pos_embed,
240
+ size=(new_height, new_width),
241
+ mode="bilinear",
242
+ align_corners=False,
243
+ )
244
+
245
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
246
+ return patch_pos_embed
247
+
248
+ def fetch_position_embedding_lfu_cache(self,
249
+ embeddings,
250
+ h,
251
+ w,
252
+ max_cache: int = 20):
253
+ grid = (h, w)
254
+ if grid in self.cache_position_embedding:
255
+ self.cache_position_count[grid] += 1
256
+ return self.cache_position_embedding[grid]
257
+
258
+ if len(self.cache_position_embedding) >= max_cache:
259
+ min_hit_grid = min(
260
+ self.cache_position_count,
261
+ key=self.cache_position_count.get,
262
+ )
263
+ self.cache_position_count.pop(min_hit_grid)
264
+ self.cache_position_embedding.pop(min_hit_grid)
265
+
266
+ position_embedding = self.interpolate_pos_encoding(
267
+ embeddings, h, w, True)
268
+ self.cache_position_count[grid] = 1
269
+ self.cache_position_embedding[grid] = position_embedding
270
+ return position_embedding
271
+
272
+ def forward(
273
+ self,
274
+ pixel_values: torch.FloatTensor,
275
+ position_ids: Optional[torch.Tensor] = None,
276
+ image_grid_thw: Optional[list[Union[
277
+ tuple[int, int, int],
278
+ list[tuple[int, int, int]],
279
+ ]]] = None,
280
+ interpolate_pos_encoding=False,
281
+ ) -> torch.Tensor:
282
+ if pixel_values.dim() == 4:
283
+ pixel_values = pixel_values.unsqueeze(0)
284
+ if pixel_values.dim() == 5:
285
+ if position_ids is None:
286
+ raise ValueError(
287
+ "position_ids cannot be None when pixel_values.dim() is 5."
288
+ )
289
+ (
290
+ batch_size,
291
+ squence_len,
292
+ channel,
293
+ height,
294
+ width,
295
+ ) = pixel_values.shape
296
+ target_dtype = self.patch_embedding.weight.dtype
297
+ pixel_values = rearrange(pixel_values, "b l c h w -> (b l) c h w")
298
+ patch_embeds = self.patch_embedding(
299
+ pixel_values.to(dtype=target_dtype))
300
+ embeddings = patch_embeds.flatten(-2).squeeze(-1)
301
+
302
+ if interpolate_pos_encoding and image_grid_thw is not None:
303
+ start = 0
304
+ tmp_embeddings = list()
305
+ for image_grid in image_grid_thw:
306
+ t, h, w = image_grid
307
+ end = start + t * h * w
308
+ image_embeddings = embeddings[start:end, :]
309
+ position_embedding = (self.interpolate_pos_encoding(
310
+ image_embeddings, h, w, True).squeeze(0).repeat(t, 1))
311
+ image_embeddings = image_embeddings + position_embedding
312
+ tmp_embeddings.append(image_embeddings)
313
+ start = end
314
+ embeddings = torch.concat(tmp_embeddings, dim=0).unsqueeze(0)
315
+ else:
316
+ embeddings = embeddings + self.packing_position_embedding(
317
+ position_ids)
318
+ return embeddings
319
+ else:
320
+ raise ValueError("Unsupported pixel_values dimension:"
321
+ f" {pixel_values.dim()}. Expected 4 or 5.")
322
+
323
+
324
+ def apply_rotary_pos_emb_flashatt(
325
+ q: torch.Tensor,
326
+ k: torch.Tensor,
327
+ cos: torch.Tensor,
328
+ sin: torch.Tensor,
329
+ ) -> tuple[torch.Tensor, torch.Tensor]:
330
+ cos = cos.chunk(2, dim=-1)[0].contiguous()
331
+ sin = sin.chunk(2, dim=-1)[0].contiguous()
332
+
333
+ from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
334
+
335
+ q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
336
+ k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
337
+ return q_embed, k_embed
338
+
339
+
340
+ class KeyeSiglipAttention(nn.Module):
341
+ """Multi-headed attention from 'Attention Is All You
342
+ Need' paper."""
343
+
344
+ def __init__(
345
+ self,
346
+ config: PretrainedConfig,
347
+ quant_config: Optional[QuantizationConfig] = None,
348
+ prefix: str = "",
349
+ ):
350
+ super().__init__()
351
+ self.config = config
352
+
353
+ hidden_size = config.hidden_size
354
+ self.hidden_size = config.hidden_size
355
+ tp_size = get_tensor_model_parallel_world_size()
356
+ self.total_num_heads = config.num_attention_heads
357
+ assert self.total_num_heads % tp_size == 0
358
+ self.num_heads = self.total_num_heads // tp_size
359
+ self.total_num_kv_heads = config.num_attention_heads
360
+ if self.total_num_kv_heads >= tp_size:
361
+ assert self.total_num_kv_heads % tp_size == 0
362
+ else:
363
+ assert tp_size % self.total_num_kv_heads == 0
364
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
365
+ self.head_dim = config.hidden_size // self.total_num_heads
366
+ self.q_size = self.num_heads * self.head_dim
367
+ self.kv_size = self.num_kv_heads * self.head_dim
368
+ self.scale = self.head_dim**-0.5
369
+
370
+ self.qkv_proj = QKVParallelLinear(
371
+ hidden_size,
372
+ self.head_dim,
373
+ self.total_num_heads,
374
+ self.total_num_kv_heads,
375
+ bias=True,
376
+ quant_config=quant_config,
377
+ prefix=f"{prefix}.qkv_proj",
378
+ )
379
+ self.out_proj = RowParallelLinear(
380
+ input_size=hidden_size,
381
+ output_size=hidden_size,
382
+ quant_config=quant_config,
383
+ prefix=f"{prefix}.out_proj",
384
+ )
385
+
386
+ # Detect attention implementation.
387
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
388
+ if self.attn_backend not in {_Backend.FLASH_ATTN, _Backend.XFORMERS}:
389
+ raise RuntimeError(
390
+ f"Keye-VL does not support {self.attn_backend} backend now.")
391
+
392
+ def forward(
393
+ self,
394
+ hidden_states: torch.Tensor,
395
+ attention_mask: Optional[torch.Tensor] = None,
396
+ output_attentions: Optional[bool] = False,
397
+ cu_seqlens: Optional[list[torch.Tensor]] = None,
398
+ rope_emb: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
399
+ ) -> torch.Tensor:
400
+ qkv, _ = self.qkv_proj(hidden_states)
401
+ q, k, v = qkv.split(
402
+ [self.q_size, self.kv_size, self.kv_size],
403
+ dim=-1,
404
+ )
405
+
406
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
407
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
408
+ batch_size = q.shape[0]
409
+
410
+ if rope_emb is None:
411
+ q = q.view(*q.shape[:-1], self.num_heads, self.head_dim)
412
+ k = k.view(
413
+ *k.shape[:-1],
414
+ self.num_kv_heads,
415
+ self.head_dim,
416
+ )
417
+ v = v.view(
418
+ *v.shape[:-1],
419
+ self.num_kv_heads,
420
+ self.head_dim,
421
+ )
422
+ else:
423
+ if cu_seqlens is None:
424
+ raise ValueError(
425
+ "cu_seqlens cannot be None when rope_emb is not None.")
426
+ cos, sin = rope_emb
427
+ q = q.view(*q.shape[:-1], self.num_heads, self.head_dim)
428
+ k = k.view(
429
+ *k.shape[:-1],
430
+ self.num_kv_heads,
431
+ self.head_dim,
432
+ )
433
+ q, k = apply_rotary_pos_emb_flashatt(q, k, cos, sin)
434
+ v = v.view(
435
+ *v.shape[:-1],
436
+ self.num_kv_heads,
437
+ self.head_dim,
438
+ )
439
+
440
+ if self.attn_backend == _Backend.FLASH_ATTN:
441
+ from flash_attn import flash_attn_varlen_func
442
+
443
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
444
+
445
+ output = flash_attn_varlen_func(
446
+ q,
447
+ k,
448
+ v,
449
+ cu_seqlens_q=cu_seqlens,
450
+ cu_seqlens_k=cu_seqlens,
451
+ max_seqlen_q=max_seqlen,
452
+ max_seqlen_k=max_seqlen,
453
+ causal=False,
454
+ softmax_scale=self.scale,
455
+ )
456
+ context_layer = rearrange(output,
457
+ "(b s) ... -> b s ...",
458
+ b=batch_size)
459
+ elif self.attn_backend == _Backend.XFORMERS:
460
+ from xformers import ops as xops
461
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
462
+
463
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
464
+ kv_seqlen=None,
465
+ device=q.device)
466
+
467
+ context_layer = xops.memory_efficient_attention_forward(
468
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
469
+
470
+ context_layer = rearrange(context_layer,
471
+ "b s h d -> b s (h d)").contiguous()
472
+
473
+ output, _ = self.out_proj(context_layer)
474
+ return output
475
+
476
+
477
+ class SigLIPRotaryEmbedding(nn.Module):
478
+
479
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
480
+ super().__init__()
481
+ self.dim = dim
482
+ self.theta = theta
483
+ self.rope_init()
484
+
485
+ def rope_init(self):
486
+ inv_freq = 1.0 / (self.theta**(
487
+ torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim))
488
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
489
+
490
+ def forward(self, seqlen: int) -> torch.Tensor:
491
+ seq = torch.arange(
492
+ seqlen,
493
+ device=self.inv_freq.device,
494
+ dtype=self.inv_freq.dtype,
495
+ )
496
+ freqs = torch.outer(seq, self.inv_freq)
497
+ return freqs
498
+
499
+
500
+ class KeyeSiglipEncoderLayer(nn.Module):
501
+
502
+ def __init__(
503
+ self,
504
+ config: Union[PretrainedConfig],
505
+ quant_config: Optional[QuantizationConfig] = None,
506
+ prefix: str = "",
507
+ ):
508
+ super().__init__()
509
+ self.embed_dim = config.hidden_size
510
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim,
511
+ eps=config.layer_norm_eps)
512
+ self.self_attn = KeyeSiglipAttention(
513
+ config,
514
+ quant_config=quant_config,
515
+ prefix=f"{prefix}.self_attn",
516
+ )
517
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim,
518
+ eps=config.layer_norm_eps)
519
+ self.mlp = SiglipMLP(
520
+ config,
521
+ quant_config=quant_config,
522
+ prefix=f"{prefix}.mlp",
523
+ )
524
+
525
+ def forward(
526
+ self,
527
+ hidden_states: torch.Tensor,
528
+ attention_mask: torch.Tensor,
529
+ output_attentions: Optional[bool] = False,
530
+ cu_seqlens: Optional[list[torch.Tensor]] = None,
531
+ rope_emb: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
532
+ ) -> tuple[torch.FloatTensor]:
533
+
534
+ residual = hidden_states
535
+
536
+ hidden_states = self.layer_norm1(hidden_states)
537
+ hidden_states = self.self_attn(
538
+ hidden_states=hidden_states,
539
+ attention_mask=attention_mask,
540
+ output_attentions=output_attentions,
541
+ cu_seqlens=cu_seqlens,
542
+ rope_emb=rope_emb,
543
+ )
544
+
545
+ hidden_states = residual + hidden_states
546
+
547
+ residual = hidden_states
548
+ hidden_states = self.layer_norm2(hidden_states)
549
+ hidden_states = self.mlp(hidden_states)
550
+
551
+ hidden_states = residual + hidden_states
552
+
553
+ return hidden_states
554
+
555
+
556
+ class KeyeSiglipEncoder(nn.Module):
557
+
558
+ def __init__(
559
+ self,
560
+ config: PretrainedConfig,
561
+ quant_config: Optional[QuantizationConfig] = None,
562
+ prefix: str = "",
563
+ ):
564
+ super().__init__()
565
+ self.config = config
566
+ embed_dim = config.hidden_size
567
+ num_heads = config.num_attention_heads
568
+ head_dim = embed_dim // num_heads
569
+ self.layers = nn.ModuleList([
570
+ KeyeSiglipEncoderLayer(
571
+ config,
572
+ quant_config=quant_config,
573
+ prefix=f"{prefix}.layers.{layer_idx}",
574
+ ) for layer_idx in range(config.num_hidden_layers)
575
+ ])
576
+ self.rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2)
577
+
578
+ @staticmethod
579
+ def flatten_list(image_grid_thw):
580
+ tmp_image_grid_thw = list()
581
+ for image_grid in image_grid_thw:
582
+ if isinstance(image_grid, list):
583
+ tmp_image_grid_thw.extend(image_grid)
584
+ else:
585
+ tmp_image_grid_thw.append(image_grid)
586
+ return tmp_image_grid_thw
587
+
588
+ def forward(
589
+ self,
590
+ inputs_embeds,
591
+ attention_mask: Optional[torch.Tensor] = None,
592
+ output_attentions: Optional[bool] = None,
593
+ output_hidden_states: Optional[bool] = None,
594
+ cu_seqlens: Optional[list[torch.Tensor]] = None,
595
+ image_grid_thw: Optional[list[Union[
596
+ tuple[int, int, int],
597
+ list[tuple[int, int, int]],
598
+ ]]] = None,
599
+ height_position_ids: Optional[torch.Tensor] = None,
600
+ width_position_ids: Optional[torch.Tensor] = None,
601
+ use_rope: Optional[bool] = False,
602
+ window_size: Optional[bool] = -1,
603
+ vision_or_text: str = "vision",
604
+ ) -> BaseModelOutput:
605
+ device = inputs_embeds.device
606
+ hidden_states = inputs_embeds
607
+ if use_rope is True:
608
+ flatten_image_grid_thw = self.flatten_list(image_grid_thw)
609
+
610
+ if width_position_ids is None or height_position_ids is None:
611
+ split_hids = list()
612
+ split_wids = list()
613
+ for t, h, w in flatten_image_grid_thw:
614
+ image_pids = torch.arange(t * h * w,
615
+ device=device) % (h * w)
616
+ sample_hids = image_pids // w
617
+ sample_wids = image_pids % w
618
+ split_hids.append(sample_hids)
619
+ split_wids.append(sample_wids)
620
+ width_position_ids = torch.concat(split_wids, dim=0)
621
+ height_position_ids = torch.concat(split_hids, dim=0)
622
+
623
+ pids = torch.stack(
624
+ [height_position_ids, width_position_ids],
625
+ dim=-1,
626
+ )
627
+ max_grid_size = pids.max() + 1
628
+ rope_emb_max_grid = self.rotary_pos_emb(max_grid_size)
629
+ rope_emb = rope_emb_max_grid[pids].flatten(1)
630
+ rope_emb = rope_emb.repeat(1, 2)
631
+ rope_emb = (rope_emb.cos(), rope_emb.sin())
632
+ else:
633
+ rope_emb = None
634
+
635
+ attn_cu_seqlens = cu_seqlens
636
+ hidden_states = inputs_embeds
637
+ assert attention_mask is None
638
+
639
+ for encoder_layer in self.layers:
640
+ hidden_states = encoder_layer(
641
+ hidden_states,
642
+ attention_mask,
643
+ output_attentions=output_attentions,
644
+ cu_seqlens=attn_cu_seqlens,
645
+ rope_emb=rope_emb,
646
+ )
647
+ return hidden_states
648
+
649
+
650
+ class KeyeSiglipVisionTransformer(nn.Module):
651
+
652
+ def __init__(
653
+ self,
654
+ config: PretrainedConfig,
655
+ quant_config: Optional[QuantizationConfig] = None,
656
+ prefix: str = "",
657
+ ):
658
+ super().__init__()
659
+ self.config = config
660
+ embed_dim = config.hidden_size
661
+
662
+ self.embeddings = KeyeVisionEmbeddings(config)
663
+ self.encoder = KeyeSiglipEncoder(
664
+ config,
665
+ quant_config=quant_config,
666
+ prefix=f"{prefix}.encoder",
667
+ )
668
+ self.post_layernorm = nn.LayerNorm(embed_dim,
669
+ eps=config.layer_norm_eps)
670
+
671
+ def forward(
672
+ self,
673
+ pixel_values,
674
+ output_attentions: Optional[bool] = None,
675
+ output_hidden_states: Optional[bool] = None,
676
+ interpolate_pos_encoding: Optional[bool] = False,
677
+ attention_mask: Optional[torch.Tensor] = None,
678
+ sample_indices: Optional[torch.Tensor] = None,
679
+ image_indices: Optional[torch.Tensor] = None,
680
+ position_ids: Optional[torch.Tensor] = None,
681
+ height_position_ids: Optional[torch.Tensor] = None,
682
+ width_position_ids: Optional[torch.Tensor] = None,
683
+ cu_seqlens: Optional[list[torch.Tensor]] = None,
684
+ padding_mask: Optional[torch.Tensor] = None,
685
+ vision_return_embed_list: Optional[bool] = False,
686
+ image_grid_thw: Optional[list[Union[
687
+ tuple[int, int, int],
688
+ list[tuple[int, int, int]],
689
+ ]]] = None,
690
+ return_pooler_output: Optional[bool] = True,
691
+ use_rope: Optional[bool] = False,
692
+ window_size: Optional[bool] = -1,
693
+ ) -> BaseModelOutputWithPooling:
694
+
695
+ hidden_states = self.embeddings(
696
+ pixel_values,
697
+ interpolate_pos_encoding=interpolate_pos_encoding,
698
+ position_ids=position_ids,
699
+ image_grid_thw=image_grid_thw,
700
+ )
701
+
702
+ last_hidden_state = self.encoder(
703
+ inputs_embeds=hidden_states,
704
+ output_attentions=output_attentions,
705
+ output_hidden_states=output_hidden_states,
706
+ attention_mask=attention_mask,
707
+ cu_seqlens=cu_seqlens,
708
+ image_grid_thw=image_grid_thw,
709
+ use_rope=use_rope,
710
+ height_position_ids=height_position_ids,
711
+ width_position_ids=width_position_ids,
712
+ window_size=window_size,
713
+ vision_or_text="vision",
714
+ )
715
+
716
+ last_hidden_state = self.post_layernorm(last_hidden_state)
717
+
718
+ sample_hidden_state = list()
719
+ if cu_seqlens is None:
720
+ raise ValueError("cu_seqlens cannot be None for "
721
+ "SiglipVisionTransformer output processing.")
722
+ for i in range(cu_seqlens.shape[0] - 1):
723
+ start = cu_seqlens[i]
724
+ end = cu_seqlens[i + 1]
725
+ tensor = last_hidden_state[:, start:end, :].squeeze(0)
726
+ sample_hidden_state.append(tensor)
727
+
728
+ return sample_hidden_state
729
+
730
+
731
+ class KeyeSiglipVisionModel(nn.Module):
732
+ config_class = PretrainedConfig
733
+ main_input_name = "pixel_values"
734
+
735
+ def __init__(
736
+ self,
737
+ config: PretrainedConfig,
738
+ quant_config: Optional[QuantizationConfig] = None,
739
+ prefix: str = "",
740
+ ):
741
+ super().__init__()
742
+
743
+ self.vision_model = KeyeSiglipVisionTransformer(
744
+ config,
745
+ quant_config=quant_config,
746
+ prefix=f"{prefix}.vision_model",
747
+ )
748
+ self.quant_config = quant_config
749
+
750
+ @property
751
+ def dtype(self) -> torch.dtype:
752
+ return self.vision_model.embeddings.patch_embedding.weight.dtype
753
+
754
+ @property
755
+ def device(self) -> torch.device:
756
+ return self.vision_model.embeddings.patch_embedding.weight.device
757
+
758
+ def get_input_embeddings(self) -> nn.Module:
759
+ return self.vision_model.embeddings.patch_embedding
760
+
761
+ def forward(
762
+ self,
763
+ pixel_values,
764
+ sample_indices: Optional[torch.Tensor] = None,
765
+ output_attentions: Optional[bool] = None,
766
+ output_hidden_states: Optional[bool] = None,
767
+ interpolate_pos_encoding: bool = False,
768
+ position_ids: Optional[torch.Tensor] = None,
769
+ vision_return_embed_list: Optional[bool] = False,
770
+ image_grid_thw: Optional[list[Union[
771
+ tuple[int, int, int],
772
+ list[tuple[int, int, int]],
773
+ ]]] = None,
774
+ cu_seqlens: Optional[list[torch.Tensor]] = None,
775
+ return_pooler_output: Optional[bool] = True,
776
+ use_rope: Optional[bool] = False,
777
+ window_size: Optional[bool] = -1,
778
+ ) -> BaseModelOutputWithPooling:
779
+
780
+ return self.vision_model(
781
+ pixel_values=pixel_values,
782
+ output_attentions=output_attentions,
783
+ output_hidden_states=output_hidden_states,
784
+ interpolate_pos_encoding=interpolate_pos_encoding,
785
+ position_ids=position_ids,
786
+ vision_return_embed_list=vision_return_embed_list,
787
+ image_grid_thw=image_grid_thw,
788
+ sample_indices=sample_indices,
789
+ cu_seqlens=cu_seqlens,
790
+ return_pooler_output=return_pooler_output,
791
+ use_rope=use_rope,
792
+ window_size=window_size,
793
+ )
794
+
795
+ def load_weights(self, weights: Iterable[tuple[str,
796
+ torch.Tensor]]) -> set[str]:
797
+ stacked_params_mapping = [
798
+ ("qkv_proj", "q_proj", "q"),
799
+ ("qkv_proj", "k_proj", "k"),
800
+ ("qkv_proj", "v_proj", "v"),
801
+ ]
802
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
803
+ loaded_params: set[str] = set()
804
+ for name, loaded_weight in weights:
805
+ if "rotary_emb.inv_freq" in name:
806
+ continue
807
+ if "head.attention" in name or "head.layernorm" in name:
808
+ continue
809
+ if "head.mlp" in name or "head.probe" in name:
810
+ continue
811
+ if self.quant_config is not None and (
812
+ scale_name := self.quant_config.get_cache_scale(name)):
813
+ param = params_dict[scale_name]
814
+ weight_loader = getattr(
815
+ param,
816
+ "weight_loader",
817
+ default_weight_loader,
818
+ )
819
+ loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
820
+ loaded_weight[0])
821
+ weight_loader(param, loaded_weight)
822
+ loaded_params.add(scale_name)
823
+ continue
824
+ for (
825
+ param_name,
826
+ weight_name,
827
+ shard_id,
828
+ ) in stacked_params_mapping:
829
+ if weight_name not in name:
830
+ continue
831
+ name = name.replace(weight_name, param_name)
832
+ if name.endswith(".bias") and name not in params_dict:
833
+ continue
834
+ if is_pp_missing_parameter(name, self):
835
+ continue
836
+ param = params_dict[name]
837
+ weight_loader = param.weight_loader
838
+ weight_loader(param, loaded_weight, shard_id)
839
+ break
840
+ else:
841
+ if name.endswith(".bias") and name not in params_dict:
842
+ continue
843
+ name = maybe_remap_kv_scale_name(name, params_dict)
844
+ if name is None:
845
+ continue
846
+ if is_pp_missing_parameter(name, self):
847
+ continue
848
+ param = params_dict[name]
849
+ weight_loader = getattr(
850
+ param,
851
+ "weight_loader",
852
+ default_weight_loader,
853
+ )
854
+ weight_loader(param, loaded_weight)
855
+ loaded_params.add(name)
856
+ return loaded_params
857
+
858
+
859
+ class Projector(nn.Module):
860
+
861
+ def __init__(
862
+ self,
863
+ text_config: PretrainedConfig,
864
+ vision_config: PretrainedConfig,
865
+ quant_config: Optional[QuantizationConfig] = None,
866
+ prefix: str = "",
867
+ ):
868
+ super().__init__()
869
+ self.text_config = text_config
870
+ self.vision_config = vision_config
871
+ self.merge_kernel_size = (2, 2)
872
+
873
+ self.hidden_size = (self.vision_config.hidden_size *
874
+ self.merge_kernel_size[0] *
875
+ self.merge_kernel_size[1])
876
+
877
+ self.pre_norm = torch.nn.LayerNorm(self.vision_config.hidden_size,
878
+ eps=1e-05)
879
+ self.act = GELUActivation()
880
+
881
+ self.linear_1 = ColumnParallelLinear(
882
+ self.hidden_size,
883
+ self.hidden_size,
884
+ bias=True,
885
+ quant_config=quant_config,
886
+ prefix=f"{prefix}.linear_1",
887
+ )
888
+ self.linear_2 = RowParallelLinear(
889
+ self.hidden_size,
890
+ self.text_config.hidden_size,
891
+ bias=True,
892
+ quant_config=quant_config,
893
+ prefix=f"{prefix}.linear_2",
894
+ )
895
+
896
+ def forward(
897
+ self,
898
+ image_features: torch.Tensor,
899
+ image_grid_thw: list[tuple[int, int, int]],
900
+ ) -> torch.Tensor:
901
+ m1, m2 = self.merge_kernel_size
902
+ if isinstance(image_features, (list, tuple)):
903
+ processed_features = list()
904
+ for image_feature, image_grid in zip(image_features,
905
+ image_grid_thw):
906
+ image_feature = self.pre_norm(image_feature)
907
+ t, h, w = image_grid
908
+
909
+ image_feature = rearrange(
910
+ image_feature,
911
+ "(t h p1 w p2) d -> (t h w) (p1 p2 d)",
912
+ t=t,
913
+ h=h // m1,
914
+ p1=m1,
915
+ w=w // m2,
916
+ p2=m2,
917
+ )
918
+ hidden_states, _ = self.linear_1(image_feature)
919
+ hidden_states = self.act(hidden_states)
920
+ hidden_states, _ = self.linear_2(hidden_states)
921
+ processed_features.append(hidden_states)
922
+
923
+ return processed_features
924
+
925
+ dims = image_features.shape[:-1]
926
+ dim = image_features.shape[-1]
927
+ image_features = image_features.view(np.prod(dims), dim)
928
+ hidden_states = self.pre_norm(image_features).view(
929
+ -1, self.hidden_size)
930
+ hidden_states = self.linear_1(hidden_states)
931
+ hidden_states = self.act(hidden_states)
932
+ hidden_states = self.linear_2(hidden_states)
933
+
934
+ return hidden_states.view(*dims, -1)
935
+
936
+
937
+ def _keye_field_config(hf_inputs: Mapping[str, torch.Tensor], ):
938
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
939
+ image_grid_sizes = image_grid_thw.prod(-1)
940
+
941
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
942
+ video_grid_sizes = video_grid_thw.prod(-1)
943
+
944
+ return dict(
945
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
946
+ "image", image_grid_sizes),
947
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
948
+ "image", image_grid_sizes),
949
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
950
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
951
+ "video", video_grid_sizes),
952
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
953
+ "video", video_grid_sizes),
954
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
955
+ )
956
+
957
+
958
+ class KeyeMultiModalDataParser(MultiModalDataParser):
959
+
960
+ def _parse_image_data(
961
+ self,
962
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
963
+ ) -> ModalityDataItems[Any, Any]:
964
+ if isinstance(data, dict):
965
+ return DictEmbeddingItems(
966
+ data,
967
+ modality="image",
968
+ required_fields={
969
+ "image_embeds",
970
+ "image_grid_thw",
971
+ },
972
+ fields_factory=_keye_field_config,
973
+ )
974
+
975
+ return super()._parse_image_data(data)
976
+
977
+ def _parse_video_data(
978
+ self,
979
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
980
+ ) -> ModalityDataItems[Any, Any]:
981
+ if isinstance(data, dict):
982
+ return DictEmbeddingItems(
983
+ data,
984
+ modality="video",
985
+ required_fields={
986
+ "video_embeds",
987
+ "video_grid_thw",
988
+ },
989
+ fields_factory=_keye_field_config,
990
+ )
991
+
992
+ return super()._parse_video_data(data)
993
+
994
+
995
+ class KeyeProcessingInfo(BaseProcessingInfo):
996
+
997
+ def get_hf_config(self):
998
+ return self.ctx.get_hf_config(PretrainedConfig)
999
+
1000
+ def get_hf_processor(
1001
+ self,
1002
+ *,
1003
+ min_pixels: Optional[int] = None,
1004
+ max_pixels: Optional[int] = None,
1005
+ size: Optional[dict[str, int]] = None,
1006
+ **kwargs: object,
1007
+ ):
1008
+ return self.ctx.get_hf_processor(
1009
+ image_processor=self.get_image_processor(
1010
+ min_pixels=min_pixels,
1011
+ max_pixels=max_pixels,
1012
+ size=size,
1013
+ ),
1014
+ **kwargs,
1015
+ )
1016
+
1017
+ def _get_image_processor_kwargs(
1018
+ self,
1019
+ *,
1020
+ min_pixels: Optional[int] = None,
1021
+ max_pixels: Optional[int] = None,
1022
+ size: Optional[dict[str, int]] = None,
1023
+ **kwargs: object,
1024
+ ):
1025
+ if self.ctx.model_config.mm_processor_kwargs:
1026
+ kwargs.update(self.ctx.model_config.mm_processor_kwargs)
1027
+
1028
+ if min_pixels is not None:
1029
+ kwargs["min_pixels"] = min_pixels
1030
+
1031
+ if size is None:
1032
+ size = {"shortest_edge": min_pixels}
1033
+ else:
1034
+ size["shortest_edge"] = min_pixels
1035
+
1036
+ if max_pixels is not None:
1037
+ kwargs["max_pixels"] = max_pixels
1038
+
1039
+ if size is None:
1040
+ size = {"longest_edge": max_pixels}
1041
+ else:
1042
+ size["longest_edge"] = max_pixels
1043
+
1044
+ if size is not None:
1045
+ kwargs["size"] = size
1046
+
1047
+ return kwargs
1048
+
1049
+ def get_image_processor(
1050
+ self,
1051
+ *,
1052
+ min_pixels: Optional[int] = None,
1053
+ max_pixels: Optional[int] = None,
1054
+ size: Optional[dict[str, int]] = None,
1055
+ **kwargs: object,
1056
+ ):
1057
+ return cached_image_processor_from_config(
1058
+ self.ctx.model_config,
1059
+ **self._get_image_processor_kwargs(
1060
+ min_pixels=min_pixels,
1061
+ max_pixels=max_pixels,
1062
+ size=size,
1063
+ **kwargs,
1064
+ ),
1065
+ )
1066
+
1067
+ def get_supported_mm_limits(self, ) -> Mapping[str, Optional[int]]:
1068
+ return {"image": None, "video": None}
1069
+
1070
+ def get_mm_max_tokens_per_item(
1071
+ self,
1072
+ seq_len: int,
1073
+ mm_counts: Mapping[str, int],
1074
+ ) -> Mapping[str, int]:
1075
+ return {
1076
+ "image": self.get_max_image_tokens(),
1077
+ "video": self.get_max_video_tokens(seq_len),
1078
+ }
1079
+
1080
+ def _get_vision_info(
1081
+ self,
1082
+ *,
1083
+ image_width: int,
1084
+ image_height: int,
1085
+ num_frames: int = 1,
1086
+ do_resize: bool = True,
1087
+ image_processor,
1088
+ ) -> tuple[ImageSize, int]:
1089
+ if image_processor is None:
1090
+ image_processor = self.get_image_processor()
1091
+
1092
+ hf_config = self.get_hf_config()
1093
+ vision_config = hf_config.vision_config
1094
+ patch_size = vision_config.patch_size
1095
+ merge_size = vision_config.spatial_merge_size
1096
+ temporal_patch_size = 1
1097
+
1098
+ if do_resize:
1099
+ resized_height, resized_width = smart_resize(
1100
+ height=image_height,
1101
+ width=image_width,
1102
+ factor=patch_size * merge_size,
1103
+ min_pixels=image_processor.min_pixels,
1104
+ max_pixels=image_processor.max_pixels,
1105
+ )
1106
+ preprocessed_size = ImageSize(width=resized_width,
1107
+ height=resized_height)
1108
+ else:
1109
+ preprocessed_size = ImageSize(width=image_width,
1110
+ height=image_height)
1111
+
1112
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
1113
+
1114
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
1115
+ grid_h = preprocessed_size.height // patch_size
1116
+ grid_w = preprocessed_size.width // patch_size
1117
+
1118
+ num_patches = grid_t * grid_h * grid_w
1119
+ num_vision_tokens = num_patches // (merge_size**2)
1120
+
1121
+ return preprocessed_size, num_vision_tokens
1122
+
1123
+ def get_num_image_tokens(
1124
+ self,
1125
+ *,
1126
+ image_width: int,
1127
+ image_height: int,
1128
+ image_processor,
1129
+ ) -> int:
1130
+ _, num_image_tokens = self._get_vision_info(
1131
+ image_width=image_width,
1132
+ image_height=image_height,
1133
+ image_processor=image_processor,
1134
+ )
1135
+ return num_image_tokens
1136
+
1137
+ def get_num_video_tokens(
1138
+ self,
1139
+ *,
1140
+ image_width: int,
1141
+ image_height: int,
1142
+ num_frames: int,
1143
+ image_processor,
1144
+ ) -> int:
1145
+ _, num_video_tokens = self._get_vision_info(
1146
+ image_width=image_width,
1147
+ image_height=image_height,
1148
+ num_frames=num_frames,
1149
+ image_processor=image_processor,
1150
+ )
1151
+ return num_video_tokens
1152
+
1153
+ def get_image_size_with_most_features(self, ) -> ImageSize:
1154
+ max_image_size, _ = self._get_vision_info(
1155
+ image_width=_MAX_IMAGE_SIZE,
1156
+ image_height=_MAX_IMAGE_SIZE,
1157
+ image_processor=None,
1158
+ )
1159
+ return max_image_size
1160
+
1161
+ def get_max_image_tokens(self) -> int:
1162
+ target_width, target_height = self.get_image_size_with_most_features()
1163
+
1164
+ return self.get_num_image_tokens(
1165
+ image_width=target_width,
1166
+ image_height=target_height,
1167
+ image_processor=None,
1168
+ )
1169
+
1170
+ def _get_max_video_frames(self, max_tokens: int) -> int:
1171
+ target_width, target_height = self.get_image_size_with_most_features()
1172
+
1173
+ num_frames = 0
1174
+
1175
+ while True:
1176
+ next_num_frames = num_frames + 1
1177
+ next_max_tokens = self.get_num_video_tokens(
1178
+ image_width=target_width,
1179
+ image_height=target_height,
1180
+ num_frames=next_num_frames,
1181
+ image_processor=None,
1182
+ )
1183
+
1184
+ if next_max_tokens > max_tokens:
1185
+ break
1186
+
1187
+ num_frames = next_num_frames
1188
+
1189
+ return num_frames
1190
+
1191
+ def get_num_frames_with_most_features(self, seq_len: int) -> int:
1192
+ mm_config = self.ctx.get_mm_config()
1193
+ max_images = mm_config.get_limit_per_prompt("image")
1194
+ max_videos = mm_config.get_limit_per_prompt("video")
1195
+
1196
+ max_image_tokens = self.get_max_image_tokens() * max_images
1197
+ max_total_frames = self._get_max_video_frames(seq_len -
1198
+ max_image_tokens)
1199
+ max_frames_per_video = min(
1200
+ max_total_frames // max(max_videos, 1),
1201
+ _MAX_FRAMES_PER_VIDEO,
1202
+ )
1203
+
1204
+ return max(max_frames_per_video, 1)
1205
+
1206
+ def get_max_video_tokens(self, seq_len: int) -> int:
1207
+ target_width, target_height = self.get_image_size_with_most_features()
1208
+
1209
+ return self.get_num_video_tokens(
1210
+ image_width=target_width,
1211
+ image_height=target_height,
1212
+ num_frames=self.get_num_frames_with_most_features(seq_len),
1213
+ image_processor=None,
1214
+ )
1215
+
1216
+
1217
+ class KeyeDummyInputsBuilder(BaseDummyInputsBuilder[KeyeProcessingInfo]):
1218
+
1219
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1220
+ num_images = mm_counts.get("image", 0)
1221
+ num_videos = mm_counts.get("video", 0)
1222
+
1223
+ hf_processor = self.info.get_hf_processor()
1224
+ image_token: str = hf_processor.image_token
1225
+ video_token: str = hf_processor.video_token
1226
+
1227
+ return image_token * num_images + video_token * num_videos
1228
+
1229
+ def get_dummy_mm_data(
1230
+ self,
1231
+ seq_len: int,
1232
+ mm_counts: Mapping[str, int],
1233
+ ) -> MultiModalDataDict:
1234
+ num_images = mm_counts.get("image", 0)
1235
+ num_videos = mm_counts.get("video", 0)
1236
+
1237
+ target_width, target_height = (
1238
+ self.info.get_image_size_with_most_features())
1239
+ target_num_frames = self.info.get_num_frames_with_most_features(
1240
+ seq_len)
1241
+
1242
+ mm_data = {
1243
+ "image":
1244
+ self._get_dummy_images(
1245
+ width=target_width,
1246
+ height=target_height,
1247
+ num_images=num_images,
1248
+ ),
1249
+ "video":
1250
+ self._get_dummy_videos(
1251
+ width=target_width,
1252
+ height=target_height,
1253
+ num_frames=target_num_frames,
1254
+ num_videos=num_videos,
1255
+ ),
1256
+ }
1257
+
1258
+ return mm_data
1259
+
1260
+
1261
+ class KeyeMultiModalProcessor(BaseMultiModalProcessor[KeyeProcessingInfo]):
1262
+
1263
+ def _get_data_parser(self) -> MultiModalDataParser:
1264
+ return KeyeMultiModalDataParser()
1265
+
1266
+ def _call_hf_processor(
1267
+ self,
1268
+ prompt: str,
1269
+ mm_data: Mapping[str, object],
1270
+ mm_kwargs: Mapping[str, object],
1271
+ tok_kwargs: Mapping[str, object],
1272
+ ) -> BatchFeature:
1273
+ mm_kwargs = self.info._get_image_processor_kwargs(**mm_kwargs)
1274
+ return self.info.ctx.call_hf_processor(
1275
+ self.info.get_hf_processor(**mm_kwargs),
1276
+ dict(text=prompt, **mm_data),
1277
+ dict(**mm_kwargs, **tok_kwargs),
1278
+ )
1279
+
1280
+ def _get_prompt_updates(
1281
+ self,
1282
+ mm_items: MultiModalDataItems,
1283
+ hf_processor_mm_kwargs: Mapping[str, Any],
1284
+ out_mm_kwargs: MultiModalKwargs,
1285
+ ) -> Sequence[PromptUpdate]:
1286
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1287
+ image_processor = self.info.get_image_processor(
1288
+ **hf_processor_mm_kwargs)
1289
+ tokenizer = self.info.get_tokenizer()
1290
+ vocab = tokenizer.get_vocab()
1291
+
1292
+ placeholder = {
1293
+ "image": vocab[hf_processor.image_token],
1294
+ "video": vocab[hf_processor.video_token],
1295
+ }
1296
+
1297
+ merge_length = image_processor.merge_size**2
1298
+
1299
+ def get_replacement_keye(item_idx: int, modality: str):
1300
+ grid_thw = out_mm_kwargs[f"{modality}_grid_thw"][item_idx]
1301
+ assert isinstance(grid_thw, torch.Tensor)
1302
+
1303
+ num_tokens = int(grid_thw.prod()) // merge_length
1304
+ return [placeholder[modality]] * num_tokens
1305
+
1306
+ return [
1307
+ PromptReplacement(
1308
+ modality=modality,
1309
+ target=[placeholder[modality]],
1310
+ replacement=partial(get_replacement_keye, modality=modality),
1311
+ ) for modality in ("image", "video")
1312
+ ]
1313
+
1314
+ def _get_mm_fields_config(
1315
+ self,
1316
+ hf_inputs: BatchFeature,
1317
+ hf_processor_mm_kwargs: Mapping[str, object],
1318
+ ) -> Mapping[str, MultiModalFieldConfig]:
1319
+ return _keye_field_config(hf_inputs)
1320
+
1321
+
1322
+ @MULTIMODAL_REGISTRY.register_processor(
1323
+ KeyeMultiModalProcessor,
1324
+ info=KeyeProcessingInfo,
1325
+ dummy_inputs=KeyeDummyInputsBuilder,
1326
+ )
1327
+ class KeyeForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsLoRA,
1328
+ SupportsPP):
1329
+ packed_modules_mapping = {
1330
+ "qkv_proj": [
1331
+ "q_proj",
1332
+ "k_proj",
1333
+ "v_proj",
1334
+ ],
1335
+ "gate_up_proj": [
1336
+ "gate_proj",
1337
+ "up_proj",
1338
+ ],
1339
+ }
1340
+
1341
+ hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
1342
+ "lm_head.": "language_model.lm_head.",
1343
+ "model.": "language_model.model.",
1344
+ })
1345
+
1346
+ @classmethod
1347
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1348
+ if modality.startswith("image"):
1349
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1350
+ if modality.startswith("video"):
1351
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1352
+
1353
+ raise ValueError("Only image or video modality is supported")
1354
+
1355
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1356
+ super().__init__()
1357
+ config: PretrainedConfig = vllm_config.model_config.hf_config
1358
+ quant_config = vllm_config.quant_config
1359
+ multimodal_config = vllm_config.model_config.multimodal_config
1360
+
1361
+ self.config = config
1362
+ self.multimodal_config = multimodal_config
1363
+
1364
+ self.visual = KeyeSiglipVisionModel(
1365
+ config.vision_config,
1366
+ quant_config=self._maybe_ignore_quant_config(quant_config),
1367
+ prefix=maybe_prefix(prefix, "visual"),
1368
+ )
1369
+ self.mlp_AR = Projector(
1370
+ config,
1371
+ config.vision_config,
1372
+ quant_config=self._maybe_ignore_quant_config(quant_config),
1373
+ prefix=maybe_prefix(prefix, "mlp_AR"),
1374
+ )
1375
+
1376
+ self.language_model = init_vllm_registered_model(
1377
+ vllm_config=vllm_config,
1378
+ prefix=maybe_prefix(prefix, "language_model"),
1379
+ architectures=["Qwen3ForCausalLM"],
1380
+ )
1381
+
1382
+ self.make_empty_intermediate_tensors = (
1383
+ self.language_model.make_empty_intermediate_tensors)
1384
+
1385
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1386
+ if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
1387
+ return None
1388
+ return quant_config
1389
+
1390
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1391
+ name: str) -> torch.Tensor:
1392
+ if not isinstance(mm_input, (torch.Tensor, list)):
1393
+ raise ValueError(f"Incorrect type of {name}. "
1394
+ f"Got type: {type(mm_input)}")
1395
+ if isinstance(mm_input, torch.Tensor):
1396
+ if mm_input.ndim == 2:
1397
+ return mm_input
1398
+ if mm_input.ndim == 5:
1399
+ return mm_input
1400
+ if mm_input.ndim != 3:
1401
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1402
+ f"Got ndim: {mm_input.ndim} "
1403
+ f"(shape={mm_input.shape})")
1404
+ return torch.concat(list(mm_input))
1405
+ else:
1406
+ return torch.concat(mm_input)
1407
+
1408
+ def _parse_and_validate_image_input(
1409
+ self, **kwargs: object) -> Optional[KeyeImageInputs]:
1410
+ pixel_values = kwargs.pop("pixel_values", None)
1411
+ image_embeds = kwargs.pop("image_embeds", None)
1412
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1413
+
1414
+ if pixel_values is None and image_embeds is None:
1415
+ return None
1416
+
1417
+ if pixel_values is not None:
1418
+ pixel_values = self._validate_and_reshape_mm_tensor(
1419
+ pixel_values, "image pixel values")
1420
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1421
+ image_grid_thw, "image grid_thw")
1422
+
1423
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1424
+ raise ValueError("Incorrect type of image pixel values. "
1425
+ f"Got type: {type(pixel_values)}")
1426
+
1427
+ return KeyeImagePixelInputs(
1428
+ type="pixel_values",
1429
+ pixel_values=pixel_values,
1430
+ image_grid_thw=image_grid_thw,
1431
+ )
1432
+
1433
+ if image_embeds is not None:
1434
+ image_embeds = self._validate_and_reshape_mm_tensor(
1435
+ image_embeds, "image embeds")
1436
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1437
+ image_grid_thw, "image grid_thw")
1438
+
1439
+ if not isinstance(image_embeds, torch.Tensor):
1440
+ raise ValueError("Incorrect type of image embeddings. "
1441
+ f"Got type: {type(image_embeds)}")
1442
+ return KeyeImageEmbeddingInputs(
1443
+ type="image_embeds",
1444
+ image_embeds=image_embeds,
1445
+ image_grid_thw=image_grid_thw,
1446
+ )
1447
+
1448
+ def _parse_and_validate_video_input(
1449
+ self, **kwargs: object) -> Optional[KeyeVideoInputs]:
1450
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1451
+ video_embeds = kwargs.pop("video_embeds", None)
1452
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1453
+
1454
+ if pixel_values_videos is None and video_embeds is None:
1455
+ return None
1456
+
1457
+ if pixel_values_videos is not None:
1458
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1459
+ pixel_values_videos,
1460
+ "video pixel values",
1461
+ )
1462
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1463
+ video_grid_thw, "video grid_thw")
1464
+
1465
+ return KeyeVideoPixelInputs(
1466
+ type="pixel_values_videos",
1467
+ pixel_values_videos=pixel_values_videos,
1468
+ video_grid_thw=video_grid_thw,
1469
+ )
1470
+
1471
+ if video_embeds is not None:
1472
+ video_embeds = self._validate_and_reshape_mm_tensor(
1473
+ video_embeds, "video embeds")
1474
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1475
+ video_grid_thw, "video grid_thw")
1476
+
1477
+ if not isinstance(video_embeds, torch.Tensor):
1478
+ raise ValueError("Incorrect type of video embeddings. "
1479
+ f"Got type: {type(video_embeds)}")
1480
+ return KeyeVideoEmbeddingInputs(
1481
+ type="video_embeds",
1482
+ video_embeds=video_embeds,
1483
+ video_grid_thw=video_grid_thw,
1484
+ )
1485
+
1486
+ def _process_image_input(
1487
+ self, image_input: KeyeImageInputs) -> tuple[torch.Tensor, ...]:
1488
+ siglip_position_ids = list()
1489
+ image_grid_hws = list()
1490
+ sample_indices = list()
1491
+ cu_seqlens = [0]
1492
+
1493
+ image_grid_thw = image_input["image_grid_thw"]
1494
+ assert image_grid_thw.ndim == 2
1495
+
1496
+ for idx, thaw in enumerate(image_grid_thw):
1497
+ thw_tuple = tuple(thaw.detach().cpu().numpy().tolist())
1498
+ numel = np.prod(thw_tuple)
1499
+ image_grid_hws.append(thw_tuple)
1500
+ image_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:])
1501
+ siglip_position_ids.append(image_position_ids)
1502
+ sample_indices.append(torch.full((numel, ), idx,
1503
+ dtype=torch.int64))
1504
+ cu_seqlens.append(cu_seqlens[-1] + numel)
1505
+
1506
+ if image_input["type"] == "image_embeds":
1507
+ raise ValueError(
1508
+ "Image embeddings are not supported for this processing path.")
1509
+ else:
1510
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1511
+ siglip_position_ids = torch.concat(siglip_position_ids,
1512
+ dim=0).to(pixel_values.device)
1513
+ cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(
1514
+ pixel_values.device)
1515
+ sample_indices = torch.concat(sample_indices,
1516
+ dim=0).to(pixel_values.device)
1517
+
1518
+ image_embeds = self.visual(
1519
+ pixel_values=pixel_values,
1520
+ image_grid_thw=image_grid_hws,
1521
+ position_ids=siglip_position_ids,
1522
+ vision_return_embed_list=False,
1523
+ interpolate_pos_encoding=True,
1524
+ sample_indices=sample_indices,
1525
+ cu_seqlens=cu_seqlens,
1526
+ use_rope=True,
1527
+ window_size=-1,
1528
+ )
1529
+ image_embeds = tuple(self.mlp_AR(image_embeds, image_grid_thw))
1530
+ return image_embeds
1531
+
1532
+ def _process_video_input(
1533
+ self, video_input: KeyeVideoInputs) -> tuple[torch.Tensor, ...]:
1534
+ siglip_position_ids = list()
1535
+ video_grid_hws = list()
1536
+ sample_indices = list()
1537
+ cu_seqlens = [0]
1538
+
1539
+ video_grid_thw = video_input["video_grid_thw"]
1540
+ assert video_grid_thw.ndim == 2
1541
+
1542
+ for idx, thaw in enumerate(video_grid_thw):
1543
+ thw_tuple = tuple(thaw.detach().cpu().numpy().tolist())
1544
+ numel = np.prod(thw_tuple)
1545
+
1546
+ video_grid_hws.append(thw_tuple)
1547
+ video_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:])
1548
+ siglip_position_ids.append(video_position_ids)
1549
+ sample_indices.append(torch.full((numel, ), idx,
1550
+ dtype=torch.int64))
1551
+ cu_seqlens.append(cu_seqlens[-1] + numel)
1552
+
1553
+ if video_input["type"] == "video_embeds":
1554
+ raise ValueError(
1555
+ "Video embeddings are not supported for this processing path.")
1556
+ else:
1557
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1558
+ self.visual.dtype)
1559
+ siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(
1560
+ pixel_values_videos.device)
1561
+ cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(
1562
+ pixel_values_videos.device)
1563
+ sample_indices = torch.concat(sample_indices,
1564
+ dim=0).to(pixel_values_videos.device)
1565
+
1566
+ video_embeds = self.visual(
1567
+ pixel_values=pixel_values_videos,
1568
+ image_grid_thw=video_grid_hws,
1569
+ position_ids=siglip_position_ids,
1570
+ vision_return_embed_list=True,
1571
+ interpolate_pos_encoding=True,
1572
+ sample_indices=sample_indices,
1573
+ cu_seqlens=cu_seqlens,
1574
+ use_rope=True,
1575
+ window_size=-1,
1576
+ )
1577
+ video_embeds = tuple(self.mlp_AR(video_embeds, video_grid_thw))
1578
+ return video_embeds
1579
+
1580
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1581
+ modalities = {}
1582
+
1583
+ for input_key in kwargs:
1584
+ if (input_key in ("pixel_values", "image_embeds")
1585
+ and "images" not in modalities):
1586
+ modalities["images"] = self._parse_and_validate_image_input(
1587
+ **kwargs)
1588
+ if (input_key in ("pixel_values_videos", "video_embeds")
1589
+ and "videos" not in modalities):
1590
+ modalities["videos"] = self._parse_and_validate_video_input(
1591
+ **kwargs)
1592
+
1593
+ return modalities
1594
+
1595
+ def get_multimodal_embeddings(
1596
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1597
+
1598
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1599
+ if not modalities:
1600
+ return None
1601
+
1602
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1603
+
1604
+ for modality in modalities:
1605
+ if modality == "images":
1606
+ image_input = modalities["images"]
1607
+ vision_embeddings = self._process_image_input(image_input)
1608
+ multimodal_embeddings += vision_embeddings
1609
+ if modality == "videos":
1610
+ video_input = modalities["videos"]
1611
+ video_embeddings = self._process_video_input(video_input)
1612
+ multimodal_embeddings += video_embeddings
1613
+ return multimodal_embeddings
1614
+
1615
+ def get_input_embeddings(
1616
+ self,
1617
+ input_ids: torch.Tensor,
1618
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1619
+ ) -> torch.Tensor:
1620
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1621
+ if multimodal_embeddings is not None:
1622
+ inputs_embeds = merge_multimodal_embeddings(
1623
+ input_ids,
1624
+ inputs_embeds,
1625
+ multimodal_embeddings,
1626
+ [
1627
+ self.config.image_token_id,
1628
+ self.config.video_token_id,
1629
+ ],
1630
+ )
1631
+ return inputs_embeds
1632
+
1633
+ def get_input_embeddings_v0(
1634
+ self,
1635
+ input_ids: torch.Tensor,
1636
+ image_input: Optional[KeyeImagePixelInputs] = None,
1637
+ video_input: Optional[KeyeVideoPixelInputs] = None,
1638
+ ) -> torch.Tensor:
1639
+ inputs_embeds = self.get_input_embeddings(input_ids)
1640
+ if image_input is not None:
1641
+ image_embeds = self._process_image_input(image_input)
1642
+ inputs_embeds = merge_multimodal_embeddings(
1643
+ input_ids,
1644
+ inputs_embeds,
1645
+ image_embeds,
1646
+ placeholder_token_id=self.config.image_token_id,
1647
+ )
1648
+
1649
+ if video_input is not None:
1650
+ video_embeds = self._process_video_input(video_input)
1651
+ inputs_embeds = merge_multimodal_embeddings(
1652
+ input_ids,
1653
+ inputs_embeds,
1654
+ video_embeds,
1655
+ placeholder_token_id=self.config.video_token_id,
1656
+ )
1657
+ return inputs_embeds
1658
+
1659
+ def forward(
1660
+ self,
1661
+ input_ids: torch.Tensor,
1662
+ positions: torch.Tensor,
1663
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1664
+ inputs_embeds: Optional[torch.Tensor] = None,
1665
+ **kwargs: object,
1666
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1667
+ """Run forward pass for Qwen2-VL.
1668
+
1669
+ Args:
1670
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1671
+ batch.
1672
+ positions: Flattened (concatenated) position ids corresponding to a
1673
+ batch.
1674
+ **NOTE**: If mrope is enabled (default setting for Qwen2-VL
1675
+ opensource models), the shape will be `(3, seq_len)`,
1676
+ otherwise it will be `(seq_len,).
1677
+ pixel_values: Pixel values to be fed to a model.
1678
+ `None` if no images are passed.
1679
+ image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
1680
+ `None` if no images are passed.
1681
+ pixel_values_videos: Pixel values of videos to be fed to a model.
1682
+ `None` if no videos are passed.
1683
+ video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
1684
+ `None` if no videos are passed.
1685
+ """
1686
+
1687
+ if intermediate_tensors is not None:
1688
+ inputs_embeds = None
1689
+
1690
+ elif inputs_embeds is None:
1691
+ image_input = self._parse_and_validate_image_input(**kwargs)
1692
+ video_input = self._parse_and_validate_video_input(**kwargs)
1693
+
1694
+ if image_input is None and video_input is None:
1695
+ inputs_embeds = None
1696
+ else:
1697
+ if uses_mrope(self.config):
1698
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1699
+ "multimodal section rotary embedding requires "
1700
+ f"(3, seq_len) positions, but got {positions.size()}")
1701
+ inputs_embeds = self.get_input_embeddings_v0(
1702
+ input_ids,
1703
+ image_input=image_input,
1704
+ video_input=video_input,
1705
+ )
1706
+ input_ids = None
1707
+
1708
+ hidden_states = self.language_model.model(
1709
+ input_ids=input_ids,
1710
+ positions=positions,
1711
+ intermediate_tensors=intermediate_tensors,
1712
+ inputs_embeds=inputs_embeds,
1713
+ )
1714
+ return hidden_states
1715
+
1716
+ def compute_logits(
1717
+ self,
1718
+ hidden_states: torch.Tensor,
1719
+ sampling_metadata: SamplingMetadata,
1720
+ ) -> Optional[torch.Tensor]:
1721
+ return self.language_model.compute_logits(hidden_states,
1722
+ sampling_metadata)
1723
+
1724
+ def load_weights(self, weights: Iterable[tuple[str,
1725
+ torch.Tensor]]) -> set[str]:
1726
+
1727
+ loader = AutoWeightsLoader(self)
1728
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1729
+
1730
+ def get_mm_mapping(self) -> MultiModelKeys:
1731
+ """Get the module prefix in multimodal models."""
1732
+ return MultiModelKeys.from_string_field(
1733
+ language_model="language_model",
1734
+ connector="visual.",
1735
+ tower_model="mlp_AR.",
1736
+ )