vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1682 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """PyTorch Mllama model."""
18
+ import math
19
+ from collections.abc import Iterable, Mapping, Sequence
20
+ from typing import Literal, Optional, TypedDict, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import transformers.models.mllama.configuration_mllama as config_mllama
26
+ from PIL.Image import Image
27
+ from torch import nn
28
+ from transformers import BatchFeature, MllamaConfig
29
+ from transformers.modeling_outputs import (BaseModelOutput,
30
+ CausalLMOutputWithPast)
31
+ from transformers.models.mllama.image_processing_mllama import (
32
+ get_optimal_tiled_canvas)
33
+ from transformers.models.mllama.processing_mllama import (
34
+ MllamaProcessor, get_cross_attention_token_mask)
35
+
36
+ import vllm.distributed.parallel_state as ps
37
+ from vllm.attention import Attention, AttentionMetadata, AttentionType
38
+ from vllm.attention.ops.paged_attn import PagedAttention
39
+ from vllm.attention.selector import _Backend
40
+ from vllm.config import VllmConfig
41
+ from vllm.distributed import get_pp_group, get_tp_group
42
+ from vllm.forward_context import get_forward_context
43
+ from vllm.logger import init_logger
44
+ from vllm.model_executor.layers.layernorm import RMSNorm
45
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
46
+ QKVCrossParallelLinear,
47
+ QKVParallelLinear,
48
+ RowParallelLinear)
49
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
50
+ from vllm.model_executor.layers.quantization import QuantizationConfig
51
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
52
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
53
+ from vllm.model_executor.model_loader.weight_utils import (
54
+ default_weight_loader, maybe_remap_kv_scale_name)
55
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
56
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
57
+ from vllm.multimodal import MULTIMODAL_REGISTRY
58
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
59
+ MultiModalFieldConfig, MultiModalKwargs)
60
+ from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
61
+ MultiModalDataItems)
62
+ from vllm.multimodal.processing import (BaseProcessingInfo,
63
+ EncDecMultiModalProcessor,
64
+ PromptReplacement, PromptUpdate)
65
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
66
+
67
+ from .clip import CLIPMLP
68
+ from .interfaces import SupportsMultiModal, SupportsV0Only
69
+ from .llama import LlamaDecoderLayer, LlamaMLP
70
+ from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
71
+
72
+ logger = init_logger(__name__)
73
+
74
+
75
+ class MllamaImagePixelInputs(TypedDict):
76
+ type: Literal["pixel_values"]
77
+ data: torch.Tensor
78
+ """Shape: """
79
+ """(batch_size, max_num_image, max_num_chunk, num_channel, height, width)"""
80
+ aspect_ratio_ids: torch.Tensor
81
+ """Shape: `(batch_size, max_num_image)`"""
82
+ aspect_ratio_mask: torch.Tensor
83
+ """Shape: `(batch_size, max_num_image, max_num_tiles)`"""
84
+
85
+
86
+ # TODO: support LlamaImageEmbeddingInputs
87
+
88
+
89
+ def calc_token_per_chunk(image_size: int) -> int:
90
+ assert image_size % 14 == 0, "chunk size should be multiple of 14"
91
+ token_per_chunk = (image_size // 14)**2 + 1
92
+ return token_per_chunk
93
+
94
+
95
+ class MllamaProcessingInfo(BaseProcessingInfo):
96
+
97
+ def get_hf_config(self) -> MllamaConfig:
98
+ return self.ctx.get_hf_config(MllamaConfig)
99
+
100
+ def get_hf_processor(self, **kwargs: object) -> MllamaProcessor:
101
+ return self.ctx.get_hf_processor(MllamaProcessor, **kwargs)
102
+
103
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
104
+ return {"image": None}
105
+
106
+ def get_token_per_chunk_from_config(self) -> int:
107
+ image_size = self.get_hf_config().vision_config.image_size
108
+ return calc_token_per_chunk(image_size)
109
+
110
+ def get_num_tiles_per_image(self, image_height: int,
111
+ image_width: int) -> int:
112
+ vision_config = self.get_hf_config().vision_config
113
+ max_num_tiles = vision_config.max_num_tiles
114
+ image_size = vision_config.image_size
115
+ tiled_height, tiled_width = get_optimal_tiled_canvas(
116
+ image_height,
117
+ image_width,
118
+ max_num_tiles,
119
+ tile_size=image_size,
120
+ )
121
+ num_tiles_height = tiled_height // image_size
122
+ num_tiles_width = tiled_width // image_size
123
+ return num_tiles_height * num_tiles_width
124
+
125
+ def get_image_size_with_most_features(self) -> ImageSize:
126
+ vision_config = self.get_hf_config().vision_config
127
+ image_size = vision_config.image_size
128
+ max_num_tiles = vision_config.max_num_tiles
129
+ # Result in the max possible feature size (h:w = 16:1)
130
+ return ImageSize(height=max_num_tiles * image_size, width=image_size)
131
+
132
+
133
+ class MllamaDummyInputsBuilder(BaseDummyInputsBuilder[MllamaProcessingInfo]):
134
+
135
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
136
+ num_images = mm_counts.get("image", 0)
137
+
138
+ processor = self.info.get_hf_processor()
139
+ image_token = processor.image_token
140
+
141
+ return image_token * num_images
142
+
143
+ def get_dummy_mm_data(
144
+ self,
145
+ seq_len: int,
146
+ mm_counts: Mapping[str, int],
147
+ ) -> MultiModalDataDict:
148
+ num_images = mm_counts.get("image", 0)
149
+
150
+ target_width, target_height = \
151
+ self.info.get_image_size_with_most_features()
152
+
153
+ return {
154
+ "image":
155
+ self._get_dummy_images(width=target_width,
156
+ height=target_height,
157
+ num_images=num_images)
158
+ }
159
+
160
+
161
+ class MllamaMultiModalProcessor(EncDecMultiModalProcessor[MllamaProcessingInfo]
162
+ ):
163
+
164
+ def apply(
165
+ self,
166
+ prompt: Union[str, list[int]],
167
+ mm_data: MultiModalDataDict,
168
+ hf_processor_mm_kwargs: Mapping[str, object],
169
+ tokenization_kwargs: Optional[Mapping[str, object]] = None,
170
+ return_mm_hashes: bool = False,
171
+ ) -> MultiModalEncDecInputs:
172
+ mm_inputs = super().apply(prompt, mm_data, hf_processor_mm_kwargs,
173
+ tokenization_kwargs, return_mm_hashes)
174
+
175
+ image_token_id = self.info.get_hf_config().image_token_index
176
+ # Check that the number of image tokens in the decoder prompt matches
177
+ # the number of images provided in mm_data
178
+ num_image_tokens = mm_inputs['prompt_token_ids'].count(image_token_id)
179
+ image_data = mm_data.get("image", [])
180
+ num_images = 1 if isinstance(image_data, Image) else len(image_data)
181
+ if num_image_tokens != num_images:
182
+ raise ValueError(
183
+ f"The number of image tokens ({num_image_tokens}) must be"
184
+ f" the same as the number of images ({num_images})")
185
+
186
+ # Given prompt: <IMG0> P0 P1 <IMG1> <IMG2> P3 P4 D5 D6...., (P-prefill, D-decode) # noqa: E501
187
+ # P0 & P1 do cross attention with placeholder of <IMG0>
188
+ # P3 P4 D5 D6 do cross attention with placeholder of <IMG1> and <IMG2>
189
+ # Example input to encoder and decoder:
190
+ # {
191
+ # 'encoder': {
192
+ # 'type': 'token',
193
+ # 'prompt_token_ids': [128256, 128256, ..., 128256],
194
+ # 'prompt': '<|image|><|image|>...<|image|>',
195
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
196
+ # },
197
+ # 'decoder': {
198
+ # 'type': 'token',
199
+ # 'prompt_token_ids': [128000, 128256, 128000, 3923, 374, 279, 2262, 315, 420, 2217, 30], # noqa: E501
200
+ # 'prompt': '<|image|><|begin_of_text|>What is the content of this image?', # noqa: E501
201
+ # 'multi_modal_data': {'image': <PIL.Image.Image image mode=RGB size=1770x1180 at 0x7FDE2C624880>}, # noqa: E501
202
+ # },
203
+ # }
204
+
205
+ if mm_data:
206
+ hf_processor = self.info.get_hf_processor()
207
+ image_token: str = hf_processor.image_token
208
+
209
+ # Since only the last group of consecutive images
210
+ # are attended by the decoded tokens, we only need to
211
+ # get the number of tokens for those images.
212
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
213
+ num_decode_images = self._get_num_image_in_last_group(
214
+ mm_inputs["prompt_token_ids"])
215
+ num_encode_images = num_images - num_decode_images
216
+
217
+ # Set encoder prompt length based on the number of tiles.
218
+ # This tells the block manager to allocate correct number
219
+ # of slots for encoder tokens.
220
+ num_tiles = mm_inputs["mm_kwargs"]["num_tiles"]
221
+ decode_tiles = num_tiles[num_encode_images:num_images].sum().item()
222
+ num_tokens = decode_tiles * token_per_chunk
223
+ mm_inputs["encoder_prompt_token_ids"] = [image_token_id
224
+ ] * num_tokens
225
+ mm_inputs["encoder_prompt"] = image_token * num_tokens
226
+
227
+ return mm_inputs
228
+
229
+ def _get_num_image_in_last_group(self, prompt_token_ids: list[int]) -> int:
230
+ num_images = 0
231
+ for token_id in prompt_token_ids[::-1]:
232
+ if token_id == self.info.get_hf_config().image_token_index:
233
+ num_images += 1
234
+ elif num_images > 0:
235
+ break
236
+ return num_images
237
+
238
+ def _call_hf_processor(
239
+ self,
240
+ prompt: str,
241
+ mm_data: Mapping[str, object],
242
+ mm_kwargs: Mapping[str, object],
243
+ tok_kwargs: Mapping[str, object],
244
+ ) -> BatchFeature:
245
+ tokenizer = self.info.get_tokenizer()
246
+ if mm_data:
247
+ num_tiles = [
248
+ self.info.get_num_tiles_per_image(img.height, img.width)
249
+ for img in mm_data["images"]
250
+ ]
251
+ processed_outputs = super()._call_hf_processor(
252
+ prompt, mm_data, mm_kwargs, tok_kwargs)
253
+ processed_outputs["num_tiles"] = torch.tensor(num_tiles)
254
+ for k in ('pixel_values', 'aspect_ratio_ids', "aspect_ratio_mask"):
255
+ processed_outputs[k] = processed_outputs[k].squeeze(0)
256
+
257
+ processed_token_ids = processed_outputs.pop("input_ids")
258
+ start_idx, end_idx = 0, processed_token_ids.size(1)
259
+ processed_prompt_text = tokenizer.decode(processed_token_ids[0])
260
+
261
+ hf_processor = self.info.get_hf_processor()
262
+ bos_token = hf_processor.bos_token
263
+ # Remove the bos_token from the start of prompt,
264
+ # because we all know there would be image_token.
265
+ if processed_prompt_text.startswith(bos_token):
266
+ start_idx += 1
267
+ # Remove the bos_token from the end of prompt,
268
+ # because text is empty in this case.
269
+ if processed_prompt_text.endswith(bos_token):
270
+ end_idx -= 1
271
+ processed_outputs[
272
+ "input_ids"] = processed_token_ids[:, start_idx:end_idx]
273
+ else:
274
+ processed_outputs = tokenizer(prompt,
275
+ add_special_tokens=False,
276
+ return_tensors="pt")
277
+ return processed_outputs
278
+
279
+ def _get_mm_fields_config(
280
+ self,
281
+ hf_inputs: BatchFeature,
282
+ hf_processor_mm_kwargs: Mapping[str, object],
283
+ ) -> Mapping[str, MultiModalFieldConfig]:
284
+ return dict(
285
+ pixel_values=MultiModalFieldConfig.batched("image"),
286
+ aspect_ratio_ids=MultiModalFieldConfig.batched("image"),
287
+ aspect_ratio_mask=MultiModalFieldConfig.batched("image"),
288
+ num_tiles=MultiModalFieldConfig.batched("image"),
289
+ )
290
+
291
+ def create_encoder_prompt(
292
+ self,
293
+ prompt: Union[str, list[int]],
294
+ mm_data: MultiModalDataDict,
295
+ ) -> Union[str, list[int]]:
296
+ data = mm_data.get("image", [])
297
+ num_images = 1 if isinstance(data, Image) else len(data)
298
+ image_token_id = self.info.get_hf_config().image_token_index
299
+ return [image_token_id] * num_images
300
+
301
+ def _get_prompt_updates(
302
+ self,
303
+ mm_items: MultiModalDataItems,
304
+ hf_processor_mm_kwargs: Mapping[str, object],
305
+ out_mm_kwargs: MultiModalKwargs,
306
+ ) -> Sequence[PromptUpdate]:
307
+ token_per_chunk = self.info.get_token_per_chunk_from_config()
308
+ image_token_id = self.info.get_hf_config().image_token_index
309
+
310
+ def get_replacement_mllama(item_idx):
311
+ images = mm_items.get_items("image", ImageProcessorItems)
312
+ image_size = images.get_image_size(item_idx)
313
+ num_tile = self.info.get_num_tiles_per_image(
314
+ image_height=image_size.height,
315
+ image_width=image_size.width,
316
+ )
317
+ num_tokens = num_tile * token_per_chunk
318
+ return [image_token_id] * num_tokens
319
+
320
+ return [
321
+ PromptReplacement(
322
+ modality="image",
323
+ target=[image_token_id],
324
+ replacement=get_replacement_mllama,
325
+ )
326
+ ]
327
+
328
+
329
+ def _prepare_aspect_ratio_attention_mask(
330
+ aspect_ratio_mask: torch.Tensor,
331
+ num_patches: int,
332
+ target_length: int,
333
+ dtype: torch.dtype,
334
+ ) -> torch.Tensor:
335
+ # Expand aspect ratio mask to target_length
336
+ batch_size, max_num_tiles = aspect_ratio_mask.shape
337
+ attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1,
338
+ 1).to(dtype)
339
+ attention_mask = attention_mask.repeat(1, 1, target_length, 1)
340
+
341
+ # Mask padding patches
342
+ pad_patches = target_length - num_patches
343
+ attention_mask[:, :, -pad_patches:] = 0
344
+
345
+ # Invert the mask (0 -> 1, 1 -> 0)
346
+ attention_mask = 1 - attention_mask
347
+
348
+ # Reshape to 2D and create 4D attention mask
349
+ # (batch_size, 1, max_num_tiles*target_length, max_num_tiles*target_length)
350
+ attention_mask = attention_mask.reshape(batch_size,
351
+ max_num_tiles * target_length, 1)
352
+ attention_mask = attention_mask @ attention_mask.transpose(
353
+ -1, -2) * torch.finfo(dtype).min
354
+ attention_mask = attention_mask.unsqueeze(1)
355
+
356
+ return attention_mask
357
+
358
+
359
+ class ColumnParallelConv2dPatch(torch.nn.Module):
360
+ """Conv2D Patching layer with model parallelism.
361
+ Column parallel over unfolded input.
362
+ Arguments:
363
+ in_channels: Input channels.
364
+ out_channels: Output channels.
365
+ kernel_size: Size of convolution kernel.
366
+ stride (default 1): Stride for convolution.
367
+ bias (default False): Use bias in Conv2d.
368
+ Input: (bsz, in_channels, width, height)
369
+ Output: (bsz, num_tokens, out_channels)
370
+ """
371
+
372
+ def __init__(
373
+ self,
374
+ in_channels: int,
375
+ out_channels: int,
376
+ kernel_size: Union[int, tuple[int, int]],
377
+ stride: Union[int, tuple[int, int]],
378
+ bias: bool = False,
379
+ ) -> None:
380
+ super().__init__()
381
+ if isinstance(kernel_size, int):
382
+ kernel_size = (kernel_size, kernel_size)
383
+ self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
384
+ self._linear = ColumnParallelLinear(
385
+ in_channels * kernel_size[0] * kernel_size[1],
386
+ out_channels,
387
+ bias=bias,
388
+ )
389
+
390
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
391
+ x = self._unfold(x)
392
+ x = x.permute(0, 2, 1)
393
+ x, _ = self._linear(x)
394
+ return x
395
+
396
+
397
+ class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
398
+
399
+ def __init__(self,
400
+ config: config_mllama.MllamaVisionConfig,
401
+ is_gated: bool = True):
402
+ super().__init__()
403
+ self.max_num_tiles = config.max_num_tiles
404
+ self.hidden_size = config.hidden_size
405
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
406
+ self.is_gated = is_gated
407
+
408
+ self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1,
409
+ self.max_num_tiles * self.hidden_size)
410
+ if is_gated:
411
+ self.gate = nn.Parameter(torch.zeros(1))
412
+
413
+ def forward(self, hidden_state: torch.Tensor,
414
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
415
+ embeddings = self.embedding(aspect_ratio_ids)
416
+ embeddings = embeddings.reshape(-1, self.max_num_tiles, 1,
417
+ self.hidden_size)
418
+
419
+ if self.is_gated:
420
+ embeddings = embeddings * self.gate.tanh()
421
+
422
+ hidden_state = hidden_state + embeddings
423
+ return hidden_state
424
+
425
+
426
+ class MllamaPrecomputedPositionEmbedding(nn.Module):
427
+
428
+ def __init__(self, config: config_mllama.MllamaVisionConfig):
429
+ super().__init__()
430
+ self.max_num_tiles = config.max_num_tiles
431
+ self.max_aspect_ratio_id = config.max_aspect_ratio_id
432
+ self.num_patches = (config.image_size // config.patch_size)**2 + 1
433
+ self.hidden_size = config.hidden_size
434
+ self.scale = config.hidden_size**-0.5
435
+
436
+ self.gate = nn.Parameter(torch.zeros(1))
437
+
438
+ # position embedding
439
+ position_embedding = torch.randn(self.num_patches, self.hidden_size)
440
+ self.embedding = nn.Parameter(self.scale * position_embedding)
441
+
442
+ # tile position embedding
443
+ self.tile_embedding = nn.Embedding(
444
+ self.max_aspect_ratio_id + 1,
445
+ self.max_num_tiles * self.num_patches * self.hidden_size)
446
+
447
+ def forward(self, hidden_state: torch.Tensor,
448
+ aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
449
+ # position embeddings
450
+ gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
451
+ hidden_state = hidden_state + gated_position_embedding.view(
452
+ 1, 1, self.num_patches, self.hidden_size)
453
+
454
+ # precomputed tile position embeddings
455
+ tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
456
+ batch_size = hidden_state.shape[0]
457
+ tile_position_embedding = tile_position_embedding.reshape(
458
+ batch_size, self.max_num_tiles, self.num_patches, self.hidden_size)
459
+ gated_tile_position_embedding = self.gate.tanh(
460
+ ) * tile_position_embedding
461
+ hidden_state = hidden_state + gated_tile_position_embedding
462
+
463
+ return hidden_state
464
+
465
+
466
+ # TODO: support other attention backends for attention in vision model
467
+ class MllamaVisionSdpaAttention(nn.Module):
468
+
469
+ def __init__(self,
470
+ config: config_mllama.MllamaVisionConfig,
471
+ quant_config: Optional[QuantizationConfig] = None,
472
+ prefix: str = ""):
473
+ super().__init__()
474
+
475
+ tensor_parallel_size = get_tp_group().world_size
476
+ self.embed_dim = config.hidden_size
477
+ self.num_heads = config.attention_heads
478
+ self.head_dim = config.hidden_size // config.attention_heads
479
+ self.num_local_heads = self.num_heads // tensor_parallel_size
480
+ self.q_size = self.num_local_heads * self.head_dim
481
+ self.kv_size = self.num_local_heads * self.head_dim
482
+
483
+ self.qkv_proj = QKVParallelLinear(
484
+ self.embed_dim,
485
+ self.head_dim,
486
+ self.num_heads,
487
+ bias=False,
488
+ quant_config=quant_config,
489
+ prefix=f"{prefix}.qkv_proj",
490
+ )
491
+ self.o_proj = RowParallelLinear(
492
+ self.num_heads * self.head_dim,
493
+ self.embed_dim,
494
+ bias=False,
495
+ input_is_parallel=True,
496
+ quant_config=quant_config,
497
+ prefix=f"{prefix}.o_proj",
498
+ )
499
+
500
+ def forward(
501
+ self,
502
+ hidden_state: torch.Tensor,
503
+ attention_mask: Optional[torch.Tensor] = None,
504
+ ) -> torch.Tensor:
505
+ qkv, _ = self.qkv_proj(hidden_state)
506
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
507
+ q = q.view(q.shape[0], q.shape[1], self.num_local_heads,
508
+ self.head_dim).transpose(1, 2)
509
+ k = k.view(k.shape[0], k.shape[1], self.num_local_heads,
510
+ self.head_dim).transpose(1, 2)
511
+ v = v.view(v.shape[0], v.shape[1], self.num_local_heads,
512
+ self.head_dim).transpose(1, 2)
513
+
514
+ # TODO: remove padding in image encoder
515
+ attn_output = F.scaled_dot_product_attention(q,
516
+ k,
517
+ v,
518
+ attn_mask=attention_mask,
519
+ dropout_p=0.0)
520
+
521
+ attn_output = attn_output.transpose(1, 2).contiguous()
522
+ attn_output = attn_output.reshape(attn_output.shape[0],
523
+ attn_output.shape[1], -1)
524
+ output, _ = self.o_proj(attn_output)
525
+ return output
526
+
527
+
528
+ class MllamaVisionEncoderLayer(nn.Module):
529
+
530
+ def __init__(
531
+ self,
532
+ config: config_mllama.MllamaVisionConfig,
533
+ quant_config: Optional[QuantizationConfig],
534
+ prefix: str = "",
535
+ is_gated: bool = False,
536
+ ) -> None:
537
+ super().__init__()
538
+
539
+ self.hidden_size = config.hidden_size
540
+ self.num_attention_heads = config.attention_heads
541
+ self.is_gated = is_gated
542
+ self.intermediate_size = config.intermediate_size
543
+
544
+ self.self_attn = MllamaVisionSdpaAttention(
545
+ config, quant_config=quant_config, prefix=f"{prefix}.self_attn")
546
+ self.mlp = CLIPMLP(config,
547
+ quant_config=quant_config,
548
+ prefix=f"{prefix}.mlp")
549
+
550
+ self.input_layernorm = nn.LayerNorm(self.hidden_size,
551
+ eps=config.norm_eps)
552
+ self.post_attention_layernorm = nn.LayerNorm(self.hidden_size,
553
+ eps=config.norm_eps)
554
+
555
+ # there used to be an if else here, no code path
556
+ if is_gated:
557
+ self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
558
+ self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
559
+
560
+ def forward(
561
+ self,
562
+ hidden_state: torch.Tensor,
563
+ attention_mask: Optional[torch.Tensor] = None,
564
+ ):
565
+ # Self Attention
566
+ residual = hidden_state
567
+ hidden_state = self.input_layernorm(hidden_state)
568
+ hidden_state = self.self_attn(hidden_state,
569
+ attention_mask=attention_mask)
570
+ gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
571
+ hidden_state = residual + gate_attn * hidden_state
572
+
573
+ # Feed forward
574
+ residual = hidden_state
575
+ hidden_state = self.post_attention_layernorm(hidden_state)
576
+ hidden_state = self.mlp(hidden_state)
577
+ gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
578
+ hidden_state = residual + gate_ffn * hidden_state
579
+
580
+ return hidden_state
581
+
582
+
583
+ class MllamaVisionEncoder(nn.Module):
584
+
585
+ def __init__(
586
+ self,
587
+ config: config_mllama.MllamaVisionConfig,
588
+ quant_config: Optional[QuantizationConfig],
589
+ num_layers: int = 32,
590
+ is_gated: bool = False,
591
+ output_hidden_states=None,
592
+ prefix: str = "",
593
+ ) -> None:
594
+ super().__init__()
595
+ self.config = config
596
+ self.layers = nn.ModuleList([
597
+ MllamaVisionEncoderLayer(config,
598
+ quant_config=quant_config,
599
+ is_gated=is_gated,
600
+ prefix=f"{prefix}.layers.{layer_idx}")
601
+ for layer_idx in range(num_layers)
602
+ ])
603
+ self.output_hidden_states = output_hidden_states or []
604
+
605
+ def forward(
606
+ self,
607
+ hidden_states: torch.Tensor,
608
+ attention_mask: Optional[torch.Tensor] = None,
609
+ ) -> Union[BaseModelOutput]:
610
+ encoder_states = ()
611
+
612
+ for i, encoder_layer in enumerate(self.layers):
613
+ if i in self.output_hidden_states:
614
+ encoder_states = encoder_states + (hidden_states, )
615
+ hidden_states = encoder_layer(
616
+ hidden_states,
617
+ attention_mask,
618
+ )
619
+
620
+ if len(self.layers) - 1 in self.output_hidden_states:
621
+ encoder_states = encoder_states + (hidden_states, )
622
+
623
+ return hidden_states, encoder_states
624
+
625
+
626
+ class MllamaVisionModel(nn.Module):
627
+
628
+ def __init__(
629
+ self,
630
+ config: config_mllama.MllamaVisionConfig,
631
+ quant_config: Optional[QuantizationConfig],
632
+ prefix: str = "",
633
+ ) -> None:
634
+ super().__init__()
635
+
636
+ self.image_size = config.image_size
637
+ self.patch_size = config.patch_size
638
+ self.max_num_tiles = config.max_num_tiles
639
+ self.hidden_size = config.hidden_size
640
+ self.in_channels = config.num_channels
641
+ self.intermediate_layers_indices = config.intermediate_layers_indices
642
+
643
+ self.num_patches = (self.image_size // self.patch_size)**2 + 1
644
+ self.scale = config.hidden_size**-0.5
645
+
646
+ self.patch_embedding = ColumnParallelConv2dPatch(
647
+ in_channels=config.num_channels,
648
+ out_channels=self.hidden_size,
649
+ kernel_size=self.patch_size,
650
+ stride=self.patch_size,
651
+ bias=False,
652
+ )
653
+
654
+ self.class_embedding = nn.Parameter(self.scale *
655
+ torch.randn(self.hidden_size))
656
+ self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
657
+ config)
658
+
659
+ self.pre_tile_positional_embedding = \
660
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
661
+ self.post_tile_positional_embedding = \
662
+ MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
663
+
664
+ # layer norms
665
+ self.layernorm_pre = nn.LayerNorm(self.hidden_size)
666
+ self.layernorm_post = nn.LayerNorm(self.hidden_size)
667
+
668
+ # encoders
669
+ self.transformer = MllamaVisionEncoder(
670
+ config,
671
+ quant_config,
672
+ config.num_hidden_layers,
673
+ is_gated=False,
674
+ output_hidden_states=config.intermediate_layers_indices,
675
+ prefix=f"{prefix}.transformer",
676
+ )
677
+ self.global_transformer = MllamaVisionEncoder(
678
+ config,
679
+ quant_config,
680
+ config.num_global_layers,
681
+ is_gated=True,
682
+ prefix=f"{prefix}.global_transformer",
683
+ )
684
+
685
+ def apply_class_embedding(self,
686
+ hidden_state: torch.Tensor) -> torch.Tensor:
687
+ batch_size, _, hidden_size = hidden_state.shape
688
+ class_embedding = self.class_embedding.expand(batch_size, 1,
689
+ hidden_size)
690
+ hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
691
+ return hidden_state
692
+
693
+ def forward(self, pixel_values: torch.Tensor,
694
+ aspect_ratio_ids: torch.Tensor,
695
+ aspect_ratio_mask: torch.Tensor) -> torch.Tensor:
696
+ batch_size, num_concurrent_media, num_tiles, num_channels, \
697
+ height, width = pixel_values.shape
698
+
699
+ pixel_values = pixel_values.reshape(
700
+ batch_size * num_concurrent_media * num_tiles, num_channels,
701
+ height, width)
702
+ aspect_ratio_ids = aspect_ratio_ids.reshape(
703
+ batch_size * num_concurrent_media, -1)
704
+
705
+ # patch embedding
706
+ patch_embeds = self.patch_embedding(
707
+ pixel_values.to(self.layernorm_pre.weight.dtype))
708
+ hidden_state = patch_embeds
709
+ hidden_state = ps.get_tp_group().all_gather(hidden_state)
710
+
711
+ # tile embeddings
712
+ _, num_patches, dim = hidden_state.shape
713
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
714
+ num_tiles, -1, dim)
715
+ hidden_state = self.pre_tile_positional_embedding(
716
+ hidden_state, aspect_ratio_ids)
717
+
718
+ # apply cls token
719
+ hidden_state = hidden_state.reshape(
720
+ batch_size * num_concurrent_media * num_tiles, num_patches, dim)
721
+ hidden_state = self.apply_class_embedding(hidden_state)
722
+ num_patches += 1
723
+
724
+ # apply position embeddings
725
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
726
+ num_tiles, num_patches, dim)
727
+ hidden_state = self.gated_positional_embedding(hidden_state,
728
+ aspect_ratio_ids)
729
+
730
+ # apply encoder
731
+ hidden_state = self.layernorm_pre(hidden_state)
732
+
733
+ # Compute the number of tokens to pad
734
+ num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
735
+ # Compute padding tuple for pad function
736
+ padding = (
737
+ 0, 0, 0, num_padding_patches
738
+ ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
739
+ # Pad the tensor
740
+ hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
741
+ slice_index = -num_padding_patches if num_padding_patches > 0 else None
742
+
743
+ attention_mask = aspect_ratio_mask.reshape(
744
+ batch_size * num_concurrent_media, -1)
745
+ attention_mask = _prepare_aspect_ratio_attention_mask(
746
+ aspect_ratio_mask=attention_mask,
747
+ num_patches=self.num_patches,
748
+ target_length=hidden_state.shape[2],
749
+ dtype=self.layernorm_pre.weight.dtype,
750
+ )
751
+
752
+ hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1,
753
+ dim)
754
+ output = self.transformer(
755
+ hidden_state,
756
+ attention_mask=attention_mask,
757
+ )
758
+ hidden_state, intermediate_hidden_states = output[0], output[1]
759
+ intermediate_hidden_states = torch.stack(intermediate_hidden_states,
760
+ dim=-1)
761
+
762
+ # apply global encoder
763
+ hidden_state = self.layernorm_post(hidden_state)
764
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
765
+ num_tiles,
766
+ num_patches + num_padding_patches,
767
+ dim)
768
+ hidden_state = self.post_tile_positional_embedding(
769
+ hidden_state, aspect_ratio_ids)
770
+ hidden_state = hidden_state.reshape(
771
+ batch_size * num_concurrent_media,
772
+ num_tiles * (num_patches + num_padding_patches), dim)
773
+ hidden_state = self.global_transformer(
774
+ hidden_state, attention_mask=attention_mask)[0]
775
+ hidden_state = hidden_state.reshape(batch_size * num_concurrent_media,
776
+ num_tiles,
777
+ num_patches + num_padding_patches,
778
+ dim)
779
+ hidden_state = hidden_state[:, :, :slice_index]
780
+
781
+ # adding intermediate layer outputs
782
+ hidden_state = hidden_state.reshape(batch_size, num_concurrent_media,
783
+ num_tiles, num_patches, dim)
784
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
785
+ batch_size * num_concurrent_media, num_tiles,
786
+ num_patches + num_padding_patches, -1)
787
+ intermediate_hidden_states = intermediate_hidden_states[:, :, :
788
+ slice_index]
789
+ intermediate_hidden_states = intermediate_hidden_states.reshape(
790
+ batch_size, num_concurrent_media, num_tiles, num_patches, -1)
791
+ hidden_state = torch.cat([hidden_state, intermediate_hidden_states],
792
+ dim=-1)
793
+ return hidden_state
794
+
795
+ def load_weights(self, weights: Iterable[tuple[str,
796
+ torch.Tensor]]) -> set[str]:
797
+ stacked_params_mapping = [
798
+ # (param_name, shard_name, shard_id)
799
+ (".qkv_proj", ".q_proj", "q"),
800
+ (".qkv_proj", ".k_proj", "k"),
801
+ (".qkv_proj", ".v_proj", "v"),
802
+ ]
803
+ params_dict = dict(self.named_parameters())
804
+ updated_params: set[str] = set()
805
+ for name, loaded_weight in weights:
806
+ if 'patch_embedding._linear.weight' in name:
807
+ loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
808
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
809
+ if weight_name not in name:
810
+ continue
811
+ name = name.replace(weight_name, param_name)
812
+ param = params_dict[name]
813
+ updated_params.add(name)
814
+ weight_loader = param.weight_loader
815
+ weight_loader(param, loaded_weight, shard_id)
816
+ break
817
+ else:
818
+ param = params_dict.pop(name)
819
+ weight_loader = getattr(param, "weight_loader",
820
+ default_weight_loader)
821
+ weight_loader(param, loaded_weight)
822
+ updated_params.add(name)
823
+ return updated_params
824
+
825
+
826
+ class MllamaTextRMSNorm(nn.Module):
827
+
828
+ def __init__(self, hidden_size, eps=1e-6):
829
+ """
830
+ MllamaTextRMSNorm is equivalent to T5LayerNorm
831
+ """
832
+ super().__init__()
833
+ self.weight = nn.Parameter(torch.ones(hidden_size))
834
+ self.variance_epsilon = eps
835
+
836
+ def forward(self, hidden_states):
837
+ input_dtype = hidden_states.dtype
838
+ hidden_states = hidden_states.to(torch.float32)
839
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
840
+ hidden_states = hidden_states * torch.rsqrt(variance +
841
+ self.variance_epsilon)
842
+ return self.weight * hidden_states.to(input_dtype)
843
+
844
+ def extra_repr(self):
845
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
846
+
847
+
848
+ class MllamaTextCrossAttention(nn.Module):
849
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
850
+
851
+ def __init__(
852
+ self,
853
+ config: Optional[config_mllama.MllamaTextConfig] = None,
854
+ layer_idx: Optional[int] = None,
855
+ quant_config: Optional[QuantizationConfig] = None,
856
+ prefix: str = "",
857
+ ):
858
+ super().__init__()
859
+ self.config = config
860
+ self.pipeline_parallel_rank = get_pp_group().rank_in_group
861
+ self.tensor_parallel_size = get_tp_group().world_size
862
+ self.num_heads = config.num_attention_heads
863
+ self.num_key_value_heads = config.num_key_value_heads
864
+
865
+ self.num_local_heads = self.num_heads // self.tensor_parallel_size
866
+ self.num_local_key_value_heads = \
867
+ self.num_key_value_heads // self.tensor_parallel_size
868
+ self.hidden_size = config.hidden_size
869
+ self.head_dim = config.hidden_size // self.num_heads
870
+ self.num_key_value_heads = config.num_key_value_heads
871
+
872
+ self.layer_idx = layer_idx
873
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
874
+ self.q_local_size = self.num_local_heads * self.head_dim
875
+ self.kv_local_size = self.num_local_key_value_heads * self.head_dim
876
+
877
+ self.qkv_proj = QKVCrossParallelLinear(
878
+ self.hidden_size,
879
+ self.head_dim,
880
+ self.num_heads,
881
+ self.num_key_value_heads,
882
+ bias=False,
883
+ quant_config=quant_config,
884
+ prefix=f"{prefix}.qkv_proj",
885
+ )
886
+
887
+ self.o_proj = RowParallelLinear(
888
+ self.num_heads * self.head_dim,
889
+ self.hidden_size,
890
+ bias=False,
891
+ input_is_parallel=True,
892
+ quant_config=quant_config,
893
+ prefix=f"{prefix}.o_proj",
894
+ )
895
+ # vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
896
+ # use huggingface's instead
897
+ self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
898
+ self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
899
+ self.scaling = self.head_dim**-0.5
900
+
901
+ self.attn = Attention(
902
+ self.num_local_heads,
903
+ self.head_dim,
904
+ self.scaling,
905
+ self.num_local_key_value_heads,
906
+ prefix=f"{prefix}.attn",
907
+ attn_type=AttentionType.ENCODER_DECODER,
908
+ )
909
+
910
+ def forward(
911
+ self,
912
+ hidden_states: torch.Tensor,
913
+ attention_mask: Optional[torch.Tensor],
914
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
915
+ cross_attention_states: Optional[torch.Tensor],
916
+ ) -> torch.Tensor:
917
+ q, k, v = self.qkv_proj(hidden_states, cross_attention_states)
918
+ if cross_attention_states is not None:
919
+ k = k.view(-1, self.num_local_key_value_heads, self.head_dim)
920
+ v = v.view(-1, self.num_local_key_value_heads, self.head_dim)
921
+ k = self.k_norm(k)
922
+
923
+ q = q.view(-1, self.num_local_heads, self.head_dim)
924
+ q = self.q_norm(q)
925
+
926
+ if attention_mask is not None:
927
+ output = self._attention_with_mask(q, k, v, attention_mask,
928
+ kv_range_for_decode)
929
+ else:
930
+ output = self.attn(
931
+ q.view(-1, self.num_local_heads * self.head_dim), k, v)
932
+ out, _ = self.o_proj(output)
933
+ return out
934
+
935
+ def _attention_with_mask(
936
+ self,
937
+ q: torch.Tensor,
938
+ k: torch.Tensor,
939
+ v: torch.Tensor,
940
+ attention_mask: torch.Tensor,
941
+ kv_range_for_decode: list[tuple[int, int]],
942
+ ) -> torch.Tensor:
943
+ kv_cache = self.attn.kv_cache[self.pipeline_parallel_rank]
944
+ attn_metadata: AttentionMetadata = get_forward_context().attn_metadata
945
+ # Skip writing kv-cache for the initial profiling run.
946
+ # TODO (NickLucche) replace with custom attn bias and use standard attn
947
+ if len(kv_cache.shape) > 1:
948
+ i = torch.ones(1, dtype=torch.float32)
949
+ if self.attn.backend in (_Backend.FLASH_ATTN,
950
+ _Backend.FLASH_ATTN_VLLM_V1):
951
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
952
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
953
+ torch.ops._C_cache_ops.reshape_and_cache_flash(
954
+ cached_k,
955
+ cached_v,
956
+ kv_cache[0],
957
+ kv_cache[1],
958
+ attn_metadata.
959
+ cross_slot_mapping, # type: ignore[union-attr]
960
+ "auto",
961
+ i,
962
+ i,
963
+ )
964
+ elif self.attn.backend in (_Backend.XFORMERS, _Backend.ROCM_FLASH,
965
+ _Backend.TORCH_SDPA):
966
+ key_cache, value_cache = PagedAttention.split_kv_cache(
967
+ kv_cache, self.num_local_key_value_heads, self.head_dim)
968
+ cached_k = torch.cat([k[s:e] for s, e in kv_range_for_decode])
969
+ cached_v = torch.cat([v[s:e] for s, e in kv_range_for_decode])
970
+ PagedAttention.write_to_paged_cache(
971
+ cached_k, cached_v, key_cache, value_cache,
972
+ attn_metadata.cross_slot_mapping, "auto", i, i)
973
+ else:
974
+ raise ValueError(
975
+ f"Unsupported Attention backend {self.attn.backend} "
976
+ "enum found. Expected the Attention backend to be "
977
+ "FLASH_ATTN, FLASH_ATTN_VLLM_V1, "
978
+ "XFORMERS or TORCH_SDPA.")
979
+
980
+ # We have to call torch.sdpa for prefill when using a
981
+ # custom cross-attention mask. Because the mask is not a
982
+ # standard causal mask, neither a block diagonal mask which
983
+ # can be optimized by xformers.BlockDiagonalMask.
984
+ # The mask is specially calculated for supporting multi
985
+ # images and interleaved images.
986
+ q_len = q.shape[0]
987
+ kv_len = k.shape[0]
988
+ q = q.transpose(0, 1).view(self.num_local_key_value_heads,
989
+ self.num_key_value_groups, q_len,
990
+ self.head_dim).contiguous()
991
+ k = k.transpose(0,
992
+ 1)[:,
993
+ None, :, :].expand(self.num_local_key_value_heads,
994
+ self.num_key_value_groups,
995
+ kv_len,
996
+ self.head_dim).contiguous()
997
+ v = v.transpose(0,
998
+ 1)[:,
999
+ None, :, :].expand(self.num_local_key_value_heads,
1000
+ self.num_key_value_groups,
1001
+ kv_len,
1002
+ self.head_dim).contiguous()
1003
+ attention_mask = attention_mask.view(1, 1, q_len, kv_len)
1004
+ output = F.scaled_dot_product_attention(q,
1005
+ k,
1006
+ v,
1007
+ attn_mask=attention_mask,
1008
+ is_causal=False)
1009
+ output = output.permute(2, 0, 1, 3).reshape(
1010
+ q_len, self.num_local_heads * self.head_dim)
1011
+ return output
1012
+
1013
+
1014
+ class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
1015
+ """Cross-attention transformer block with tanh-gated attention
1016
+ and feedforward."""
1017
+
1018
+ def __init__(
1019
+ self,
1020
+ config: config_mllama.MllamaTextConfig,
1021
+ layer_idx: int,
1022
+ quant_config: Optional[QuantizationConfig],
1023
+ prefix: str = "",
1024
+ ) -> None:
1025
+ super().__init__()
1026
+
1027
+ self.layer_idx = layer_idx
1028
+ self.cross_attn = MllamaTextCrossAttention(
1029
+ config=config,
1030
+ layer_idx=layer_idx,
1031
+ quant_config=quant_config,
1032
+ prefix=f"{prefix}.cross_attn",
1033
+ )
1034
+
1035
+ self.input_layernorm = RMSNorm(config.hidden_size,
1036
+ eps=config.rms_norm_eps)
1037
+ self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
1038
+
1039
+ self.mlp = LlamaMLP(
1040
+ hidden_size=config.hidden_size,
1041
+ intermediate_size=config.intermediate_size,
1042
+ hidden_act=config.hidden_act,
1043
+ quant_config=quant_config,
1044
+ prefix=f"{prefix}.mlp",
1045
+ )
1046
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
1047
+ eps=config.rms_norm_eps)
1048
+ self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
1049
+
1050
+ def forward(
1051
+ self,
1052
+ hidden_states: torch.Tensor,
1053
+ cross_attention_states: torch.Tensor,
1054
+ cross_attention_mask: torch.Tensor,
1055
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1056
+ full_text_row_masked_out_mask: torch.Tensor,
1057
+ ) -> torch.Tensor:
1058
+ residual = hidden_states
1059
+ hidden_states = self.input_layernorm(hidden_states)
1060
+
1061
+ hidden_states = self.cross_attn(
1062
+ hidden_states=hidden_states,
1063
+ attention_mask=cross_attention_mask,
1064
+ kv_range_for_decode=kv_range_for_decode,
1065
+ cross_attention_states=cross_attention_states,
1066
+ )
1067
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1068
+ hidden_states = residual + self.cross_attn_attn_gate.tanh(
1069
+ ) * hidden_states
1070
+
1071
+ residual = hidden_states
1072
+ hidden_states = self.post_attention_layernorm(hidden_states)
1073
+ hidden_states = self.mlp(hidden_states)
1074
+ hidden_states = full_text_row_masked_out_mask * hidden_states
1075
+ hidden_states = residual + self.cross_attn_mlp_gate.tanh(
1076
+ ) * hidden_states
1077
+ return hidden_states
1078
+
1079
+
1080
+ class MllamaTextModel(nn.Module):
1081
+ config_class = config_mllama.MllamaTextConfig
1082
+ base_model_prefix = "model"
1083
+
1084
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1085
+ super().__init__()
1086
+
1087
+ config = vllm_config.model_config.hf_config.text_config
1088
+ cache_config = vllm_config.cache_config
1089
+ quant_config = vllm_config.quant_config
1090
+
1091
+ self.vocab_size = config.vocab_size
1092
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size + 8,
1093
+ config.hidden_size)
1094
+ self.cross_attention_layers = config.cross_attention_layers
1095
+
1096
+ layers = []
1097
+ for layer_idx in range(config.num_hidden_layers):
1098
+ if layer_idx in self.cross_attention_layers:
1099
+ layers.append(
1100
+ MllamaCrossAttentionDecoderLayer(
1101
+ config,
1102
+ layer_idx,
1103
+ quant_config=quant_config,
1104
+ prefix=f"{prefix}.layers.{layer_idx}",
1105
+ ))
1106
+ else:
1107
+ # TODO: force LlamaDecoderLayer to config.attention_bias=False
1108
+ layers.append(
1109
+ LlamaDecoderLayer(
1110
+ config,
1111
+ cache_config=cache_config,
1112
+ quant_config=quant_config,
1113
+ prefix=f"{prefix}.layers.{layer_idx}",
1114
+ ))
1115
+
1116
+ self.layers = nn.ModuleList(layers)
1117
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1118
+
1119
+ def forward(
1120
+ self,
1121
+ input_ids: torch.LongTensor,
1122
+ positions: Optional[torch.LongTensor],
1123
+ cross_attention_states: Optional[torch.LongTensor],
1124
+ cross_attention_mask: Optional[torch.LongTensor],
1125
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1126
+ full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
1127
+ torch.Tensor]],
1128
+ skip_cross_attention: bool,
1129
+ ) -> torch.Tensor:
1130
+ inputs_embeds = self.embed_tokens(input_ids)
1131
+ hidden_states = inputs_embeds
1132
+
1133
+ for idx, decoder_layer in enumerate(self.layers):
1134
+ if idx in self.cross_attention_layers:
1135
+ if not skip_cross_attention:
1136
+ hidden_states = decoder_layer(
1137
+ hidden_states=hidden_states,
1138
+ cross_attention_states=cross_attention_states,
1139
+ cross_attention_mask=cross_attention_mask,
1140
+ kv_range_for_decode=kv_range_for_decode,
1141
+ full_text_row_masked_out_mask=
1142
+ full_text_row_masked_out_mask,
1143
+ )
1144
+ else:
1145
+ hidden_states, residual = decoder_layer(
1146
+ positions=positions,
1147
+ hidden_states=hidden_states,
1148
+ residual=None,
1149
+ )
1150
+ hidden_states = hidden_states + residual
1151
+ hidden_states = self.norm(hidden_states)
1152
+ return hidden_states
1153
+
1154
+
1155
+ class MllamaForCausalLM(nn.Module):
1156
+ config_class = config_mllama.MllamaTextConfig
1157
+ base_model_prefix = "language_model"
1158
+ _no_split_modules = [
1159
+ "MllamaCrossAttentionDecoderLayer", "MllamaSelfAttentionDecoderLayer"
1160
+ ]
1161
+
1162
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1163
+ super().__init__()
1164
+
1165
+ config = vllm_config.model_config.hf_config.text_config
1166
+ quant_config = vllm_config.quant_config
1167
+ self.quant_config = quant_config
1168
+
1169
+ self.vocab_size = config.vocab_size
1170
+ self.model = MllamaTextModel(vllm_config=vllm_config,
1171
+ prefix=f"{prefix}.model")
1172
+ self.lm_head = ParallelLMHead(
1173
+ config.vocab_size,
1174
+ config.hidden_size,
1175
+ org_num_embeddings=config.vocab_size,
1176
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE,
1177
+ quant_config=quant_config,
1178
+ prefix=f"{prefix}.lm_head",
1179
+ )
1180
+
1181
+ def forward(
1182
+ self,
1183
+ input_ids: torch.LongTensor,
1184
+ positions: Optional[torch.LongTensor],
1185
+ cross_attention_states: Optional[torch.LongTensor],
1186
+ cross_attention_mask: Optional[torch.LongTensor],
1187
+ kv_range_for_decode: Optional[list[tuple[int, int]]],
1188
+ full_text_row_masked_out_mask: Optional[tuple[torch.Tensor,
1189
+ torch.Tensor]],
1190
+ skip_cross_attention: bool,
1191
+ ) -> torch.Tensor:
1192
+ hidden_states = self.model(
1193
+ input_ids=input_ids,
1194
+ positions=positions,
1195
+ cross_attention_states=cross_attention_states,
1196
+ cross_attention_mask=cross_attention_mask,
1197
+ kv_range_for_decode=kv_range_for_decode,
1198
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1199
+ skip_cross_attention=skip_cross_attention,
1200
+ )
1201
+ return hidden_states
1202
+
1203
+ def load_weights(self, weights: Iterable[tuple[str,
1204
+ torch.Tensor]]) -> set[str]:
1205
+ stacked_params_mapping = [
1206
+ # (param_name, shard_name, shard_id)
1207
+ (".qkv_proj", ".q_proj", "q"),
1208
+ (".qkv_proj", ".k_proj", "k"),
1209
+ (".qkv_proj", ".v_proj", "v"),
1210
+ (".gate_up_proj", ".gate_proj", 0),
1211
+ (".gate_up_proj", ".up_proj", 1),
1212
+ ]
1213
+ params_dict = dict(self.named_parameters())
1214
+ updated_params: set[str] = set()
1215
+ for name, loaded_weight in weights:
1216
+ if 'patch_embedding.weight' in name:
1217
+ name = name.replace('patch_embedding.weight',
1218
+ 'patch_embedding._linear.weight')
1219
+ loaded_weight = loaded_weight.view(loaded_weight.shape[0], -1)
1220
+ if (self.quant_config is not None and
1221
+ (scale_name := self.quant_config.get_cache_scale(name))):
1222
+ # Loading kv cache quantization scales
1223
+ param = params_dict[scale_name]
1224
+ weight_loader = getattr(param, "weight_loader",
1225
+ default_weight_loader)
1226
+ loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
1227
+ loaded_weight[0])
1228
+ weight_loader(param, loaded_weight)
1229
+ updated_params.add(scale_name)
1230
+ continue
1231
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
1232
+ if weight_name not in name:
1233
+ continue
1234
+ name = name.replace(weight_name, param_name)
1235
+ param = params_dict[name]
1236
+ updated_params.add(name)
1237
+ weight_loader = param.weight_loader
1238
+ weight_loader(param, loaded_weight, shard_id)
1239
+ break
1240
+ else:
1241
+ orig_name = name
1242
+ name = maybe_remap_kv_scale_name(name, params_dict)
1243
+ if name is None:
1244
+ logger.debug("Missing name %s, orig name %s", name,
1245
+ orig_name)
1246
+ continue
1247
+
1248
+ param = params_dict.pop(name)
1249
+ weight_loader = getattr(param, "weight_loader",
1250
+ default_weight_loader)
1251
+ weight_loader(param, loaded_weight)
1252
+ updated_params.add(name)
1253
+ return updated_params
1254
+
1255
+
1256
+ @MULTIMODAL_REGISTRY.register_processor(MllamaMultiModalProcessor,
1257
+ info=MllamaProcessingInfo,
1258
+ dummy_inputs=MllamaDummyInputsBuilder)
1259
+ class MllamaForConditionalGeneration(nn.Module, SupportsMultiModal,
1260
+ SupportsV0Only):
1261
+ packed_modules_mapping = {
1262
+ "qkv_proj": ["q_proj", "k_proj", "v_proj"],
1263
+ "gate_up_proj": ["gate_proj", "up_proj"]
1264
+ }
1265
+
1266
+ hf_to_vllm_mapper = WeightsMapper(
1267
+ orig_to_new_prefix={
1268
+ # mapping for new names in checkpoint saved after transformers v4.52
1269
+ "model.vision_model.": "vision_model.",
1270
+ "model.multi_modal_projector.": "multi_modal_projector.",
1271
+ "model.language_model.": "language_model.model.",
1272
+ "lm_head.": "language_model.lm_head.",
1273
+ },
1274
+ orig_to_new_suffix={
1275
+ "patch_embedding.weight": "patch_embedding._linear.weight",
1276
+ },
1277
+ )
1278
+
1279
+ @classmethod
1280
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1281
+ if modality.startswith("image"):
1282
+ return "<|image|>"
1283
+
1284
+ raise ValueError("Only image modality is supported")
1285
+
1286
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1287
+ super().__init__()
1288
+ config: MllamaConfig = vllm_config.model_config.hf_config
1289
+ quant_config = vllm_config.quant_config
1290
+ self.config = config
1291
+ self.quant_config = quant_config
1292
+ self.vocab_size = config.text_config.vocab_size
1293
+ self.hidden_size = config.text_config.hidden_size
1294
+ self.max_num_tiles = config.vision_config.max_num_tiles
1295
+ self.vision_output_dim = config.vision_config.vision_output_dim
1296
+ self.pad_token_id = \
1297
+ config.pad_token_id if config.pad_token_id is not None else -1
1298
+ self.image_size = config.vision_config.image_size
1299
+ self.image_token_id = config.image_token_index
1300
+
1301
+ self.vision_model = MllamaVisionModel(config.vision_config,
1302
+ quant_config,
1303
+ prefix=maybe_prefix(
1304
+ prefix, "vision_model"))
1305
+ self.language_model = MllamaForCausalLM(
1306
+ vllm_config=vllm_config,
1307
+ prefix=maybe_prefix(prefix, "language_model"),
1308
+ )
1309
+ self.multi_modal_projector = ColumnParallelLinear(
1310
+ config.vision_config.vision_output_dim,
1311
+ config.text_config.hidden_size,
1312
+ bias=True,
1313
+ quant_config=quant_config,
1314
+ gather_output=True,
1315
+ prefix=maybe_prefix(prefix, "multi_modal_projector"),
1316
+ )
1317
+ self.logits_processor = LogitsProcessor(config.output_hidden_states,
1318
+ config.text_config.vocab_size)
1319
+
1320
+ def compute_logits(
1321
+ self,
1322
+ hidden_states: torch.Tensor,
1323
+ sampling_metadata: SamplingMetadata,
1324
+ ) -> Optional[torch.Tensor]:
1325
+ logits = self.logits_processor(self.language_model.lm_head,
1326
+ hidden_states, sampling_metadata)
1327
+ return logits
1328
+
1329
+ def unpack_data(self,
1330
+ image_data: Union[list[torch.Tensor], torch.Tensor],
1331
+ padding_value=0) -> torch.Tensor:
1332
+ if isinstance(image_data, torch.Tensor):
1333
+ # torch.Tensor
1334
+ return image_data
1335
+ else:
1336
+ assert isinstance(
1337
+ image_data[0],
1338
+ torch.Tensor), "Image data is not properly batched."
1339
+ # list[torch.Tensor]
1340
+ bsz = len(image_data)
1341
+ max_length = max(t.size(0) for t in image_data)
1342
+ trailing_dims = image_data[0].shape[1:]
1343
+ for data in image_data:
1344
+ cur_trailing_dims = data.shape[1:]
1345
+ assert cur_trailing_dims == trailing_dims
1346
+ output_tensor = torch.full((bsz, max_length, *trailing_dims),
1347
+ padding_value,
1348
+ dtype=image_data[0].dtype,
1349
+ device=image_data[0].device)
1350
+ for i, t in enumerate(image_data):
1351
+ output_tensor[i, :t.size(0)] = t
1352
+ return output_tensor
1353
+
1354
+ def _parse_and_validate_image_input(self, **kwargs: object):
1355
+ # tensor with the same shape will be batched together by
1356
+ # MultiModalKwargs.batch, so pixel_values here can be:
1357
+ # - list[torch.Tensor]:
1358
+ # with shape (num_image, num_tiles, 3, image_res, image_res)
1359
+ # - torch.Tensor:
1360
+ # with shape (bs, num_image, num_tiles, 3, image_res, image_res)
1361
+ pixel_values: Optional[Union[list[list[torch.Tensor]],
1362
+ list[torch.Tensor],
1363
+ torch.Tensor]] = kwargs.pop(
1364
+ "pixel_values", None)
1365
+ image_embeds: Optional[Union[list[list[torch.Tensor]],
1366
+ list[torch.Tensor],
1367
+ torch.Tensor]] = kwargs.pop(
1368
+ "image_embeds", None)
1369
+ aspect_ratio_ids: Optional[Union[list[list[torch.Tensor]],
1370
+ list[torch.Tensor],
1371
+ torch.Tensor]] = kwargs.pop(
1372
+ "aspect_ratio_ids", None)
1373
+ aspect_ratio_mask: Optional[Union[list[list[torch.Tensor]],
1374
+ list[torch.Tensor],
1375
+ torch.Tensor]] = kwargs.pop(
1376
+ "aspect_ratio_mask", None)
1377
+
1378
+ if pixel_values is None and image_embeds is None:
1379
+ return None
1380
+
1381
+ if pixel_values is not None and image_embeds is not None:
1382
+ raise ValueError(
1383
+ "Both pixel values and image embeds are provided.")
1384
+
1385
+ if pixel_values is not None:
1386
+ assert aspect_ratio_ids is not None
1387
+ assert aspect_ratio_mask is not None
1388
+
1389
+ return MllamaImagePixelInputs(
1390
+ type="pixel_values",
1391
+ data=self.unpack_data(pixel_values),
1392
+ aspect_ratio_ids=self.unpack_data(aspect_ratio_ids),
1393
+ aspect_ratio_mask=self.unpack_data(aspect_ratio_mask))
1394
+
1395
+ if image_embeds is not None:
1396
+ raise NotImplementedError
1397
+
1398
+ raise AssertionError("This line should be unreachable.")
1399
+
1400
+ def _get_and_validate_encoder_lens(
1401
+ self,
1402
+ encoder_seq_lens: list[int],
1403
+ num_tiles: list[list[int]],
1404
+ num_tokens_per_tile: int,
1405
+ ) -> list[int]:
1406
+ # Get the actual number of encoder tokens for each sample.
1407
+ # Because attn_metadata.encoder_seq_lens only counts the last
1408
+ # group of images for each sample, which is used to cheat the
1409
+ # block manager to allocate blocks for those images only.
1410
+ # See MllamaMultiModalProcessor for more details.
1411
+ actual_encoder_seq_lens = [
1412
+ sum(num_tile) * num_tokens_per_tile for num_tile in num_tiles
1413
+ ]
1414
+
1415
+ # remove 0 encoder len entries for text-only requests for these
1416
+ # assertions
1417
+ attn_metadata_lens = [x for x in encoder_seq_lens if x > 0]
1418
+ assert len(actual_encoder_seq_lens) == len(attn_metadata_lens)
1419
+ for actual_len, last_group_len in zip(actual_encoder_seq_lens,
1420
+ attn_metadata_lens):
1421
+ assert actual_len >= last_group_len
1422
+
1423
+ return actual_encoder_seq_lens
1424
+
1425
+ def flat_encoder_result(self, cross_attention_states: torch.Tensor,
1426
+ attn_metadata: AttentionMetadata,
1427
+ actual_encoder_seq_lens: list[int]):
1428
+
1429
+ cross_attention_states_flat = torch.zeros(
1430
+ sum(actual_encoder_seq_lens),
1431
+ cross_attention_states.shape[-1],
1432
+ device=cross_attention_states.device,
1433
+ dtype=cross_attention_states.dtype)
1434
+ start_pos = 0
1435
+ for seq_len, vision_token_in_batch in zip(actual_encoder_seq_lens,
1436
+ cross_attention_states):
1437
+ end_pos = start_pos + seq_len
1438
+ cross_attention_states_flat[
1439
+ start_pos:end_pos] = vision_token_in_batch[:seq_len]
1440
+ start_pos = end_pos
1441
+ cross_attention_states = cross_attention_states_flat
1442
+ return cross_attention_states
1443
+
1444
+ def get_language_model(self) -> torch.nn.Module:
1445
+ return self.language_model
1446
+
1447
+ def get_cross_attention_states(
1448
+ self,
1449
+ image_inputs: MllamaImagePixelInputs,
1450
+ attn_metadata: AttentionMetadata,
1451
+ actual_encoder_seq_lens: list[int],
1452
+ ) -> tuple[torch.Tensor]:
1453
+ # NOTE: llama's reference implementation runs vision model on CPU
1454
+ pixel_values = image_inputs['data']
1455
+ aspect_ratio_ids = image_inputs['aspect_ratio_ids']
1456
+ aspect_ratio_mask = image_inputs['aspect_ratio_mask']
1457
+ cross_attention_states = self.vision_model(pixel_values,
1458
+ aspect_ratio_ids,
1459
+ aspect_ratio_mask)
1460
+ cross_attention_states, _ = self.multi_modal_projector(
1461
+ cross_attention_states)
1462
+
1463
+ bsz, _, _, _, image_token_dim = tuple(cross_attention_states.shape)
1464
+ cross_attention_states = cross_attention_states.view(
1465
+ bsz, -1, image_token_dim)
1466
+
1467
+ cross_attention_states = self.flat_encoder_result(
1468
+ cross_attention_states, attn_metadata, actual_encoder_seq_lens)
1469
+
1470
+ return cross_attention_states
1471
+
1472
+ def get_cross_attention_mask(
1473
+ self,
1474
+ input_ids: torch.Tensor,
1475
+ attn_metadata: AttentionMetadata,
1476
+ num_tiles: list[list[int]],
1477
+ num_tokens_per_tile: int,
1478
+ dtype: torch.dtype,
1479
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1480
+ token_ids = input_ids.tolist()
1481
+ start = 0
1482
+ batch_token_ids = []
1483
+ for seq_len in attn_metadata.seq_lens:
1484
+ batch_token_ids.append(token_ids[start:start + seq_len])
1485
+ start += seq_len
1486
+ sparse_mask = [
1487
+ get_cross_attention_token_mask(t, self.image_token_id)
1488
+ for t in batch_token_ids
1489
+ ]
1490
+
1491
+ # Skip generating cross-attention mask if all samples
1492
+ # are text-only or have only 1 leading image.
1493
+ if skip_attention_mask(sparse_mask):
1494
+ return None, None
1495
+
1496
+ dense_mask, tile_range_for_decode = \
1497
+ convert_sparse_cross_attention_mask_to_dense(
1498
+ sparse_mask, num_tiles, attn_metadata.seq_lens)
1499
+ cross_attention_mask = \
1500
+ convert_dense_cross_attention_mask_to_tensor(
1501
+ dense_mask, num_tokens_per_tile, input_ids.device, dtype)
1502
+ kv_range_for_decode = [[
1503
+ t[0] * num_tokens_per_tile, t[1] * num_tokens_per_tile
1504
+ ] for t in tile_range_for_decode]
1505
+
1506
+ return cross_attention_mask, kv_range_for_decode
1507
+
1508
+ def get_full_text_row_masked_out_mask(
1509
+ self,
1510
+ attn_metadata: AttentionMetadata,
1511
+ device: torch.device,
1512
+ ) -> torch.Tensor:
1513
+ full_text_row_masked_out_mask = torch.ones(
1514
+ (attn_metadata.num_prefill_tokens, 1), dtype=torch.bool)
1515
+ start_pos = 0
1516
+ for seq_len, encoder_seq_len in zip(attn_metadata.seq_lens,
1517
+ attn_metadata.encoder_seq_lens):
1518
+ if encoder_seq_len == 0:
1519
+ full_text_row_masked_out_mask[start_pos:start_pos +
1520
+ seq_len] = False
1521
+ start_pos += seq_len
1522
+ full_text_row_masked_out_mask = full_text_row_masked_out_mask.to(
1523
+ device)
1524
+ return full_text_row_masked_out_mask
1525
+
1526
+ def forward(
1527
+ self,
1528
+ input_ids: torch.Tensor,
1529
+ positions: torch.Tensor,
1530
+ **kwargs: object,
1531
+ ) -> Union[CausalLMOutputWithPast]:
1532
+ attn_metadata = get_forward_context().attn_metadata
1533
+ if attn_metadata.num_prefill_tokens > 0 and \
1534
+ attn_metadata.num_decode_tokens > 0:
1535
+ raise ValueError("Chunk prefill not supported")
1536
+ image_inputs = self._parse_and_validate_image_input(**kwargs)
1537
+ cross_attention_states = None
1538
+ cross_attention_mask = None
1539
+ kv_range_for_decode = None
1540
+
1541
+ # For 1) text-only prefill and decode, 2) image-present decode.
1542
+ if image_inputs is None:
1543
+ full_text_row_masked_out_mask = (
1544
+ attn_metadata.encoder_seq_lens_tensor
1545
+ != 0).reshape(-1, 1).to(input_ids.device)
1546
+ skip_cross_attention = attn_metadata.max_encoder_seq_len == 0
1547
+
1548
+ # For image-present prefill.
1549
+ else:
1550
+ skip_cross_attention = False
1551
+
1552
+ num_tiles = [t.tolist() for t in kwargs.pop("num_tiles")]
1553
+ num_tokens_per_tile = calc_token_per_chunk(self.image_size)
1554
+
1555
+ actual_encoder_seq_lens = self._get_and_validate_encoder_lens(
1556
+ attn_metadata.encoder_seq_lens,
1557
+ num_tiles,
1558
+ num_tokens_per_tile,
1559
+ )
1560
+
1561
+ cross_attention_states = self.get_cross_attention_states(
1562
+ image_inputs, attn_metadata, actual_encoder_seq_lens)
1563
+
1564
+ full_text_row_masked_out_mask = \
1565
+ self.get_full_text_row_masked_out_mask(
1566
+ attn_metadata, input_ids.device)
1567
+
1568
+ cross_attention_mask, kv_range_for_decode = \
1569
+ self.get_cross_attention_mask(
1570
+ input_ids, attn_metadata, num_tiles,
1571
+ num_tokens_per_tile, cross_attention_states.dtype)
1572
+
1573
+ outputs = self.language_model(
1574
+ input_ids=input_ids,
1575
+ positions=positions,
1576
+ cross_attention_states=cross_attention_states,
1577
+ cross_attention_mask=cross_attention_mask,
1578
+ kv_range_for_decode=kv_range_for_decode,
1579
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
1580
+ skip_cross_attention=skip_cross_attention,
1581
+ )
1582
+
1583
+ return outputs
1584
+
1585
+ def load_weights(self, weights: Iterable[tuple[str,
1586
+ torch.Tensor]]) -> set[str]:
1587
+ loader = AutoWeightsLoader(self)
1588
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1589
+
1590
+ def get_mm_mapping(self) -> MultiModelKeys:
1591
+ """
1592
+ Get the module prefix in multimodal models
1593
+ """
1594
+ return MultiModelKeys.from_string_field(
1595
+ language_model="language_model",
1596
+ connector="multi_modal_projector",
1597
+ tower_model="vision_model")
1598
+
1599
+
1600
+ def skip_attention_mask(sparse_mask: list[list[int]]) -> bool:
1601
+ for mask in sparse_mask:
1602
+ # Skip text-only samples.
1603
+ if len(mask) == 0:
1604
+ continue
1605
+ # If the sample contains more than 1 images,
1606
+ # we can't skip mask.
1607
+ if len(mask) != 1:
1608
+ return False
1609
+ # If the sample contains only 1 image,
1610
+ # but the image is not the leading one,
1611
+ # we can't skip mask.
1612
+ if mask[0][0] != 0 or mask[0][1] != -1:
1613
+ return False
1614
+ return True
1615
+
1616
+
1617
+ def convert_sparse_cross_attention_mask_to_dense(
1618
+ sparse_mask: list[list[list[int]]],
1619
+ num_tiles: list[list[int]],
1620
+ lengths: list[int],
1621
+ ) -> tuple[np.ndarray, list[tuple[int, int]]]:
1622
+ total_length = sum(lengths)
1623
+ total_tiles = sum([sum(tiles) for tiles in num_tiles])
1624
+ dense_mask = np.zeros(shape=(total_length, total_tiles), dtype=np.int64)
1625
+ # A list of ranges, range[i] = [start, end] means that the i-th image will
1626
+ # use tiles[start, end] for cross-attention decoding.
1627
+ tile_range_for_decode = []
1628
+
1629
+ seq_start = 0
1630
+ tile_start = 0
1631
+
1632
+ # sparse_mask has an [] entry for each sequence that does not have images,
1633
+ # but num_tiles does not have these entries...
1634
+ num_tiles_idx = 0
1635
+ for masks, length in zip(sparse_mask, lengths):
1636
+ if len(masks) == 0:
1637
+ # Text only
1638
+ continue
1639
+
1640
+ tiles = num_tiles[num_tiles_idx]
1641
+ num_tiles_idx += 1
1642
+ ts, td = -1, 0
1643
+ for mask, tile in zip(masks, tiles):
1644
+ if len(mask) != 2:
1645
+ continue
1646
+ start, end = mask
1647
+ end = min(end, length)
1648
+ if end == -1:
1649
+ end = length
1650
+ if end == length:
1651
+ if ts == -1:
1652
+ ts = tile_start
1653
+ td += tile
1654
+ dense_mask[seq_start + start:seq_start + end,
1655
+ tile_start:tile_start + tile] = 1
1656
+ tile_start += tile
1657
+ assert ts != -1
1658
+ assert td != 0
1659
+ tile_range_for_decode.append((ts, ts + td))
1660
+ seq_start += length
1661
+ assert num_tiles_idx == len(num_tiles)
1662
+
1663
+ return dense_mask, tile_range_for_decode
1664
+
1665
+
1666
+ def convert_dense_cross_attention_mask_to_tensor(
1667
+ cross_attention_token_mask: np.ndarray,
1668
+ num_tokens_per_tile: int,
1669
+ device: torch.device,
1670
+ dtype: torch.dtype,
1671
+ ) -> torch.Tensor:
1672
+ mask = torch.tensor(cross_attention_token_mask, dtype=dtype, device=device)
1673
+ mask = mask.repeat_interleave(num_tokens_per_tile, dim=1)
1674
+
1675
+ mask = 1.0 - mask
1676
+ mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(dtype).min)
1677
+
1678
+ ninf = torch.finfo(dtype).min
1679
+ full_text_mask = ((mask != ninf).any(dim=-1).type_as(mask)[..., None])
1680
+ mask *= full_text_mask
1681
+ # (num_prompt_tokens, num_encoder_tokens)
1682
+ return mask