vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1513 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
6
+ # Copyright 2024 The Qwen team.
7
+ # Copyright 2023 The vLLM team.
8
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
11
+ # and OPT implementations in this library. It has been modified from its
12
+ # original forms to accommodate minor architectural differences compared
13
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
14
+ #
15
+ # Licensed under the Apache License, Version 2.0 (the "License");
16
+ # you may not use this file except in compliance with the License.
17
+ # You may obtain a copy of the License at
18
+ #
19
+ # http://www.apache.org/licenses/LICENSE-2.0
20
+ #
21
+ # Unless required by applicable law or agreed to in writing, software
22
+ # distributed under the License is distributed on an "AS IS" BASIS,
23
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
24
+ # See the License for the specific language governing permissions and
25
+ # limitations under the License.
26
+ """Inference-only Qwen2-VL model compatible with HuggingFace weights."""
27
+ from collections.abc import Iterable, Mapping, Sequence
28
+ from functools import partial
29
+ from typing import Any, Callable, Literal, Optional, TypedDict, Union
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ from einops import rearrange, repeat
35
+ from transformers import AutoConfig, BatchFeature
36
+ from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
37
+ Qwen2VLProcessor)
38
+ from transformers.models.qwen2_vl.configuration_qwen2_vl import (
39
+ Qwen2VLConfig, Qwen2VLVisionConfig)
40
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
41
+ from transformers.models.qwen2_vl.video_processing_qwen2_vl import (
42
+ Qwen2VLVideoProcessor)
43
+
44
+ from vllm.config import VllmConfig
45
+ from vllm.distributed import parallel_state, tensor_model_parallel_all_gather
46
+ from vllm.distributed import utils as dist_utils
47
+ from vllm.logger import init_logger
48
+ from vllm.model_executor import SamplingMetadata
49
+ from vllm.model_executor.layers.activation import QuickGELU
50
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
51
+ RowParallelLinear)
52
+ from vllm.model_executor.layers.quantization import QuantizationConfig
53
+ from vllm.model_executor.layers.quantization.gptq import GPTQConfig
54
+ from vllm.model_executor.layers.quantization.gptq_marlin import (
55
+ GPTQMarlinConfig)
56
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
57
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
58
+ from vllm.multimodal import MULTIMODAL_REGISTRY
59
+ from vllm.multimodal.inputs import (ImageItem, ModalityData,
60
+ MultiModalDataDict, MultiModalFieldConfig,
61
+ MultiModalKwargs, VideoItem)
62
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
63
+ ModalityDataItems, MultiModalDataItems,
64
+ MultiModalDataParser)
65
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
66
+ BaseProcessingInfo, PromptReplacement,
67
+ PromptUpdate)
68
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
69
+ from vllm.platforms import _Backend, current_platform
70
+ from vllm.sequence import IntermediateTensors
71
+ from vllm.transformers_utils.config import uses_mrope
72
+ from vllm.transformers_utils.processor import (
73
+ cached_image_processor_from_config)
74
+ from vllm.transformers_utils.tokenizer import AnyTokenizer
75
+
76
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
77
+ SupportsMultiModal, SupportsPP)
78
+ from .utils import (AutoWeightsLoader, WeightsMapper,
79
+ init_vllm_registered_model, maybe_prefix,
80
+ merge_multimodal_embeddings)
81
+ from .vision import get_vit_attn_backend
82
+
83
+ logger = init_logger(__name__)
84
+
85
+ # For profile run
86
+ _MAX_FRAMES_PER_VIDEO = 16
87
+
88
+ # === Vision Inputs === #
89
+
90
+
91
+ class Qwen2VLImagePixelInputs(TypedDict):
92
+ type: Literal["pixel_values"]
93
+ pixel_values: torch.Tensor
94
+ """Shape:
95
+ `(num_patches, num_channels * patch_size * patch_size)`
96
+ """
97
+
98
+ image_grid_thw: torch.Tensor
99
+ """Shape: `(num_images, 3)`
100
+ This should be in `(grid_t, grid_h, grid_w)` format.
101
+ """
102
+
103
+
104
+ class Qwen2VLImageEmbeddingInputs(TypedDict):
105
+ type: Literal["image_embeds"]
106
+ image_embeds: torch.Tensor
107
+ """Supported types:
108
+ - list[`torch.Tensor`]: A list of tensors holding all images' features.
109
+ Each tensor holds an image's features.
110
+ - `torch.Tensor`: A tensor holding all images' features
111
+ (concatenation of all images' feature tensors).
112
+
113
+ Tensor shape: `(num_image_features, hidden_size)`
114
+ - `num_image_features` varies based on
115
+ the number and resolution of the images.
116
+ - `hidden_size` must match the hidden size of language model backbone.
117
+ """
118
+
119
+ image_grid_thw: torch.Tensor
120
+ """Shape: `(num_images, 3)`
121
+ This should be in `(grid_t, grid_h, grid_w)` format.
122
+ """
123
+
124
+
125
+ Qwen2VLImageInputs = Union[Qwen2VLImagePixelInputs,
126
+ Qwen2VLImageEmbeddingInputs]
127
+
128
+
129
+ class Qwen2VLVideoPixelInputs(TypedDict):
130
+ type: Literal["pixel_values_videos"]
131
+ pixel_values_videos: torch.Tensor
132
+ """Shape:
133
+ `(num_patches,
134
+ num_channels * temporal_patch_size * patch_size * patch_size)`
135
+ """
136
+
137
+ video_grid_thw: torch.Tensor
138
+ """Shape: `(num_videos, 3)`
139
+
140
+ This should be in `(grid_t, grid_h, grid_w)` format.
141
+ """
142
+
143
+
144
+ class Qwen2VLVideoEmbeddingInputs(TypedDict):
145
+ type: Literal["video_embeds"]
146
+ video_embeds: torch.Tensor
147
+ """Supported types:
148
+ - list[`torch.Tensor`]: A list of tensors holding all videos' features.
149
+ Each tensor holds an video's features.
150
+ - `torch.Tensor`: A tensor holding all videos' features
151
+ (concatenation of all videos' feature tensors).
152
+
153
+ Tensor shape: `(num_image_features, hidden_size)`
154
+ - `num_image_features` varies based on
155
+ the number and resolution of the videos.
156
+ - `hidden_size` must match the hidden size of language model backbone.
157
+ """
158
+
159
+ video_grid_thw: torch.Tensor
160
+ """Shape: `(num_videos, 3)`
161
+ This should be in `(grid_t, grid_h, grid_w)` format.
162
+ """
163
+
164
+
165
+ Qwen2VLVideoInputs = Union[Qwen2VLVideoPixelInputs,
166
+ Qwen2VLVideoEmbeddingInputs]
167
+
168
+ # === Vision Encoder === #
169
+
170
+
171
+ class Qwen2VisionMLP(nn.Module):
172
+
173
+ def __init__(
174
+ self,
175
+ in_features: int,
176
+ hidden_features: int,
177
+ act_layer: type[nn.Module] = QuickGELU,
178
+ quant_config: Optional[QuantizationConfig] = None,
179
+ prefix: str = "",
180
+ ):
181
+ super().__init__()
182
+ self.fc1 = ColumnParallelLinear(in_features,
183
+ hidden_features,
184
+ quant_config=quant_config,
185
+ prefix=f"{prefix}.fc1")
186
+ self.act = act_layer()
187
+ self.fc2 = RowParallelLinear(hidden_features,
188
+ in_features,
189
+ quant_config=quant_config,
190
+ prefix=f"{prefix}.fc2")
191
+
192
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
193
+ x_parallel, _ = self.fc1(x)
194
+ x_parallel = self.act(x_parallel)
195
+ x, _ = self.fc2(x_parallel)
196
+ return x
197
+
198
+
199
+ def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
200
+ if not interleaved:
201
+ x1, x2 = x.chunk(2, dim=-1)
202
+ return torch.cat((-x2, x1), dim=-1)
203
+ else:
204
+ x1, x2 = x[..., ::2], x[..., 1::2]
205
+ return rearrange(torch.stack((-x2, x1), dim=-1),
206
+ "... d two -> ... (d two)",
207
+ two=2)
208
+
209
+
210
+ def apply_rotary_emb_torch(x: torch.Tensor,
211
+ cos: torch.Tensor,
212
+ sin: torch.Tensor,
213
+ interleaved: bool = False) -> torch.Tensor:
214
+ """
215
+ x: (batch_size, seqlen, nheads, headdim)
216
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
217
+ """
218
+ ro_dim = cos.shape[-1] * 2
219
+ assert ro_dim <= x.shape[-1]
220
+ cos = repeat(
221
+ cos,
222
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
223
+ sin = repeat(
224
+ sin,
225
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
226
+ return torch.cat(
227
+ [
228
+ x[..., :ro_dim] * cos +
229
+ rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]
230
+ ],
231
+ dim=-1,
232
+ )
233
+
234
+
235
+ def apply_rotary_pos_emb_vision(t: torch.Tensor,
236
+ freqs: torch.Tensor) -> torch.Tensor:
237
+ t_ = t.float()
238
+ cos = freqs.cos()
239
+ sin = freqs.sin()
240
+ apply_rotary_emb = apply_rotary_emb_torch
241
+ if current_platform.is_cuda():
242
+ from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
243
+ output = apply_rotary_emb(t_, cos, sin).type_as(t)
244
+ return output
245
+
246
+
247
+ class Qwen2VisionAttention(nn.Module):
248
+
249
+ def __init__(
250
+ self,
251
+ embed_dim: int,
252
+ num_heads: int,
253
+ projection_size: int,
254
+ quant_config: Optional[QuantizationConfig] = None,
255
+ prefix: str = "",
256
+ ) -> None:
257
+ super().__init__()
258
+ # Per attention head and per partition values.
259
+ world_size = parallel_state.get_tensor_model_parallel_world_size()
260
+ self.tp_size = world_size
261
+ self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
262
+ self.hidden_size_per_attention_head = dist_utils.divide(
263
+ projection_size, num_heads)
264
+ self.num_attention_heads_per_partition = dist_utils.divide(
265
+ num_heads, world_size)
266
+
267
+ self.qkv = ColumnParallelLinear(input_size=embed_dim,
268
+ output_size=3 * projection_size,
269
+ quant_config=quant_config,
270
+ prefix=f"{prefix}.qkv")
271
+ self.proj = RowParallelLinear(input_size=projection_size,
272
+ output_size=embed_dim,
273
+ quant_config=quant_config,
274
+ prefix=f"{prefix}.proj")
275
+
276
+ # Detect attention implementation.
277
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
278
+ if self.attn_backend not in {
279
+ _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
280
+ }:
281
+ raise RuntimeError(
282
+ f"Qwen2-VL does not support {self.attn_backend} backend now.")
283
+
284
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
285
+ # [s, b, 3 * head * head_dim]
286
+ seq_len, bs, _ = qkv.shape
287
+ if self.tp_size > 1:
288
+ qkv = tensor_model_parallel_all_gather(qkv)
289
+
290
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
291
+ q, k, v = qkv.chunk(3, dim=2)
292
+
293
+ # 3 * [s, b, head * head_dim]
294
+ if self.tp_size > 1:
295
+ splitter = partial(dist_utils.split_tensor_along_last_dim,
296
+ num_partitions=self.tp_size)
297
+ q = splitter(q)[self.tp_rank]
298
+ k = splitter(k)[self.tp_rank]
299
+ v = splitter(v)[self.tp_rank]
300
+
301
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
302
+ new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
303
+ self.hidden_size_per_attention_head)
304
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
305
+ return q, k, v
306
+
307
+ def forward(
308
+ self,
309
+ x: torch.Tensor,
310
+ cu_seqlens: torch.Tensor,
311
+ rotary_pos_emb: torch.Tensor,
312
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
313
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
314
+ ) -> torch.Tensor:
315
+
316
+ # [s, b, c] --> [s, b, 3 * head * head_dim]
317
+ x, _ = self.qkv(x)
318
+
319
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
320
+ q, k, v = self.split_qkv(x)
321
+ batch_size = q.shape[1]
322
+
323
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
324
+ for x in (q, k, v))
325
+ if rotary_pos_emb is not None:
326
+ q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
327
+ k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
328
+
329
+ if self.attn_backend == _Backend.FLASH_ATTN:
330
+ # from vllm_flash_attn.flash_attn_interface import (
331
+ # flash_attn_varlen_func)
332
+ from flash_attn import flash_attn_varlen_func
333
+
334
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
335
+
336
+ output = flash_attn_varlen_func(q,
337
+ k,
338
+ v,
339
+ cu_seqlens_q=cu_seqlens,
340
+ cu_seqlens_k=cu_seqlens,
341
+ max_seqlen_q=max_seqlen,
342
+ max_seqlen_k=max_seqlen,
343
+ dropout_p=0,
344
+ causal=False)
345
+
346
+ context_layer = rearrange(output,
347
+ "(b s) ... -> b s ...",
348
+ b=batch_size)
349
+ elif self.attn_backend == _Backend.TORCH_SDPA:
350
+ # Execute attention entry by entry for speed & less VRAM.
351
+ outputs = []
352
+ for i in range(1, len(cu_seqlens)):
353
+ start_idx = cu_seqlens[i - 1]
354
+ end_idx = cu_seqlens[i]
355
+ q_i = q[:, start_idx:end_idx]
356
+ k_i = k[:, start_idx:end_idx]
357
+ v_i = v[:, start_idx:end_idx]
358
+ q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
359
+ for x in [q_i, k_i, v_i])
360
+ output_i = F.scaled_dot_product_attention(q_i,
361
+ k_i,
362
+ v_i,
363
+ dropout_p=0.0)
364
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
365
+ outputs.append(output_i)
366
+ context_layer = torch.cat(outputs, dim=1)
367
+ elif self.attn_backend == _Backend.XFORMERS:
368
+ from xformers import ops as xops
369
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
370
+
371
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
372
+ kv_seqlen=None,
373
+ device=q.device)
374
+
375
+ context_layer = xops.memory_efficient_attention_forward(
376
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
377
+ context_layer = rearrange(context_layer,
378
+ "b s h d -> s b (h d)").contiguous()
379
+
380
+ output, _ = self.proj(context_layer)
381
+ return output
382
+
383
+
384
+ class Qwen2VisionBlock(nn.Module):
385
+
386
+ def __init__(
387
+ self,
388
+ dim: int,
389
+ num_heads: int,
390
+ mlp_ratio: float,
391
+ act_layer: type[nn.Module] = QuickGELU,
392
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
393
+ quant_config: Optional[QuantizationConfig] = None,
394
+ prefix: str = "",
395
+ ) -> None:
396
+ super().__init__()
397
+ if norm_layer is None:
398
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
399
+ self.norm1 = norm_layer(dim)
400
+ self.norm2 = norm_layer(dim)
401
+ mlp_hidden_dim = int(dim * mlp_ratio)
402
+
403
+ self.attn = Qwen2VisionAttention(embed_dim=dim,
404
+ num_heads=num_heads,
405
+ projection_size=dim,
406
+ quant_config=quant_config,
407
+ prefix=f"{prefix}.attn")
408
+ self.mlp = Qwen2VisionMLP(dim,
409
+ mlp_hidden_dim,
410
+ act_layer=act_layer,
411
+ quant_config=quant_config,
412
+ prefix=f"{prefix}.mlp")
413
+
414
+ def forward(
415
+ self,
416
+ x: torch.Tensor,
417
+ cu_seqlens: torch.Tensor,
418
+ rotary_pos_emb: torch.Tensor,
419
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
420
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
421
+ ) -> torch.Tensor:
422
+ x = x + self.attn(
423
+ self.norm1(x),
424
+ cu_seqlens=cu_seqlens,
425
+ rotary_pos_emb=rotary_pos_emb,
426
+ max_seqlen=max_seqlen,
427
+ seqlens=seqlens,
428
+ )
429
+
430
+ x = x + self.mlp(self.norm2(x))
431
+ return x
432
+
433
+
434
+ class Qwen2VisionPatchEmbed(nn.Module):
435
+
436
+ def __init__(
437
+ self,
438
+ patch_size: int = 14,
439
+ temporal_patch_size: int = 2,
440
+ in_channels: int = 3,
441
+ embed_dim: int = 1152,
442
+ ) -> None:
443
+ super().__init__()
444
+ self.patch_size = patch_size
445
+ self.temporal_patch_size = temporal_patch_size
446
+ self.embed_dim = embed_dim
447
+
448
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
449
+ self.proj = nn.Conv3d(in_channels,
450
+ embed_dim,
451
+ kernel_size=kernel_size,
452
+ stride=kernel_size,
453
+ bias=False)
454
+
455
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
456
+ L, C = x.shape
457
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
458
+ self.patch_size)
459
+ x = self.proj(x).view(L, self.embed_dim)
460
+ return x
461
+
462
+
463
+ class Qwen2VisionPatchMerger(nn.Module):
464
+
465
+ def __init__(
466
+ self,
467
+ d_model: int,
468
+ context_dim: int,
469
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
470
+ spatial_merge_size: int = 2,
471
+ quant_config: Optional[QuantizationConfig] = None,
472
+ prefix: str = "",
473
+ ) -> None:
474
+ super().__init__()
475
+ self.hidden_size = context_dim * (spatial_merge_size**2)
476
+ if norm_layer is None:
477
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
478
+ self.ln_q = norm_layer(context_dim)
479
+ self.mlp = nn.ModuleList([
480
+ ColumnParallelLinear(self.hidden_size,
481
+ self.hidden_size,
482
+ bias=True,
483
+ quant_config=quant_config,
484
+ prefix=f"{prefix}.mlp.0"),
485
+ nn.GELU(),
486
+ RowParallelLinear(self.hidden_size,
487
+ d_model,
488
+ bias=True,
489
+ quant_config=quant_config,
490
+ prefix=f"{prefix}.mlp.2"),
491
+ ])
492
+
493
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
494
+ x = self.ln_q(x)
495
+ x = x.view(-1, self.hidden_size)
496
+
497
+ mlp_fc1, mlp_act, mlp_fc2 = self.mlp
498
+ x_parallel, _ = mlp_fc1(x)
499
+ x_parallel = mlp_act(x_parallel)
500
+ out, _ = mlp_fc2(x_parallel)
501
+ return out
502
+
503
+
504
+ class Qwen2VisionRotaryEmbedding(nn.Module):
505
+
506
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
507
+ super().__init__()
508
+ self.dim = dim
509
+ self.theta = theta
510
+ inv_freq = 1.0 / (theta
511
+ **(torch.arange(0, dim, 2, dtype=torch.float) / dim))
512
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
513
+ self._seq_len_cached = 0
514
+ self._freqs_cached = None
515
+
516
+ def update_freqs_cache(self, seqlen: int) -> None:
517
+ if seqlen > self._seq_len_cached:
518
+ seqlen *= 2
519
+ self._seq_len_cached = seqlen
520
+ self.inv_freq = 1.0 / (self.theta**(torch.arange(
521
+ 0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
522
+ / self.dim))
523
+ seq = torch.arange(seqlen,
524
+ device=self.inv_freq.device,
525
+ dtype=self.inv_freq.dtype)
526
+ freqs = torch.outer(seq, self.inv_freq)
527
+ self._freqs_cached = freqs
528
+
529
+ def forward(self, seqlen: int) -> torch.Tensor:
530
+ self.update_freqs_cache(seqlen)
531
+ return self._freqs_cached[:seqlen]
532
+
533
+
534
+ class Qwen2VisionTransformer(nn.Module):
535
+
536
+ def __init__(
537
+ self,
538
+ vision_config: Qwen2VLVisionConfig,
539
+ norm_eps: float = 1e-6,
540
+ quant_config: Optional[QuantizationConfig] = None,
541
+ prefix: str = "",
542
+ ) -> None:
543
+ super().__init__()
544
+
545
+ patch_size = vision_config.patch_size
546
+ temporal_patch_size = vision_config.temporal_patch_size
547
+ spatial_merge_size = vision_config.spatial_merge_size
548
+ in_channels = vision_config.in_channels
549
+ hidden_size = vision_config.hidden_size
550
+ embed_dim = vision_config.embed_dim
551
+ depth = vision_config.depth
552
+ num_heads = vision_config.num_heads
553
+ mlp_ratio = vision_config.mlp_ratio
554
+
555
+ self.spatial_merge_size = spatial_merge_size
556
+ self.num_heads = num_heads
557
+ self.embed_dim = embed_dim
558
+
559
+ self.patch_embed = Qwen2VisionPatchEmbed(
560
+ patch_size=patch_size,
561
+ temporal_patch_size=temporal_patch_size,
562
+ in_channels=in_channels,
563
+ embed_dim=embed_dim,
564
+ )
565
+
566
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
567
+ head_dim = embed_dim // num_heads
568
+ self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
569
+
570
+ self.blocks = nn.ModuleList([
571
+ Qwen2VisionBlock(dim=embed_dim,
572
+ num_heads=num_heads,
573
+ mlp_ratio=mlp_ratio,
574
+ norm_layer=norm_layer,
575
+ quant_config=quant_config,
576
+ prefix=f"{prefix}.blocks.{layer_idx}")
577
+ for layer_idx in range(depth)
578
+ ])
579
+ self.merger = Qwen2VisionPatchMerger(
580
+ d_model=hidden_size,
581
+ context_dim=embed_dim,
582
+ norm_layer=norm_layer,
583
+ quant_config=quant_config,
584
+ prefix=f"{prefix}.merger",
585
+ )
586
+ self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
587
+
588
+ @property
589
+ def dtype(self) -> torch.dtype:
590
+ return self.patch_embed.proj.weight.dtype
591
+
592
+ @property
593
+ def device(self) -> torch.device:
594
+ return self.patch_embed.proj.weight.device
595
+
596
+ def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
597
+ pos_ids = []
598
+ for t, h, w in grid_thw:
599
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
600
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
601
+ hpos_ids = hpos_ids.reshape(
602
+ h // self.spatial_merge_size,
603
+ self.spatial_merge_size,
604
+ w // self.spatial_merge_size,
605
+ self.spatial_merge_size,
606
+ ).permute(0, 2, 1, 3).flatten()
607
+ wpos_ids = wpos_ids.reshape(
608
+ h // self.spatial_merge_size,
609
+ self.spatial_merge_size,
610
+ w // self.spatial_merge_size,
611
+ self.spatial_merge_size,
612
+ ).permute(0, 2, 1, 3).flatten()
613
+ pos_ids.append(
614
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
615
+ pos_ids = torch.cat(pos_ids, dim=0)
616
+ max_grid_size = grid_thw[:, 1:].max()
617
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
618
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
619
+ return rotary_pos_emb
620
+
621
+ def compute_attn_mask_seqlen(
622
+ self, cu_seqlens: torch.Tensor
623
+ ) -> tuple[Optional[int], Optional[list[int]]]:
624
+ max_seqlen, seqlens = None, None
625
+ if self.attn_backend == _Backend.FLASH_ATTN:
626
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
627
+ elif self.attn_backend == _Backend.XFORMERS:
628
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
629
+ return max_seqlen, seqlens
630
+
631
+ def forward(
632
+ self,
633
+ x: torch.Tensor,
634
+ grid_thw: torch.Tensor,
635
+ ) -> torch.Tensor:
636
+ # patchify
637
+ x = x.to(device=self.device, dtype=self.dtype)
638
+ x = self.patch_embed(x)
639
+
640
+ # compute position embedding
641
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
642
+
643
+ # compute cu_seqlens
644
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
645
+ grid_thw[:, 0]).cumsum(
646
+ dim=0, dtype=torch.int32)
647
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
648
+
649
+ # transformers
650
+ x = x.unsqueeze(1)
651
+
652
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
653
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
654
+ for blk in self.blocks:
655
+ x = blk(
656
+ x,
657
+ cu_seqlens=cu_seqlens,
658
+ rotary_pos_emb=rotary_pos_emb,
659
+ max_seqlen=max_seqlen,
660
+ seqlens=seqlens,
661
+ )
662
+
663
+ # adapter
664
+ x = self.merger(x)
665
+
666
+ return x
667
+
668
+ def load_weights(self, weights: Iterable[tuple[str,
669
+ torch.Tensor]]) -> set[str]:
670
+ stacked_params_mapping = [
671
+ # (param_name, shard_name, shard_id)
672
+ ("qkv_proj", "q_proj", "q"),
673
+ ("qkv_proj", "k_proj", "k"),
674
+ ("qkv_proj", "v_proj", "v"),
675
+ ]
676
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
677
+ loaded_params: set[str] = set()
678
+
679
+ for name, loaded_weight in weights:
680
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
681
+ if weight_name not in name:
682
+ continue
683
+ name = name.replace(weight_name, param_name)
684
+
685
+ param = params_dict[name]
686
+ weight_loader = param.weight_loader
687
+ weight_loader(param, loaded_weight, shard_id)
688
+ break
689
+ else:
690
+ param = params_dict[name]
691
+ weight_loader = getattr(param, "weight_loader",
692
+ default_weight_loader)
693
+ weight_loader(param, loaded_weight)
694
+ loaded_params.add(name)
695
+ return loaded_params
696
+
697
+
698
+ def _qwen2vl_field_config(hf_inputs: Mapping[str, torch.Tensor]):
699
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
700
+ image_grid_sizes = image_grid_thw.prod(-1)
701
+
702
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
703
+ video_grid_sizes = video_grid_thw.prod(-1)
704
+
705
+ return dict(
706
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
707
+ "image", image_grid_sizes),
708
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
709
+ "image", image_grid_sizes),
710
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
711
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
712
+ "video", video_grid_sizes),
713
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
714
+ "video", video_grid_sizes),
715
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
716
+ )
717
+
718
+
719
+ class Qwen2VLMultiModalDataParser(MultiModalDataParser):
720
+
721
+ def _parse_image_data(
722
+ self,
723
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
724
+ ) -> Optional[ModalityDataItems[Any, Any]]:
725
+ if isinstance(data, dict):
726
+ return DictEmbeddingItems(
727
+ data,
728
+ modality="image",
729
+ required_fields={"image_embeds", "image_grid_thw"},
730
+ fields_factory=_qwen2vl_field_config,
731
+ )
732
+
733
+ return super()._parse_image_data(data)
734
+
735
+ def _parse_video_data(
736
+ self,
737
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
738
+ ) -> Optional[ModalityDataItems[Any, Any]]:
739
+ if isinstance(data, dict):
740
+ return DictEmbeddingItems(
741
+ data,
742
+ modality="video",
743
+ required_fields={"video_embeds", "video_grid_thw"},
744
+ fields_factory=_qwen2vl_field_config,
745
+ )
746
+
747
+ return super()._parse_video_data(data)
748
+
749
+
750
+ class Qwen2VLProcessingInfo(BaseProcessingInfo):
751
+
752
+ def get_hf_config(self):
753
+ return self.ctx.get_hf_config(Qwen2VLConfig)
754
+
755
+ def get_hf_processor(
756
+ self,
757
+ *,
758
+ min_pixels: Optional[int] = None,
759
+ max_pixels: Optional[int] = None,
760
+ size: Optional[dict[str, int]] = None,
761
+ **kwargs: object,
762
+ ) -> Qwen2VLProcessor:
763
+ return self.ctx.get_hf_processor(
764
+ Qwen2VLProcessor,
765
+ image_processor=self.get_image_processor(min_pixels=min_pixels,
766
+ max_pixels=max_pixels,
767
+ size=size,
768
+ use_fast=kwargs.get(
769
+ "use_fast", True)),
770
+ **kwargs,
771
+ )
772
+
773
+ def _get_image_processor_kwargs(
774
+ self,
775
+ *,
776
+ min_pixels: Optional[int] = None,
777
+ max_pixels: Optional[int] = None,
778
+ size: Optional[dict[str, int]] = None,
779
+ **kwargs: object,
780
+ ):
781
+ mm_config = self.ctx.model_config.get_multimodal_config()
782
+ if mm_config.mm_processor_kwargs:
783
+ kwargs.update(mm_config.mm_processor_kwargs)
784
+
785
+ if min_pixels is not None:
786
+ kwargs["min_pixels"] = min_pixels
787
+
788
+ if size is None:
789
+ size = {"shortest_edge": min_pixels}
790
+ else:
791
+ size["shortest_edge"] = min_pixels
792
+
793
+ if max_pixels is not None:
794
+ kwargs["max_pixels"] = max_pixels
795
+
796
+ if size is None:
797
+ size = {"longest_edge": max_pixels}
798
+ else:
799
+ size["longest_edge"] = max_pixels
800
+
801
+ if size is not None:
802
+ kwargs["size"] = size
803
+
804
+ return kwargs
805
+
806
+ def get_image_processor(
807
+ self,
808
+ *,
809
+ min_pixels: Optional[int] = None,
810
+ max_pixels: Optional[int] = None,
811
+ size: Optional[dict[str, int]] = None,
812
+ **kwargs: object,
813
+ ) -> Qwen2VLImageProcessor:
814
+ kwargs["use_fast"] = kwargs.get("use_fast", True)
815
+ return cached_image_processor_from_config(
816
+ self.ctx.model_config,
817
+ **self._get_image_processor_kwargs(min_pixels=min_pixels,
818
+ max_pixels=max_pixels,
819
+ size=size,
820
+ **kwargs),
821
+ )
822
+
823
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
824
+ return {"image": None, "video": None}
825
+
826
+ def get_max_tokens_per_item(
827
+ self, seq_len: int,
828
+ mm_counts: Mapping[str, int]) -> Optional[Mapping[str, int]]:
829
+
830
+ max_image_tokens = self.get_max_image_tokens()
831
+ max_video_tokens = self.get_max_video_tokens(seq_len, mm_counts)
832
+ return {"image": max_image_tokens, "video": max_video_tokens}
833
+
834
+ def _get_vision_info(
835
+ self,
836
+ *,
837
+ image_width: int,
838
+ image_height: int,
839
+ num_frames: int = 1,
840
+ do_resize: bool = True,
841
+ image_processor: Optional[Qwen2VLImageProcessor],
842
+ ) -> tuple[ImageSize, int]:
843
+ if image_processor is None:
844
+ image_processor = self.get_image_processor()
845
+
846
+ hf_config = self.get_hf_config()
847
+ vision_config = hf_config.vision_config
848
+ patch_size = vision_config.patch_size
849
+ merge_size = vision_config.spatial_merge_size
850
+ temporal_patch_size = vision_config.temporal_patch_size
851
+
852
+ if do_resize:
853
+ resized_height, resized_width = smart_resize(
854
+ height=image_height,
855
+ width=image_width,
856
+ factor=patch_size * merge_size,
857
+ min_pixels=image_processor.min_pixels,
858
+ max_pixels=image_processor.max_pixels,
859
+ )
860
+ preprocessed_size = ImageSize(width=resized_width,
861
+ height=resized_height)
862
+ else:
863
+ preprocessed_size = ImageSize(width=image_width,
864
+ height=image_height)
865
+
866
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
867
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
868
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
869
+
870
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
871
+ grid_h = preprocessed_size.height // patch_size
872
+ grid_w = preprocessed_size.width // patch_size
873
+
874
+ num_patches = grid_t * grid_h * grid_w
875
+ num_vision_tokens = num_patches // (merge_size**2)
876
+
877
+ return preprocessed_size, num_vision_tokens
878
+
879
+ def get_num_image_tokens(
880
+ self,
881
+ *,
882
+ image_width: int,
883
+ image_height: int,
884
+ image_processor: Optional[Qwen2VLImageProcessor],
885
+ ) -> int:
886
+ _, num_image_tokens = self._get_vision_info(
887
+ image_width=image_width,
888
+ image_height=image_height,
889
+ image_processor=image_processor,
890
+ )
891
+ return num_image_tokens
892
+
893
+ def get_num_video_tokens(
894
+ self,
895
+ *,
896
+ image_width: int,
897
+ image_height: int,
898
+ num_frames: int,
899
+ image_processor: Optional[Qwen2VLImageProcessor],
900
+ ) -> int:
901
+ _, num_video_tokens = self._get_vision_info(
902
+ image_width=image_width,
903
+ image_height=image_height,
904
+ num_frames=num_frames,
905
+ image_processor=image_processor,
906
+ )
907
+ return num_video_tokens
908
+
909
+ def get_image_size_with_most_features(self) -> ImageSize:
910
+ max_image_size, _ = self._get_vision_info(
911
+ image_width=9999999,
912
+ image_height=9999999,
913
+ image_processor=None,
914
+ )
915
+ return max_image_size
916
+
917
+ def get_max_image_tokens(self) -> int:
918
+ target_width, target_height = self.get_image_size_with_most_features()
919
+
920
+ return self.get_num_image_tokens(
921
+ image_width=target_width,
922
+ image_height=target_height,
923
+ image_processor=None,
924
+ )
925
+
926
+ def _get_max_video_frames(self, max_tokens: int) -> int:
927
+ target_width, target_height = self.get_image_size_with_most_features()
928
+
929
+ num_frames = 0
930
+
931
+ while True:
932
+ next_num_frames = num_frames + 1
933
+ next_max_tokens = self.get_num_video_tokens(
934
+ image_width=target_width,
935
+ image_height=target_height,
936
+ num_frames=next_num_frames,
937
+ image_processor=None,
938
+ )
939
+
940
+ if next_max_tokens > max_tokens:
941
+ break
942
+
943
+ num_frames = next_num_frames
944
+
945
+ return num_frames
946
+
947
+ def get_num_frames_with_most_features(
948
+ self,
949
+ seq_len: int,
950
+ mm_counts: Mapping[str, int],
951
+ ) -> int:
952
+ max_images = mm_counts.get("image", 0)
953
+ max_videos = mm_counts.get("video", 0)
954
+
955
+ max_image_tokens = self.get_max_image_tokens() * max_images
956
+ max_total_frames = self._get_max_video_frames(seq_len -
957
+ max_image_tokens)
958
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
959
+ _MAX_FRAMES_PER_VIDEO)
960
+
961
+ return max(max_frames_per_video, 1)
962
+
963
+ def get_max_video_tokens(
964
+ self,
965
+ seq_len: int,
966
+ mm_counts: Mapping[str, int],
967
+ ) -> int:
968
+ target_width, target_height = self.get_image_size_with_most_features()
969
+
970
+ return self.get_num_video_tokens(
971
+ image_width=target_width,
972
+ image_height=target_height,
973
+ num_frames=self.get_num_frames_with_most_features(
974
+ seq_len, mm_counts),
975
+ image_processor=None,
976
+ )
977
+
978
+
979
+ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
980
+
981
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
982
+ num_images = mm_counts.get("image", 0)
983
+ num_videos = mm_counts.get("video", 0)
984
+
985
+ hf_processor = self.info.get_hf_processor()
986
+ image_token: str = hf_processor.image_token
987
+ video_token: str = hf_processor.video_token
988
+
989
+ return image_token * num_images + video_token * num_videos
990
+
991
+ def get_dummy_mm_data(
992
+ self,
993
+ seq_len: int,
994
+ mm_counts: Mapping[str, int],
995
+ ) -> MultiModalDataDict:
996
+ num_images = mm_counts.get("image", 0)
997
+ num_videos = mm_counts.get("video", 0)
998
+
999
+ target_width, target_height = \
1000
+ self.info.get_image_size_with_most_features()
1001
+ target_num_frames = \
1002
+ self.info.get_num_frames_with_most_features(seq_len, mm_counts)
1003
+
1004
+ return {
1005
+ "image":
1006
+ self._get_dummy_images(width=target_width,
1007
+ height=target_height,
1008
+ num_images=num_images),
1009
+ "video":
1010
+ self._get_dummy_videos(
1011
+ width=target_width,
1012
+ height=target_height,
1013
+ num_frames=target_num_frames,
1014
+ num_videos=num_videos,
1015
+ )
1016
+ }
1017
+
1018
+
1019
+ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
1020
+ ):
1021
+
1022
+ def _get_data_parser(self) -> MultiModalDataParser:
1023
+ return Qwen2VLMultiModalDataParser()
1024
+
1025
+ def _call_hf_processor(
1026
+ self,
1027
+ prompt: str,
1028
+ mm_data: Mapping[str, object],
1029
+ mm_kwargs: Mapping[str, object],
1030
+ tok_kwargs: Mapping[str, object],
1031
+ ) -> BatchFeature:
1032
+ mm_kwargs = self.info._get_image_processor_kwargs(**mm_kwargs)
1033
+ return self.info.ctx.call_hf_processor(
1034
+ self.info.get_hf_processor(**mm_kwargs),
1035
+ dict(text=prompt, **mm_data),
1036
+ dict(**mm_kwargs, **tok_kwargs),
1037
+ )
1038
+
1039
+ def _get_prompt_updates(
1040
+ self,
1041
+ mm_items: MultiModalDataItems,
1042
+ hf_processor_mm_kwargs: Mapping[str, Any],
1043
+ out_mm_kwargs: MultiModalKwargs,
1044
+ ) -> Sequence[PromptUpdate]:
1045
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1046
+ image_processor = self.info.get_image_processor(
1047
+ **hf_processor_mm_kwargs)
1048
+ tokenizer = self.info.get_tokenizer()
1049
+ vocab = tokenizer.get_vocab()
1050
+
1051
+ placeholder = {
1052
+ "image": vocab[hf_processor.image_token],
1053
+ "video": vocab[hf_processor.video_token],
1054
+ }
1055
+
1056
+ merge_length = image_processor.merge_size**2
1057
+
1058
+ def get_replacement_qwen2vl(item_idx: int, modality: str):
1059
+ grid_thw = out_mm_kwargs[f"{modality}_grid_thw"][item_idx]
1060
+ assert isinstance(grid_thw, torch.Tensor)
1061
+
1062
+ num_tokens = int(grid_thw.prod()) // merge_length
1063
+ return [placeholder[modality]] * num_tokens
1064
+
1065
+ return [
1066
+ PromptReplacement(
1067
+ modality=modality,
1068
+ target=[placeholder[modality]],
1069
+ replacement=partial(get_replacement_qwen2vl,
1070
+ modality=modality),
1071
+ ) for modality in ("image", "video")
1072
+ ]
1073
+
1074
+ def _get_mm_fields_config(
1075
+ self,
1076
+ hf_inputs: BatchFeature,
1077
+ hf_processor_mm_kwargs: Mapping[str, object],
1078
+ ) -> Mapping[str, MultiModalFieldConfig]:
1079
+ return _qwen2vl_field_config(hf_inputs)
1080
+
1081
+
1082
+ @MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
1083
+ info=Qwen2VLProcessingInfo,
1084
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1085
+ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
1086
+ SupportsLoRA, SupportsPP):
1087
+
1088
+ # To ensure correct weight loading and mapping.
1089
+ hf_to_vllm_mapper = WeightsMapper(
1090
+ orig_to_new_prefix={
1091
+ # mapping for new names in checkpoint saved after transformers v4.52
1092
+ "model.language_model.": "language_model.model.",
1093
+ "model.visual.": "visual.",
1094
+ # mapping for original checkpoint
1095
+ "lm_head.": "language_model.lm_head.",
1096
+ "model.": "language_model.model.",
1097
+ })
1098
+
1099
+ @classmethod
1100
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1101
+ if modality.startswith("image"):
1102
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1103
+ if modality.startswith("video"):
1104
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1105
+
1106
+ raise ValueError("Only image or video modality is supported")
1107
+
1108
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1109
+ super().__init__()
1110
+ config: Qwen2VLConfig = vllm_config.model_config.hf_config
1111
+ quant_config = vllm_config.quant_config
1112
+ multimodal_config = vllm_config.model_config.multimodal_config
1113
+
1114
+ self.config = config
1115
+ self.multimodal_config = multimodal_config
1116
+
1117
+ self.visual = Qwen2VisionTransformer(
1118
+ config.vision_config,
1119
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1120
+ quant_config=self._maybe_ignore_quant_config(quant_config),
1121
+ prefix=maybe_prefix(prefix, "visual"),
1122
+ )
1123
+
1124
+ self.language_model = init_vllm_registered_model(
1125
+ vllm_config=vllm_config,
1126
+ prefix=maybe_prefix(prefix, "language_model"),
1127
+ architectures=["Qwen2ForCausalLM"],
1128
+ )
1129
+
1130
+ self.make_empty_intermediate_tensors = (
1131
+ self.language_model.make_empty_intermediate_tensors)
1132
+
1133
+ def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
1134
+ # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
1135
+ # seems to avoid vision encoder sections for some models.
1136
+ # See: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
1137
+ if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
1138
+ return None
1139
+ return quant_config
1140
+
1141
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1142
+ name: str) -> torch.Tensor:
1143
+ if not isinstance(mm_input, (torch.Tensor, list)):
1144
+ raise ValueError(f"Incorrect type of {name}. "
1145
+ f"Got type: {type(mm_input)}")
1146
+ if isinstance(mm_input, torch.Tensor):
1147
+ if mm_input.ndim == 2:
1148
+ return mm_input
1149
+ if mm_input.ndim != 3:
1150
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1151
+ f"Got ndim: {mm_input.ndim} "
1152
+ f"(shape={mm_input.shape})")
1153
+ return torch.concat(list(mm_input))
1154
+ else:
1155
+ return torch.concat(mm_input)
1156
+
1157
+ def _parse_and_validate_image_input(
1158
+ self, **kwargs: object) -> Optional[Qwen2VLImageInputs]:
1159
+ pixel_values = kwargs.pop("pixel_values", None)
1160
+ image_embeds = kwargs.pop("image_embeds", None)
1161
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1162
+
1163
+ if pixel_values is None and image_embeds is None:
1164
+ return None
1165
+
1166
+ if pixel_values is not None:
1167
+ pixel_values = self._validate_and_reshape_mm_tensor(
1168
+ pixel_values, "image pixel values")
1169
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1170
+ image_grid_thw, "image grid_thw")
1171
+
1172
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1173
+ raise ValueError("Incorrect type of image pixel values. "
1174
+ f"Got type: {type(pixel_values)}")
1175
+
1176
+ return Qwen2VLImagePixelInputs(type="pixel_values",
1177
+ pixel_values=pixel_values,
1178
+ image_grid_thw=image_grid_thw)
1179
+
1180
+ if image_embeds is not None:
1181
+ image_embeds = self._validate_and_reshape_mm_tensor(
1182
+ image_embeds, "image embeds")
1183
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1184
+ image_grid_thw, "image grid_thw")
1185
+
1186
+ if not isinstance(image_embeds, torch.Tensor):
1187
+ raise ValueError("Incorrect type of image embeddings. "
1188
+ f"Got type: {type(image_embeds)}")
1189
+ return Qwen2VLImageEmbeddingInputs(type="image_embeds",
1190
+ image_embeds=image_embeds,
1191
+ image_grid_thw=image_grid_thw)
1192
+
1193
+ def _parse_and_validate_video_input(
1194
+ self, **kwargs: object) -> Optional[Qwen2VLVideoInputs]:
1195
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1196
+ video_embeds = kwargs.pop("video_embeds", None)
1197
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1198
+
1199
+ if pixel_values_videos is None and video_embeds is None:
1200
+ return None
1201
+
1202
+ if pixel_values_videos is not None:
1203
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1204
+ pixel_values_videos, "video pixel values")
1205
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1206
+ video_grid_thw, "video grid_thw")
1207
+
1208
+ return Qwen2VLVideoPixelInputs(
1209
+ type="pixel_values_videos",
1210
+ pixel_values_videos=pixel_values_videos,
1211
+ video_grid_thw=video_grid_thw,
1212
+ )
1213
+
1214
+ if video_embeds is not None:
1215
+ video_embeds = self._validate_and_reshape_mm_tensor(
1216
+ video_embeds, "video embeds")
1217
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1218
+ video_grid_thw, "video grid_thw")
1219
+
1220
+ if not isinstance(video_embeds, torch.Tensor):
1221
+ raise ValueError("Incorrect type of video embeddings. "
1222
+ f"Got type: {type(video_embeds)}")
1223
+ return Qwen2VLVideoEmbeddingInputs(type="video_embeds",
1224
+ video_embeds=video_embeds,
1225
+ video_grid_thw=video_grid_thw)
1226
+
1227
+ def _process_image_input(
1228
+ self, image_input: Qwen2VLImageInputs) -> tuple[torch.Tensor, ...]:
1229
+
1230
+ grid_thw = image_input["image_grid_thw"]
1231
+ assert grid_thw.ndim == 2
1232
+
1233
+ if image_input["type"] == "image_embeds":
1234
+ image_embeds = image_input["image_embeds"]
1235
+ else:
1236
+ pixel_values = image_input["pixel_values"]
1237
+ image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
1238
+
1239
+ # Split concatenated embeddings for each image item.
1240
+ merge_size = self.visual.spatial_merge_size
1241
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1242
+
1243
+ return image_embeds.split(sizes.tolist())
1244
+
1245
+ def _process_video_input(
1246
+ self, video_input: Qwen2VLVideoInputs) -> tuple[torch.Tensor, ...]:
1247
+
1248
+ grid_thw = video_input["video_grid_thw"]
1249
+ assert grid_thw.ndim == 2
1250
+
1251
+ if video_input["type"] == "video_embeds":
1252
+ video_embeds = video_input["video_embeds"]
1253
+ else:
1254
+ pixel_values_videos = video_input["pixel_values_videos"]
1255
+ video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
1256
+
1257
+ # Split concatenated embeddings for each video item.
1258
+ merge_size = self.visual.spatial_merge_size
1259
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
1260
+
1261
+ return video_embeds.split(sizes.tolist())
1262
+
1263
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1264
+ modalities = {}
1265
+
1266
+ # Preserve the order of modalities if there are multiple of them
1267
+ # from the order of kwargs.
1268
+ for input_key in kwargs:
1269
+ if input_key in ("pixel_values",
1270
+ "image_embeds") and "images" not in modalities:
1271
+ modalities["images"] = self._parse_and_validate_image_input(
1272
+ **kwargs)
1273
+ if input_key in ("pixel_values_videos",
1274
+ "video_embeds") and "videos" not in modalities:
1275
+ modalities["videos"] = self._parse_and_validate_video_input(
1276
+ **kwargs)
1277
+
1278
+ return modalities
1279
+
1280
+ def get_language_model(self) -> torch.nn.Module:
1281
+ return self.language_model
1282
+
1283
+ def get_multimodal_embeddings(self,
1284
+ **kwargs: object) -> MultiModalEmbeddings:
1285
+
1286
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1287
+ if not modalities:
1288
+ return []
1289
+ return None
1290
+
1291
+ # The result multimodal_embeddings is tuple of tensors, with each
1292
+ # tensor correspoending to a multimodal data item (image or video).
1293
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1294
+
1295
+ # NOTE: It is important to iterate over the keys in this dictionary
1296
+ # to preserve the order of the modalities.
1297
+ for modality in modalities:
1298
+ if modality == "images":
1299
+ image_input = modalities["images"]
1300
+ vision_embeddings = self._process_image_input(image_input)
1301
+ multimodal_embeddings += vision_embeddings
1302
+ if modality == "videos":
1303
+ video_input = modalities["videos"]
1304
+ video_embeddings = self._process_video_input(video_input)
1305
+ multimodal_embeddings += video_embeddings
1306
+
1307
+ return multimodal_embeddings
1308
+
1309
+ def get_input_embeddings(
1310
+ self,
1311
+ input_ids: torch.Tensor,
1312
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1313
+ ) -> torch.Tensor:
1314
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1315
+ if multimodal_embeddings is not None \
1316
+ and len(multimodal_embeddings) != 0:
1317
+ inputs_embeds = merge_multimodal_embeddings(
1318
+ input_ids, inputs_embeds, multimodal_embeddings,
1319
+ [self.config.image_token_id, self.config.video_token_id])
1320
+ return inputs_embeds
1321
+
1322
+ def get_input_embeddings_v0(
1323
+ self,
1324
+ input_ids: torch.Tensor,
1325
+ image_input: Optional[Qwen2VLImagePixelInputs] = None,
1326
+ video_input: Optional[Qwen2VLVideoPixelInputs] = None,
1327
+ ) -> torch.Tensor:
1328
+ inputs_embeds = self.get_input_embeddings(input_ids)
1329
+ if image_input is not None:
1330
+ image_embeds = self._process_image_input(image_input)
1331
+ inputs_embeds = merge_multimodal_embeddings(
1332
+ input_ids,
1333
+ inputs_embeds,
1334
+ image_embeds,
1335
+ placeholder_token_id=self.config.image_token_id,
1336
+ )
1337
+
1338
+ if video_input is not None:
1339
+ video_embeds = self._process_video_input(video_input)
1340
+ inputs_embeds = merge_multimodal_embeddings(
1341
+ input_ids,
1342
+ inputs_embeds,
1343
+ video_embeds,
1344
+ placeholder_token_id=self.config.video_token_id,
1345
+ )
1346
+ return inputs_embeds
1347
+
1348
+ def forward(
1349
+ self,
1350
+ input_ids: torch.Tensor,
1351
+ positions: torch.Tensor,
1352
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1353
+ inputs_embeds: Optional[torch.Tensor] = None,
1354
+ **kwargs: object,
1355
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1356
+ """Run forward pass for Qwen2-VL.
1357
+
1358
+ Args:
1359
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1360
+ batch.
1361
+ positions: Flattened (concatenated) position ids corresponding to a
1362
+ batch.
1363
+ **NOTE**: If mrope is enabled (default setting for Qwen2-VL
1364
+ opensource models), the shape will be `(3, seq_len)`,
1365
+ otherwise it will be `(seq_len,).
1366
+ pixel_values: Pixel values to be fed to a model.
1367
+ `None` if no images are passed.
1368
+ image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
1369
+ `None` if no images are passed.
1370
+ pixel_values_videos: Pixel values of videos to be fed to a model.
1371
+ `None` if no videos are passed.
1372
+ video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
1373
+ `None` if no videos are passed.
1374
+ """
1375
+
1376
+ if intermediate_tensors is not None:
1377
+ inputs_embeds = None
1378
+
1379
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1380
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1381
+ # condition is only for v0 compatibility.
1382
+ elif inputs_embeds is None:
1383
+ image_input = self._parse_and_validate_image_input(**kwargs)
1384
+ video_input = self._parse_and_validate_video_input(**kwargs)
1385
+
1386
+ if image_input is None and video_input is None:
1387
+ inputs_embeds = None
1388
+ else:
1389
+ if uses_mrope(self.config):
1390
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1391
+ "multimodal section rotary embedding requires "
1392
+ f"(3, seq_len) positions, but got {positions.size()}")
1393
+ inputs_embeds = self.get_input_embeddings_v0(
1394
+ input_ids,
1395
+ image_input=image_input,
1396
+ video_input=video_input)
1397
+ input_ids = None
1398
+
1399
+ hidden_states = self.language_model.model(
1400
+ input_ids=input_ids,
1401
+ positions=positions,
1402
+ intermediate_tensors=intermediate_tensors,
1403
+ inputs_embeds=inputs_embeds,
1404
+ )
1405
+ return hidden_states
1406
+
1407
+ def compute_logits(
1408
+ self,
1409
+ hidden_states: torch.Tensor,
1410
+ sampling_metadata: SamplingMetadata,
1411
+ ) -> Optional[torch.Tensor]:
1412
+ return self.language_model.compute_logits(hidden_states,
1413
+ sampling_metadata)
1414
+
1415
+ def load_weights(self, weights: Iterable[tuple[str,
1416
+ torch.Tensor]]) -> set[str]:
1417
+
1418
+ loader = AutoWeightsLoader(self)
1419
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1420
+
1421
+ def get_mm_mapping(self) -> MultiModelKeys:
1422
+ """
1423
+ Get the module prefix in multimodal models
1424
+ """
1425
+ return MultiModelKeys.from_string_field(
1426
+ language_model="language_model",
1427
+ connector="visual.merger.",
1428
+ tower_model="visual.",
1429
+ )
1430
+
1431
+
1432
+ class Tarsier2MultiModalProcessor(Qwen2VLMultiModalProcessor):
1433
+ pass
1434
+
1435
+
1436
+ class Tarsier2ImageProcessor(Qwen2VLImageProcessor):
1437
+
1438
+ def __init__(
1439
+ self,
1440
+ size: Optional[dict[str, int]] = None,
1441
+ **kwargs,
1442
+ ) -> None:
1443
+ if size is not None and "min_pixels" in size and "max_pixels" in size:
1444
+ # Remap if Tarsier2-specific format is provided
1445
+ remapped_size = {
1446
+ "shortest_edge": size["min_pixels"],
1447
+ "longest_edge": size["max_pixels"]
1448
+ }
1449
+ super().__init__(size=remapped_size, **kwargs)
1450
+ else:
1451
+ super().__init__(size=size, **kwargs)
1452
+
1453
+
1454
+ class Tarsier2Processor(Qwen2VLProcessor):
1455
+
1456
+ def __init__(
1457
+ self,
1458
+ vision_config: dict,
1459
+ tokenizer: AnyTokenizer,
1460
+ **kwargs,
1461
+ ):
1462
+ self.image_processor = Tarsier2ImageProcessor(**vision_config)
1463
+ super().__init__(image_processor=self.image_processor,
1464
+ tokenizer=tokenizer,
1465
+ video_processor=Qwen2VLVideoProcessor(),
1466
+ chat_template=None,
1467
+ **kwargs)
1468
+
1469
+
1470
+ class Tarsier2ProcessingInfo(Qwen2VLProcessingInfo):
1471
+
1472
+ def get_hf_config(self) -> Qwen2VLConfig:
1473
+ model_path = self.ctx.model_config.model
1474
+ original_config = AutoConfig.from_pretrained(model_path)
1475
+ config_dict = original_config.to_dict()
1476
+ correct_config = Qwen2VLConfig.from_dict(config_dict)
1477
+
1478
+ return correct_config
1479
+
1480
+ def get_hf_processor(self, **kwargs: object) -> Tarsier2Processor:
1481
+ return Tarsier2Processor(
1482
+ vision_config=self.ctx.get_hf_image_processor_config(),
1483
+ tokenizer=self.get_tokenizer(),
1484
+ **kwargs,
1485
+ )
1486
+
1487
+ def get_image_processor(self) -> Tarsier2ImageProcessor:
1488
+ return Tarsier2ImageProcessor(
1489
+ **self.ctx.get_hf_image_processor_config())
1490
+
1491
+
1492
+ @MULTIMODAL_REGISTRY.register_processor(Tarsier2MultiModalProcessor,
1493
+ info=Tarsier2ProcessingInfo,
1494
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1495
+ class Tarsier2ForConditionalGeneration(Qwen2VLForConditionalGeneration):
1496
+ hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
1497
+ "vision_tower.": "visual.",
1498
+ })
1499
+
1500
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1501
+ # Tarsier2 uses llava as model_type, which will create a Qwen2VLConfig
1502
+ # as text_config, we need to reconstruct Qwen2VLConfig from LlavaConfig.
1503
+ config = vllm_config.model_config.hf_config
1504
+ qwen2vl_config = config.text_config
1505
+ qwen2vl_config.architectures = config.architectures
1506
+ vllm_config.model_config.hf_config = qwen2vl_config
1507
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1508
+
1509
+ def load_weights(self, weights: Iterable[tuple[str,
1510
+ torch.Tensor]]) -> set[str]:
1511
+
1512
+ loader = AutoWeightsLoader(self)
1513
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)