vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,298 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ from typing import Optional
4
+
5
+ import torch
6
+
7
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
8
+ from vllm.logger import init_logger
9
+ from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig
10
+ from vllm.model_executor.layers.fused_moe.utils import _resize_cache
11
+ from vllm.triton_utils import tl, triton
12
+
13
+ logger = init_logger(__name__)
14
+
15
+
16
+ @triton.jit
17
+ def _silu_mul_fp8_quant_deep_gemm(
18
+ # Pointers ------------------------------------------------------------
19
+ input_ptr, # 16-bit activations (E, T, 2*H)
20
+ y_q_ptr, # fp8 quantized activations (E, T, H)
21
+ y_s_ptr, # 16-bit scales (E, T, G)
22
+ counts_ptr, # int32 num tokens per expert (E)
23
+
24
+ # Sizes ---------------------------------------------------------------
25
+ H: tl.constexpr, # hidden dimension (per output)
26
+ GROUP_SIZE: tl.constexpr, # elements per group (usually 128)
27
+
28
+ # Strides for input (elements) ---------------------------------------
29
+ stride_i_e,
30
+ stride_i_t,
31
+ stride_i_h,
32
+
33
+ # Strides for y_q (elements) -----------------------------------------
34
+ stride_yq_e,
35
+ stride_yq_t,
36
+ stride_yq_h,
37
+
38
+ # Strides for y_s (elements) -----------------------------------------
39
+ stride_ys_e,
40
+ stride_ys_t,
41
+ stride_ys_g,
42
+
43
+ # Stride for counts (elements)
44
+ stride_counts_e,
45
+
46
+ # Numeric params ------------------------------------------------------
47
+ eps: tl.constexpr,
48
+ fp8_min: tl.constexpr,
49
+ fp8_max: tl.constexpr,
50
+
51
+ # Meta ---------------------------------------------------------------
52
+ BLOCK: tl.constexpr,
53
+ ):
54
+ G = H // GROUP_SIZE
55
+
56
+ # map program id -> (e, g)
57
+ pid = tl.program_id(0)
58
+ e = pid // G
59
+ g = pid % G
60
+
61
+ e = e.to(tl.int64)
62
+ g = g.to(tl.int64)
63
+
64
+ # number of valid tokens for this expert
65
+ n_tokens = tl.load(counts_ptr + e * stride_counts_e).to(tl.int64)
66
+
67
+ cols = tl.arange(0, BLOCK)
68
+ cols = cols.to(tl.int64)
69
+ mask_h = cols < BLOCK
70
+
71
+ t = tl.zeros([], tl.int64)
72
+ while t < n_tokens:
73
+ base_i_offset = (e * stride_i_e + t * stride_i_t +
74
+ g * GROUP_SIZE * stride_i_h)
75
+ base_yq_offset = (e * stride_yq_e + t * stride_yq_t +
76
+ g * GROUP_SIZE * stride_yq_h)
77
+ base_ys_offset = e * stride_ys_e + t * stride_ys_t + g * stride_ys_g
78
+
79
+ mask = mask_h
80
+ x = tl.load(input_ptr + base_i_offset + cols * stride_i_h,
81
+ mask=mask,
82
+ other=0.0).to(tl.float32)
83
+ y2 = tl.load(input_ptr + base_i_offset + H * stride_i_h +
84
+ cols * stride_i_h,
85
+ mask=mask,
86
+ other=0.0).to(tl.float32)
87
+
88
+ x = x * (1.0 / (1.0 + tl.exp(-x)))
89
+ y = x * y2
90
+
91
+ _absmax = tl.maximum(tl.max(tl.abs(y)), eps)
92
+ y_s = _absmax / fp8_max
93
+ y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
94
+
95
+ tl.store(y_q_ptr + base_yq_offset + cols * stride_yq_h, y_q, mask=mask)
96
+ tl.store(y_s_ptr + base_ys_offset, y_s)
97
+
98
+ t += 1
99
+
100
+
101
+ def silu_mul_fp8_quant_deep_gemm(
102
+ y: torch.Tensor, # (E, T, 2*H) float32
103
+ tokens_per_expert: torch.Tensor, # (E,) number of valid tokens per expert
104
+ group_size: int = 128,
105
+ eps: float = 1e-10,
106
+ ):
107
+ """Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
108
+
109
+ y has shape (E, T, 2*H). The first half of the last dimension is
110
+ silu-activated, multiplied by the second half, then quantized into FP8.
111
+
112
+ Returns `(y_q, y_s)` where
113
+ * `y_q` is the FP8 tensor of shape `(E, T, H)`, same layout as `y[..., :H]`.
114
+ * `y_s` has shape `(E, T, H // group_size)` and strides `(T*G, 1, T)`
115
+ """
116
+ assert y.ndim == 3, "y must be (E, T, 2*H)"
117
+ E, T, H2 = y.shape
118
+ assert H2 % 2 == 0, "last dim of y must be even (2*H)"
119
+ H = H2 // 2
120
+ G = H // group_size
121
+ assert H % group_size == 0, "H must be divisible by group_size"
122
+ assert tokens_per_expert.ndim == 1 and tokens_per_expert.shape[0] == E, \
123
+ "tokens_per_expert must be shape (E,)"
124
+ tokens_per_expert = tokens_per_expert.to(device=y.device,
125
+ dtype=torch.int32)
126
+
127
+ # allocate outputs
128
+ fp8_dtype = torch.float8_e4m3fn
129
+ y_q = torch.empty((E, T, H), dtype=fp8_dtype, device=y.device)
130
+
131
+ # strides (elements)
132
+ stride_i_e, stride_i_t, stride_i_h = y.stride()
133
+ stride_yq_e, stride_yq_t, stride_yq_h = y_q.stride()
134
+
135
+ # desired scale strides (elements): (T*G, 1, T)
136
+ stride_ys_e = T * G
137
+ stride_ys_t = 1
138
+ stride_ys_g = T
139
+ y_s = torch.empty_strided((E, T, G),
140
+ (stride_ys_e, stride_ys_t, stride_ys_g),
141
+ dtype=torch.float32,
142
+ device=y.device)
143
+
144
+ stride_cnt_e = tokens_per_expert.stride()[0]
145
+
146
+ # static grid over experts and H-groups.
147
+ # A loop inside the kernel handles the token dim
148
+ grid = (E * G, )
149
+
150
+ f_info = torch.finfo(fp8_dtype)
151
+ fp8_max = f_info.max
152
+ fp8_min = f_info.min
153
+
154
+ _silu_mul_fp8_quant_deep_gemm[grid](
155
+ y,
156
+ y_q,
157
+ y_s,
158
+ tokens_per_expert,
159
+ H,
160
+ group_size,
161
+ stride_i_e,
162
+ stride_i_t,
163
+ stride_i_h,
164
+ stride_yq_e,
165
+ stride_yq_t,
166
+ stride_yq_h,
167
+ stride_ys_e,
168
+ stride_ys_t,
169
+ stride_ys_g,
170
+ stride_cnt_e,
171
+ eps,
172
+ fp8_min,
173
+ fp8_max,
174
+ BLOCK=group_size,
175
+ num_warps=4,
176
+ )
177
+
178
+ return y_q, y_s
179
+
180
+
181
+ class BatchedDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
182
+
183
+ # The Deep Gemm kernels only support block size of 128
184
+ DEEPGEMM_BLOCK_SHAPE: list[int] = [128, 128]
185
+
186
+ def __init__(self,
187
+ max_num_tokens: int,
188
+ num_dispatchers: int,
189
+ block_shape: list[int],
190
+ per_act_token_quant=False):
191
+ """
192
+ max_num_tokens: Maximum number of tokens from a DP Rank
193
+ num_dispatchers: The number of DP dispatchers.
194
+ block_shape: Block quantization block shape.
195
+ per_act_token_quant: Per activation token quantization flag.
196
+ """
197
+ super().__init__(
198
+ FusedMoEQuantConfig(
199
+ quant_dtype=torch.float8_e4m3fn,
200
+ per_act_token_quant=per_act_token_quant,
201
+ block_shape=block_shape,
202
+ ))
203
+ assert self.block_shape == self.DEEPGEMM_BLOCK_SHAPE
204
+ self.max_num_tokens = max_num_tokens
205
+ self.num_dispatchers = num_dispatchers
206
+
207
+ @property
208
+ def activation_formats(
209
+ self
210
+ ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
211
+ return (mk.FusedMoEActivationFormat.BatchedExperts,
212
+ mk.FusedMoEActivationFormat.BatchedExperts)
213
+
214
+ def supports_chunking(self) -> bool:
215
+ return False
216
+
217
+ def supports_expert_map(self) -> bool:
218
+ return False
219
+
220
+ def workspace_shapes(
221
+ self,
222
+ a: torch.Tensor,
223
+ aq: torch.Tensor,
224
+ M: int,
225
+ N: int,
226
+ K: int,
227
+ topk: int,
228
+ global_num_experts: int,
229
+ local_num_experts: int,
230
+ ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
231
+ assert a.dim() == 2
232
+ # FIXME (varun): We should be able to dispatch only from the leader
233
+ # DP ranks in the case of TP > 1. At the moment, all the Ranks
234
+ # end up sending their tokens. This needs to be fixed.
235
+ num_dispatchers = self.num_dispatchers
236
+ num_experts = local_num_experts
237
+ max_num_tokens = a.size(
238
+ 0) if self.max_num_tokens is None else self.max_num_tokens
239
+ workspace13 = (num_experts, max_num_tokens * num_dispatchers,
240
+ max(K, N))
241
+ workspace2 = (num_experts, max_num_tokens * num_dispatchers, (N // 2))
242
+ output = (num_experts, max_num_tokens * num_dispatchers, K)
243
+ return (workspace13, workspace2, output, a.dtype)
244
+
245
+ def apply(
246
+ self,
247
+ output: torch.Tensor,
248
+ hidden_states: torch.Tensor,
249
+ w1: torch.Tensor,
250
+ w2: torch.Tensor,
251
+ topk_ids: torch.Tensor,
252
+ activation: str,
253
+ global_num_experts: int,
254
+ expert_map: Optional[torch.Tensor],
255
+ w1_scale: Optional[torch.Tensor],
256
+ w2_scale: Optional[torch.Tensor],
257
+ w1_zp: Optional[torch.Tensor],
258
+ w2_zp: Optional[torch.Tensor],
259
+ a1q_scale: Optional[torch.Tensor],
260
+ a2_scale: Optional[torch.Tensor],
261
+ workspace13: torch.Tensor,
262
+ workspace2: torch.Tensor,
263
+ expert_num_tokens: Optional[torch.Tensor],
264
+ ):
265
+ import deep_gemm as dg
266
+ assert hidden_states.ndim == 3
267
+ assert self.block_shape is not None
268
+
269
+ a1q = hidden_states
270
+ _, N, K = w1.size()
271
+
272
+ assert w2.size(1) == K
273
+
274
+ E, max_num_tokens, N, K, top_k_num = mk._moe_problem_size(
275
+ hidden_states, w1, w2, topk_ids)
276
+
277
+ workspace1 = _resize_cache(workspace13, (E, max_num_tokens, N))
278
+
279
+ # (from deepgemm docs) : A value hint (which is a value on CPU)
280
+ # for the M expectation of each batch, correctly setting this value
281
+ # may lead to better performance.
282
+ expected_m = max_num_tokens
283
+
284
+ dg.m_grouped_gemm_fp8_fp8_bf16_nt_masked((a1q, a1q_scale),
285
+ (w1, w1_scale),
286
+ out=workspace1,
287
+ masked_m=expert_num_tokens,
288
+ expected_m=expected_m)
289
+
290
+ assert expert_num_tokens is not None
291
+ a2q, a2q_scale = silu_mul_fp8_quant_deep_gemm(workspace1,
292
+ expert_num_tokens)
293
+
294
+ dg.m_grouped_gemm_fp8_fp8_bf16_nt_masked((a2q, a2q_scale),
295
+ (w2, w2_scale),
296
+ out=output,
297
+ masked_m=expert_num_tokens,
298
+ expected_m=expected_m)
@@ -0,0 +1,140 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ from typing import Optional
4
+
5
+ import torch
6
+
7
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
8
+ from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
9
+ BatchedDeepGemmExperts)
10
+ from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig
11
+ from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
12
+ BatchedTritonExperts)
13
+
14
+
15
+ class BatchedTritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
16
+
17
+ def __init__(self,
18
+ max_num_tokens: int,
19
+ num_dispatchers: int,
20
+ use_fp8_w8a8: bool = False,
21
+ use_int8_w8a8: bool = False,
22
+ use_int8_w8a16: bool = False,
23
+ use_int4_w4a16: bool = False,
24
+ block_shape: Optional[list[int]] = None,
25
+ per_act_token_quant: bool = False,
26
+ allow_deep_gemm: bool = False):
27
+ assert not use_int8_w8a8, "NYI"
28
+ assert not use_int8_w8a16, "NYI"
29
+ assert not use_int4_w4a16, "NYI"
30
+
31
+ super().__init__(
32
+ FusedMoEQuantConfig.make(
33
+ use_fp8_w8a8=use_fp8_w8a8,
34
+ use_int8_w8a8=use_int8_w8a8,
35
+ use_int8_w8a16=use_int8_w8a16,
36
+ use_int4_w4a16=use_int4_w4a16,
37
+ block_shape=block_shape,
38
+ per_act_token_quant=per_act_token_quant,
39
+ ))
40
+ self.allow_deep_gemm = allow_deep_gemm
41
+
42
+ self.batched_triton_experts = BatchedTritonExperts(
43
+ max_num_tokens=max_num_tokens,
44
+ num_dispatchers=num_dispatchers,
45
+ use_fp8_w8a8=use_fp8_w8a8,
46
+ use_int8_w8a8=use_int8_w8a8,
47
+ use_int8_w8a16=use_int8_w8a16,
48
+ use_int4_w4a16=use_int4_w4a16,
49
+ per_act_token_quant=self.per_act_token_quant,
50
+ block_shape=self.block_shape,
51
+ )
52
+
53
+ self.allow_deep_gemm = (allow_deep_gemm and use_fp8_w8a8
54
+ and self.block_shape
55
+ == BatchedDeepGemmExperts.DEEPGEMM_BLOCK_SHAPE)
56
+
57
+ self.batched_deep_gemm_experts = BatchedDeepGemmExperts(
58
+ max_num_tokens=max_num_tokens,
59
+ num_dispatchers=num_dispatchers,
60
+ block_shape=self.block_shape, # type: ignore[arg-type]
61
+ ) if self.allow_deep_gemm else None
62
+
63
+ assert (self.batched_deep_gemm_experts is not None
64
+ or self.batched_triton_experts is not None)
65
+
66
+ @property
67
+ def activation_formats(
68
+ self
69
+ ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
70
+ if self.batched_triton_experts is not None:
71
+ assert (self.batched_deep_gemm_experts is None
72
+ or self.batched_deep_gemm_experts.activation_formats
73
+ == self.batched_triton_experts.activation_formats)
74
+ return self.batched_triton_experts.activation_formats
75
+ else:
76
+ assert self.batched_deep_gemm_experts is not None
77
+ return self.batched_deep_gemm_experts.activation_formats
78
+
79
+ def supports_chunking(self) -> bool:
80
+ bdge = self.batched_deep_gemm_experts
81
+ bte = self.batched_triton_experts
82
+ return ((bdge is None or bdge.supports_chunking())
83
+ and (bte is None or bte.supports_chunking()))
84
+
85
+ def supports_expert_map(self) -> bool:
86
+ bdge = self.batched_deep_gemm_experts
87
+ bte = self.batched_triton_experts
88
+ return ((bdge is None or bdge.supports_expert_map())
89
+ and (bte is None or bte.supports_expert_map()))
90
+
91
+ def workspace_shapes(
92
+ self,
93
+ a: torch.Tensor,
94
+ aq: torch.Tensor,
95
+ M: int,
96
+ N: int,
97
+ K: int,
98
+ topk: int,
99
+ global_num_experts: int,
100
+ local_num_experts: int,
101
+ ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
102
+ # Note: the deep gemm workspaces are strictly larger than the triton
103
+ # workspaces so we can be pessimistic here and allocate for DeepGemm
104
+ # even if we fall back to triton later, e.g. if expert maps are set.
105
+ if self.allow_deep_gemm:
106
+ assert self.batched_deep_gemm_experts is not None
107
+ return self.batched_deep_gemm_experts.workspace_shapes(
108
+ a, aq, M, N, K, topk, global_num_experts, local_num_experts)
109
+ else:
110
+ assert self.batched_triton_experts is not None
111
+ return self.batched_triton_experts.workspace_shapes(
112
+ a, aq, M, N, K, topk, global_num_experts, local_num_experts)
113
+
114
+ def apply(
115
+ self,
116
+ output: torch.Tensor,
117
+ hidden_states: torch.Tensor,
118
+ w1: torch.Tensor,
119
+ w2: torch.Tensor,
120
+ topk_ids: torch.Tensor,
121
+ activation: str,
122
+ global_num_experts: int,
123
+ expert_map: Optional[torch.Tensor],
124
+ w1_scale: Optional[torch.Tensor],
125
+ w2_scale: Optional[torch.Tensor],
126
+ w1_zp: Optional[torch.Tensor],
127
+ w2_zp: Optional[torch.Tensor],
128
+ a1q_scale: Optional[torch.Tensor],
129
+ a2_scale: Optional[torch.Tensor],
130
+ workspace13: torch.Tensor,
131
+ workspace2: torch.Tensor,
132
+ expert_num_tokens: Optional[torch.Tensor],
133
+ ):
134
+ experts = (self.batched_deep_gemm_experts
135
+ if self.allow_deep_gemm else self.batched_triton_experts)
136
+ assert experts is not None
137
+ experts.apply(output, hidden_states, w1, w2, topk_ids, activation,
138
+ global_num_experts, expert_map, w1_scale, w2_scale,
139
+ w1_zp, w2_zp, a1q_scale, a2_scale, workspace13,
140
+ workspace2, expert_num_tokens)