vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1734 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Fused MoE kernel."""
4
+ import functools
5
+ import json
6
+ import os
7
+ from typing import Any, Callable, Optional
8
+
9
+ import torch
10
+
11
+ import vllm.envs as envs
12
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
13
+ from vllm import _custom_ops as ops
14
+ from vllm.logger import init_logger
15
+ # yapf: disable
16
+ from vllm.model_executor.layers.fused_moe.config import (
17
+ FusedMoEQuantConfig, get_config_quant_dtype)
18
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
19
+ _valid_cutlass_block_scaled_grouped_gemm,
20
+ run_cutlass_block_scaled_fused_experts)
21
+ # yapf: enable
22
+ from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
23
+ _valid_deep_gemm, deep_gemm_moe_fp8)
24
+ from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
25
+ moe_align_block_size)
26
+ from vllm.model_executor.layers.fused_moe.prepare_finalize import (
27
+ MoEPrepareAndFinalizeNoEP)
28
+ from vllm.model_executor.layers.fused_moe.utils import (
29
+ _resize_cache, moe_kernel_quantize_input)
30
+ from vllm.platforms import current_platform
31
+ from vllm.triton_utils import tl, triton
32
+ from vllm.utils import direct_register_custom_op
33
+
34
+ from .rocm_aiter_fused_moe import is_rocm_aiter_moe_enabled
35
+
36
+ logger = init_logger(__name__)
37
+
38
+
39
+ @triton.jit
40
+ def write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N, offs_token,
41
+ token_mask, BLOCK_SIZE_M, BLOCK_SIZE_N,
42
+ compute_type):
43
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=compute_type)
44
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
45
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
46
+ None, :]
47
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
48
+ tl.store(c_ptrs, accumulator, mask=c_mask)
49
+
50
+
51
+ @triton.jit
52
+ def fused_moe_kernel_gptq_awq(
53
+ # Pointers to matrices
54
+ a_ptr,
55
+ b_ptr,
56
+ c_ptr,
57
+ b_scale_ptr,
58
+ b_zp_ptr,
59
+ topk_weights_ptr,
60
+ sorted_token_ids_ptr,
61
+ expert_ids_ptr,
62
+ num_tokens_post_padded_ptr,
63
+ # Matrix dimensions
64
+ N: tl.constexpr,
65
+ K: tl.constexpr,
66
+ EM,
67
+ num_valid_tokens,
68
+ # The stride variables represent how much to increase the ptr by when
69
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
70
+ # how much to increase `a_ptr` by to get the element one row down
71
+ # (A has M rows).
72
+ stride_am,
73
+ stride_ak,
74
+ stride_be,
75
+ stride_bk,
76
+ stride_bn,
77
+ stride_cm,
78
+ stride_cn,
79
+ stride_bse,
80
+ stride_bsk,
81
+ stride_bsn,
82
+ stride_bze,
83
+ stride_bzk,
84
+ stride_bzn,
85
+ block_k_diviable: tl.constexpr,
86
+ group_size: tl.constexpr,
87
+ # Meta-parameters
88
+ BLOCK_SIZE_M: tl.constexpr,
89
+ BLOCK_SIZE_N: tl.constexpr,
90
+ BLOCK_SIZE_K: tl.constexpr,
91
+ GROUP_SIZE_M: tl.constexpr,
92
+ MUL_ROUTED_WEIGHT: tl.constexpr,
93
+ top_k: tl.constexpr,
94
+ compute_type: tl.constexpr,
95
+ has_zp: tl.constexpr,
96
+ use_int4_w4a16: tl.constexpr,
97
+ use_int8_w8a16: tl.constexpr):
98
+ """
99
+ Implements the fused computation for a Mixture of Experts (MOE) using
100
+ token and expert matrices.
101
+
102
+ Key Parameters:
103
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
104
+ be any shape representing batches and K is the feature dimension of
105
+ each token.
106
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
107
+ the number of experts, K is the input feature dimension, and N is
108
+ the output feature dimension.
109
+ - C: The output cache tensor with shape (M, topk, N), where M is the
110
+ total number of tokens post padding, topk is the number of times
111
+ each token is repeated, and N is the output feature dimension.
112
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
113
+ repeated topk times and arranged by the expert index they are
114
+ assigned to.
115
+ - expert_ids: A tensor containing the indices of the expert for each
116
+ block. It determines which expert matrix from B should be used for
117
+ each block in A.
118
+ This kernel performs the multiplication of a token by its corresponding
119
+ expert matrix as determined by `expert_ids`. The sorting of
120
+ `sorted_token_ids` by expert index and padding ensures divisibility by
121
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
122
+ multiplication across different blocks processed by the same expert.
123
+ """
124
+ # -----------------------------------------------------------
125
+ # Map program ids `pid` to the block of C it should compute.
126
+ # This is done in a grouped ordering to promote L2 data reuse.
127
+ pid = tl.program_id(axis=0)
128
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
129
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
130
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
131
+ group_id = pid // num_pid_in_group
132
+ first_pid_m = group_id * GROUP_SIZE_M
133
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
134
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
135
+ pid_n = (pid % num_pid_in_group) // group_size_m
136
+
137
+ # ----------------------------------------------------------
138
+ # Create pointers for the first blocks of A and B.
139
+ # We will advance this pointer as we move in the K direction
140
+ # and accumulate
141
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
142
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
143
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
144
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
145
+ return
146
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
147
+ tl.int64)
148
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
149
+ token_mask = offs_token < num_valid_tokens
150
+
151
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
152
+ if off_experts == -1:
153
+ # -----------------------------------------------------------
154
+ # Write back zeros to the output when the expert is not
155
+ # in the current expert parallel rank.
156
+ write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
157
+ offs_token, token_mask, BLOCK_SIZE_M,
158
+ BLOCK_SIZE_N, compute_type)
159
+ return
160
+
161
+ offs_bn = (pid_n * BLOCK_SIZE_N +
162
+ tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
163
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
164
+ a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
165
+ offs_k[None, :] * stride_ak)
166
+
167
+ if use_int4_w4a16:
168
+ b_ptrs = b_ptr + off_experts * stride_be + \
169
+ (offs_k[:, None] // 2) * stride_bk + offs_bn[None, :] * \
170
+ stride_bn
171
+ b_shifter = (offs_k[:, None] % 2) * 4
172
+ elif use_int8_w8a16:
173
+ b_ptrs = b_ptr + off_experts * stride_be + \
174
+ offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
175
+
176
+ if not has_zp and use_int4_w4a16:
177
+ b_zp_num = 8
178
+ if not has_zp and use_int8_w8a16:
179
+ b_zp_num = 128
180
+ elif has_zp and use_int4_w4a16:
181
+ b_zp_shifter = (offs_bn[None, :] % 2) * 4
182
+
183
+ # -----------------------------------------------------------
184
+ # Iterate to compute a block of the C matrix.
185
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
186
+ # of fp32 values for higher accuracy.
187
+ # `accumulator` will be converted back to fp16 after the loop.
188
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
189
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
190
+ # Load the next block of A and B, generate a mask by checking the
191
+ # K dimension.
192
+
193
+ if not block_k_diviable:
194
+ k_mask = offs_k[:, None] < K - k * BLOCK_SIZE_K
195
+ k_other = 0.0
196
+ else:
197
+ k_mask = None
198
+ k_other = None
199
+
200
+ a = tl.load(a_ptrs,
201
+ mask=token_mask[:, None] &
202
+ (offs_k[None, :] < K - k * BLOCK_SIZE_K),
203
+ other=0.0)
204
+ b = tl.load(b_ptrs)
205
+ if use_int4_w4a16:
206
+ b = (b >> b_shifter) & 0xF
207
+
208
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + \
209
+ offs_bn[None, :] * stride_bsn + \
210
+ ((offs_k[:, None] + BLOCK_SIZE_K * k) // group_size) * \
211
+ stride_bsk
212
+ b_scale = tl.load(b_scale_ptrs, mask=k_mask, other=k_other)
213
+ b_scale = b_scale.to(tl.float32)
214
+
215
+ if has_zp and use_int4_w4a16:
216
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
217
+ b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
218
+ (offs_bn[None, :] // 2) * stride_bzn + \
219
+ offs_k_true * stride_bzk
220
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
221
+ b_zp = ((b_zp >> b_zp_shifter) & 0xF)
222
+ b_zp = b_zp.to(tl.float32)
223
+ elif has_zp and use_int8_w8a16:
224
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
225
+ b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
226
+ offs_bn[None, :] * stride_bzn + \
227
+ offs_k_true * stride_bzk
228
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
229
+ b_zp = b_zp.to(tl.float32)
230
+
231
+ # We accumulate along the K dimension.
232
+ if has_zp:
233
+ b = ((b.to(tl.float32) - b_zp) * b_scale).to(compute_type)
234
+ else:
235
+ b = ((b.to(tl.float32) - b_zp_num) * b_scale).to(compute_type)
236
+ accumulator = tl.dot(a, b, acc=accumulator)
237
+
238
+ # Advance the ptrs to the next K block.
239
+ a_ptrs += BLOCK_SIZE_K * stride_ak
240
+ if use_int4_w4a16:
241
+ b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
242
+ else:
243
+ b_ptrs += BLOCK_SIZE_K * stride_bk
244
+
245
+ if MUL_ROUTED_WEIGHT:
246
+ moe_weight = tl.load(topk_weights_ptr + offs_token,
247
+ mask=token_mask,
248
+ other=0)
249
+ accumulator = accumulator * moe_weight[:, None]
250
+
251
+ accumulator = accumulator.to(compute_type)
252
+ # -----------------------------------------------------------
253
+ # Write back the block of the output
254
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
255
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
256
+ None, :]
257
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
258
+ tl.store(c_ptrs, accumulator, mask=c_mask)
259
+
260
+
261
+ @triton.jit
262
+ def fused_moe_kernel(
263
+ # Pointers to matrices
264
+ a_ptr,
265
+ b_ptr,
266
+ c_ptr,
267
+ a_scale_ptr,
268
+ b_scale_ptr,
269
+ topk_weights_ptr,
270
+ sorted_token_ids_ptr,
271
+ expert_ids_ptr,
272
+ num_tokens_post_padded_ptr,
273
+ # Matrix dimensions
274
+ N,
275
+ K,
276
+ EM,
277
+ num_valid_tokens,
278
+ # The stride variables represent how much to increase the ptr by when
279
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
280
+ # how much to increase `a_ptr` by to get the element one row down
281
+ # (A has M rows).
282
+ stride_am,
283
+ stride_ak,
284
+ stride_be,
285
+ stride_bk,
286
+ stride_bn,
287
+ stride_cm,
288
+ stride_cn,
289
+ stride_asm,
290
+ stride_ask,
291
+ stride_bse,
292
+ stride_bsk,
293
+ stride_bsn,
294
+ # Block size for block-wise quantization
295
+ group_n: tl.constexpr,
296
+ group_k: tl.constexpr,
297
+ # Meta-parameters
298
+ BLOCK_SIZE_M: tl.constexpr,
299
+ BLOCK_SIZE_N: tl.constexpr,
300
+ BLOCK_SIZE_K: tl.constexpr,
301
+ GROUP_SIZE_M: tl.constexpr,
302
+ MUL_ROUTED_WEIGHT: tl.constexpr,
303
+ top_k: tl.constexpr,
304
+ compute_type: tl.constexpr,
305
+ use_fp8_w8a8: tl.constexpr,
306
+ use_int8_w8a8: tl.constexpr,
307
+ use_int8_w8a16: tl.constexpr,
308
+ per_channel_quant: tl.constexpr,
309
+ ):
310
+ """
311
+ Implements the fused computation for a Mixture of Experts (MOE) using
312
+ token and expert matrices.
313
+
314
+ Key Parameters:
315
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
316
+ be any shape representing batches and K is the feature dimension of
317
+ each token.
318
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
319
+ the number of experts, K is the input feature dimension, and N is
320
+ the output feature dimension.
321
+ - C: The output cache tensor with shape (M, topk, N), where M is the
322
+ total number of tokens post padding, topk is the number of times
323
+ each token is repeated, and N is the output feature dimension.
324
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
325
+ repeated topk times and arranged by the expert index they are
326
+ assigned to.
327
+ - expert_ids: A tensor containing the indices of the expert for each
328
+ block. It determines which expert matrix from B should be used for
329
+ each block in A.
330
+ This kernel performs the multiplication of a token by its corresponding
331
+ expert matrix as determined by `expert_ids`. The sorting of
332
+ `sorted_token_ids` by expert index and padding ensures divisibility by
333
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
334
+ multiplication across different blocks processed by the same expert.
335
+ """
336
+ # -----------------------------------------------------------
337
+ # Map program ids `pid` to the block of C it should compute.
338
+ # This is done in a grouped ordering to promote L2 data reuse.
339
+ pid = tl.program_id(axis=0)
340
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
341
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
342
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
343
+ group_id = pid // num_pid_in_group
344
+ first_pid_m = group_id * GROUP_SIZE_M
345
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
346
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
347
+ pid_n = (pid % num_pid_in_group) // group_size_m
348
+
349
+ # ----------------------------------------------------------
350
+ # Create pointers for the first blocks of A and B.
351
+ # We will advance this pointer as we move in the K direction
352
+ # and accumulate
353
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
354
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
355
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
356
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
357
+ return
358
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
359
+ tl.int64)
360
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
361
+ token_mask = offs_token < num_valid_tokens
362
+
363
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
364
+ if off_experts == -1:
365
+ # -----------------------------------------------------------
366
+ # Write back zeros to the output when the expert is not
367
+ # in the current expert parallel rank.
368
+ write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
369
+ offs_token, token_mask, BLOCK_SIZE_M,
370
+ BLOCK_SIZE_N, compute_type)
371
+ return
372
+
373
+ offs_bn = (pid_n * BLOCK_SIZE_N +
374
+ tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
375
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
376
+ a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
377
+ offs_k[None, :] * stride_ak)
378
+
379
+ b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk +
380
+ offs_bn[None, :] * stride_bn)
381
+ if use_int8_w8a16:
382
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
383
+ None, :] * stride_bsn
384
+ b_scale = tl.load(b_scale_ptrs)
385
+
386
+ if use_fp8_w8a8 or use_int8_w8a8:
387
+ # block-wise
388
+ if group_k > 0 and group_n > 0:
389
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
390
+ offs_bsn = offs_bn // group_n
391
+ b_scale_ptrs = (b_scale_ptr + off_experts * stride_bse +
392
+ offs_bsn * stride_bsn)
393
+ # channel-wise
394
+ elif per_channel_quant:
395
+ b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
396
+ None, :] * stride_bsn
397
+ b_scale = tl.load(b_scale_ptrs)
398
+ # Load per-token scale for activations
399
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
400
+ a_scale = tl.load(a_scale_ptrs, mask=token_mask, other=0.0)[:,
401
+ None]
402
+ # tensor-wise
403
+ else:
404
+ a_scale = tl.load(a_scale_ptr)
405
+ b_scale = tl.load(b_scale_ptr + off_experts)
406
+
407
+ # -----------------------------------------------------------
408
+ # Iterate to compute a block of the C matrix.
409
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
410
+ # of fp32 values for higher accuracy.
411
+ # `accumulator` will be converted back to fp16 after the loop.
412
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
413
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
414
+ # Load the next block of A and B, generate a mask by checking the
415
+ # K dimension.
416
+ a = tl.load(a_ptrs,
417
+ mask=token_mask[:, None] &
418
+ (offs_k[None, :] < K - k * BLOCK_SIZE_K),
419
+ other=0.0)
420
+ b = tl.load(b_ptrs,
421
+ mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
422
+ other=0.0)
423
+ # We accumulate along the K dimension.
424
+ if use_int8_w8a16:
425
+ accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
426
+ elif use_fp8_w8a8 or use_int8_w8a8:
427
+ if group_k > 0 and group_n > 0:
428
+ k_start = k * BLOCK_SIZE_K
429
+ offs_ks = k_start // group_k
430
+ a_scale = tl.load(a_scale_ptrs + offs_ks * stride_ask,
431
+ mask=token_mask,
432
+ other=0.0)
433
+ b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
434
+
435
+ accumulator += tl.dot(a, b) * a_scale[:,
436
+ None] * b_scale[None, :]
437
+ else:
438
+ if use_fp8_w8a8:
439
+ # acc used to enable fp8_fast_accum
440
+ accumulator = tl.dot(a, b, acc=accumulator)
441
+ else:
442
+ accumulator += tl.dot(a, b)
443
+ else:
444
+ accumulator += tl.dot(a, b)
445
+ # Advance the ptrs to the next K block.
446
+ a_ptrs += BLOCK_SIZE_K * stride_ak
447
+ b_ptrs += BLOCK_SIZE_K * stride_bk
448
+
449
+ if MUL_ROUTED_WEIGHT:
450
+ moe_weight = tl.load(topk_weights_ptr + offs_token,
451
+ mask=token_mask,
452
+ other=0)
453
+ accumulator = accumulator * moe_weight[:, None]
454
+ if use_int8_w8a16:
455
+ accumulator = (accumulator * b_scale).to(compute_type)
456
+ elif use_fp8_w8a8 or use_int8_w8a8:
457
+ if group_k > 0 and group_n > 0:
458
+ accumulator = accumulator.to(compute_type)
459
+ else:
460
+ accumulator = (accumulator * a_scale * b_scale).to(compute_type)
461
+ else:
462
+ accumulator = accumulator.to(compute_type)
463
+ # -----------------------------------------------------------
464
+ # Write back the block of the output
465
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
466
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
467
+ None, :]
468
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
469
+ tl.store(c_ptrs, accumulator, mask=c_mask)
470
+
471
+
472
+ def invoke_fused_moe_kernel(A: torch.Tensor,
473
+ B: torch.Tensor,
474
+ C: torch.Tensor,
475
+ A_scale: Optional[torch.Tensor],
476
+ B_scale: Optional[torch.Tensor],
477
+ B_zp: Optional[torch.Tensor],
478
+ topk_weights: Optional[torch.Tensor],
479
+ sorted_token_ids: torch.Tensor,
480
+ expert_ids: torch.Tensor,
481
+ num_tokens_post_padded: torch.Tensor,
482
+ mul_routed_weight: bool,
483
+ top_k: int,
484
+ config: dict[str, Any],
485
+ compute_type: tl.dtype,
486
+ use_fp8_w8a8: bool,
487
+ use_int8_w8a8: bool,
488
+ use_int8_w8a16: bool,
489
+ use_int4_w4a16: bool,
490
+ per_channel_quant: bool,
491
+ block_shape: Optional[list[int]] = None) -> None:
492
+ assert topk_weights is not None or not mul_routed_weight
493
+ assert topk_weights is None or topk_weights.stride(1) == 1
494
+ assert sorted_token_ids.stride(0) == 1
495
+
496
+ if use_fp8_w8a8 or use_int8_w8a8:
497
+ assert B_scale is not None
498
+ assert (block_shape is None
499
+ or triton.cdiv(B.size(-2), block_shape[0]) == B_scale.size(-2))
500
+ assert (block_shape is None
501
+ or triton.cdiv(B.size(-1), block_shape[1]) == B_scale.size(-1))
502
+
503
+ elif use_int8_w8a16 or use_int4_w4a16:
504
+ assert B_scale is not None
505
+ assert block_shape is None or block_shape[0] == 0
506
+ else:
507
+ assert A_scale is None
508
+ assert B_scale is None
509
+
510
+ M = A.size(0)
511
+ num_tokens = M * top_k
512
+
513
+ EM = sorted_token_ids.size(0)
514
+ if A.size(0) < config["BLOCK_SIZE_M"]:
515
+ # optimize for small batch_size.
516
+ # We assume that top_ids of each token is unique, so
517
+ # so num_valid_experts <= batch_size <= BLOCK_SIZE_M,
518
+ # and we can skip some invalid blocks.
519
+ EM = min(sorted_token_ids.size(0),
520
+ A.size(0) * top_k * config['BLOCK_SIZE_M'])
521
+ grid = lambda META: (triton.cdiv(EM, META['BLOCK_SIZE_M']) * triton.cdiv(
522
+ B.size(1), META['BLOCK_SIZE_N']), )
523
+
524
+ if (use_int8_w8a16 or use_int4_w4a16) and \
525
+ block_shape is not None and block_shape[1] > 0:
526
+ assert B_scale is not None and B_scale.ndim == 3
527
+ assert B_zp is None or B_zp.ndim == 3
528
+
529
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(
530
+ num_valid_tokens=num_tokens,
531
+ group_size=block_shape[1],
532
+ num_experts=B.size(0),
533
+ bit=4 if use_int4_w4a16 else 8)
534
+ config = config.copy()
535
+ config.update(
536
+ get_moe_wna16_block_config(config=config,
537
+ use_moe_wna16_cuda=use_moe_wna16_cuda,
538
+ num_valid_tokens=num_tokens,
539
+ size_k=A.size(1),
540
+ size_n=B.size(1),
541
+ num_experts=B.size(1),
542
+ group_size=block_shape[1],
543
+ real_top_k=top_k,
544
+ block_size_m=config["BLOCK_SIZE_M"]))
545
+
546
+ if use_moe_wna16_cuda:
547
+ bit = 4 if use_int4_w4a16 else 8
548
+ ops.moe_wna16_gemm(A, C, B, B_scale, B_zp,
549
+ topk_weights if mul_routed_weight else None,
550
+ sorted_token_ids, expert_ids,
551
+ num_tokens_post_padded, top_k,
552
+ config["BLOCK_SIZE_M"], config["BLOCK_SIZE_N"],
553
+ config["BLOCK_SIZE_K"], bit)
554
+ return
555
+
556
+ fused_moe_kernel_gptq_awq[grid](
557
+ A,
558
+ B,
559
+ C,
560
+ B_scale,
561
+ B_zp,
562
+ topk_weights,
563
+ sorted_token_ids,
564
+ expert_ids,
565
+ num_tokens_post_padded,
566
+ B.size(1),
567
+ A.size(1),
568
+ EM,
569
+ num_tokens,
570
+ A.stride(0),
571
+ A.stride(1),
572
+ B.stride(0),
573
+ B.stride(2),
574
+ B.stride(1),
575
+ C.stride(1),
576
+ C.stride(2),
577
+ B_scale.stride(0),
578
+ B_scale.stride(2),
579
+ B_scale.stride(1),
580
+ B_zp.stride(0) if B_zp is not None else 0,
581
+ B_zp.stride(2) if B_zp is not None else 0,
582
+ B_zp.stride(1) if B_zp is not None else 0,
583
+ block_k_diviable=A.size(1) % config["BLOCK_SIZE_K"] == 0,
584
+ group_size=block_shape[1],
585
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
586
+ top_k=top_k,
587
+ compute_type=compute_type,
588
+ has_zp=B_zp is not None,
589
+ use_int4_w4a16=use_int4_w4a16,
590
+ use_int8_w8a16=use_int8_w8a16,
591
+ **config,
592
+ )
593
+ else:
594
+ config = config.copy()
595
+ BLOCK_SIZE_K = config.pop("BLOCK_SIZE_K")
596
+ if block_shape is not None:
597
+ BLOCK_SIZE_K = min(BLOCK_SIZE_K, min(block_shape[0],
598
+ block_shape[1]))
599
+ fused_moe_kernel[grid](
600
+ A,
601
+ B,
602
+ C,
603
+ A_scale,
604
+ B_scale,
605
+ topk_weights,
606
+ sorted_token_ids,
607
+ expert_ids,
608
+ num_tokens_post_padded,
609
+ B.size(1),
610
+ B.size(2),
611
+ EM,
612
+ num_tokens,
613
+ A.stride(0),
614
+ A.stride(1),
615
+ B.stride(0),
616
+ B.stride(2),
617
+ B.stride(1),
618
+ C.stride(1),
619
+ C.stride(2),
620
+ A_scale.stride(0)
621
+ if A_scale is not None and A_scale.ndim == 2 else 0,
622
+ A_scale.stride(1)
623
+ if A_scale is not None and A_scale.ndim == 2 else 0,
624
+ B_scale.stride(0)
625
+ if B_scale is not None and B_scale.ndim >= 2 else 0,
626
+ B_scale.stride(2)
627
+ if B_scale is not None and B_scale.ndim == 3 else 0,
628
+ B_scale.stride(1)
629
+ if B_scale is not None and B_scale.ndim >= 2 else 0,
630
+ 0 if block_shape is None else block_shape[0],
631
+ 0 if block_shape is None else block_shape[1],
632
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
633
+ top_k=top_k,
634
+ compute_type=compute_type,
635
+ use_fp8_w8a8=use_fp8_w8a8,
636
+ use_int8_w8a8=use_int8_w8a8,
637
+ use_int8_w8a16=use_int8_w8a16,
638
+ per_channel_quant=per_channel_quant,
639
+ BLOCK_SIZE_K=BLOCK_SIZE_K,
640
+ **config,
641
+ )
642
+
643
+
644
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
645
+ def get_config_file_name(E: int,
646
+ N: int,
647
+ dtype: Optional[str],
648
+ block_shape: Optional[list[int]] = None) -> str:
649
+ device_name = current_platform.get_device_name().replace(" ", "_")
650
+ dtype_selector = "" if not dtype else f",dtype={dtype}"
651
+ block_shape_selector = ("" if not block_shape or not all(block_shape) else
652
+ f",block_shape={block_shape}").replace(" ", "")
653
+ return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json" # noqa: E501
654
+
655
+
656
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
657
+ @functools.lru_cache
658
+ def get_moe_configs(
659
+ E: int,
660
+ N: int,
661
+ dtype: Optional[str],
662
+ block_n: Optional[int] = None,
663
+ block_k: Optional[int] = None,
664
+ ) -> Optional[dict[int, Any]]:
665
+ """
666
+ Return optimized configurations for the fused MoE kernel.
667
+
668
+ The return value will be a dictionary that maps an irregular grid of
669
+ batch sizes to configurations of the fused_moe kernel. To evaluate the
670
+ kernel on a given batch size bs, the closest batch size in the grid should
671
+ be picked and the associated configuration chosen to invoke the kernel.
672
+ """
673
+
674
+ # First look up if an optimized configuration is available in the configs
675
+ # directory
676
+ block_shape = [block_n, block_k] if block_n and block_k else None
677
+ json_file_name = get_config_file_name(E, N, dtype, block_shape)
678
+
679
+ config_file_path = os.path.join(
680
+ os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
681
+ if os.path.exists(config_file_path):
682
+ with open(config_file_path) as f:
683
+ logger.info("Using configuration from %s for MoE layer.",
684
+ config_file_path)
685
+ # If a configuration has been found, return it
686
+ return {int(key): val for key, val in json.load(f).items()}
687
+
688
+ # If no optimized configuration is available, we will use the default
689
+ # configuration
690
+ logger.warning(
691
+ ("Using default MoE config. Performance might be sub-optimal! "
692
+ "Config file not found at %s"), config_file_path)
693
+ return None
694
+
695
+
696
+ def get_moe_wna16_block_config(config: dict[str,
697
+ int], use_moe_wna16_cuda: bool,
698
+ num_valid_tokens: int, size_k: int, size_n: int,
699
+ num_experts: int, group_size: int,
700
+ real_top_k: int, block_size_m: int):
701
+ if "BLOCK_SIZE_N" in config and "BLOCK_SIZE_K" in config:
702
+ # optimal block config is set
703
+ return {}
704
+ if not use_moe_wna16_cuda:
705
+ # triton moe wna16 kernel
706
+ if num_valid_tokens // real_top_k == 1:
707
+ # if bs=1, use a smaller BLOCK_SIZE_N
708
+ return {"BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 64}
709
+ else:
710
+ return {"BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32}
711
+ else:
712
+ # cuda moe wna16 kernel
713
+ # set default block_size 128, and increase them when num_blocks
714
+ # is too large.
715
+ block_size_n = 128
716
+ block_size_k = 128
717
+ if block_size_k <= group_size:
718
+ block_size_k = group_size
719
+
720
+ num_n_blocks = size_k // block_size_k
721
+ num_k_blocks = size_n // block_size_k
722
+ num_m_blocks = (num_valid_tokens + block_size_m - 1) / block_size_m + \
723
+ num_experts
724
+ if num_valid_tokens // real_top_k <= block_size_m:
725
+ num_m_blocks = min(num_m_blocks, num_valid_tokens)
726
+ num_blocks = num_m_blocks * num_n_blocks * num_k_blocks
727
+
728
+ if size_k % 256 == 0 and num_blocks >= 256 and \
729
+ block_size_k < 256:
730
+ block_size_k = 256
731
+ num_blocks = num_blocks // (256 // block_size_k)
732
+
733
+ if num_m_blocks <= 16 and size_k % (block_size_k * 2) == 0 and \
734
+ size_k % (block_size_k * 2) == 0 and block_size_k <= 512 and \
735
+ num_blocks >= 512:
736
+ block_size_k = block_size_k * 2
737
+ num_blocks = num_blocks // 2
738
+
739
+ if num_blocks > 1024:
740
+ block_size_n = 256
741
+ num_n_blocks = num_n_blocks // 2
742
+ num_blocks = num_blocks // 2
743
+
744
+ if size_n <= 1024 and num_blocks >= 1024:
745
+ # The kernel performance got much better with BLOCK_SIZE_N=1024
746
+ # when num_blocks is large, event when N is small.
747
+ # Not sure why, maybe it force the CUDA SM process only one block
748
+ # at the same time.
749
+ block_size_n = 1024
750
+
751
+ return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
752
+
753
+
754
+ def should_moe_wna16_use_cuda(num_valid_tokens: int, group_size: int,
755
+ num_experts: int, bit: int):
756
+ return bit == 4 and group_size in [32, 64, 128] and \
757
+ num_valid_tokens / num_experts <= 6
758
+
759
+
760
+ def get_default_config(
761
+ M: int,
762
+ E: int,
763
+ N: int,
764
+ K: int,
765
+ topk: int,
766
+ dtype: Optional[str],
767
+ is_marlin: bool,
768
+ block_shape: Optional[list[int]] = None,
769
+ ) -> dict[str, int]:
770
+ if dtype == "fp8_w8a8" and block_shape is not None:
771
+ # Block-wise quant: BLOCK_SIZE_N must be divisible by block_shape[0]
772
+ # BLOCK_SIZE_K must be divisible by block_shape[1]
773
+ # num_stages=3 can cause triton.runtime.errors.OutOfResources
774
+ # on ROCm, set it to 2 instead.
775
+ config = {
776
+ "BLOCK_SIZE_M": 64,
777
+ "BLOCK_SIZE_N": block_shape[0],
778
+ "BLOCK_SIZE_K": block_shape[1],
779
+ "GROUP_SIZE_M": 32,
780
+ "num_warps": 4,
781
+ "num_stages": 3 if not current_platform.is_rocm() else 2,
782
+ }
783
+ elif dtype in ["int4_w4a16", "int8_w8a16"] and block_shape is not None:
784
+ # moe wna16 kernels
785
+ # only set BLOCK_SIZE_M
786
+ # BLOCK_SIZE_N and BLOCK_SIZE_K would be set later
787
+ bit = 4 if dtype == "int4_w4a16" else 8
788
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(M * topk,
789
+ block_shape[1], E, bit)
790
+ if use_moe_wna16_cuda:
791
+ config = {"BLOCK_SIZE_M": min(16, M)}
792
+ elif M <= 20:
793
+ config = {"BLOCK_SIZE_M": 16, "GROUP_SIZE_M": 1}
794
+ elif M <= 40:
795
+ config = {"BLOCK_SIZE_M": 32, "GROUP_SIZE_M": 1}
796
+ else:
797
+ config = {"BLOCK_SIZE_M": 64, "GROUP_SIZE_M": 1}
798
+ elif is_marlin:
799
+ for block_size_m in [8, 16, 32, 48, 64]:
800
+ if M * topk / E / block_size_m < 0.9:
801
+ break
802
+ return {"BLOCK_SIZE_M": block_size_m}
803
+ elif M <= E:
804
+ config = {
805
+ "BLOCK_SIZE_M": 16,
806
+ "BLOCK_SIZE_N": 32,
807
+ "BLOCK_SIZE_K": 64,
808
+ "GROUP_SIZE_M": 1,
809
+ }
810
+ else:
811
+ config = {
812
+ "BLOCK_SIZE_M": 64,
813
+ "BLOCK_SIZE_N": 64,
814
+ "BLOCK_SIZE_K": 32,
815
+ "GROUP_SIZE_M": 8,
816
+ }
817
+ return config
818
+
819
+
820
+ def try_get_optimal_moe_config(
821
+ w1_shape: tuple[int, ...],
822
+ w2_shape: tuple[int, ...],
823
+ top_k: int,
824
+ dtype: Optional[str],
825
+ M: int,
826
+ is_marlin: bool = False,
827
+ block_shape: Optional[list[int]] = None,
828
+ ) -> dict[str, int]:
829
+ from vllm.model_executor.layers.fused_moe import get_config
830
+ override_config = get_config()
831
+ if override_config:
832
+ config = override_config
833
+ else:
834
+ # First try to load optimal config from the file
835
+ E, _, N = w2_shape
836
+ if dtype == "int4_w4a16":
837
+ N = N * 2
838
+ block_n = block_shape[0] if block_shape else 0
839
+ block_k = block_shape[1] if block_shape else 0
840
+ configs = get_moe_configs(E, N, dtype, block_n, block_k)
841
+
842
+ if configs:
843
+ # If an optimal configuration map has been found, look up the
844
+ # optimal config
845
+ config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
846
+ else:
847
+ # Else use the default config
848
+ config = get_default_config(M, E, N, w1_shape[2], top_k, dtype,
849
+ is_marlin, block_shape)
850
+ return config
851
+
852
+
853
+ def vllm_topk_softmax(topk_weights: torch.Tensor, topk_indices: torch.Tensor,
854
+ token_expert_indices: torch.Tensor,
855
+ gating_output: torch.Tensor,
856
+ renormalize: bool) -> tuple[torch.Tensor, ...]:
857
+ ops.topk_softmax(
858
+ topk_weights,
859
+ topk_indices,
860
+ token_expert_indices,
861
+ gating_output,
862
+ )
863
+ if renormalize:
864
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
865
+
866
+ return topk_weights, topk_indices
867
+
868
+
869
+ def dispatch_topk_func() -> Callable[..., tuple[torch.Tensor, ...]]:
870
+ if is_rocm_aiter_moe_enabled():
871
+ from .rocm_aiter_fused_moe import rocm_aiter_topk_softmax
872
+ return rocm_aiter_topk_softmax
873
+ return vllm_topk_softmax
874
+
875
+
876
+ def fused_topk(
877
+ hidden_states: torch.Tensor,
878
+ gating_output: torch.Tensor,
879
+ topk: int,
880
+ renormalize: bool,
881
+ indices_type: Optional[torch.dtype] = None,
882
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
883
+ assert hidden_states.size(0) == gating_output.size(0), (
884
+ "Number of tokens mismatch")
885
+
886
+ M, _ = hidden_states.size()
887
+
888
+ topk_weights = torch.empty(M,
889
+ topk,
890
+ dtype=torch.float32,
891
+ device=hidden_states.device)
892
+ topk_ids = torch.empty(
893
+ M,
894
+ topk,
895
+ dtype=torch.int32 if indices_type is None else indices_type,
896
+ device=hidden_states.device)
897
+ token_expert_indices = torch.empty(M,
898
+ topk,
899
+ dtype=torch.int32,
900
+ device=hidden_states.device)
901
+
902
+ gating_output_float = gating_output.float() # TODO(woosuk): Optimize this.
903
+
904
+ topk_func = dispatch_topk_func()
905
+ topk_weights, topk_ids = topk_func(topk_weights, topk_ids,
906
+ token_expert_indices,
907
+ gating_output_float, renormalize)
908
+
909
+ return topk_weights, topk_ids, token_expert_indices
910
+
911
+
912
+ # This is used by the Deepseek-V2 and Deepseek-V3 model
913
+ @torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
914
+ def grouped_topk(
915
+ hidden_states: torch.Tensor,
916
+ gating_output: torch.Tensor,
917
+ topk: int,
918
+ renormalize: bool,
919
+ num_expert_group: int = 0,
920
+ topk_group: int = 0,
921
+ scoring_func: str = "softmax",
922
+ e_score_correction_bias: Optional[torch.Tensor] = None
923
+ ) -> tuple[torch.Tensor, torch.Tensor]:
924
+
925
+ assert hidden_states.size(0) == gating_output.size(0), (
926
+ "Number of tokens mismatch")
927
+
928
+ if scoring_func == "softmax":
929
+ scores = torch.softmax(gating_output, dim=-1)
930
+ elif scoring_func == "sigmoid":
931
+ scores = gating_output.sigmoid()
932
+ else:
933
+ raise ValueError(f"Unsupported scoring function: {scoring_func}")
934
+
935
+ num_token = scores.size(0)
936
+ if e_score_correction_bias is not None:
937
+ # Store original scores before applying correction bias. We use biased
938
+ # scores for expert selection but original scores for routing weights
939
+ original_scores = scores
940
+ scores = scores + e_score_correction_bias.unsqueeze(0)
941
+ group_scores = (scores.view(num_token, num_expert_group,
942
+ -1).topk(2, dim=-1)[0].sum(dim=-1))
943
+ else:
944
+ group_scores = scores.view(num_token, num_expert_group,
945
+ -1).max(dim=-1).values # [n, n_group]
946
+ group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
947
+ sorted=False)[1] # [n, top_k_group]
948
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
949
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
950
+ score_mask = group_mask.unsqueeze(-1).expand(
951
+ num_token, num_expert_group,
952
+ scores.size(-1) // num_expert_group).reshape(num_token, -1) # [n, e]
953
+ tmp_scores = scores.masked_fill(~score_mask.bool(),
954
+ float("-inf")) # [n, e]
955
+
956
+ if e_score_correction_bias is not None:
957
+ topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
958
+ # Use original unbiased scores for the routing weights
959
+ topk_weights = original_scores.gather(1, topk_ids)
960
+ else:
961
+ topk_weights, topk_ids = torch.topk(tmp_scores,
962
+ k=topk,
963
+ dim=-1,
964
+ sorted=False)
965
+
966
+ if renormalize:
967
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
968
+
969
+ return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
970
+
971
+
972
+ def get_config_dtype_str(
973
+ dtype: torch.dtype,
974
+ use_int4_w4a16: Optional[bool] = False,
975
+ use_int8_w8a16: Optional[bool] = False,
976
+ use_fp8_w8a8: Optional[bool] = False) -> Optional[str]:
977
+ if use_fp8_w8a8:
978
+ return "fp8_w8a8"
979
+ elif use_int8_w8a16:
980
+ return "int8_w8a16"
981
+ elif use_int4_w4a16:
982
+ return "int4_w4a16"
983
+ elif dtype == torch.float:
984
+ # avoiding cases where kernel fails when float32 MoE
985
+ # use fp16/bfloat16 configs
986
+ return "float32"
987
+ return None
988
+
989
+
990
+ def inplace_fused_experts(hidden_states: torch.Tensor,
991
+ w1: torch.Tensor,
992
+ w2: torch.Tensor,
993
+ topk_weights: torch.Tensor,
994
+ topk_ids: torch.Tensor,
995
+ activation: str = "silu",
996
+ apply_router_weight_on_input: bool = False,
997
+ use_fp8_w8a8: bool = False,
998
+ use_int8_w8a8: bool = False,
999
+ use_int8_w8a16: bool = False,
1000
+ use_int4_w4a16: bool = False,
1001
+ per_channel_quant: bool = False,
1002
+ global_num_experts: int = -1,
1003
+ expert_map: Optional[torch.Tensor] = None,
1004
+ w1_scale: Optional[torch.Tensor] = None,
1005
+ w2_scale: Optional[torch.Tensor] = None,
1006
+ w1_zp: Optional[torch.Tensor] = None,
1007
+ w2_zp: Optional[torch.Tensor] = None,
1008
+ a1_scale: Optional[torch.Tensor] = None,
1009
+ a2_scale: Optional[torch.Tensor] = None,
1010
+ block_shape: Optional[list[int]] = None) -> None:
1011
+ fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids, True,
1012
+ activation, apply_router_weight_on_input, use_fp8_w8a8,
1013
+ use_int8_w8a8, use_int8_w8a16, use_int4_w4a16,
1014
+ per_channel_quant, global_num_experts, expert_map,
1015
+ w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
1016
+ block_shape)
1017
+
1018
+
1019
+ def inplace_fused_experts_fake(
1020
+ hidden_states: torch.Tensor,
1021
+ w1: torch.Tensor,
1022
+ w2: torch.Tensor,
1023
+ topk_weights: torch.Tensor,
1024
+ topk_ids: torch.Tensor,
1025
+ activation: str = "silu",
1026
+ apply_router_weight_on_input: bool = False,
1027
+ use_fp8_w8a8: bool = False,
1028
+ use_int8_w8a8: bool = False,
1029
+ use_int8_w8a16: bool = False,
1030
+ use_int4_w4a16: bool = False,
1031
+ per_channel_quant: bool = False,
1032
+ global_num_experts: int = -1,
1033
+ expert_map: Optional[torch.Tensor] = None,
1034
+ w1_scale: Optional[torch.Tensor] = None,
1035
+ w2_scale: Optional[torch.Tensor] = None,
1036
+ w1_zp: Optional[torch.Tensor] = None,
1037
+ w2_zp: Optional[torch.Tensor] = None,
1038
+ a1_scale: Optional[torch.Tensor] = None,
1039
+ a2_scale: Optional[torch.Tensor] = None,
1040
+ block_shape: Optional[list[int]] = None) -> None:
1041
+ pass
1042
+
1043
+
1044
+ direct_register_custom_op(
1045
+ op_name="inplace_fused_experts",
1046
+ op_func=inplace_fused_experts,
1047
+ mutates_args=["hidden_states"],
1048
+ fake_impl=inplace_fused_experts_fake,
1049
+ tags=(torch.Tag.needs_fixed_stride_order, ),
1050
+ )
1051
+
1052
+
1053
+ def outplace_fused_experts(
1054
+ hidden_states: torch.Tensor,
1055
+ w1: torch.Tensor,
1056
+ w2: torch.Tensor,
1057
+ topk_weights: torch.Tensor,
1058
+ topk_ids: torch.Tensor,
1059
+ activation: str = "silu",
1060
+ apply_router_weight_on_input: bool = False,
1061
+ use_fp8_w8a8: bool = False,
1062
+ use_int8_w8a8: bool = False,
1063
+ use_int8_w8a16: bool = False,
1064
+ use_int4_w4a16: bool = False,
1065
+ per_channel_quant: bool = False,
1066
+ global_num_experts: int = -1,
1067
+ expert_map: Optional[torch.Tensor] = None,
1068
+ w1_scale: Optional[torch.Tensor] = None,
1069
+ w2_scale: Optional[torch.Tensor] = None,
1070
+ w1_zp: Optional[torch.Tensor] = None,
1071
+ w2_zp: Optional[torch.Tensor] = None,
1072
+ a1_scale: Optional[torch.Tensor] = None,
1073
+ a2_scale: Optional[torch.Tensor] = None,
1074
+ block_shape: Optional[list[int]] = None) -> torch.Tensor:
1075
+ return fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids,
1076
+ False, activation, apply_router_weight_on_input,
1077
+ use_fp8_w8a8, use_int8_w8a8, use_int8_w8a16,
1078
+ use_int4_w4a16, per_channel_quant,
1079
+ global_num_experts, expert_map, w1_scale,
1080
+ w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
1081
+ block_shape)
1082
+
1083
+
1084
+ def outplace_fused_experts_fake(
1085
+ hidden_states: torch.Tensor,
1086
+ w1: torch.Tensor,
1087
+ w2: torch.Tensor,
1088
+ topk_weights: torch.Tensor,
1089
+ topk_ids: torch.Tensor,
1090
+ activation: str = "silu",
1091
+ use_fp8_w8a8: bool = False,
1092
+ use_int8_w8a8: bool = False,
1093
+ use_int8_w8a16: bool = False,
1094
+ use_int4_w4a16: bool = False,
1095
+ per_channel_quant: bool = False,
1096
+ global_num_experts: int = -1,
1097
+ expert_map: Optional[torch.Tensor] = None,
1098
+ w1_scale: Optional[torch.Tensor] = None,
1099
+ w2_scale: Optional[torch.Tensor] = None,
1100
+ w1_zp: Optional[torch.Tensor] = None,
1101
+ w2_zp: Optional[torch.Tensor] = None,
1102
+ a1_scale: Optional[torch.Tensor] = None,
1103
+ a2_scale: Optional[torch.Tensor] = None,
1104
+ block_shape: Optional[list[int]] = None) -> torch.Tensor:
1105
+ return torch.empty_like(hidden_states)
1106
+
1107
+
1108
+ direct_register_custom_op(
1109
+ op_name="outplace_fused_experts",
1110
+ op_func=outplace_fused_experts,
1111
+ mutates_args=[],
1112
+ fake_impl=outplace_fused_experts_fake,
1113
+ tags=(torch.Tag.needs_fixed_stride_order, ),
1114
+ )
1115
+
1116
+
1117
+ def torch_vllm_inplace_fused_experts(**kwargs) -> torch.Tensor:
1118
+ torch.ops.vllm.inplace_fused_experts(**kwargs)
1119
+ hidden_states = kwargs['hidden_states']
1120
+ return hidden_states
1121
+
1122
+
1123
+ def torch_vllm_outplace_fused_experts(**kwargs) -> torch.Tensor:
1124
+ return torch.ops.vllm.outplace_fused_experts(**kwargs)
1125
+
1126
+
1127
+ def dispatch_fused_experts_func(inplace: bool) -> Callable[..., torch.Tensor]:
1128
+ if inplace:
1129
+ return torch_vllm_inplace_fused_experts
1130
+ return torch_vllm_outplace_fused_experts
1131
+
1132
+
1133
+ # TODO (bnell): replace this with modular op. Can get rid of inplace/outplace
1134
+ # torch ops.
1135
+ def fused_experts(
1136
+ hidden_states: torch.Tensor,
1137
+ w1: torch.Tensor,
1138
+ w2: torch.Tensor,
1139
+ topk_weights: torch.Tensor,
1140
+ topk_ids: torch.Tensor,
1141
+ inplace: bool = False,
1142
+ activation: str = "silu",
1143
+ apply_router_weight_on_input: bool = False,
1144
+ use_fp8_w8a8: bool = False,
1145
+ use_int8_w8a8: bool = False,
1146
+ use_int8_w8a16: bool = False,
1147
+ use_int4_w4a16: bool = False,
1148
+ per_channel_quant: bool = False,
1149
+ global_num_experts: int = -1,
1150
+ expert_map: Optional[torch.Tensor] = None,
1151
+ w1_scale: Optional[torch.Tensor] = None,
1152
+ w2_scale: Optional[torch.Tensor] = None,
1153
+ w1_zp: Optional[torch.Tensor] = None,
1154
+ w2_zp: Optional[torch.Tensor] = None,
1155
+ a1_scale: Optional[torch.Tensor] = None,
1156
+ a2_scale: Optional[torch.Tensor] = None,
1157
+ block_shape: Optional[list[int]] = None,
1158
+ allow_deep_gemm: bool = False,
1159
+ allow_cutlass_block_scaled_grouped_gemm: bool = False) -> torch.Tensor:
1160
+ # For now, disable DeepGemm for small N (<= 512) until better
1161
+ # permute/unpermute ops are available.
1162
+ N = w1.size(1)
1163
+ if (allow_deep_gemm and use_fp8_w8a8 and N > 512
1164
+ and _valid_deep_gemm(hidden_states, w1, w2)):
1165
+ assert apply_router_weight_on_input is False
1166
+ return deep_gemm_moe_fp8(
1167
+ hidden_states=hidden_states,
1168
+ w1=w1,
1169
+ w2=w2,
1170
+ topk_weights=topk_weights,
1171
+ topk_ids=topk_ids,
1172
+ inplace=inplace,
1173
+ activation=activation,
1174
+ global_num_experts=global_num_experts,
1175
+ expert_map=expert_map,
1176
+ w1_scale=w1_scale,
1177
+ w2_scale=w2_scale,
1178
+ a1_scale=a1_scale,
1179
+ a2_scale=a2_scale,
1180
+ apply_router_weight_on_input=apply_router_weight_on_input,
1181
+ )
1182
+ elif (allow_cutlass_block_scaled_grouped_gemm and use_fp8_w8a8
1183
+ and _valid_cutlass_block_scaled_grouped_gemm(hidden_states, w1, w2)):
1184
+ assert apply_router_weight_on_input is False
1185
+ return run_cutlass_block_scaled_fused_experts(
1186
+ a=hidden_states,
1187
+ w1=w1,
1188
+ w2=w2,
1189
+ w1_scale=w1_scale,
1190
+ w2_scale=w2_scale,
1191
+ topk_weights=topk_weights,
1192
+ topk_ids=topk_ids)
1193
+ else:
1194
+ return dispatch_fused_experts_func(inplace)(
1195
+ hidden_states=hidden_states,
1196
+ w1=w1,
1197
+ w2=w2,
1198
+ topk_weights=topk_weights,
1199
+ topk_ids=topk_ids,
1200
+ activation=activation,
1201
+ apply_router_weight_on_input=apply_router_weight_on_input,
1202
+ use_fp8_w8a8=use_fp8_w8a8,
1203
+ use_int8_w8a8=use_int8_w8a8,
1204
+ use_int8_w8a16=use_int8_w8a16,
1205
+ use_int4_w4a16=use_int4_w4a16,
1206
+ per_channel_quant=per_channel_quant,
1207
+ global_num_experts=global_num_experts,
1208
+ expert_map=expert_map,
1209
+ w1_scale=w1_scale,
1210
+ w2_scale=w2_scale,
1211
+ w1_zp=w1_zp,
1212
+ w2_zp=w2_zp,
1213
+ a1_scale=a1_scale,
1214
+ a2_scale=a2_scale,
1215
+ block_shape=block_shape)
1216
+
1217
+
1218
+ def fused_experts_impl(
1219
+ hidden_states: torch.Tensor,
1220
+ w1: torch.Tensor,
1221
+ w2: torch.Tensor,
1222
+ topk_weights: torch.Tensor,
1223
+ topk_ids: torch.Tensor,
1224
+ inplace: bool = False,
1225
+ activation: str = "silu",
1226
+ apply_router_weight_on_input: bool = False,
1227
+ use_fp8_w8a8: bool = False,
1228
+ use_int8_w8a8: bool = False,
1229
+ use_int8_w8a16: bool = False,
1230
+ use_int4_w4a16: bool = False,
1231
+ per_channel_quant: bool = False,
1232
+ global_num_experts: int = -1,
1233
+ expert_map: Optional[torch.Tensor] = None,
1234
+ w1_scale: Optional[torch.Tensor] = None,
1235
+ w2_scale: Optional[torch.Tensor] = None,
1236
+ w1_zp: Optional[torch.Tensor] = None,
1237
+ w2_zp: Optional[torch.Tensor] = None,
1238
+ a1_scale: Optional[torch.Tensor] = None,
1239
+ a2_scale: Optional[torch.Tensor] = None,
1240
+ block_shape: Optional[list[int]] = None,
1241
+ ) -> torch.Tensor:
1242
+ # Check constraints.
1243
+ if use_int4_w4a16:
1244
+ assert hidden_states.size(1) // 2 == w1.size(2), (
1245
+ "Hidden size mismatch")
1246
+ else:
1247
+ assert hidden_states.size(1) == w1.size(2), (
1248
+ f"Hidden size mismatch {hidden_states.size(1)} != {w1.size(2)}")
1249
+
1250
+ assert topk_weights.size() == topk_ids.size(), "topk shape mismatch"
1251
+ assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
1252
+ assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
1253
+ assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
1254
+ assert hidden_states.dtype in [
1255
+ torch.float32, torch.float16, torch.bfloat16
1256
+ ]
1257
+
1258
+ num_tokens = hidden_states.size(0)
1259
+ E, N, _ = w1.size()
1260
+ K = w2.size(1)
1261
+ if global_num_experts == -1:
1262
+ global_num_experts = E
1263
+ top_k_num = topk_ids.size(1)
1264
+ # We execute the fused_moe kernel in chunks to circumvent this issue:
1265
+ # https://github.com/vllm-project/vllm/issues/5938
1266
+ CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
1267
+ M = min(num_tokens, CHUNK_SIZE)
1268
+ config_dtype = get_config_dtype_str(use_fp8_w8a8=use_fp8_w8a8,
1269
+ use_int8_w8a16=use_int8_w8a16,
1270
+ use_int4_w4a16=use_int4_w4a16,
1271
+ dtype=hidden_states.dtype)
1272
+
1273
+ qtype = get_config_quant_dtype(use_fp8_w8a8=use_fp8_w8a8,
1274
+ use_int8_w8a8=use_int8_w8a8,
1275
+ use_int8_w8a16=use_int8_w8a16,
1276
+ use_int4_w4a16=use_int4_w4a16)
1277
+
1278
+ get_config_func = functools.partial(
1279
+ try_get_optimal_moe_config,
1280
+ w1.size(),
1281
+ w2.size(),
1282
+ top_k_num,
1283
+ config_dtype,
1284
+ block_shape=block_shape,
1285
+ )
1286
+
1287
+ config = get_config_func(M)
1288
+
1289
+ # We can reuse the memory between these because by the time we need
1290
+ # cache3, we're done with cache1
1291
+ cache13 = torch.empty(M * top_k_num * max(N, K),
1292
+ device=hidden_states.device,
1293
+ dtype=hidden_states.dtype)
1294
+ intermediate_cache1 = cache13[:M * top_k_num * N].view(M, top_k_num, N)
1295
+ intermediate_cache3 = cache13[:M * top_k_num * K].view(M, top_k_num, K)
1296
+
1297
+ # This needs separate memory since it's used concurrently with cache1
1298
+ intermediate_cache2 = torch.empty((M * top_k_num, N // 2),
1299
+ device=hidden_states.device,
1300
+ dtype=hidden_states.dtype)
1301
+
1302
+ if hidden_states.dtype == torch.bfloat16:
1303
+ compute_type = tl.bfloat16
1304
+ elif hidden_states.dtype == torch.float16:
1305
+ compute_type = tl.float16
1306
+ elif hidden_states.dtype == torch.float32:
1307
+ compute_type = tl.float32
1308
+ else:
1309
+ raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
1310
+
1311
+ if inplace:
1312
+ out_hidden_states = hidden_states
1313
+ else:
1314
+ out_hidden_states = torch.empty_like(hidden_states)
1315
+
1316
+ for chunk in range((num_tokens // CHUNK_SIZE) + 1):
1317
+ begin_chunk_idx, end_chunk_idx = (chunk * CHUNK_SIZE,
1318
+ min((chunk + 1) * CHUNK_SIZE,
1319
+ num_tokens))
1320
+ curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
1321
+ tokens_in_chunk, _ = curr_hidden_states.size()
1322
+
1323
+ if tokens_in_chunk == 0:
1324
+ break
1325
+
1326
+ if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
1327
+ # Adjust the intermediate cache size and config for the last
1328
+ # chunk. Note that in most cases we only have one chunk
1329
+ # so the cache size and config are already set correctly and
1330
+ # do not need to be adjusted.
1331
+ intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
1332
+ intermediate_cache2 = intermediate_cache2[:tokens_in_chunk *
1333
+ topk_ids.size(1)]
1334
+ intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
1335
+ config = get_config_func(tokens_in_chunk)
1336
+
1337
+ curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
1338
+ curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
1339
+
1340
+ qcurr_hidden_states, a1q_scale = moe_kernel_quantize_input(
1341
+ A=curr_hidden_states,
1342
+ A_scale=a1_scale,
1343
+ quant_dtype=qtype,
1344
+ per_act_token_quant=per_channel_quant,
1345
+ block_shape=block_shape)
1346
+
1347
+ sorted_token_ids, expert_ids, num_tokens_post_padded = (
1348
+ moe_align_block_size(curr_topk_ids, config['BLOCK_SIZE_M'],
1349
+ global_num_experts, expert_map))
1350
+
1351
+ invoke_fused_moe_kernel(qcurr_hidden_states,
1352
+ w1,
1353
+ intermediate_cache1,
1354
+ a1q_scale,
1355
+ w1_scale,
1356
+ w1_zp,
1357
+ curr_topk_weights,
1358
+ sorted_token_ids,
1359
+ expert_ids,
1360
+ num_tokens_post_padded,
1361
+ apply_router_weight_on_input,
1362
+ top_k_num,
1363
+ config,
1364
+ compute_type=compute_type,
1365
+ use_fp8_w8a8=use_fp8_w8a8,
1366
+ use_int8_w8a8=use_int8_w8a8,
1367
+ use_int8_w8a16=use_int8_w8a16,
1368
+ use_int4_w4a16=use_int4_w4a16,
1369
+ per_channel_quant=per_channel_quant,
1370
+ block_shape=block_shape)
1371
+
1372
+ if activation == "silu":
1373
+ torch.ops._C.silu_and_mul(intermediate_cache2,
1374
+ intermediate_cache1.view(-1, N))
1375
+ elif activation == "gelu":
1376
+ torch.ops._C.gelu_and_mul(intermediate_cache2,
1377
+ intermediate_cache1.view(-1, N))
1378
+ else:
1379
+ raise ValueError(f"Unsupported FusedMoe activation: {activation}")
1380
+
1381
+ qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
1382
+ A=intermediate_cache2,
1383
+ A_scale=a2_scale,
1384
+ quant_dtype=qtype,
1385
+ per_act_token_quant=per_channel_quant,
1386
+ block_shape=block_shape)
1387
+
1388
+ invoke_fused_moe_kernel(qintermediate_cache2,
1389
+ w2,
1390
+ intermediate_cache3,
1391
+ a2q_scale,
1392
+ w2_scale,
1393
+ w2_zp,
1394
+ curr_topk_weights,
1395
+ sorted_token_ids,
1396
+ expert_ids,
1397
+ num_tokens_post_padded,
1398
+ not apply_router_weight_on_input,
1399
+ 1,
1400
+ config,
1401
+ compute_type=compute_type,
1402
+ use_fp8_w8a8=use_fp8_w8a8,
1403
+ use_int8_w8a8=use_int8_w8a8,
1404
+ use_int8_w8a16=use_int8_w8a16,
1405
+ use_int4_w4a16=use_int4_w4a16,
1406
+ per_channel_quant=per_channel_quant,
1407
+ block_shape=block_shape)
1408
+
1409
+ ops.moe_sum(intermediate_cache3.view(*intermediate_cache3.size()),
1410
+ out_hidden_states[begin_chunk_idx:end_chunk_idx])
1411
+
1412
+ return out_hidden_states
1413
+
1414
+
1415
+ def fused_moe(
1416
+ hidden_states: torch.Tensor,
1417
+ w1: torch.Tensor,
1418
+ w2: torch.Tensor,
1419
+ gating_output: torch.Tensor,
1420
+ topk: int,
1421
+ renormalize: bool,
1422
+ inplace: bool = False,
1423
+ activation: str = "silu",
1424
+ use_grouped_topk: bool = False,
1425
+ num_expert_group: Optional[int] = None,
1426
+ topk_group: Optional[int] = None,
1427
+ custom_routing_function: Optional[Callable] = None,
1428
+ use_fp8_w8a8: bool = False,
1429
+ use_int8_w8a8: bool = False,
1430
+ use_int8_w8a16: bool = False,
1431
+ use_int4_w4a16: bool = False,
1432
+ per_channel_quant: bool = False,
1433
+ global_num_experts: int = -1,
1434
+ expert_map: Optional[torch.Tensor] = None,
1435
+ w1_scale: Optional[torch.Tensor] = None,
1436
+ w2_scale: Optional[torch.Tensor] = None,
1437
+ w1_zp: Optional[torch.Tensor] = None,
1438
+ w2_zp: Optional[torch.Tensor] = None,
1439
+ a1_scale: Optional[torch.Tensor] = None,
1440
+ a2_scale: Optional[torch.Tensor] = None,
1441
+ block_shape: Optional[list[int]] = None,
1442
+ ) -> torch.Tensor:
1443
+ """
1444
+ This function computes a Mixture of Experts (MoE) layer using two sets of
1445
+ weights, w1 and w2, and top-k gating mechanism.
1446
+
1447
+ Parameters:
1448
+ - hidden_states (torch.Tensor): The input tensor to the MoE layer.
1449
+ - w1 (torch.Tensor): The first set of expert weights.
1450
+ - w2 (torch.Tensor): The second set of expert weights.
1451
+ - gating_output (torch.Tensor): The output of the gating operation
1452
+ (before softmax).
1453
+ - topk (int): The number of top-k experts to select.
1454
+ - renormalize (bool): If True, renormalize the top-k weights to sum to 1.
1455
+ - inplace (bool): If True, perform the operation in-place.
1456
+ Defaults to False.
1457
+ - activation (str): The activation function to apply after the first
1458
+ MoE layer.
1459
+ - num_expert_group: Optional[int]: additional parameter for grouped_topk
1460
+ - topk_group: Optional[int]: additional parameter for grouped_topk
1461
+ - use_grouped_topk: If True, use grouped_topk instead of fused_topk
1462
+ note: Deepseekv2 model uses grouped_topk
1463
+ - use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
1464
+ products for w1 and w2. Defaults to False.
1465
+ - use_int8_w8a8 (bool): If True, use int8 arithmetic to compute the inner
1466
+ products for w1 and w2. Defaults to False.
1467
+ - use_int8_w8a16 (bool): If True, use matmul of int8 weight and bf16/fp16
1468
+ activation to compute the inner products for w1 and w2.
1469
+ Defaults to False.
1470
+ - use_int4_w4a16 (bool): If True, use matmul of int4 weight and bf16/fp16
1471
+ activation to compute the inner products for w1 and w2.
1472
+ Defaults to False.
1473
+ - global_num_experts (int): The total number of experts in the global
1474
+ expert space.
1475
+ - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices
1476
+ from the global expert space to the local expert space of the expert
1477
+ parallel shard.
1478
+ - w1_scale (Optional[torch.Tensor]): Optional scale to be used for
1479
+ w1.
1480
+ - w2_scale (Optional[torch.Tensor]): Optional scale to be used for
1481
+ w2.
1482
+ - a1_scale (Optional[torch.Tensor]): Optional scale to be used for
1483
+ a1.
1484
+ - a2_scale (Optional[torch.Tensor]): Optional scale to be used for
1485
+ a2.
1486
+ - block_shape: (Optional[list[int]]): Optional block size for block-wise
1487
+ quantization.
1488
+
1489
+ Returns:
1490
+ - torch.Tensor: The output tensor after applying the MoE layer.
1491
+ """
1492
+
1493
+ if use_grouped_topk:
1494
+ assert num_expert_group is not None and topk_group is not None
1495
+ topk_weights, topk_ids = grouped_topk(hidden_states, gating_output,
1496
+ topk, renormalize,
1497
+ num_expert_group, topk_group)
1498
+ elif custom_routing_function is None:
1499
+ topk_weights, topk_ids, token_expert_indices = fused_topk(
1500
+ hidden_states, gating_output, topk, renormalize)
1501
+ else:
1502
+ topk_weights, topk_ids = custom_routing_function(
1503
+ hidden_states, gating_output, topk, renormalize)
1504
+
1505
+ return fused_experts(hidden_states,
1506
+ w1,
1507
+ w2,
1508
+ topk_weights,
1509
+ topk_ids,
1510
+ inplace=inplace,
1511
+ activation=activation,
1512
+ use_fp8_w8a8=use_fp8_w8a8,
1513
+ use_int8_w8a8=use_int8_w8a8,
1514
+ use_int8_w8a16=use_int8_w8a16,
1515
+ use_int4_w4a16=use_int4_w4a16,
1516
+ per_channel_quant=per_channel_quant,
1517
+ global_num_experts=global_num_experts,
1518
+ expert_map=expert_map,
1519
+ w1_scale=w1_scale,
1520
+ w2_scale=w2_scale,
1521
+ w1_zp=w1_zp,
1522
+ w2_zp=w2_zp,
1523
+ a1_scale=a1_scale,
1524
+ a2_scale=a2_scale,
1525
+ block_shape=block_shape)
1526
+
1527
+
1528
+ class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
1529
+
1530
+ def __init__(
1531
+ self,
1532
+ use_fp8_w8a8: bool = False,
1533
+ use_int8_w8a8: bool = False,
1534
+ use_int8_w8a16: bool = False,
1535
+ use_int4_w4a16: bool = False,
1536
+ per_act_token_quant: bool = False,
1537
+ block_shape: Optional[list[int]] = None,
1538
+ ):
1539
+ super().__init__(
1540
+ FusedMoEQuantConfig.make(
1541
+ use_fp8_w8a8=use_fp8_w8a8,
1542
+ use_int8_w8a8=use_int8_w8a8,
1543
+ use_int8_w8a16=use_int8_w8a16,
1544
+ use_int4_w4a16=use_int4_w4a16,
1545
+ per_act_token_quant=per_act_token_quant,
1546
+ block_shape=block_shape,
1547
+ ))
1548
+
1549
+ self.use_fp8_w8a8 = use_fp8_w8a8
1550
+ self.use_int4_w4a16 = use_int4_w4a16
1551
+ self.use_int8_w8a8 = use_int8_w8a8
1552
+ self.use_int8_w8a16 = use_int8_w8a16
1553
+
1554
+ @property
1555
+ def activation_formats(
1556
+ self
1557
+ ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
1558
+ return (mk.FusedMoEActivationFormat.Standard,
1559
+ mk.FusedMoEActivationFormat.Standard)
1560
+
1561
+ def supports_chunking(self) -> bool:
1562
+ return True
1563
+
1564
+ def supports_expert_map(self) -> bool:
1565
+ return True
1566
+
1567
+ def workspace_shapes(
1568
+ self,
1569
+ a: torch.Tensor,
1570
+ aq: torch.Tensor,
1571
+ M: int,
1572
+ N: int,
1573
+ K: int,
1574
+ topk: int,
1575
+ global_num_experts: int,
1576
+ local_num_experts: int,
1577
+ ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
1578
+ workspace1 = (M, topk, max(N * 2, K))
1579
+ workspace2 = (M, topk, N)
1580
+ output = (M, topk, K)
1581
+ return (workspace1, workspace2, output, a.dtype)
1582
+
1583
+ def apply(
1584
+ self,
1585
+ output: torch.Tensor,
1586
+ hidden_states: torch.Tensor,
1587
+ w1: torch.Tensor,
1588
+ w2: torch.Tensor,
1589
+ topk_ids: torch.Tensor,
1590
+ activation: str,
1591
+ global_num_experts: int,
1592
+ expert_map: Optional[torch.Tensor],
1593
+ w1_scale: Optional[torch.Tensor],
1594
+ w2_scale: Optional[torch.Tensor],
1595
+ w1_zp: Optional[torch.Tensor],
1596
+ w2_zp: Optional[torch.Tensor],
1597
+ a1q_scale: Optional[torch.Tensor],
1598
+ a2_scale: Optional[torch.Tensor],
1599
+ workspace13: torch.Tensor,
1600
+ workspace2: torch.Tensor,
1601
+ expert_num_tokens: Optional[torch.Tensor],
1602
+ ):
1603
+ # Check constraints.
1604
+ if self.use_int4_w4a16:
1605
+ assert hidden_states.size(-1) // 2 == w1.size(2), (
1606
+ "Hidden size mismatch")
1607
+ else:
1608
+ assert hidden_states.size(-1) == w1.size(2), \
1609
+ (f"Hidden size mismatch {hidden_states.size(-1)} "
1610
+ f"!= {w1.size(2)}")
1611
+
1612
+ assert hidden_states.is_contiguous(
1613
+ ), "Hidden_states must be contiguous"
1614
+ assert hidden_states.dim() == 2
1615
+ assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
1616
+ assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
1617
+ assert hidden_states.dtype in [
1618
+ torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
1619
+ ]
1620
+
1621
+ E, num_tokens, N, K, top_k_num = mk._moe_problem_size(
1622
+ hidden_states, w1, w2, topk_ids)
1623
+
1624
+ if global_num_experts == -1:
1625
+ global_num_experts = E
1626
+
1627
+ config_dtype = get_config_dtype_str(use_fp8_w8a8=self.use_fp8_w8a8,
1628
+ use_int8_w8a16=self.use_int8_w8a16,
1629
+ use_int4_w4a16=self.use_int4_w4a16,
1630
+ dtype=hidden_states.dtype)
1631
+
1632
+ config = try_get_optimal_moe_config(
1633
+ w1.size(),
1634
+ w2.size(),
1635
+ top_k_num,
1636
+ config_dtype,
1637
+ num_tokens,
1638
+ block_shape=self.block_shape,
1639
+ )
1640
+
1641
+ if hidden_states.dtype == torch.bfloat16:
1642
+ compute_type = tl.bfloat16
1643
+ elif hidden_states.dtype == torch.float16:
1644
+ compute_type = tl.float16
1645
+ elif hidden_states.dtype == torch.float32:
1646
+ compute_type = tl.float32
1647
+ elif hidden_states.dtype == torch.float8_e4m3fn:
1648
+ compute_type = tl.bfloat16
1649
+ else:
1650
+ raise ValueError(
1651
+ f"Unsupported compute_type: {hidden_states.dtype}")
1652
+
1653
+ # We can reuse the memory between these because by the time we need
1654
+ # cache3, we're done with cache1
1655
+ intermediate_cache1 = _resize_cache(workspace13,
1656
+ (num_tokens, top_k_num, N))
1657
+ intermediate_cache2 = _resize_cache(workspace2,
1658
+ (num_tokens * top_k_num, N // 2))
1659
+
1660
+ sorted_token_ids, expert_ids, num_tokens_post_padded = (
1661
+ moe_align_block_size(topk_ids, config['BLOCK_SIZE_M'],
1662
+ global_num_experts, expert_map))
1663
+
1664
+ invoke_fused_moe_kernel(hidden_states,
1665
+ w1,
1666
+ intermediate_cache1,
1667
+ a1q_scale,
1668
+ w1_scale,
1669
+ w1_zp,
1670
+ None,
1671
+ sorted_token_ids,
1672
+ expert_ids,
1673
+ num_tokens_post_padded,
1674
+ False,
1675
+ top_k_num,
1676
+ config,
1677
+ compute_type=compute_type,
1678
+ use_fp8_w8a8=self.use_fp8_w8a8,
1679
+ use_int8_w8a8=self.use_int8_w8a8,
1680
+ use_int8_w8a16=self.use_int8_w8a16,
1681
+ use_int4_w4a16=self.use_int4_w4a16,
1682
+ per_channel_quant=self.per_act_token_quant,
1683
+ block_shape=self.block_shape)
1684
+
1685
+ self.activation(activation, intermediate_cache2,
1686
+ intermediate_cache1.view(-1, N))
1687
+
1688
+ a2q_scale: Optional[torch.Tensor] = None
1689
+
1690
+ qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
1691
+ intermediate_cache2, a2_scale, self.quant_dtype,
1692
+ self.per_act_token_quant, self.block_shape)
1693
+
1694
+ invoke_fused_moe_kernel(qintermediate_cache2,
1695
+ w2,
1696
+ output,
1697
+ a2q_scale,
1698
+ w2_scale,
1699
+ w2_zp,
1700
+ None,
1701
+ sorted_token_ids,
1702
+ expert_ids,
1703
+ num_tokens_post_padded,
1704
+ False,
1705
+ 1,
1706
+ config,
1707
+ compute_type=compute_type,
1708
+ use_fp8_w8a8=self.use_fp8_w8a8,
1709
+ use_int8_w8a8=self.use_int8_w8a8,
1710
+ use_int8_w8a16=self.use_int8_w8a16,
1711
+ use_int4_w4a16=self.use_int4_w4a16,
1712
+ per_channel_quant=self.per_act_token_quant,
1713
+ block_shape=self.block_shape)
1714
+
1715
+
1716
+ def modular_triton_fused_moe(
1717
+ use_fp8_w8a8: bool,
1718
+ use_int8_w8a8: bool,
1719
+ use_int8_w8a16: bool,
1720
+ use_int4_w4a16: bool,
1721
+ per_act_token_quant: bool,
1722
+ block_shape: Optional[list[int]] = None,
1723
+ ) -> mk.FusedMoEModularKernel:
1724
+ return mk.FusedMoEModularKernel(
1725
+ MoEPrepareAndFinalizeNoEP(),
1726
+ TritonExperts(
1727
+ use_fp8_w8a8=use_fp8_w8a8,
1728
+ use_int8_w8a8=use_int8_w8a8,
1729
+ use_int8_w8a16=use_int8_w8a16,
1730
+ use_int4_w4a16=use_int4_w4a16,
1731
+ per_act_token_quant=per_act_token_quant,
1732
+ block_shape=block_shape,
1733
+ ),
1734
+ )