vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1236) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +214 -0
  3. vllm/_custom_ops.py +1915 -0
  4. vllm/_ipex_ops.py +350 -0
  5. vllm/_version.py +34 -0
  6. vllm/adapter_commons/__init__.py +0 -0
  7. vllm/adapter_commons/layers.py +16 -0
  8. vllm/adapter_commons/models.py +106 -0
  9. vllm/adapter_commons/request.py +26 -0
  10. vllm/adapter_commons/utils.py +93 -0
  11. vllm/adapter_commons/worker_manager.py +39 -0
  12. vllm/assets/__init__.py +0 -0
  13. vllm/assets/audio.py +45 -0
  14. vllm/assets/base.py +41 -0
  15. vllm/assets/image.py +34 -0
  16. vllm/assets/video.py +139 -0
  17. vllm/attention/__init__.py +20 -0
  18. vllm/attention/backends/__init__.py +0 -0
  19. vllm/attention/backends/abstract.py +325 -0
  20. vllm/attention/backends/blocksparse_attn.py +465 -0
  21. vllm/attention/backends/cpu_mla.py +307 -0
  22. vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
  23. vllm/attention/backends/flash_attn.py +1008 -0
  24. vllm/attention/backends/flashinfer.py +1107 -0
  25. vllm/attention/backends/flashmla.py +244 -0
  26. vllm/attention/backends/hpu_attn.py +318 -0
  27. vllm/attention/backends/ipex_attn.py +403 -0
  28. vllm/attention/backends/mla/__init__.py +0 -0
  29. vllm/attention/backends/mla/common.py +1391 -0
  30. vllm/attention/backends/pallas.py +356 -0
  31. vllm/attention/backends/placeholder_attn.py +400 -0
  32. vllm/attention/backends/rocm_aiter_mla.py +435 -0
  33. vllm/attention/backends/rocm_flash_attn.py +1015 -0
  34. vllm/attention/backends/torch_sdpa.py +707 -0
  35. vllm/attention/backends/triton_mla.py +115 -0
  36. vllm/attention/backends/utils.py +610 -0
  37. vllm/attention/backends/xformers.py +807 -0
  38. vllm/attention/layer.py +481 -0
  39. vllm/attention/ops/__init__.py +0 -0
  40. vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
  41. vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
  42. vllm/attention/ops/blocksparse_attention/interface.py +239 -0
  43. vllm/attention/ops/blocksparse_attention/utils.py +246 -0
  44. vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
  45. vllm/attention/ops/flashmla.py +116 -0
  46. vllm/attention/ops/hpu_paged_attn.py +88 -0
  47. vllm/attention/ops/ipex_attn.py +195 -0
  48. vllm/attention/ops/merge_attn_states.py +43 -0
  49. vllm/attention/ops/nki_flash_attn.py +903 -0
  50. vllm/attention/ops/paged_attn.py +256 -0
  51. vllm/attention/ops/pallas_kv_cache_update.py +120 -0
  52. vllm/attention/ops/prefix_prefill.py +902 -0
  53. vllm/attention/ops/rocm_aiter_mla.py +100 -0
  54. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  55. vllm/attention/ops/triton_decode_attention.py +674 -0
  56. vllm/attention/ops/triton_flash_attention.py +984 -0
  57. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  58. vllm/attention/ops/triton_unified_attention.py +738 -0
  59. vllm/attention/selector.py +214 -0
  60. vllm/attention/utils/fa_utils.py +72 -0
  61. vllm/beam_search.py +87 -0
  62. vllm/benchmarks/__init__.py +0 -0
  63. vllm/benchmarks/datasets.py +1441 -0
  64. vllm/benchmarks/endpoint_request_func.py +393 -0
  65. vllm/benchmarks/latency.py +168 -0
  66. vllm/benchmarks/serve.py +1063 -0
  67. vllm/benchmarks/throughput.py +609 -0
  68. vllm/benchmarks/utils.py +70 -0
  69. vllm/collect_env.py +820 -0
  70. vllm/compilation/__init__.py +0 -0
  71. vllm/compilation/activation_quant_fusion.py +89 -0
  72. vllm/compilation/backends.py +610 -0
  73. vllm/compilation/base_piecewise_backend.py +72 -0
  74. vllm/compilation/collective_fusion.py +127 -0
  75. vllm/compilation/compiler_interface.py +564 -0
  76. vllm/compilation/counter.py +41 -0
  77. vllm/compilation/cuda_piecewise_backend.py +218 -0
  78. vllm/compilation/decorators.py +250 -0
  79. vllm/compilation/fix_functionalization.py +191 -0
  80. vllm/compilation/fusion.py +645 -0
  81. vllm/compilation/fusion_attn.py +166 -0
  82. vllm/compilation/fx_utils.py +84 -0
  83. vllm/compilation/inductor_pass.py +115 -0
  84. vllm/compilation/monitor.py +39 -0
  85. vllm/compilation/multi_output_match.py +109 -0
  86. vllm/compilation/noop_elimination.py +165 -0
  87. vllm/compilation/pass_manager.py +82 -0
  88. vllm/compilation/sequence_parallelism.py +482 -0
  89. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  90. vllm/compilation/vllm_inductor_pass.py +70 -0
  91. vllm/compilation/wrapper.py +135 -0
  92. vllm/config.py +4913 -0
  93. vllm/connections.py +174 -0
  94. vllm/core/__init__.py +0 -0
  95. vllm/core/block/__init__.py +0 -0
  96. vllm/core/block/block_table.py +399 -0
  97. vllm/core/block/common.py +371 -0
  98. vllm/core/block/cpu_gpu_block_allocator.py +441 -0
  99. vllm/core/block/interfaces.py +319 -0
  100. vllm/core/block/naive_block.py +466 -0
  101. vllm/core/block/prefix_caching_block.py +1135 -0
  102. vllm/core/block/utils.py +28 -0
  103. vllm/core/block_manager.py +525 -0
  104. vllm/core/evictor.py +157 -0
  105. vllm/core/interfaces.py +139 -0
  106. vllm/core/placeholder_block_space_manager.py +103 -0
  107. vllm/core/scheduler.py +2126 -0
  108. vllm/device_allocator/__init__.py +0 -0
  109. vllm/device_allocator/cumem.py +281 -0
  110. vllm/distributed/__init__.py +6 -0
  111. vllm/distributed/communication_op.py +41 -0
  112. vllm/distributed/device_communicators/__init__.py +0 -0
  113. vllm/distributed/device_communicators/all2all.py +264 -0
  114. vllm/distributed/device_communicators/base_device_communicator.py +260 -0
  115. vllm/distributed/device_communicators/cpu_communicator.py +145 -0
  116. vllm/distributed/device_communicators/cuda_communicator.py +194 -0
  117. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  118. vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
  119. vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
  120. vllm/distributed/device_communicators/hpu_communicator.py +46 -0
  121. vllm/distributed/device_communicators/neuron_communicator.py +20 -0
  122. vllm/distributed/device_communicators/pynccl.py +218 -0
  123. vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
  124. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  125. vllm/distributed/device_communicators/shm_broadcast.py +585 -0
  126. vllm/distributed/device_communicators/tpu_communicator.py +103 -0
  127. vllm/distributed/device_communicators/xpu_communicator.py +55 -0
  128. vllm/distributed/eplb/__init__.py +8 -0
  129. vllm/distributed/eplb/eplb_state.py +432 -0
  130. vllm/distributed/eplb/rebalance_algo.py +234 -0
  131. vllm/distributed/eplb/rebalance_execute.py +307 -0
  132. vllm/distributed/kv_events.py +356 -0
  133. vllm/distributed/kv_transfer/README.md +29 -0
  134. vllm/distributed/kv_transfer/__init__.py +12 -0
  135. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  137. vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
  138. vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
  139. vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
  140. vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
  141. vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
  142. vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
  153. vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
  154. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  155. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  156. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  157. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  158. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  159. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  160. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  161. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  162. vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
  163. vllm/distributed/parallel_state.py +1385 -0
  164. vllm/distributed/tpu_distributed_utils.py +178 -0
  165. vllm/distributed/utils.py +536 -0
  166. vllm/engine/__init__.py +0 -0
  167. vllm/engine/arg_utils.py +1801 -0
  168. vllm/engine/async_llm_engine.py +1200 -0
  169. vllm/engine/async_timeout.py +173 -0
  170. vllm/engine/llm_engine.py +2101 -0
  171. vllm/engine/metrics.py +629 -0
  172. vllm/engine/metrics_types.py +94 -0
  173. vllm/engine/multiprocessing/__init__.py +148 -0
  174. vllm/engine/multiprocessing/client.py +681 -0
  175. vllm/engine/multiprocessing/engine.py +460 -0
  176. vllm/engine/output_processor/__init__.py +0 -0
  177. vllm/engine/output_processor/interfaces.py +75 -0
  178. vllm/engine/output_processor/multi_step.py +216 -0
  179. vllm/engine/output_processor/single_step.py +145 -0
  180. vllm/engine/output_processor/stop_checker.py +131 -0
  181. vllm/engine/output_processor/util.py +28 -0
  182. vllm/engine/protocol.py +326 -0
  183. vllm/entrypoints/__init__.py +0 -0
  184. vllm/entrypoints/api_server.py +178 -0
  185. vllm/entrypoints/chat_utils.py +1278 -0
  186. vllm/entrypoints/cli/__init__.py +12 -0
  187. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  188. vllm/entrypoints/cli/benchmark/base.py +25 -0
  189. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  190. vllm/entrypoints/cli/benchmark/main.py +58 -0
  191. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  192. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  193. vllm/entrypoints/cli/collect_env.py +36 -0
  194. vllm/entrypoints/cli/main.py +71 -0
  195. vllm/entrypoints/cli/openai.py +201 -0
  196. vllm/entrypoints/cli/run_batch.py +69 -0
  197. vllm/entrypoints/cli/serve.py +265 -0
  198. vllm/entrypoints/cli/types.py +29 -0
  199. vllm/entrypoints/launcher.py +147 -0
  200. vllm/entrypoints/llm.py +1599 -0
  201. vllm/entrypoints/logger.py +50 -0
  202. vllm/entrypoints/openai/__init__.py +0 -0
  203. vllm/entrypoints/openai/api_server.py +1495 -0
  204. vllm/entrypoints/openai/cli_args.py +331 -0
  205. vllm/entrypoints/openai/logits_processors.py +90 -0
  206. vllm/entrypoints/openai/protocol.py +2096 -0
  207. vllm/entrypoints/openai/run_batch.py +473 -0
  208. vllm/entrypoints/openai/serving_chat.py +1258 -0
  209. vllm/entrypoints/openai/serving_classification.py +160 -0
  210. vllm/entrypoints/openai/serving_completion.py +618 -0
  211. vllm/entrypoints/openai/serving_embedding.py +201 -0
  212. vllm/entrypoints/openai/serving_engine.py +988 -0
  213. vllm/entrypoints/openai/serving_models.py +315 -0
  214. vllm/entrypoints/openai/serving_pooling.py +234 -0
  215. vllm/entrypoints/openai/serving_score.py +431 -0
  216. vllm/entrypoints/openai/serving_tokenization.py +157 -0
  217. vllm/entrypoints/openai/serving_transcription.py +132 -0
  218. vllm/entrypoints/openai/speech_to_text.py +395 -0
  219. vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
  220. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  221. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  222. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  223. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  224. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
  225. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  226. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  227. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  228. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
  229. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
  230. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  231. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  232. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  233. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  234. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
  235. vllm/entrypoints/score_utils.py +50 -0
  236. vllm/entrypoints/ssl.py +75 -0
  237. vllm/entrypoints/utils.py +262 -0
  238. vllm/env_override.py +41 -0
  239. vllm/envs.py +1029 -0
  240. vllm/executor/__init__.py +0 -0
  241. vllm/executor/executor_base.py +401 -0
  242. vllm/executor/mp_distributed_executor.py +244 -0
  243. vllm/executor/msgspec_utils.py +30 -0
  244. vllm/executor/multiproc_worker_utils.py +313 -0
  245. vllm/executor/ray_distributed_executor.py +701 -0
  246. vllm/executor/ray_utils.py +399 -0
  247. vllm/executor/uniproc_executor.py +139 -0
  248. vllm/forward_context.py +185 -0
  249. vllm/inputs/__init__.py +41 -0
  250. vllm/inputs/data.py +331 -0
  251. vllm/inputs/parse.py +151 -0
  252. vllm/inputs/preprocess.py +924 -0
  253. vllm/inputs/registry.py +245 -0
  254. vllm/jsontree.py +80 -0
  255. vllm/logger.py +212 -0
  256. vllm/logging_utils/__init__.py +8 -0
  257. vllm/logging_utils/dump_input.py +81 -0
  258. vllm/logging_utils/formatter.py +18 -0
  259. vllm/logits_process.py +119 -0
  260. vllm/lora/__init__.py +0 -0
  261. vllm/lora/fully_sharded_layers.py +355 -0
  262. vllm/lora/layers.py +1285 -0
  263. vllm/lora/lora.py +199 -0
  264. vllm/lora/models.py +818 -0
  265. vllm/lora/ops/__init__.py +0 -0
  266. vllm/lora/ops/torch_ops/__init__.py +16 -0
  267. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  268. vllm/lora/ops/triton_ops/__init__.py +12 -0
  269. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  270. vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
  271. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  272. vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
  273. vllm/lora/ops/triton_ops/utils.py +120 -0
  274. vllm/lora/ops/xla_ops/__init__.py +7 -0
  275. vllm/lora/ops/xla_ops/lora_ops.py +145 -0
  276. vllm/lora/peft_helper.py +136 -0
  277. vllm/lora/punica_wrapper/__init__.py +10 -0
  278. vllm/lora/punica_wrapper/punica_base.py +485 -0
  279. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  280. vllm/lora/punica_wrapper/punica_gpu.py +290 -0
  281. vllm/lora/punica_wrapper/punica_hpu.py +145 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +405 -0
  284. vllm/lora/punica_wrapper/utils.py +164 -0
  285. vllm/lora/request.py +99 -0
  286. vllm/lora/resolver.py +85 -0
  287. vllm/lora/utils.py +240 -0
  288. vllm/lora/worker_manager.py +256 -0
  289. vllm/model_executor/__init__.py +16 -0
  290. vllm/model_executor/custom_op.py +208 -0
  291. vllm/model_executor/guided_decoding/__init__.py +181 -0
  292. vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
  293. vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
  294. vllm/model_executor/guided_decoding/guided_fields.py +41 -0
  295. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
  296. vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
  297. vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
  298. vllm/model_executor/guided_decoding/utils.py +242 -0
  299. vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
  300. vllm/model_executor/layers/__init__.py +0 -0
  301. vllm/model_executor/layers/activation.py +420 -0
  302. vllm/model_executor/layers/fused_moe/__init__.py +78 -0
  303. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
  304. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
  305. vllm/model_executor/layers/fused_moe/config.py +456 -0
  306. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  307. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  308. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  309. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  310. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  311. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  312. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  313. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  475. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
  476. vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
  477. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
  478. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
  479. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
  480. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
  481. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
  482. vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
  483. vllm/model_executor/layers/fused_moe/layer.py +1528 -0
  484. vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
  485. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
  486. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  487. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
  488. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  489. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
  490. vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
  491. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
  492. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
  493. vllm/model_executor/layers/fused_moe/utils.py +144 -0
  494. vllm/model_executor/layers/layernorm.py +287 -0
  495. vllm/model_executor/layers/lightning_attn.py +652 -0
  496. vllm/model_executor/layers/linear.py +1547 -0
  497. vllm/model_executor/layers/logits_processor.py +197 -0
  498. vllm/model_executor/layers/mamba/__init__.py +0 -0
  499. vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
  500. vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
  501. vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
  502. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  503. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
  504. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  505. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
  506. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
  507. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
  508. vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
  509. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
  510. vllm/model_executor/layers/pooler.py +473 -0
  511. vllm/model_executor/layers/quantization/__init__.py +160 -0
  512. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  513. vllm/model_executor/layers/quantization/auto_round.py +310 -0
  514. vllm/model_executor/layers/quantization/awq.py +228 -0
  515. vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
  516. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  517. vllm/model_executor/layers/quantization/base_config.py +164 -0
  518. vllm/model_executor/layers/quantization/bitblas.py +462 -0
  519. vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
  520. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  521. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
  522. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
  523. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
  524. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
  525. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  526. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  527. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  528. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
  529. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  530. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
  531. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  532. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  533. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  534. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  535. vllm/model_executor/layers/quantization/deepgemm.py +83 -0
  536. vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
  537. vllm/model_executor/layers/quantization/experts_int8.py +204 -0
  538. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  539. vllm/model_executor/layers/quantization/fp8.py +950 -0
  540. vllm/model_executor/layers/quantization/gguf.py +577 -0
  541. vllm/model_executor/layers/quantization/gptq.py +278 -0
  542. vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
  543. vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
  544. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  545. vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
  546. vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
  547. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  548. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
  549. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
  550. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  551. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
  552. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  553. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
  554. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
  555. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  556. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
  557. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  558. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  559. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  560. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  561. vllm/model_executor/layers/quantization/kv_cache.py +139 -0
  562. vllm/model_executor/layers/quantization/marlin.py +263 -0
  563. vllm/model_executor/layers/quantization/modelopt.py +747 -0
  564. vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
  565. vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
  566. vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
  567. vllm/model_executor/layers/quantization/qqq.py +275 -0
  568. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  569. vllm/model_executor/layers/quantization/quark/quark.py +437 -0
  570. vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
  571. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  572. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  573. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
  574. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
  575. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  576. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  577. vllm/model_executor/layers/quantization/rtn.py +289 -0
  578. vllm/model_executor/layers/quantization/schema.py +86 -0
  579. vllm/model_executor/layers/quantization/torchao.py +212 -0
  580. vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
  581. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  582. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  583. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
  584. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  585. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  586. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  587. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  588. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  589. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  590. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  591. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  592. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  593. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  594. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  595. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  596. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  597. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  598. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  599. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  600. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  601. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  602. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  603. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  604. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  605. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  606. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  607. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  608. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  609. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  610. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  611. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  612. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  613. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  614. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  615. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  616. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  617. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  618. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  619. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  620. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  621. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  622. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  623. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  624. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  625. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  626. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  627. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  628. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  629. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  630. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  631. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  632. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  633. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  634. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  635. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  636. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  637. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  638. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  639. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  640. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  641. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  642. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  643. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  644. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  645. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  646. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  647. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  648. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  649. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  650. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  651. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  652. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  653. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  654. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  655. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  656. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  657. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  658. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  659. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  660. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  661. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  662. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  663. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  664. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  665. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  666. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  667. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  668. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  669. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  670. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  671. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  672. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  673. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  674. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  675. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  676. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  677. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
  787. vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
  788. vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
  789. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  790. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  791. vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
  792. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
  793. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
  794. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  795. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  796. vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
  797. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
  798. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
  799. vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
  800. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
  801. vllm/model_executor/layers/rejection_sampler.py +406 -0
  802. vllm/model_executor/layers/resampler.py +270 -0
  803. vllm/model_executor/layers/rotary_embedding.py +2025 -0
  804. vllm/model_executor/layers/sampler.py +1204 -0
  805. vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
  806. vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
  807. vllm/model_executor/layers/utils.py +116 -0
  808. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  809. vllm/model_executor/model_loader/__init__.py +77 -0
  810. vllm/model_executor/model_loader/base_loader.py +43 -0
  811. vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
  812. vllm/model_executor/model_loader/default_loader.py +282 -0
  813. vllm/model_executor/model_loader/dummy_loader.py +27 -0
  814. vllm/model_executor/model_loader/gguf_loader.py +120 -0
  815. vllm/model_executor/model_loader/neuron.py +476 -0
  816. vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
  817. vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
  818. vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
  819. vllm/model_executor/model_loader/tensorizer.py +602 -0
  820. vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
  821. vllm/model_executor/model_loader/tpu.py +113 -0
  822. vllm/model_executor/model_loader/utils.py +315 -0
  823. vllm/model_executor/model_loader/weight_utils.py +782 -0
  824. vllm/model_executor/models/__init__.py +30 -0
  825. vllm/model_executor/models/adapters.py +375 -0
  826. vllm/model_executor/models/aimv2.py +246 -0
  827. vllm/model_executor/models/arctic.py +559 -0
  828. vllm/model_executor/models/aria.py +670 -0
  829. vllm/model_executor/models/aya_vision.py +486 -0
  830. vllm/model_executor/models/baichuan.py +474 -0
  831. vllm/model_executor/models/bamba.py +558 -0
  832. vllm/model_executor/models/bart.py +938 -0
  833. vllm/model_executor/models/bert.py +513 -0
  834. vllm/model_executor/models/bert_with_rope.py +617 -0
  835. vllm/model_executor/models/blip.py +339 -0
  836. vllm/model_executor/models/blip2.py +728 -0
  837. vllm/model_executor/models/bloom.py +373 -0
  838. vllm/model_executor/models/chameleon.py +1146 -0
  839. vllm/model_executor/models/chatglm.py +478 -0
  840. vllm/model_executor/models/clip.py +407 -0
  841. vllm/model_executor/models/commandr.py +471 -0
  842. vllm/model_executor/models/config.py +200 -0
  843. vllm/model_executor/models/constant_size_cache.py +137 -0
  844. vllm/model_executor/models/dbrx.py +472 -0
  845. vllm/model_executor/models/deepseek.py +486 -0
  846. vllm/model_executor/models/deepseek_mtp.py +281 -0
  847. vllm/model_executor/models/deepseek_v2.py +935 -0
  848. vllm/model_executor/models/deepseek_vl2.py +660 -0
  849. vllm/model_executor/models/dots1.py +536 -0
  850. vllm/model_executor/models/eagle.py +261 -0
  851. vllm/model_executor/models/ernie45.py +43 -0
  852. vllm/model_executor/models/ernie45_moe.py +583 -0
  853. vllm/model_executor/models/exaone.py +551 -0
  854. vllm/model_executor/models/fairseq2_llama.py +154 -0
  855. vllm/model_executor/models/falcon.py +510 -0
  856. vllm/model_executor/models/falcon_h1.py +708 -0
  857. vllm/model_executor/models/florence2.py +1113 -0
  858. vllm/model_executor/models/fuyu.py +406 -0
  859. vllm/model_executor/models/gemma.py +427 -0
  860. vllm/model_executor/models/gemma2.py +427 -0
  861. vllm/model_executor/models/gemma3.py +535 -0
  862. vllm/model_executor/models/gemma3_mm.py +729 -0
  863. vllm/model_executor/models/gemma3n.py +811 -0
  864. vllm/model_executor/models/glm.py +23 -0
  865. vllm/model_executor/models/glm4.py +305 -0
  866. vllm/model_executor/models/glm4_1v.py +1590 -0
  867. vllm/model_executor/models/glm4v.py +657 -0
  868. vllm/model_executor/models/gpt2.py +382 -0
  869. vllm/model_executor/models/gpt_bigcode.py +335 -0
  870. vllm/model_executor/models/gpt_j.py +339 -0
  871. vllm/model_executor/models/gpt_neox.py +332 -0
  872. vllm/model_executor/models/granite.py +493 -0
  873. vllm/model_executor/models/granite_speech.py +790 -0
  874. vllm/model_executor/models/granitemoe.py +437 -0
  875. vllm/model_executor/models/granitemoehybrid.py +653 -0
  876. vllm/model_executor/models/granitemoeshared.py +341 -0
  877. vllm/model_executor/models/gritlm.py +224 -0
  878. vllm/model_executor/models/grok1.py +546 -0
  879. vllm/model_executor/models/h2ovl.py +549 -0
  880. vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
  881. vllm/model_executor/models/idefics2_vision_model.py +389 -0
  882. vllm/model_executor/models/idefics3.py +786 -0
  883. vllm/model_executor/models/interfaces.py +681 -0
  884. vllm/model_executor/models/interfaces_base.py +164 -0
  885. vllm/model_executor/models/intern_vit.py +480 -0
  886. vllm/model_executor/models/internlm2.py +455 -0
  887. vllm/model_executor/models/internlm2_ve.py +147 -0
  888. vllm/model_executor/models/internvl.py +1432 -0
  889. vllm/model_executor/models/jais.py +373 -0
  890. vllm/model_executor/models/jamba.py +592 -0
  891. vllm/model_executor/models/keye.py +1736 -0
  892. vllm/model_executor/models/kimi_vl.py +585 -0
  893. vllm/model_executor/models/llama.py +644 -0
  894. vllm/model_executor/models/llama4.py +531 -0
  895. vllm/model_executor/models/llama_eagle.py +165 -0
  896. vllm/model_executor/models/llama_eagle3.py +263 -0
  897. vllm/model_executor/models/llava.py +887 -0
  898. vllm/model_executor/models/llava_next.py +604 -0
  899. vllm/model_executor/models/llava_next_video.py +492 -0
  900. vllm/model_executor/models/llava_onevision.py +985 -0
  901. vllm/model_executor/models/mamba.py +273 -0
  902. vllm/model_executor/models/mamba2.py +320 -0
  903. vllm/model_executor/models/mamba_cache.py +76 -0
  904. vllm/model_executor/models/medusa.py +219 -0
  905. vllm/model_executor/models/mimo.py +192 -0
  906. vllm/model_executor/models/mimo_mtp.py +285 -0
  907. vllm/model_executor/models/minicpm.py +592 -0
  908. vllm/model_executor/models/minicpm3.py +230 -0
  909. vllm/model_executor/models/minicpm_eagle.py +391 -0
  910. vllm/model_executor/models/minicpmo.py +772 -0
  911. vllm/model_executor/models/minicpmv.py +1307 -0
  912. vllm/model_executor/models/minimax_cache.py +36 -0
  913. vllm/model_executor/models/minimax_text_01.py +1301 -0
  914. vllm/model_executor/models/minimax_vl_01.py +374 -0
  915. vllm/model_executor/models/mistral3.py +624 -0
  916. vllm/model_executor/models/mixtral.py +488 -0
  917. vllm/model_executor/models/mixtral_quant.py +453 -0
  918. vllm/model_executor/models/mllama.py +1682 -0
  919. vllm/model_executor/models/mllama4.py +947 -0
  920. vllm/model_executor/models/mlp_speculator.py +206 -0
  921. vllm/model_executor/models/modernbert.py +339 -0
  922. vllm/model_executor/models/module_mapping.py +72 -0
  923. vllm/model_executor/models/molmo.py +1576 -0
  924. vllm/model_executor/models/moonvit.py +630 -0
  925. vllm/model_executor/models/mpt.py +331 -0
  926. vllm/model_executor/models/nemotron.py +508 -0
  927. vllm/model_executor/models/nemotron_h.py +588 -0
  928. vllm/model_executor/models/nemotron_nas.py +484 -0
  929. vllm/model_executor/models/nvlm_d.py +216 -0
  930. vllm/model_executor/models/olmo.py +389 -0
  931. vllm/model_executor/models/olmo2.py +414 -0
  932. vllm/model_executor/models/olmoe.py +468 -0
  933. vllm/model_executor/models/opt.py +412 -0
  934. vllm/model_executor/models/orion.py +349 -0
  935. vllm/model_executor/models/ovis.py +577 -0
  936. vllm/model_executor/models/paligemma.py +419 -0
  937. vllm/model_executor/models/persimmon.py +344 -0
  938. vllm/model_executor/models/phi.py +356 -0
  939. vllm/model_executor/models/phi3.py +19 -0
  940. vllm/model_executor/models/phi3_small.py +465 -0
  941. vllm/model_executor/models/phi3v.py +733 -0
  942. vllm/model_executor/models/phi4mm.py +1258 -0
  943. vllm/model_executor/models/phi4mm_audio.py +1233 -0
  944. vllm/model_executor/models/phi4mm_utils.py +1884 -0
  945. vllm/model_executor/models/phimoe.py +674 -0
  946. vllm/model_executor/models/pixtral.py +1329 -0
  947. vllm/model_executor/models/plamo2.py +738 -0
  948. vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
  949. vllm/model_executor/models/qwen.py +362 -0
  950. vllm/model_executor/models/qwen2.py +501 -0
  951. vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
  952. vllm/model_executor/models/qwen2_5_vl.py +1175 -0
  953. vllm/model_executor/models/qwen2_audio.py +420 -0
  954. vllm/model_executor/models/qwen2_moe.py +540 -0
  955. vllm/model_executor/models/qwen2_rm.py +122 -0
  956. vllm/model_executor/models/qwen2_vl.py +1513 -0
  957. vllm/model_executor/models/qwen3.py +325 -0
  958. vllm/model_executor/models/qwen3_moe.py +541 -0
  959. vllm/model_executor/models/qwen_vl.py +796 -0
  960. vllm/model_executor/models/registry.py +634 -0
  961. vllm/model_executor/models/roberta.py +271 -0
  962. vllm/model_executor/models/siglip.py +524 -0
  963. vllm/model_executor/models/skyworkr1v.py +961 -0
  964. vllm/model_executor/models/smolvlm.py +52 -0
  965. vllm/model_executor/models/solar.py +506 -0
  966. vllm/model_executor/models/stablelm.py +343 -0
  967. vllm/model_executor/models/starcoder2.py +356 -0
  968. vllm/model_executor/models/tarsier.py +652 -0
  969. vllm/model_executor/models/telechat2.py +140 -0
  970. vllm/model_executor/models/teleflm.py +79 -0
  971. vllm/model_executor/models/transformers.py +509 -0
  972. vllm/model_executor/models/ultravox.py +670 -0
  973. vllm/model_executor/models/utils.py +744 -0
  974. vllm/model_executor/models/vision.py +147 -0
  975. vllm/model_executor/models/whisper.py +886 -0
  976. vllm/model_executor/models/zamba2.py +1036 -0
  977. vllm/model_executor/parameter.py +459 -0
  978. vllm/model_executor/pooling_metadata.py +72 -0
  979. vllm/model_executor/sampling_metadata.py +597 -0
  980. vllm/model_executor/utils.py +80 -0
  981. vllm/multimodal/__init__.py +33 -0
  982. vllm/multimodal/audio.py +116 -0
  983. vllm/multimodal/base.py +219 -0
  984. vllm/multimodal/hasher.py +91 -0
  985. vllm/multimodal/image.py +103 -0
  986. vllm/multimodal/inputs.py +878 -0
  987. vllm/multimodal/parse.py +499 -0
  988. vllm/multimodal/processing.py +1948 -0
  989. vllm/multimodal/profiling.py +283 -0
  990. vllm/multimodal/registry.py +331 -0
  991. vllm/multimodal/utils.py +492 -0
  992. vllm/multimodal/video.py +227 -0
  993. vllm/outputs.py +516 -0
  994. vllm/platforms/__init__.py +291 -0
  995. vllm/platforms/cpu.py +281 -0
  996. vllm/platforms/cuda.py +568 -0
  997. vllm/platforms/hpu.py +106 -0
  998. vllm/platforms/interface.py +551 -0
  999. vllm/platforms/neuron.py +150 -0
  1000. vllm/platforms/rocm.py +453 -0
  1001. vllm/platforms/tpu.py +206 -0
  1002. vllm/platforms/xpu.py +192 -0
  1003. vllm/plugins/__init__.py +94 -0
  1004. vllm/plugins/lora_resolvers/README.md +15 -0
  1005. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1006. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1007. vllm/pooling_params.py +64 -0
  1008. vllm/profiler/__init__.py +0 -0
  1009. vllm/profiler/layerwise_profile.py +375 -0
  1010. vllm/profiler/utils.py +148 -0
  1011. vllm/prompt_adapter/__init__.py +0 -0
  1012. vllm/prompt_adapter/layers.py +83 -0
  1013. vllm/prompt_adapter/models.py +358 -0
  1014. vllm/prompt_adapter/request.py +37 -0
  1015. vllm/prompt_adapter/utils.py +98 -0
  1016. vllm/prompt_adapter/worker_manager.py +179 -0
  1017. vllm/py.typed +2 -0
  1018. vllm/reasoning/__init__.py +15 -0
  1019. vllm/reasoning/abs_reasoning_parsers.py +192 -0
  1020. vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
  1021. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1022. vllm/reasoning/qwen3_reasoning_parser.py +151 -0
  1023. vllm/sampling_params.py +602 -0
  1024. vllm/scalar_type.py +347 -0
  1025. vllm/scripts.py +15 -0
  1026. vllm/sequence.py +1568 -0
  1027. vllm/spec_decode/__init__.py +0 -0
  1028. vllm/spec_decode/batch_expansion.py +506 -0
  1029. vllm/spec_decode/draft_model_runner.py +349 -0
  1030. vllm/spec_decode/interfaces.py +99 -0
  1031. vllm/spec_decode/medusa_worker.py +138 -0
  1032. vllm/spec_decode/metrics.py +213 -0
  1033. vllm/spec_decode/mlp_speculator_worker.py +94 -0
  1034. vllm/spec_decode/mqa_scorer.py +160 -0
  1035. vllm/spec_decode/multi_step_worker.py +423 -0
  1036. vllm/spec_decode/ngram_worker.py +196 -0
  1037. vllm/spec_decode/proposer_worker_base.py +59 -0
  1038. vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
  1039. vllm/spec_decode/spec_decode_worker.py +1326 -0
  1040. vllm/spec_decode/target_model_runner.py +45 -0
  1041. vllm/spec_decode/top1_proposer.py +275 -0
  1042. vllm/spec_decode/util.py +277 -0
  1043. vllm/test_utils.py +130 -0
  1044. vllm/third_party/__init__.py +0 -0
  1045. vllm/third_party/pynvml.py +6140 -0
  1046. vllm/tracing.py +131 -0
  1047. vllm/transformers_utils/__init__.py +24 -0
  1048. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1049. vllm/transformers_utils/chat_templates/registry.py +60 -0
  1050. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1051. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1052. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1053. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1054. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1055. vllm/transformers_utils/config.py +922 -0
  1056. vllm/transformers_utils/configs/__init__.py +57 -0
  1057. vllm/transformers_utils/configs/arctic.py +207 -0
  1058. vllm/transformers_utils/configs/chatglm.py +72 -0
  1059. vllm/transformers_utils/configs/cohere2.py +195 -0
  1060. vllm/transformers_utils/configs/dbrx.py +280 -0
  1061. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1062. vllm/transformers_utils/configs/eagle.py +85 -0
  1063. vllm/transformers_utils/configs/exaone.py +190 -0
  1064. vllm/transformers_utils/configs/falcon.py +90 -0
  1065. vllm/transformers_utils/configs/jais.py +238 -0
  1066. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1067. vllm/transformers_utils/configs/medusa.py +63 -0
  1068. vllm/transformers_utils/configs/minimax_text_01.py +70 -0
  1069. vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
  1070. vllm/transformers_utils/configs/mllama.py +31 -0
  1071. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1072. vllm/transformers_utils/configs/moonvit.py +33 -0
  1073. vllm/transformers_utils/configs/mpt.py +180 -0
  1074. vllm/transformers_utils/configs/nemotron.py +205 -0
  1075. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1076. vllm/transformers_utils/configs/nvlm_d.py +31 -0
  1077. vllm/transformers_utils/configs/ovis.py +184 -0
  1078. vllm/transformers_utils/configs/skyworkr1v.py +54 -0
  1079. vllm/transformers_utils/configs/solar.py +247 -0
  1080. vllm/transformers_utils/configs/telechat2.py +64 -0
  1081. vllm/transformers_utils/configs/ultravox.py +108 -0
  1082. vllm/transformers_utils/detokenizer.py +168 -0
  1083. vllm/transformers_utils/detokenizer_utils.py +189 -0
  1084. vllm/transformers_utils/processor.py +221 -0
  1085. vllm/transformers_utils/processors/__init__.py +8 -0
  1086. vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
  1087. vllm/transformers_utils/processors/ovis.py +420 -0
  1088. vllm/transformers_utils/s3_utils.py +162 -0
  1089. vllm/transformers_utils/tokenizer.py +302 -0
  1090. vllm/transformers_utils/tokenizer_base.py +149 -0
  1091. vllm/transformers_utils/tokenizer_group.py +120 -0
  1092. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1093. vllm/transformers_utils/tokenizers/mistral.py +493 -0
  1094. vllm/transformers_utils/utils.py +99 -0
  1095. vllm/triton_utils/__init__.py +14 -0
  1096. vllm/triton_utils/importing.py +94 -0
  1097. vllm/usage/__init__.py +0 -0
  1098. vllm/usage/usage_lib.py +259 -0
  1099. vllm/utils/__init__.py +3008 -0
  1100. vllm/v1/__init__.py +0 -0
  1101. vllm/v1/attention/__init__.py +0 -0
  1102. vllm/v1/attention/backends/__init__.py +0 -0
  1103. vllm/v1/attention/backends/cpu_attn.py +184 -0
  1104. vllm/v1/attention/backends/flash_attn.py +757 -0
  1105. vllm/v1/attention/backends/flashinfer.py +680 -0
  1106. vllm/v1/attention/backends/flex_attention.py +491 -0
  1107. vllm/v1/attention/backends/mamba_attn.py +192 -0
  1108. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1109. vllm/v1/attention/backends/mla/common.py +978 -0
  1110. vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
  1111. vllm/v1/attention/backends/mla/flashmla.py +180 -0
  1112. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
  1113. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1114. vllm/v1/attention/backends/pallas.py +320 -0
  1115. vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
  1116. vllm/v1/attention/backends/triton_attn.py +449 -0
  1117. vllm/v1/attention/backends/utils.py +310 -0
  1118. vllm/v1/core/__init__.py +0 -0
  1119. vllm/v1/core/block_pool.py +349 -0
  1120. vllm/v1/core/encoder_cache_manager.py +254 -0
  1121. vllm/v1/core/kv_cache_coordinator.py +369 -0
  1122. vllm/v1/core/kv_cache_manager.py +398 -0
  1123. vllm/v1/core/kv_cache_utils.py +999 -0
  1124. vllm/v1/core/sched/__init__.py +0 -0
  1125. vllm/v1/core/sched/interface.py +150 -0
  1126. vllm/v1/core/sched/output.py +157 -0
  1127. vllm/v1/core/sched/request_queue.py +224 -0
  1128. vllm/v1/core/sched/scheduler.py +1115 -0
  1129. vllm/v1/core/sched/utils.py +36 -0
  1130. vllm/v1/core/single_type_kv_cache_manager.py +444 -0
  1131. vllm/v1/engine/__init__.py +179 -0
  1132. vllm/v1/engine/async_llm.py +626 -0
  1133. vllm/v1/engine/coordinator.py +278 -0
  1134. vllm/v1/engine/core.py +1046 -0
  1135. vllm/v1/engine/core_client.py +1049 -0
  1136. vllm/v1/engine/detokenizer.py +292 -0
  1137. vllm/v1/engine/exceptions.py +17 -0
  1138. vllm/v1/engine/llm_engine.py +322 -0
  1139. vllm/v1/engine/logprobs.py +200 -0
  1140. vllm/v1/engine/mm_input_cache.py +91 -0
  1141. vllm/v1/engine/output_processor.py +477 -0
  1142. vllm/v1/engine/parallel_sampling.py +133 -0
  1143. vllm/v1/engine/processor.py +422 -0
  1144. vllm/v1/engine/utils.py +546 -0
  1145. vllm/v1/executor/__init__.py +0 -0
  1146. vllm/v1/executor/abstract.py +113 -0
  1147. vllm/v1/executor/multiproc_executor.py +532 -0
  1148. vllm/v1/executor/ray_distributed_executor.py +62 -0
  1149. vllm/v1/kv_cache_interface.py +223 -0
  1150. vllm/v1/metrics/__init__.py +0 -0
  1151. vllm/v1/metrics/loggers.py +557 -0
  1152. vllm/v1/metrics/prometheus.py +82 -0
  1153. vllm/v1/metrics/ray_wrappers.py +131 -0
  1154. vllm/v1/metrics/reader.py +246 -0
  1155. vllm/v1/metrics/stats.py +240 -0
  1156. vllm/v1/outputs.py +124 -0
  1157. vllm/v1/pool/__init__.py +0 -0
  1158. vllm/v1/pool/metadata.py +17 -0
  1159. vllm/v1/request.py +229 -0
  1160. vllm/v1/sample/__init__.py +0 -0
  1161. vllm/v1/sample/logits_processor.py +517 -0
  1162. vllm/v1/sample/metadata.py +43 -0
  1163. vllm/v1/sample/ops/__init__.py +0 -0
  1164. vllm/v1/sample/ops/bad_words.py +39 -0
  1165. vllm/v1/sample/ops/penalties.py +43 -0
  1166. vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
  1167. vllm/v1/sample/rejection_sampler.py +631 -0
  1168. vllm/v1/sample/sampler.py +226 -0
  1169. vllm/v1/sample/tpu/__init__.py +0 -0
  1170. vllm/v1/sample/tpu/metadata.py +124 -0
  1171. vllm/v1/sample/tpu/sampler.py +145 -0
  1172. vllm/v1/serial_utils.py +315 -0
  1173. vllm/v1/spec_decode/__init__.py +0 -0
  1174. vllm/v1/spec_decode/eagle.py +441 -0
  1175. vllm/v1/spec_decode/medusa.py +64 -0
  1176. vllm/v1/spec_decode/metadata.py +62 -0
  1177. vllm/v1/spec_decode/metrics.py +178 -0
  1178. vllm/v1/spec_decode/ngram_proposer.py +132 -0
  1179. vllm/v1/spec_decode/utils.py +41 -0
  1180. vllm/v1/structured_output/__init__.py +227 -0
  1181. vllm/v1/structured_output/backend_guidance.py +245 -0
  1182. vllm/v1/structured_output/backend_types.py +134 -0
  1183. vllm/v1/structured_output/backend_xgrammar.py +318 -0
  1184. vllm/v1/structured_output/request.py +86 -0
  1185. vllm/v1/structured_output/utils.py +175 -0
  1186. vllm/v1/utils.py +377 -0
  1187. vllm/v1/worker/__init__.py +0 -0
  1188. vllm/v1/worker/block_table.py +142 -0
  1189. vllm/v1/worker/cpu_model_runner.py +91 -0
  1190. vllm/v1/worker/cpu_worker.py +153 -0
  1191. vllm/v1/worker/gpu_input_batch.py +757 -0
  1192. vllm/v1/worker/gpu_model_runner.py +2739 -0
  1193. vllm/v1/worker/gpu_worker.py +408 -0
  1194. vllm/v1/worker/lora_model_runner_mixin.py +177 -0
  1195. vllm/v1/worker/tpu_input_batch.py +585 -0
  1196. vllm/v1/worker/tpu_model_runner.py +1849 -0
  1197. vllm/v1/worker/tpu_worker.py +315 -0
  1198. vllm/v1/worker/utils.py +112 -0
  1199. vllm/v1/worker/worker_base.py +65 -0
  1200. vllm/v1/worker/xpu_model_runner.py +33 -0
  1201. vllm/v1/worker/xpu_worker.py +165 -0
  1202. vllm/version.py +41 -0
  1203. vllm/vllm_flash_attn/.gitkeep +0 -0
  1204. vllm/worker/__init__.py +0 -0
  1205. vllm/worker/cache_engine.py +145 -0
  1206. vllm/worker/cpu_enc_dec_model_runner.py +326 -0
  1207. vllm/worker/cpu_model_runner.py +671 -0
  1208. vllm/worker/cpu_pooling_model_runner.py +125 -0
  1209. vllm/worker/cpu_worker.py +452 -0
  1210. vllm/worker/enc_dec_model_runner.py +555 -0
  1211. vllm/worker/hpu_model_runner.py +2320 -0
  1212. vllm/worker/hpu_worker.py +484 -0
  1213. vllm/worker/model_runner.py +2178 -0
  1214. vllm/worker/model_runner_base.py +282 -0
  1215. vllm/worker/multi_step_hpu_worker.py +123 -0
  1216. vllm/worker/multi_step_model_runner.py +911 -0
  1217. vllm/worker/multi_step_neuron_model_runner.py +84 -0
  1218. vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
  1219. vllm/worker/multi_step_tpu_worker.py +108 -0
  1220. vllm/worker/multi_step_worker.py +197 -0
  1221. vllm/worker/neuron_model_runner.py +460 -0
  1222. vllm/worker/neuron_worker.py +193 -0
  1223. vllm/worker/neuronx_distributed_model_runner.py +294 -0
  1224. vllm/worker/pooling_model_runner.py +211 -0
  1225. vllm/worker/tpu_model_runner.py +909 -0
  1226. vllm/worker/tpu_worker.py +337 -0
  1227. vllm/worker/utils.py +53 -0
  1228. vllm/worker/worker.py +577 -0
  1229. vllm/worker/worker_base.py +646 -0
  1230. vllm/worker/xpu_model_runner.py +606 -0
  1231. vllm/worker/xpu_worker.py +186 -0
  1232. vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
  1233. vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
  1234. vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
  1235. vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
  1236. vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,1915 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import contextlib
5
+ from typing import TYPE_CHECKING, Optional, Union
6
+
7
+ import torch
8
+
9
+ import vllm.envs as envs
10
+ from vllm.logger import init_logger
11
+ from vllm.platforms import current_platform
12
+ from vllm.scalar_type import ScalarType
13
+
14
+ logger = init_logger(__name__)
15
+
16
+ if not current_platform.is_tpu() and not current_platform.is_hpu():
17
+ try:
18
+ import vllm._C
19
+ except ImportError as e:
20
+ logger.warning("Failed to import from vllm._C with %r", e)
21
+
22
+ supports_moe_ops = False
23
+ with contextlib.suppress(ImportError):
24
+ import vllm._moe_C # noqa: F401
25
+ supports_moe_ops = True
26
+
27
+ if TYPE_CHECKING:
28
+
29
+ def register_fake(fn):
30
+ return lambda name: fn
31
+ else:
32
+ try:
33
+ from torch.library import register_fake
34
+ except ImportError:
35
+ from torch.library import impl_abstract as register_fake
36
+
37
+
38
+ # page attention ops
39
+ def paged_attention_v1(
40
+ out: torch.Tensor,
41
+ query: torch.Tensor,
42
+ key_cache: torch.Tensor,
43
+ value_cache: torch.Tensor,
44
+ num_kv_heads: int,
45
+ scale: float,
46
+ block_tables: torch.Tensor,
47
+ seq_lens: torch.Tensor,
48
+ block_size: int,
49
+ max_seq_len: int,
50
+ alibi_slopes: Optional[torch.Tensor],
51
+ kv_cache_dtype: str,
52
+ k_scale: torch.Tensor,
53
+ v_scale: torch.Tensor,
54
+ tp_rank: int = 0,
55
+ blocksparse_local_blocks: int = 0,
56
+ blocksparse_vert_stride: int = 0,
57
+ blocksparse_block_size: int = 64,
58
+ blocksparse_head_sliding_step: int = 0,
59
+ ) -> None:
60
+ torch.ops._C.paged_attention_v1(
61
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
62
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
63
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
64
+ blocksparse_vert_stride, blocksparse_block_size,
65
+ blocksparse_head_sliding_step)
66
+
67
+
68
+ def paged_attention_v2(
69
+ out: torch.Tensor,
70
+ exp_sum: torch.Tensor,
71
+ max_logits: torch.Tensor,
72
+ tmp_out: torch.Tensor,
73
+ query: torch.Tensor,
74
+ key_cache: torch.Tensor,
75
+ value_cache: torch.Tensor,
76
+ num_kv_heads: int,
77
+ scale: float,
78
+ block_tables: torch.Tensor,
79
+ seq_lens: torch.Tensor,
80
+ block_size: int,
81
+ max_seq_len: int,
82
+ alibi_slopes: Optional[torch.Tensor],
83
+ kv_cache_dtype: str,
84
+ k_scale: torch.Tensor,
85
+ v_scale: torch.Tensor,
86
+ tp_rank: int = 0,
87
+ blocksparse_local_blocks: int = 0,
88
+ blocksparse_vert_stride: int = 0,
89
+ blocksparse_block_size: int = 64,
90
+ blocksparse_head_sliding_step: int = 0,
91
+ ) -> None:
92
+ torch.ops._C.paged_attention_v2(
93
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
94
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
95
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
96
+ blocksparse_local_blocks, blocksparse_vert_stride,
97
+ blocksparse_block_size, blocksparse_head_sliding_step)
98
+
99
+
100
+ def paged_attention_rocm(
101
+ out: torch.Tensor,
102
+ exp_sum: torch.Tensor,
103
+ max_logits: torch.Tensor,
104
+ tmp_out: torch.Tensor,
105
+ query: torch.Tensor,
106
+ key_cache: torch.Tensor,
107
+ value_cache: torch.Tensor,
108
+ num_kv_heads: int,
109
+ scale: float,
110
+ block_tables: torch.Tensor,
111
+ seq_lens: torch.Tensor,
112
+ query_start_loc: Optional[torch.Tensor],
113
+ block_size: int,
114
+ max_seq_len: int,
115
+ alibi_slopes: Optional[torch.Tensor],
116
+ kv_cache_dtype: str,
117
+ k_scale: torch.Tensor,
118
+ v_scale: torch.Tensor,
119
+ fp8_out_scale: Optional[torch.Tensor] = None,
120
+ ) -> None:
121
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
122
+ key_cache, value_cache, num_kv_heads,
123
+ scale, block_tables, seq_lens,
124
+ query_start_loc, block_size, max_seq_len,
125
+ alibi_slopes, kv_cache_dtype, k_scale,
126
+ v_scale, fp8_out_scale)
127
+
128
+
129
+ def mla_decode_kvcache_cpu(
130
+ out: torch.Tensor,
131
+ query: torch.Tensor,
132
+ kv_cache: torch.Tensor,
133
+ scale: float,
134
+ block_tables: torch.Tensor,
135
+ seq_lens: torch.Tensor,
136
+ ) -> None:
137
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
138
+ block_tables, seq_lens)
139
+
140
+
141
+ # merge attn states ops
142
+ def merge_attn_states(output: torch.Tensor,
143
+ prefix_output: torch.Tensor,
144
+ prefix_lse: torch.Tensor,
145
+ suffix_output: torch.Tensor,
146
+ suffix_lse: torch.Tensor,
147
+ output_lse: Optional[torch.Tensor] = None) -> None:
148
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
149
+ prefix_lse, suffix_output, suffix_lse)
150
+
151
+
152
+ def convert_vertical_slash_indexes(
153
+ q_seqlens: torch.Tensor, # [BATCH, ]
154
+ kv_seqlens: torch.Tensor, # [BATCH, ]
155
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
156
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
157
+ context_size: int,
158
+ block_size_M: int,
159
+ block_size_N: int,
160
+ causal: bool = True,
161
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
162
+ batch_size = slash_indexes.size(0)
163
+ num_heads = slash_indexes.size(1)
164
+ nnz_slash = slash_indexes.size(2)
165
+ nnz_vertical = vertical_indexes.size(2)
166
+ num_rows = (context_size + block_size_M - 1) // block_size_M
167
+
168
+ block_count = torch.zeros(batch_size,
169
+ num_heads,
170
+ num_rows,
171
+ dtype=q_seqlens.dtype,
172
+ device=q_seqlens.device)
173
+ block_offset = torch.zeros(batch_size,
174
+ num_heads,
175
+ num_rows,
176
+ nnz_slash,
177
+ dtype=q_seqlens.dtype,
178
+ device=q_seqlens.device)
179
+ column_count = torch.zeros(batch_size,
180
+ num_heads,
181
+ num_rows,
182
+ dtype=q_seqlens.dtype,
183
+ device=q_seqlens.device)
184
+ column_index = torch.zeros(batch_size,
185
+ num_heads,
186
+ num_rows,
187
+ nnz_vertical,
188
+ dtype=q_seqlens.dtype,
189
+ device=q_seqlens.device)
190
+
191
+ torch.ops._C.convert_vertical_slash_indexes(
192
+ block_count, block_offset, column_count, column_index, q_seqlens,
193
+ kv_seqlens, vertical_indexes, slash_indexes, context_size,
194
+ block_size_M, block_size_N, causal)
195
+ return block_count, block_offset, column_count, column_index
196
+
197
+
198
+ def convert_vertical_slash_indexes_mergehead(
199
+ q_seqlens: torch.Tensor, # [BATCH, ]
200
+ kv_seqlens: torch.Tensor, # [BATCH, ]
201
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
202
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
203
+ # [N_HEADS] : different head use different number of indices
204
+ vertical_indices_count: torch.Tensor,
205
+ slash_indices_count: torch.Tensor,
206
+ context_size: int,
207
+ block_size_M: int,
208
+ block_size_N: int,
209
+ causal: bool = True,
210
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
211
+ batch_size = slash_indexes.size(0)
212
+ num_heads = slash_indexes.size(1)
213
+ nnz_slash = slash_indexes.size(2)
214
+ nnz_vertical = vertical_indexes.size(2)
215
+ num_rows = (context_size + block_size_M - 1) // block_size_M
216
+
217
+ block_count = torch.empty(batch_size,
218
+ num_heads,
219
+ num_rows,
220
+ dtype=q_seqlens.dtype,
221
+ device=q_seqlens.device)
222
+ block_offset = torch.empty(batch_size,
223
+ num_heads,
224
+ num_rows,
225
+ nnz_slash,
226
+ dtype=q_seqlens.dtype,
227
+ device=q_seqlens.device)
228
+ column_count = torch.empty(batch_size,
229
+ num_heads,
230
+ num_rows,
231
+ dtype=q_seqlens.dtype,
232
+ device=q_seqlens.device)
233
+ column_index = torch.empty(batch_size,
234
+ num_heads,
235
+ num_rows,
236
+ nnz_vertical,
237
+ dtype=q_seqlens.dtype,
238
+ device=q_seqlens.device)
239
+
240
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
241
+ block_count, block_offset, column_count, column_index, q_seqlens,
242
+ kv_seqlens, vertical_indexes, slash_indexes, vertical_indices_count,
243
+ slash_indices_count, context_size, block_size_M, block_size_N, causal)
244
+ return block_count, block_offset, column_count, column_index
245
+
246
+
247
+ # pos encoding ops
248
+ def rotary_embedding(
249
+ positions: torch.Tensor,
250
+ query: torch.Tensor,
251
+ key: Optional[torch.Tensor],
252
+ head_size: int,
253
+ cos_sin_cache: torch.Tensor,
254
+ is_neox: bool,
255
+ ) -> None:
256
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
257
+ cos_sin_cache, is_neox)
258
+
259
+
260
+ def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
261
+ key: Optional[torch.Tensor], head_size: int,
262
+ cos_sin_cache: torch.Tensor, is_neox: bool,
263
+ rot_dim: int,
264
+ cos_sin_cache_offsets: torch.Tensor) -> None:
265
+ torch.ops._C.batched_rotary_embedding(positions, query, key, head_size,
266
+ cos_sin_cache, is_neox, rot_dim,
267
+ cos_sin_cache_offsets)
268
+
269
+
270
+ # layer norm ops
271
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
272
+ epsilon: float) -> None:
273
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
274
+ input_contiguous = input.contiguous()
275
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
276
+
277
+
278
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
279
+ weight: torch.Tensor, epsilon: float) -> None:
280
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
281
+
282
+
283
+ def apply_repetition_penalties_torch(
284
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
285
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
286
+ repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
287
+ 1, logits.size(1))
288
+ # If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
289
+ penalties = torch.where(prompt_mask | output_mask, repetition_penalties,
290
+ 1.0)
291
+ # If logits are positive, divide by penalty, otherwise multiply by penalty.
292
+ scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
293
+ logits *= scaling
294
+
295
+
296
+ def apply_repetition_penalties_cuda(
297
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
298
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
299
+ torch.ops._C.apply_repetition_penalties_(logits, prompt_mask, output_mask,
300
+ repetition_penalties)
301
+
302
+
303
+ def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor,
304
+ output_mask: torch.Tensor,
305
+ repetition_penalties: torch.Tensor) -> None:
306
+ """Apply repetition penalties to logits in-place.
307
+
308
+ Args:
309
+ logits: The logits tensor of shape [num_seqs, vocab_size].
310
+ prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
311
+ output_mask: A boolean tensor indicating which tokens appear in the output.
312
+ repetition_penalties: The repetition penalties of shape (num_seqs, ).
313
+ """
314
+ if current_platform.is_cuda() and logits.is_contiguous():
315
+ apply_repetition_penalties_cuda(logits, prompt_mask, output_mask,
316
+ repetition_penalties)
317
+ else:
318
+ apply_repetition_penalties_torch(logits, prompt_mask, output_mask,
319
+ repetition_penalties)
320
+
321
+
322
+ def advance_step_flashattn(num_seqs: int, num_queries: int, block_size: int,
323
+ input_tokens: torch.Tensor,
324
+ sampled_token_ids: torch.Tensor,
325
+ input_positions: torch.Tensor,
326
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
327
+ block_tables: torch.Tensor) -> None:
328
+ """Advance a step on GPU for existing inputs for a multi-step runner"""
329
+ return torch.ops._C.advance_step_flashattn(num_seqs, num_queries,
330
+ block_size, input_tokens,
331
+ sampled_token_ids,
332
+ input_positions, seq_lens,
333
+ slot_mapping, block_tables)
334
+
335
+
336
+ def advance_step_flashinfer(num_seqs: int, num_queries: int, block_size: int,
337
+ input_tokens: torch.Tensor,
338
+ sampled_token_ids: torch.Tensor,
339
+ input_positions: torch.Tensor,
340
+ seq_lens: torch.Tensor, slot_mapping: torch.Tensor,
341
+ block_tables: torch.Tensor,
342
+ paged_kv_indices: torch.Tensor,
343
+ paged_kv_indptr: torch.Tensor,
344
+ paged_kv_last_page_len: torch.Tensor,
345
+ block_table_bound: torch.Tensor) -> None:
346
+
347
+ return torch.ops._C.advance_step_flashinfer(
348
+ num_seqs, num_queries, block_size, input_tokens, sampled_token_ids,
349
+ input_positions, seq_lens, slot_mapping, block_tables,
350
+ paged_kv_indices, paged_kv_indptr, paged_kv_last_page_len,
351
+ block_table_bound)
352
+
353
+
354
+ # fused quant layer norm ops
355
+ def rms_norm_dynamic_per_token_quant(
356
+ input: torch.Tensor,
357
+ weight: torch.Tensor,
358
+ epsilon: float,
359
+ quant_dtype: torch.dtype,
360
+ scale_ub: Optional[torch.Tensor] = None,
361
+ residual: Optional[torch.Tensor] = None
362
+ ) -> tuple[torch.Tensor, torch.Tensor]:
363
+ output = torch.empty_like(input, dtype=quant_dtype)
364
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
365
+ device=input.device,
366
+ dtype=torch.float32)
367
+
368
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
369
+ scales, epsilon, scale_ub,
370
+ residual)
371
+ return output, scales
372
+
373
+
374
+ # quantization ops
375
+ # awq
376
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
377
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
378
+ thy: int) -> torch.Tensor:
379
+ if envs.VLLM_USE_TRITON_AWQ:
380
+ from vllm.model_executor.layers.quantization.awq_triton import (
381
+ awq_dequantize_triton)
382
+ return awq_dequantize_triton(qweight, scales, zeros)
383
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
384
+ thx, thy)
385
+
386
+
387
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
388
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
389
+ if envs.VLLM_USE_TRITON_AWQ:
390
+ from vllm.model_executor.layers.quantization.awq_triton import (
391
+ awq_gemm_triton)
392
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
393
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
394
+
395
+
396
+ # gptq
397
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
398
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
399
+ b_g_idx: torch.Tensor, use_exllama: bool,
400
+ bit: int) -> torch.Tensor:
401
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
402
+ b_g_idx, use_exllama, bit)
403
+
404
+
405
+ if hasattr(torch.ops._C, "gptq_gemm"):
406
+
407
+ @register_fake("_C::gptq_gemm")
408
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
409
+ b_gptq_qzeros: torch.Tensor,
410
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
411
+ use_exllama: bool, bit: int) -> torch.Tensor:
412
+ return torch.empty((a.size(0), b_q_weight.size(1)),
413
+ dtype=a.dtype,
414
+ device=a.device)
415
+
416
+
417
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
418
+ bit: int) -> None:
419
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
420
+
421
+
422
+ # marlin
423
+ def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
424
+ b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
425
+ size_n: int, size_k: int) -> torch.Tensor:
426
+ return torch.ops._C.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
427
+ size_n, size_k)
428
+
429
+
430
+ # marlin_24
431
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
432
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
433
+ workspace: torch.Tensor, b_q_type: ScalarType,
434
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
435
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
436
+ workspace, b_q_type.id, size_m,
437
+ size_n, size_k)
438
+
439
+
440
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
441
+
442
+ @register_fake("_C::gptq_marlin_24_gemm")
443
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
444
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
445
+ workspace: torch.Tensor,
446
+ b_q_type: ScalarType, size_m: torch.SymInt,
447
+ size_n: torch.SymInt,
448
+ size_k: torch.SymInt) -> torch.Tensor:
449
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
450
+
451
+ @register_fake("_C::gptq_marlin_gemm")
452
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
453
+ c: Optional[torch.Tensor],
454
+ b_q_weight: torch.Tensor,
455
+ b_scales: torch.Tensor,
456
+ global_scale: Optional[torch.Tensor],
457
+ b_zeros: Optional[torch.Tensor],
458
+ g_idx: Optional[torch.Tensor],
459
+ perm: Optional[torch.Tensor],
460
+ workspace: torch.Tensor,
461
+ b_q_type_id: int,
462
+ size_m: torch.SymInt,
463
+ size_n: torch.SymInt,
464
+ size_k: torch.SymInt,
465
+ is_k_full: bool = True,
466
+ use_atomic_add: bool = False,
467
+ use_fp32_reduce: bool = False,
468
+ is_zp_float: bool = False) -> torch.Tensor:
469
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
470
+
471
+ @register_fake("_C::marlin_qqq_gemm")
472
+ def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
473
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
474
+ s_group: torch.Tensor, workspace: torch.Tensor,
475
+ size_m: torch.SymInt, size_n: torch.SymInt,
476
+ size_k: torch.SymInt) -> torch.Tensor:
477
+ return torch.empty((size_m, size_n),
478
+ dtype=torch.float16,
479
+ device=a.device)
480
+
481
+ @register_fake("_C::marlin_gemm")
482
+ def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
483
+ b_scales: torch.Tensor, workspace: torch.Tensor,
484
+ size_m: torch.SymInt, size_n: torch.SymInt,
485
+ size_k: torch.SymInt) -> torch.Tensor:
486
+ return torch.empty((size_m, size_n),
487
+ dtype=torch.float16,
488
+ device=a.device)
489
+
490
+ @register_fake("_C::awq_dequantize")
491
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
492
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
493
+ thx: int, thy: int) -> torch.Tensor:
494
+ in_c = qweight.size(0)
495
+ qout_c = qweight.size(1)
496
+ out_c = qout_c * 8
497
+ return torch.empty((in_c, out_c),
498
+ dtype=scales.dtype,
499
+ device=scales.device)
500
+
501
+ @register_fake("_C::awq_gemm")
502
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
503
+ qzeros: torch.Tensor, scales: torch.Tensor,
504
+ split_k_iters: torch.SymInt) -> torch.Tensor:
505
+ num_in_feats = input.size(0)
506
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
507
+ dtype=input.dtype,
508
+ device=input.device).sum(0)
509
+
510
+ @register_fake("_C::aqlm_gemm")
511
+ def _aqlm_gemm_fake(input: torch.Tensor, codes: torch.Tensor,
512
+ codebooks: torch.Tensor, scales: torch.Tensor,
513
+ codebook_partition_sizes: list[int],
514
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
515
+ out_features = codes.size(0) * codebooks.size(2)
516
+ flat_input = input.reshape((-1, input.size(-1)))
517
+ flat_output = torch.empty((flat_input.size(0), out_features),
518
+ dtype=input.dtype,
519
+ device=input.device)
520
+
521
+ output_sizes = list(input.shape)
522
+ output_sizes.pop()
523
+ output_sizes.append(-1)
524
+ return flat_output.reshape(tuple(output_sizes))
525
+
526
+ @register_fake("_C::aqlm_dequant")
527
+ def _aqlm_dequant_fake(
528
+ codes: torch.Tensor, codebooks: torch.Tensor,
529
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
530
+ in_features = codes.size(1) * 8
531
+ out_features = codes.size(0)
532
+ return torch.empty((out_features, in_features),
533
+ dtype=codebooks.dtype,
534
+ device=codebooks.device)
535
+
536
+ @register_fake("_C::machete_mm")
537
+ def machete_mm_fake(
538
+ a: torch.Tensor,
539
+ # b_q Should be the tensor returned by machete_prepack_B
540
+ b_q: torch.Tensor,
541
+ b_type: ScalarType,
542
+ out_type: Optional[torch.dtype] = None,
543
+ b_group_scales: Optional[torch.Tensor] = None,
544
+ b_group_zeros: Optional[torch.Tensor] = None,
545
+ b_group_size: Optional[int] = None,
546
+ b_channel_scales: Optional[torch.Tensor] = None,
547
+ a_token_scales: Optional[torch.Tensor] = None,
548
+ schedule: Optional[str] = None,
549
+ ) -> torch.Tensor:
550
+ m = a.size(0)
551
+ n = b_q.size(1)
552
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
553
+
554
+ @register_fake("_C::machete_prepack_B")
555
+ def machete_prepack_B_fake(
556
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
557
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
558
+ return torch.empty_like(b_q_weight,
559
+ memory_format=torch.contiguous_format)
560
+
561
+
562
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
563
+
564
+ @register_fake("_C::allspark_w8a16_gemm")
565
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
566
+ b_scales: torch.Tensor,
567
+ b_qzeros: Optional[torch.Tensor],
568
+ n: torch.SymInt, group_size: torch.SymInt,
569
+ sm_count: torch.SymInt,
570
+ sm_version: torch.SymInt,
571
+ CUBLAS_M_THRESHOLD: torch.SymInt,
572
+ has_zp: bool,
573
+ n32k16_reorder: bool) -> torch.Tensor:
574
+ m = a.size(0)
575
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
576
+
577
+
578
+ if hasattr(torch.ops._C, "ggml_dequantize"):
579
+
580
+ @register_fake("_C::ggml_dequantize")
581
+ def _ggml_dequantize_fake(
582
+ W: torch.Tensor,
583
+ quant_type: int,
584
+ m: torch.SymInt,
585
+ n: torch.SymInt,
586
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
587
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
588
+
589
+ @register_fake("_C::ggml_mul_mat_vec_a8")
590
+ def _ggml_mul_mat_vec_a8_fake(
591
+ W: torch.Tensor,
592
+ X: torch.Tensor,
593
+ quant_type: int,
594
+ row: torch.SymInt,
595
+ ) -> torch.Tensor:
596
+ return torch.empty((X.shape[0], row), dtype=X.dtype, device=W.device)
597
+
598
+ @register_fake("_C::ggml_mul_mat_a8")
599
+ def _ggml_mul_mat_a8_fake(
600
+ W: torch.Tensor,
601
+ X: torch.Tensor,
602
+ quant_type: int,
603
+ row: torch.SymInt,
604
+ ) -> torch.Tensor:
605
+ batch = X.size(0)
606
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
607
+
608
+ @register_fake("_C::ggml_moe_a8")
609
+ def _ggml_moe_a8_fake(
610
+ X: torch.Tensor,
611
+ W: torch.Tensor,
612
+ sorted_token_ids: torch.Tensor,
613
+ expert_ids: torch.Tensor,
614
+ num_tokens_post_padded: torch.Tensor,
615
+ quant_type: int,
616
+ row: torch.SymInt,
617
+ top_k: torch.SymInt,
618
+ tokens: torch.SymInt,
619
+ ) -> torch.Tensor:
620
+ tokens = X.size(0)
621
+ return torch.empty((tokens * top_k, row),
622
+ dtype=torch.float16,
623
+ device=W.device)
624
+
625
+
626
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
627
+
628
+ @register_fake("_C::ggml_moe_a8_vec")
629
+ def _ggml_moe_a8_vec_fake(
630
+ X: torch.Tensor,
631
+ W: torch.Tensor,
632
+ topk_ids: torch.Tensor,
633
+ top_k: int,
634
+ quant_type: int,
635
+ row: torch.SymInt,
636
+ tokens: torch.SymInt,
637
+ ) -> torch.Tensor:
638
+ tokens = X.size(0)
639
+ return torch.empty((tokens * top_k, row),
640
+ dtype=X.dtype,
641
+ device=W.device)
642
+
643
+
644
+ # cutlass
645
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
646
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
647
+
648
+
649
+ def cutlass_blockwise_scaled_grouped_mm(
650
+ output: torch.Tensor,
651
+ a: torch.Tensor,
652
+ b: torch.Tensor,
653
+ scales_a: torch.Tensor,
654
+ scales_b: torch.Tensor,
655
+ problem_sizes: torch.Tensor,
656
+ expert_offsets: torch.Tensor,
657
+ ):
658
+ torch.ops._C.cutlass_blockwise_scaled_grouped_mm(output, a, b, scales_a,
659
+ scales_b, problem_sizes,
660
+ expert_offsets)
661
+
662
+
663
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
664
+ block_scale_a: torch.Tensor,
665
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
666
+ out_dtype: torch.dtype) -> torch.Tensor:
667
+ assert a.ndim == 2 and b.ndim == 2
668
+ m, n = a.shape[0], b.shape[0]
669
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
670
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
671
+ alpha)
672
+ return out
673
+
674
+
675
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
676
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
677
+
678
+
679
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
680
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
681
+ cuda_device_capability)
682
+
683
+
684
+ def cutlass_scaled_mm(a: torch.Tensor,
685
+ b: torch.Tensor,
686
+ scale_a: torch.Tensor,
687
+ scale_b: torch.Tensor,
688
+ out_dtype: torch.dtype,
689
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
690
+ """
691
+ `cutlass_scaled_mm` implements a fused version of
692
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
693
+ where scale_a * a and scale_b * b are implemented using numpy-style
694
+ broadcasting.
695
+
696
+ In order to support blockwise scaling like found in DeepSeek V3 we also
697
+ support extended "group" broadcast rules. We extend the numpy-style
698
+ broadcasting rules with the following rule:
699
+ "if the extent of a dimension in the source shape is between 1 and
700
+ corresponding extent in the target shape we repeat each element along
701
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
702
+ example if we have:
703
+ a = [[1, 2], and target_shape = (2, 4)
704
+ [3, 4]]
705
+ then we would expand a to:
706
+ a = [[1, 1, 2, 2],
707
+ [3, 3, 4, 4]]
708
+ currently we only support the case:
709
+ scale_a.shape * [1, 128] == a.shape
710
+ scale_b.shape * [128, 128] == b.shape
711
+ """
712
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
713
+ assert bias is None or bias.shape[0] == b.shape[
714
+ 1] and bias.dtype == out_dtype
715
+
716
+ m = a.shape[0]
717
+ n = b.shape[1]
718
+
719
+ cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
720
+ if current_platform.is_rocm() or not cutlass_compatible_b:
721
+ from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
722
+ triton_scaled_mm)
723
+ return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
724
+
725
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
726
+
727
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
728
+
729
+ return out
730
+
731
+
732
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
733
+ b: torch.Tensor,
734
+ scale_a: torch.Tensor,
735
+ scale_b: torch.Tensor,
736
+ out_dtype: torch.dtype,
737
+ azp_adj: torch.Tensor,
738
+ azp: Optional[torch.Tensor] = None,
739
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
740
+ """
741
+ :param azp_adj: In the per-tensor case, this should include the azp.
742
+ Always per-channel.
743
+ :param azp: Only set in the per-token case. Per-token if set.
744
+ """
745
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
746
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
747
+ assert bias is None or bias.numel(
748
+ ) == b.shape[1] and bias.dtype == out_dtype
749
+ assert azp is None or azp.numel() == a.shape[0]
750
+
751
+ m = a.shape[0]
752
+ n = b.shape[1]
753
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
754
+
755
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
756
+ azp, bias)
757
+ return out
758
+
759
+
760
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
761
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
762
+ cuda_device_capability)
763
+
764
+
765
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
766
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
767
+
768
+ def cutlass_sparse_compress(a: torch.Tensor) \
769
+ -> tuple[torch.Tensor, torch.Tensor]:
770
+ """
771
+ Compresses a sparse matrix for use with Cutlass sparse operations.
772
+
773
+ This function takes a dense tensor and compresses it into two components:
774
+ non-zero elements and metadata. The compressed representation is compatible
775
+ with Cutlass sparse kernels.
776
+
777
+ Args:
778
+ a (torch.Tensor):
779
+ The input tensor to be compressed. Must have one of the following data types:
780
+ - `torch.int8`
781
+ - `torch.float8_e4m3fn`
782
+ - `torch.bfloat16`
783
+ - `torch.float16`
784
+
785
+ Returns:
786
+ tuple[torch.Tensor, torch.Tensor]:
787
+ A tuple containing:
788
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
789
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
790
+
791
+ Raises:
792
+ ValueError: If the compression operation fails.
793
+
794
+ Notes:
795
+ - The `a_meta` tensor has a data type of `torch.uint8`.
796
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
797
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
798
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
799
+ """
800
+ assert (a.dtype in [
801
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
802
+ ])
803
+ assert (a.is_contiguous())
804
+
805
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
806
+ elemsPerMetaElem = 4
807
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
808
+
809
+ return torch.ops._C.cutlass_sparse_compress(a)
810
+
811
+
812
+ def cutlass_scaled_sparse_mm(
813
+ a: torch.Tensor,
814
+ bt_nzs: torch.Tensor,
815
+ bt_meta: torch.Tensor,
816
+ scale_a: torch.Tensor,
817
+ scale_b: torch.Tensor,
818
+ out_dtype: torch.dtype,
819
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
820
+ """
821
+ Performs a scaled sparse matrix multiplication using Cutlass.
822
+
823
+ Steps:
824
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
825
+ `a = torch.randn((m, k), device='cuda')`.
826
+
827
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
828
+ `b = torch.randn((k, n), device='cuda')`.
829
+
830
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
831
+ `b = prune_to_2_4(b, dim=0)`.
832
+
833
+ 4. Compress the transposed sparse matrix `b.t()`:
834
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
835
+
836
+ 5. Perform sparse matrix multiplication using the compressed matrix,
837
+ applying scaling factors for `a` and `b`, and the output data type:
838
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
839
+
840
+ Returns:
841
+ - The result of the scaled sparse matrix multiplication.
842
+ """
843
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
844
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
845
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
846
+ and bias.dtype == out_dtype
847
+
848
+ m = a.shape[0]
849
+ n = bt_nzs.shape[0]
850
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
851
+
852
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
853
+ scale_b, bias)
854
+
855
+ return out
856
+
857
+
858
+ def get_cutlass_moe_mm_data(topk_ids: torch.Tensor,
859
+ expert_offsets: torch.Tensor,
860
+ problem_sizes1: torch.Tensor,
861
+ problem_sizes2: torch.Tensor,
862
+ input_permutation: torch.Tensor,
863
+ output_permutation: torch.Tensor,
864
+ num_experts: int,
865
+ n: int,
866
+ k: int,
867
+ blockscale_offsets: Optional[torch.Tensor] = None):
868
+ """
869
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
870
+ used in CUTLASS-based fused MoE.
871
+
872
+ The function takes in topk_ids (token-expert mapping) and uses it to
873
+ compute:
874
+ - expert_offsets: Indices that mark at which token index each expert begins
875
+ its computation after the input is sorted with
876
+ input_permutation. The number of tokens computed with
877
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
878
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
879
+ multiplication in two grouped MMs used in
880
+ the fused MoE operation.
881
+ - input_permutation: Permutation that must be used to shuffle the input
882
+ before executing the MMs.
883
+ - output_permutation: Permutation that must be used to shuffle the output
884
+ after executing the MMs.
885
+ - blockscale_offsets: Optional argument passed for fp4 moe. Indices that
886
+ mark at which block scale index each expert begins
887
+ its computation. The number of block scale rows
888
+ computed with expert E is blockscale_offsets[E + 1] -
889
+ blockscale_offsets[E]
890
+ """
891
+ return torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
892
+ problem_sizes1, problem_sizes2,
893
+ input_permutation,
894
+ output_permutation,
895
+ num_experts, n, k,
896
+ blockscale_offsets)
897
+
898
+
899
+ def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
900
+ """
901
+ Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
902
+ This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
903
+ """
904
+ num_tokens_permuted = dst2src_map.shape[0]
905
+ output_tensor = torch.empty((num_tokens_permuted, input_tensor.shape[1]),
906
+ device=input_tensor.device,
907
+ dtype=input_tensor.dtype)
908
+ torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
909
+ return output_tensor
910
+
911
+
912
+ def get_cutlass_pplx_moe_mm_data(expert_offsets: torch.Tensor,
913
+ problem_sizes1: torch.Tensor,
914
+ problem_sizes2: torch.Tensor,
915
+ expert_num_tokens: torch.Tensor,
916
+ num_local_experts: int, padded_m: int, n: int,
917
+ k: int):
918
+ """
919
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
920
+ used in CUTLASS-based fused MoE.
921
+
922
+ The function takes in expert_num_tokens (token count per expert) and
923
+ non_zero_expert_idxs (consecutive indices of experts with non-zero token
924
+ counts) and uses them to compute:
925
+ - expert_offsets: Indices that mark at which token index each expert begins
926
+ its computation.
927
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
928
+ multiplication in two grouped MMs used in
929
+ the fused MoE operation.
930
+ """
931
+ return torch.ops._C.get_cutlass_pplx_moe_mm_data(
932
+ expert_offsets, problem_sizes1, problem_sizes2, expert_num_tokens,
933
+ num_local_experts, padded_m, n, k)
934
+
935
+
936
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
937
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
938
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
939
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
940
+ b_strides: torch.Tensor, c_strides: torch.Tensor,
941
+ per_act_token: bool, per_out_ch: bool):
942
+ """
943
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
944
+ The function executes fp8-quantized OUT = AB matrix multiplication.
945
+
946
+ - expert_offsets: Indices that mark at which token index each expert begins
947
+ its computation. The number of tokens computed with
948
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
949
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
950
+ MMs used in the fused MoE operation.
951
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
952
+ """
953
+ return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
954
+ a_scales, b_scales, expert_offsets,
955
+ problem_sizes, a_strides, b_strides,
956
+ c_strides, per_act_token, per_out_ch)
957
+
958
+
959
+ def cutlass_fp4_moe_mm(a_tensors: torch.Tensor, b_tensors: torch.Tensor,
960
+ a_scales: torch.Tensor, b_scales: torch.Tensor,
961
+ alphas: torch.Tensor, problem_sizes: torch.Tensor,
962
+ expert_offsets: torch.Tensor, sf_offsets: torch.Tensor,
963
+ out_dtype: torch.dtype, device: torch.device):
964
+ """
965
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
966
+ the gemms for each combination based on the specified problem sizes.
967
+
968
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
969
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
970
+ input and expert weights.
971
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
972
+ - expert_offsets/sf_offsets: Indices that mark at which token index
973
+ each expert begins its computation. The number of tokens
974
+ computed with expert E is expert_offsets[E + 1] -
975
+ expert_offsets[E] And the sf_size per expert is
976
+ sf_offset[E+1] - sf_offset[E]
977
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
978
+ MMs used in the fused MoE operation.
979
+ """
980
+ m_topk = a_tensors.shape[0]
981
+ n = b_tensors.shape[1]
982
+ c_shape = (m_topk, n)
983
+ c = torch.empty(c_shape, device=device, dtype=out_dtype)
984
+ torch.ops._C.cutlass_fp4_group_mm(c, a_tensors, b_tensors, a_scales,
985
+ b_scales, alphas, problem_sizes,
986
+ expert_offsets, sf_offsets)
987
+ return c.to(out_dtype)
988
+
989
+
990
+ # aqlm
991
+ def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
992
+ codebooks: torch.Tensor, scales: torch.Tensor,
993
+ codebook_partition_sizes: list[int],
994
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
995
+ return torch.ops._C.aqlm_gemm(input, codes, codebooks, scales,
996
+ codebook_partition_sizes, bias)
997
+
998
+
999
+ def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
1000
+ codebook_partition_sizes: list[int]) -> torch.Tensor:
1001
+ return torch.ops._C.aqlm_dequant(codes, codebooks,
1002
+ codebook_partition_sizes)
1003
+
1004
+
1005
+ # gptq_marlin
1006
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
1007
+ size_k: int, size_n: int,
1008
+ num_bits: int) -> torch.Tensor:
1009
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
1010
+ num_bits)
1011
+
1012
+
1013
+ # gptq_marlin
1014
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
1015
+ num_bits: int) -> torch.Tensor:
1016
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
1017
+
1018
+
1019
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
1020
+ size_k: int, size_n: int,
1021
+ num_bits: int) -> torch.Tensor:
1022
+ num_experts = b_q_weight.shape[0]
1023
+ assert size_k % 16 == 0
1024
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
1025
+ device=b_q_weight.device,
1026
+ dtype=b_q_weight.dtype)
1027
+ for e in range(num_experts):
1028
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
1029
+ size_k, size_n, num_bits)
1030
+ return output
1031
+
1032
+
1033
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
1034
+ size_k: int, size_n: int,
1035
+ num_bits: int) -> torch.Tensor:
1036
+ num_experts = b_q_weight.shape[0]
1037
+ assert size_k % 16 == 0
1038
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
1039
+ device=b_q_weight.device,
1040
+ dtype=b_q_weight.dtype)
1041
+ for e in range(num_experts):
1042
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
1043
+ size_n, num_bits)
1044
+ return output
1045
+
1046
+
1047
+ def gptq_marlin_gemm(a: torch.Tensor,
1048
+ c: Optional[torch.Tensor],
1049
+ b_q_weight: torch.Tensor,
1050
+ b_scales: torch.Tensor,
1051
+ global_scale: Optional[torch.Tensor],
1052
+ b_zeros: Optional[torch.Tensor],
1053
+ g_idx: Optional[torch.Tensor],
1054
+ perm: Optional[torch.Tensor],
1055
+ workspace: torch.Tensor,
1056
+ b_q_type: ScalarType,
1057
+ size_m: int,
1058
+ size_n: int,
1059
+ size_k: int,
1060
+ is_k_full: bool = True,
1061
+ use_atomic_add: bool = False,
1062
+ use_fp32_reduce: bool = False,
1063
+ is_zp_float: bool = False) -> torch.Tensor:
1064
+ return torch.ops._C.gptq_marlin_gemm(a, c, b_q_weight, b_scales,
1065
+ global_scale, b_zeros, g_idx, perm,
1066
+ workspace, b_q_type.id, size_m,
1067
+ size_n, size_k, is_k_full,
1068
+ use_atomic_add, use_fp32_reduce,
1069
+ is_zp_float)
1070
+
1071
+
1072
+ # machete
1073
+ def machete_supported_schedules(
1074
+ a_type: torch.dtype,
1075
+ b_type: ScalarType,
1076
+ group_scales_type: Optional[torch.dtype],
1077
+ group_zeros_type: Optional[torch.dtype] = None,
1078
+ channel_scales_type: Optional[torch.dtype] = None,
1079
+ token_scales_type: Optional[torch.dtype] = None,
1080
+ out_type: Optional[torch.dtype] = None) -> list[str]:
1081
+ return torch.ops._C.machete_supported_schedules(
1082
+ a_type, b_type.id, group_scales_type, group_zeros_type,
1083
+ channel_scales_type, token_scales_type, out_type)
1084
+
1085
+
1086
+ def machete_mm(
1087
+ a: torch.Tensor,
1088
+ # b_q Should be the tensor returned by machete_prepack_B
1089
+ b_q: torch.Tensor,
1090
+ b_type: ScalarType,
1091
+ out_type: Optional[torch.dtype] = None,
1092
+ b_group_scales: Optional[torch.Tensor] = None,
1093
+ b_group_zeros: Optional[torch.Tensor] = None,
1094
+ b_group_size: Optional[int] = None,
1095
+ b_channel_scales: Optional[torch.Tensor] = None,
1096
+ a_token_scales: Optional[torch.Tensor] = None,
1097
+ schedule: Optional[str] = None) -> torch.Tensor:
1098
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
1099
+ b_group_zeros, b_group_size,
1100
+ b_channel_scales, a_token_scales, schedule)
1101
+
1102
+
1103
+ def machete_prepack_B(
1104
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
1105
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
1106
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
1107
+ group_scales_type)
1108
+
1109
+
1110
+ if hasattr(torch.ops._C, "permute_cols"):
1111
+
1112
+ @register_fake("_C::permute_cols")
1113
+ def _permute_cols_fake(a: torch.Tensor,
1114
+ perm: torch.Tensor) -> torch.Tensor:
1115
+ return torch.empty_like(a)
1116
+
1117
+
1118
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1119
+ return torch.ops._C.permute_cols(a, perm)
1120
+
1121
+
1122
+ # fp4
1123
+ def scaled_fp4_quant(
1124
+ input: torch.Tensor,
1125
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
1126
+ """
1127
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1128
+
1129
+ This function quantizes the last dimension of the given tensor `input`. For
1130
+ every 16 consecutive elements, a single dynamically computed scaling factor
1131
+ is shared. This scaling factor is quantized using the `input_global_scale`
1132
+ and is stored in a swizzled layout (see
1133
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1134
+
1135
+ Args:
1136
+ input: The input tensor to be quantized to FP4
1137
+ input_global_scale: A scalar scaling factor for the entire tensor.
1138
+
1139
+ Returns:
1140
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1141
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1142
+ in the sizzled layout.
1143
+ """
1144
+ assert not current_platform.is_rocm()
1145
+ assert input.ndim >= 1, (
1146
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
1147
+ other_dims = 1 if input.ndim == 1 else -1
1148
+ input = input.reshape(other_dims, input.shape[-1])
1149
+ m, n = input.shape
1150
+ block_size = 16
1151
+ device = input.device
1152
+
1153
+ assert n % block_size == 0, (
1154
+ f'last dim has to be multiple of 16, but got {n}.')
1155
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1156
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
1157
+
1158
+ # Two fp4 values will be packed into an uint8.
1159
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1160
+
1161
+ # We use the rounded values to store the swizzled values. Due to the
1162
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1163
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1164
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1165
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1166
+ round_up = lambda x, y: (x + y - 1) // y * y
1167
+ rounded_m = round_up(m, 128)
1168
+ scale_n = n // block_size
1169
+ rounded_n = round_up(scale_n, 4)
1170
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
1171
+ device=device,
1172
+ dtype=torch.int32)
1173
+
1174
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
1175
+ input_global_scale)
1176
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1177
+ return output, output_scale
1178
+
1179
+
1180
+ def scaled_fp4_experts_quant(
1181
+ input_tensor: torch.Tensor,
1182
+ input_global_scale: torch.Tensor,
1183
+ expert_offsets: torch.Tensor,
1184
+ blockscale_offsets: torch.Tensor,
1185
+ topk: int,
1186
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1187
+ """
1188
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1189
+ packed MoE Inputs.
1190
+ Args:
1191
+ input_tensor: The input tensor to be quantized to FP4
1192
+ input_global_scale: A scalar scaling factor for the entire tensor.
1193
+ expert_offsets: The expert offsets tensor
1194
+ blockscale_offsets: The blockscale offsets tensor
1195
+ Outputs:
1196
+ output: The quantized tensor in FP4
1197
+ output_scales: The blockscale tensor in FP8-E4M3
1198
+ """
1199
+ assert not current_platform.is_rocm()
1200
+ assert input_tensor.ndim == 2, (
1201
+ f'input.ndim needs to be == 2, but got {input_tensor.ndim}.')
1202
+
1203
+ # Control the maximum number of tokens per expert supported by the
1204
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1205
+ # from running out of memory. This value can also be increased to support
1206
+ # larger models.
1207
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1208
+ m_numtopk, k = input_tensor.shape
1209
+
1210
+ assert (m_numtopk <= MAX_TOKENS_PER_EXPERT * topk), (
1211
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1212
+ f"{MAX_TOKENS_PER_EXPERT})"
1213
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1214
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value.")
1215
+ scales_k = k // 16
1216
+ padded_k = (scales_k + (4 - 1)) // 4
1217
+
1218
+ # output is uint8 and packed fp4 values
1219
+ output = torch.empty(m_numtopk,
1220
+ k // 2,
1221
+ device=input_tensor.device,
1222
+ dtype=torch.uint8)
1223
+ output_scales = torch.empty(MAX_TOKENS_PER_EXPERT * topk,
1224
+ padded_k,
1225
+ dtype=torch.int32,
1226
+ device=input_tensor.device)
1227
+ torch.ops._C.scaled_fp4_experts_quant(output, output_scales, input_tensor,
1228
+ input_global_scale, expert_offsets,
1229
+ blockscale_offsets)
1230
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1231
+ return output, output_scales
1232
+
1233
+
1234
+ # fp8
1235
+ def scaled_fp8_quant(
1236
+ input: torch.Tensor,
1237
+ scale: Optional[torch.Tensor] = None,
1238
+ num_token_padding: Optional[int] = None,
1239
+ scale_ub: Optional[torch.Tensor] = None,
1240
+ use_per_token_if_dynamic: bool = False,
1241
+ output: Optional[torch.Tensor] = None,
1242
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1243
+ """
1244
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1245
+
1246
+ This function supports both static and dynamic quantization: If you
1247
+ provide the scale, it will use static scaling and if you omit it,
1248
+ the scale will be determined dynamically. The function also allows
1249
+ optional padding of the output tensors for downstream kernels that
1250
+ will benefit from padding.
1251
+
1252
+ Args:
1253
+ input: The input tensor to be quantized to FP8
1254
+ scale: Optional scaling factor for the FP8 quantization
1255
+ scale_ub: Optional upper bound for scaling factor in dynamic
1256
+ per token case
1257
+ num_token_padding: If specified, pad the first dimension
1258
+ of the output to at least this value.
1259
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1260
+ in the dynamic quantization case.
1261
+
1262
+ Returns:
1263
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1264
+ scaling factor.
1265
+ """
1266
+ # This code assumes batch_dim and num_tokens are flattened
1267
+ assert (input.ndim == 2)
1268
+ shape: Union[tuple[int, int], torch.Size] = input.shape
1269
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1270
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1271
+ if num_token_padding:
1272
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1273
+ if output is None:
1274
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1275
+ else:
1276
+ assert num_token_padding is None, \
1277
+ "padding not supported if output passed in"
1278
+ assert output.dtype == out_dtype
1279
+
1280
+ if scale is None:
1281
+ if use_per_token_if_dynamic:
1282
+ scale = torch.empty((shape[0], 1),
1283
+ device=input.device,
1284
+ dtype=torch.float32)
1285
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1286
+ output, input.contiguous(), scale, scale_ub)
1287
+ else:
1288
+ scale = torch.zeros(1, device=input.device, dtype=torch.float32)
1289
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1290
+ else:
1291
+ assert scale.numel() == 1, f"{scale.shape}"
1292
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1293
+
1294
+ return output, scale
1295
+
1296
+
1297
+ # gptq allspark
1298
+ def allspark_repack_weight(
1299
+ qweight: torch.Tensor,
1300
+ scale: torch.Tensor,
1301
+ zero_point: Optional[torch.Tensor] = None,
1302
+ has_zp: bool = False
1303
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1304
+ """
1305
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1306
+ for Ampere W8A16 Fused Gemm kernel
1307
+
1308
+ Args:
1309
+ qweight: uint8 weight tensor, original k x n format.
1310
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1311
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1312
+ Must be provided for asymmetric quantization.
1313
+ has_zp: if use symmetric quantization, has_zp = False.
1314
+ if use asymmetric quantization, has_zp = True.
1315
+
1316
+ Returns:
1317
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1318
+ rearranged weight, scale, and optionally zero_point.
1319
+ """
1320
+ K = qweight.shape[0]
1321
+ N = qweight.shape[1]
1322
+ N_32align = (N + 32 - 1) // 32 * 32
1323
+
1324
+ qweight_reorder = torch.empty((N_32align, K),
1325
+ device=qweight.device,
1326
+ dtype=qweight.dtype)
1327
+ scale_reorder = torch.empty((1, N_32align),
1328
+ device=scale.device,
1329
+ dtype=scale.dtype)
1330
+ zero_point_reorder = None
1331
+ if has_zp:
1332
+ assert zero_point is not None, (
1333
+ "zero_point must be provided for asymmetric quantization.")
1334
+ zero_point_reorder = torch.empty((1, N_32align),
1335
+ device=zero_point.device,
1336
+ dtype=zero_point.dtype)
1337
+
1338
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1339
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1340
+ zero_point_reorder, K, N, N_32align)
1341
+
1342
+ return qweight_reorder, scale_reorder, zero_point_reorder
1343
+
1344
+
1345
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1346
+ b_scales: torch.Tensor,
1347
+ b_qzeros: Optional[torch.Tensor], n: int,
1348
+ group_size: int, sm_count: int, sm_version: int,
1349
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1350
+ n32k16_reorder: bool) -> torch.Tensor:
1351
+
1352
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1353
+ n, group_size, sm_count,
1354
+ sm_version, CUBLAS_M_THRESHOLD,
1355
+ has_zp, n32k16_reorder)
1356
+
1357
+
1358
+ # int8
1359
+ def scaled_int8_quant(
1360
+ input: torch.Tensor,
1361
+ scale: Optional[torch.Tensor] = None,
1362
+ azp: Optional[torch.Tensor] = None,
1363
+ symmetric: bool = True
1364
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1365
+ """
1366
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1367
+
1368
+ Args:
1369
+ input: The input tensor to be quantized to int8.
1370
+ scale: Optional scaling factor for the int8 quantization.
1371
+ When not provided, we invoke dynamic-per-token quantization.
1372
+ azp: Optional zero-point for the int8 quantization.
1373
+ Must be provided for asymmetric quantization if `scale` is provided.
1374
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1375
+
1376
+ Returns:
1377
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1378
+ """
1379
+ output = torch.empty_like(input, dtype=torch.int8)
1380
+ if scale is not None:
1381
+ # static-per-tensor quantization.
1382
+ assert symmetric == (
1383
+ azp
1384
+ is None), "azp must only be provided for asymmetric quantization."
1385
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1386
+ return output, scale, azp
1387
+
1388
+ # dynamic-per-token quantization.
1389
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1390
+ device=input.device,
1391
+ dtype=torch.float32)
1392
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1393
+ dtype=torch.int32)
1394
+ torch.ops._C.dynamic_scaled_int8_quant(output, input.contiguous(),
1395
+ input_scales, input_azp)
1396
+ return output, input_scales, input_azp
1397
+
1398
+
1399
+ # qqq ops
1400
+ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
1401
+ s_tok: torch.Tensor, s_ch: torch.Tensor,
1402
+ s_group: torch.Tensor, workspace: torch.Tensor,
1403
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
1404
+ return torch.ops._C.marlin_qqq_gemm(a, b_q_weight, s_tok, s_ch, s_group,
1405
+ workspace, size_m, size_n, size_k)
1406
+
1407
+
1408
+ # gguf
1409
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1410
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1411
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1412
+
1413
+
1414
+ def ggml_mul_mat_vec_a8(
1415
+ W: torch.Tensor,
1416
+ X: torch.Tensor,
1417
+ quant_type: int,
1418
+ row: int,
1419
+ ) -> torch.Tensor:
1420
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1421
+
1422
+
1423
+ def ggml_mul_mat_a8(
1424
+ W: torch.Tensor,
1425
+ X: torch.Tensor,
1426
+ quant_type: int,
1427
+ row: int,
1428
+ ) -> torch.Tensor:
1429
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1430
+
1431
+
1432
+ def ggml_moe_a8(
1433
+ X: torch.Tensor,
1434
+ W: torch.Tensor,
1435
+ sorted_token_ids: torch.Tensor,
1436
+ expert_ids: torch.Tensor,
1437
+ num_tokens_post_padded: torch.Tensor,
1438
+ quant_type: int,
1439
+ row: int,
1440
+ top_k: int,
1441
+ tokens: int,
1442
+ ) -> torch.Tensor:
1443
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1444
+ num_tokens_post_padded, quant_type, row,
1445
+ top_k, tokens)
1446
+
1447
+
1448
+ def ggml_moe_a8_vec(
1449
+ X: torch.Tensor,
1450
+ W: torch.Tensor,
1451
+ topk_ids: torch.Tensor,
1452
+ top_k: int,
1453
+ quant_type: int,
1454
+ row: torch.SymInt,
1455
+ tokens: torch.SymInt,
1456
+ ) -> torch.Tensor:
1457
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row,
1458
+ tokens)
1459
+
1460
+
1461
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1462
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1463
+
1464
+
1465
+ # mamba
1466
+ def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
1467
+ bias_: Optional[torch.Tensor],
1468
+ conv_states: Optional[torch.Tensor],
1469
+ query_start_loc: Optional[torch.Tensor],
1470
+ cache_indices: Optional[torch.Tensor],
1471
+ has_initial_state: Optional[torch.Tensor],
1472
+ silu_activation: bool, pad_slot_id: int):
1473
+ torch.ops._C.causal_conv1d_fwd(x, weight, bias_, conv_states,
1474
+ query_start_loc, cache_indices,
1475
+ has_initial_state, silu_activation,
1476
+ pad_slot_id)
1477
+
1478
+
1479
+ def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
1480
+ weight: torch.Tensor, bias_: Optional[torch.Tensor],
1481
+ silu_activation: bool,
1482
+ cache_seqlens: Optional[torch.Tensor],
1483
+ conv_state_indices: Optional[torch.Tensor],
1484
+ pad_slot_id: int):
1485
+ torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
1486
+ silu_activation, cache_seqlens,
1487
+ conv_state_indices, pad_slot_id)
1488
+
1489
+
1490
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1491
+ B: torch.Tensor, C: torch.Tensor,
1492
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1493
+ delta_bias_: Optional[torch.Tensor],
1494
+ delta_softplus: bool,
1495
+ query_start_loc: Optional[torch.Tensor],
1496
+ cache_indices: Optional[torch.Tensor],
1497
+ has_initial_state: Optional[torch.Tensor],
1498
+ ssm_states: torch.Tensor, pad_slot_id: int):
1499
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1500
+ delta_softplus, query_start_loc,
1501
+ cache_indices, has_initial_state,
1502
+ ssm_states, pad_slot_id)
1503
+
1504
+
1505
+ # ROCm skinny gemms
1506
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1507
+ rows_per_block: int) -> torch.Tensor:
1508
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1509
+
1510
+
1511
+ def wvSplitK(a: torch.Tensor, b: torch.Tensor, cu_count: int) -> torch.Tensor:
1512
+ return torch.ops._rocm_C.wvSplitK(a, b, cu_count)
1513
+
1514
+
1515
+ def wvSplitKQ(a: torch.Tensor, b: torch.Tensor, out_dtype: torch.dtype,
1516
+ scale_a: torch.Tensor, scale_b: torch.Tensor,
1517
+ cu_count: int) -> torch.Tensor:
1518
+ out = torch.empty((b.shape[0], a.shape[0]),
1519
+ dtype=out_dtype,
1520
+ device=b.device)
1521
+ torch.ops._rocm_C.wvSplitKQ(a, b, out, scale_a, scale_b, cu_count)
1522
+ return out
1523
+
1524
+
1525
+ # moe
1526
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1527
+ torch.ops._moe_C.moe_sum(input, output)
1528
+
1529
+
1530
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1531
+ block_size: int, sorted_token_ids: torch.Tensor,
1532
+ experts_ids: torch.Tensor,
1533
+ num_tokens_post_pad: torch.Tensor) -> None:
1534
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1535
+ sorted_token_ids, experts_ids,
1536
+ num_tokens_post_pad)
1537
+
1538
+
1539
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1540
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1541
+ b_qzeros: Optional[torch.Tensor],
1542
+ topk_weights: Optional[torch.Tensor],
1543
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1544
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1545
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1546
+ bit: int) -> torch.Tensor:
1547
+ if not current_platform.is_cuda():
1548
+ raise NotImplementedError(
1549
+ "The optimized moe_wna16_gemm kernel is only "
1550
+ "available on CUDA platforms")
1551
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1552
+ b_qzeros, topk_weights, sorted_token_ids,
1553
+ experts_ids, num_tokens_post_pad, top_k,
1554
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1555
+ bit)
1556
+
1557
+
1558
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1559
+ token_expert_indices: torch.Tensor,
1560
+ gating_output: torch.Tensor) -> None:
1561
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids, token_expert_indices,
1562
+ gating_output)
1563
+
1564
+
1565
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1566
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1567
+ global_scale: Optional[torch.Tensor],
1568
+ b_qzeros: Optional[torch.Tensor],
1569
+ g_idx: Optional[torch.Tensor],
1570
+ perm: Optional[torch.Tensor],
1571
+ workspace: torch.Tensor,
1572
+ sorted_token_ids: torch.Tensor,
1573
+ expert_ids: torch.Tensor,
1574
+ num_tokens_past_padded: torch.Tensor,
1575
+ topk_weights: torch.Tensor, moe_block_size: int,
1576
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1577
+ b_q_type: ScalarType, size_m: int, size_n: int,
1578
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1579
+ use_fp32_reduce: bool,
1580
+ is_zp_float: bool) -> torch.Tensor:
1581
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1582
+ input, output, b_qweight, b_scales, global_scale, b_qzeros, g_idx,
1583
+ perm, workspace, sorted_token_ids, expert_ids, num_tokens_past_padded,
1584
+ topk_weights, moe_block_size, top_k, mul_topk_weights, is_ep,
1585
+ b_q_type.id, size_m, size_n, size_k, is_k_full, use_atomic_add,
1586
+ use_fp32_reduce, is_zp_float)
1587
+
1588
+
1589
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1590
+
1591
+ @register_fake("_moe_C::marlin_gemm_moe")
1592
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1593
+ sorted_ids: torch.Tensor,
1594
+ topk_weights: torch.Tensor,
1595
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1596
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1597
+ perm: torch.Tensor, workspace: torch.Tensor,
1598
+ b_q_type: ScalarType, size_m: torch.SymInt,
1599
+ size_n: torch.SymInt, size_k: torch.SymInt,
1600
+ is_k_full: bool, num_experts: int, topk: int,
1601
+ moe_block_size: int, replicate_input: bool,
1602
+ apply_weights: bool) -> torch.Tensor:
1603
+ return torch.empty((size_m, topk, size_n),
1604
+ dtype=a.dtype,
1605
+ device=a.device)
1606
+
1607
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1608
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1609
+ output: Optional[torch.Tensor],
1610
+ b_qweight: torch.Tensor,
1611
+ b_scales: torch.Tensor,
1612
+ b_qzeros: Optional[torch.Tensor],
1613
+ g_idx: Optional[torch.Tensor],
1614
+ perm: Optional[torch.Tensor],
1615
+ workspace: torch.Tensor,
1616
+ sorted_token_ids: torch.Tensor,
1617
+ expert_ids: torch.Tensor,
1618
+ num_tokens_past_padded: torch.Tensor,
1619
+ topk_weights: torch.Tensor,
1620
+ moe_block_size: int, top_k: int,
1621
+ mul_topk_weights: bool, is_ep: bool,
1622
+ b_q_type: ScalarType, size_m: int,
1623
+ size_n: int, size_k: int, is_k_full: bool,
1624
+ use_atomic_add: bool, use_fp32_reduce: bool,
1625
+ is_zp_float: bool) -> torch.Tensor:
1626
+ return torch.empty((size_m * top_k, size_n),
1627
+ dtype=input.dtype,
1628
+ device=input.device)
1629
+
1630
+
1631
+ def reshape_and_cache(
1632
+ key: torch.Tensor,
1633
+ value: torch.Tensor,
1634
+ key_cache: torch.Tensor,
1635
+ value_cache: torch.Tensor,
1636
+ slot_mapping: torch.Tensor,
1637
+ kv_cache_dtype: str,
1638
+ k_scale: torch.Tensor,
1639
+ v_scale: torch.Tensor,
1640
+ ) -> None:
1641
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1642
+ value_cache, slot_mapping,
1643
+ kv_cache_dtype, k_scale, v_scale)
1644
+
1645
+
1646
+ def reshape_and_cache_flash(
1647
+ key: torch.Tensor,
1648
+ value: torch.Tensor,
1649
+ key_cache: torch.Tensor,
1650
+ value_cache: torch.Tensor,
1651
+ slot_mapping: torch.Tensor,
1652
+ kv_cache_dtype: str,
1653
+ k_scale: torch.Tensor,
1654
+ v_scale: torch.Tensor,
1655
+ ) -> None:
1656
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1657
+ value_cache, slot_mapping,
1658
+ kv_cache_dtype, k_scale,
1659
+ v_scale)
1660
+
1661
+
1662
+ def concat_and_cache_mla(
1663
+ kv_c: torch.Tensor,
1664
+ k_pe: torch.Tensor,
1665
+ kv_cache: torch.Tensor,
1666
+ slot_mapping: torch.Tensor,
1667
+ kv_cache_dtype: str,
1668
+ scale: torch.Tensor,
1669
+ ) -> None:
1670
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1671
+ slot_mapping, kv_cache_dtype,
1672
+ scale)
1673
+
1674
+
1675
+ def copy_blocks(key_caches: list[torch.Tensor],
1676
+ value_caches: list[torch.Tensor],
1677
+ block_mapping: torch.Tensor) -> None:
1678
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1679
+
1680
+
1681
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1682
+ block_mapping: torch.Tensor) -> None:
1683
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1684
+
1685
+
1686
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1687
+ block_mapping: torch.Tensor) -> None:
1688
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1689
+
1690
+
1691
+ def convert_fp8(output: torch.Tensor,
1692
+ input: torch.Tensor,
1693
+ scale: float = 1.0,
1694
+ kv_dtype: str = "fp8") -> None:
1695
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1696
+
1697
+
1698
+ def gather_cache(src_cache: torch.Tensor,
1699
+ dst: torch.Tensor,
1700
+ block_table: torch.Tensor,
1701
+ cu_seq_lens: torch.Tensor,
1702
+ batch_size: int,
1703
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1704
+ torch.ops._C_cache_ops.gather_cache(src_cache, dst, block_table,
1705
+ cu_seq_lens, batch_size, seq_starts)
1706
+
1707
+
1708
+ def get_device_attribute(attribute: int, device: int) -> int:
1709
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1710
+
1711
+
1712
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1713
+ # ruff: noqa: E501
1714
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1715
+ device)
1716
+
1717
+
1718
+ # custom ar
1719
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1720
+ rank: int, fully_connected: bool) -> int:
1721
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1722
+ fully_connected)
1723
+
1724
+
1725
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1726
+ reg_buffer_sz_bytes: int) -> None:
1727
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1728
+ reg_buffer_sz_bytes)
1729
+
1730
+
1731
+ def dispose(fa: int) -> None:
1732
+ torch.ops._C_custom_ar.dispose(fa)
1733
+
1734
+
1735
+ def meta_size() -> int:
1736
+ return torch.ops._C_custom_ar.meta_size()
1737
+
1738
+
1739
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1740
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1741
+
1742
+
1743
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1744
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1745
+
1746
+
1747
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1748
+ offsets: list[list[int]]) -> None:
1749
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1750
+
1751
+
1752
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1753
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1754
+
1755
+
1756
+ def open_mem_handle(mem_handle: torch.Tensor):
1757
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1758
+
1759
+
1760
+ def free_shared_buffer(ptr: int) -> None:
1761
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1762
+
1763
+
1764
+ # quick all reduce
1765
+ def init_custom_qr(rank: int,
1766
+ world_size: int,
1767
+ qr_max_size: Optional[int] = None) -> int:
1768
+ return torch.ops._C_custom_ar.init_custom_qr(rank, world_size, qr_max_size)
1769
+
1770
+
1771
+ def qr_destroy(fa: int) -> None:
1772
+ torch.ops._C_custom_ar.qr_destroy(fa)
1773
+
1774
+
1775
+ def qr_all_reduce(fa: int,
1776
+ inp: torch.Tensor,
1777
+ out: torch.Tensor,
1778
+ quant_level: int,
1779
+ cast_bf2half: bool = False) -> None:
1780
+ torch.ops._C_custom_ar.qr_all_reduce(fa, inp, out, quant_level,
1781
+ cast_bf2half)
1782
+
1783
+
1784
+ def qr_get_handle(fa: int) -> torch.Tensor:
1785
+ return torch.ops._C_custom_ar.qr_get_handle(fa)
1786
+
1787
+
1788
+ def qr_open_handles(fa: int, handles: list[torch.Tensor]) -> None:
1789
+ return torch.ops._C_custom_ar.qr_open_handles(fa, handles)
1790
+
1791
+
1792
+ def qr_max_size() -> int:
1793
+ return torch.ops._C_custom_ar.qr_max_size()
1794
+
1795
+
1796
+ def get_flash_mla_metadata(
1797
+ cache_seqlens: torch.Tensor,
1798
+ num_heads_per_head_k: int,
1799
+ num_heads_k: int,
1800
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1801
+ """
1802
+ Arguments:
1803
+ cache_seqlens: (batch_size), dtype torch.int32.
1804
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1805
+ num_heads_k: num_heads_k.
1806
+
1807
+ Return:
1808
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1809
+ num_splits: (batch_size + 1), dtype torch.int32.
1810
+ """
1811
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1812
+ num_heads_per_head_k,
1813
+ num_heads_k)
1814
+
1815
+
1816
+ def flash_mla_with_kvcache(
1817
+ q: torch.Tensor,
1818
+ k_cache: torch.Tensor,
1819
+ block_table: torch.Tensor,
1820
+ cache_seqlens: torch.Tensor,
1821
+ head_dim_v: int,
1822
+ tile_scheduler_metadata: torch.Tensor,
1823
+ num_splits: torch.Tensor,
1824
+ softmax_scale: Optional[float] = None,
1825
+ causal: bool = False,
1826
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1827
+ """
1828
+ Arguments:
1829
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1830
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1831
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1832
+ cache_seqlens: (batch_size), torch.int32.
1833
+ head_dim_v: Head_dim of v.
1834
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1835
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1836
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1837
+ causal: bool. Whether to apply causal attention mask.
1838
+
1839
+ Return:
1840
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1841
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1842
+ """
1843
+ if softmax_scale is None:
1844
+ softmax_scale = q.shape[-1]**(-0.5)
1845
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1846
+ q,
1847
+ k_cache,
1848
+ None,
1849
+ head_dim_v,
1850
+ cache_seqlens,
1851
+ block_table,
1852
+ softmax_scale,
1853
+ causal,
1854
+ tile_scheduler_metadata,
1855
+ num_splits,
1856
+ )
1857
+ return out, softmax_lse
1858
+
1859
+
1860
+ def cutlass_mla_decode(out: torch.Tensor, q_nope: torch.Tensor,
1861
+ q_pe: torch.Tensor, kv_c_and_k_pe_cache: torch.Tensor,
1862
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1863
+ scale: float) -> torch.Tensor:
1864
+ torch.ops._C.cutlass_mla_decode(out, q_nope, q_pe, kv_c_and_k_pe_cache,
1865
+ seq_lens, page_table, scale)
1866
+ return out
1867
+
1868
+
1869
+ if hasattr(torch.ops._C, "weight_packed_linear"):
1870
+
1871
+ @register_fake("_C::weight_packed_linear")
1872
+ def weight_packed_linear_fake(mat1: torch.Tensor, mat2: torch.Tensor,
1873
+ bias: Optional[torch.Tensor],
1874
+ is_vnni: bool) -> torch.Tensor:
1875
+ return torch.empty((mat1.size(0), mat2.size(0)),
1876
+ dtype=mat1.dtype,
1877
+ device=mat2.device)
1878
+
1879
+
1880
+ if hasattr(torch.ops._C, "fused_experts_cpu"):
1881
+
1882
+ @register_fake("_C::fused_experts_cpu")
1883
+ def fused_experts_cpu_fake(
1884
+ hidden_states: torch.Tensor,
1885
+ w1: torch.Tensor,
1886
+ w2: torch.Tensor,
1887
+ topk_weights: torch.Tensor,
1888
+ topk_ids: torch.Tensor,
1889
+ inplace: bool,
1890
+ use_int8_w8a8: bool,
1891
+ use_fp8_w8a16: bool,
1892
+ w1_scale: Optional[torch.Tensor],
1893
+ w2_scale: Optional[torch.Tensor],
1894
+ block_size: Optional[list[int]],
1895
+ a1_scale: Optional[torch.Tensor],
1896
+ a2_scale: Optional[torch.Tensor],
1897
+ is_vnni: bool,
1898
+ ) -> torch.Tensor:
1899
+ return torch.empty_like(hidden_states)
1900
+
1901
+
1902
+ if hasattr(torch.ops._C, "int8_scaled_mm_with_quant"):
1903
+
1904
+ @register_fake("_C::int8_scaled_mm_with_quant")
1905
+ def int8_scaled_mm_with_quant_fake(
1906
+ mat1: torch.Tensor,
1907
+ mat2: torch.Tensor,
1908
+ scales2: torch.Tensor,
1909
+ bias: Optional[torch.Tensor],
1910
+ out_dtype: torch.dtype,
1911
+ is_vnni: bool,
1912
+ ) -> torch.Tensor:
1913
+ M = mat1.size(0)
1914
+ N = mat2.size(0)
1915
+ return torch.empty((M, N), dtype=out_dtype)