vllm-cpu 0.9.2.post2__cp311-cp311-manylinux_2_17_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +214 -0
- vllm/_custom_ops.py +1915 -0
- vllm/_ipex_ops.py +350 -0
- vllm/_version.py +34 -0
- vllm/adapter_commons/__init__.py +0 -0
- vllm/adapter_commons/layers.py +16 -0
- vllm/adapter_commons/models.py +106 -0
- vllm/adapter_commons/request.py +26 -0
- vllm/adapter_commons/utils.py +93 -0
- vllm/adapter_commons/worker_manager.py +39 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +34 -0
- vllm/assets/video.py +139 -0
- vllm/attention/__init__.py +20 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +325 -0
- vllm/attention/backends/blocksparse_attn.py +465 -0
- vllm/attention/backends/cpu_mla.py +307 -0
- vllm/attention/backends/dual_chunk_flash_attn.py +1506 -0
- vllm/attention/backends/flash_attn.py +1008 -0
- vllm/attention/backends/flashinfer.py +1107 -0
- vllm/attention/backends/flashmla.py +244 -0
- vllm/attention/backends/hpu_attn.py +318 -0
- vllm/attention/backends/ipex_attn.py +403 -0
- vllm/attention/backends/mla/__init__.py +0 -0
- vllm/attention/backends/mla/common.py +1391 -0
- vllm/attention/backends/pallas.py +356 -0
- vllm/attention/backends/placeholder_attn.py +400 -0
- vllm/attention/backends/rocm_aiter_mla.py +435 -0
- vllm/attention/backends/rocm_flash_attn.py +1015 -0
- vllm/attention/backends/torch_sdpa.py +707 -0
- vllm/attention/backends/triton_mla.py +115 -0
- vllm/attention/backends/utils.py +610 -0
- vllm/attention/backends/xformers.py +807 -0
- vllm/attention/layer.py +481 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/__init__.py +0 -0
- vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py +433 -0
- vllm/attention/ops/blocksparse_attention/interface.py +239 -0
- vllm/attention/ops/blocksparse_attention/utils.py +246 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +368 -0
- vllm/attention/ops/flashmla.py +116 -0
- vllm/attention/ops/hpu_paged_attn.py +88 -0
- vllm/attention/ops/ipex_attn.py +195 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/nki_flash_attn.py +903 -0
- vllm/attention/ops/paged_attn.py +256 -0
- vllm/attention/ops/pallas_kv_cache_update.py +120 -0
- vllm/attention/ops/prefix_prefill.py +902 -0
- vllm/attention/ops/rocm_aiter_mla.py +100 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +674 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_unified_attention.py +738 -0
- vllm/attention/selector.py +214 -0
- vllm/attention/utils/fa_utils.py +72 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +1441 -0
- vllm/benchmarks/endpoint_request_func.py +393 -0
- vllm/benchmarks/latency.py +168 -0
- vllm/benchmarks/serve.py +1063 -0
- vllm/benchmarks/throughput.py +609 -0
- vllm/benchmarks/utils.py +70 -0
- vllm/collect_env.py +820 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +89 -0
- vllm/compilation/backends.py +610 -0
- vllm/compilation/base_piecewise_backend.py +72 -0
- vllm/compilation/collective_fusion.py +127 -0
- vllm/compilation/compiler_interface.py +564 -0
- vllm/compilation/counter.py +41 -0
- vllm/compilation/cuda_piecewise_backend.py +218 -0
- vllm/compilation/decorators.py +250 -0
- vllm/compilation/fix_functionalization.py +191 -0
- vllm/compilation/fusion.py +645 -0
- vllm/compilation/fusion_attn.py +166 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +115 -0
- vllm/compilation/monitor.py +39 -0
- vllm/compilation/multi_output_match.py +109 -0
- vllm/compilation/noop_elimination.py +165 -0
- vllm/compilation/pass_manager.py +82 -0
- vllm/compilation/sequence_parallelism.py +482 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +70 -0
- vllm/compilation/wrapper.py +135 -0
- vllm/config.py +4913 -0
- vllm/connections.py +174 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +399 -0
- vllm/core/block/common.py +371 -0
- vllm/core/block/cpu_gpu_block_allocator.py +441 -0
- vllm/core/block/interfaces.py +319 -0
- vllm/core/block/naive_block.py +466 -0
- vllm/core/block/prefix_caching_block.py +1135 -0
- vllm/core/block/utils.py +28 -0
- vllm/core/block_manager.py +525 -0
- vllm/core/evictor.py +157 -0
- vllm/core/interfaces.py +139 -0
- vllm/core/placeholder_block_space_manager.py +103 -0
- vllm/core/scheduler.py +2126 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +281 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +264 -0
- vllm/distributed/device_communicators/base_device_communicator.py +260 -0
- vllm/distributed/device_communicators/cpu_communicator.py +145 -0
- vllm/distributed/device_communicators/cuda_communicator.py +194 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +304 -0
- vllm/distributed/device_communicators/custom_all_reduce_utils.py +259 -0
- vllm/distributed/device_communicators/hpu_communicator.py +46 -0
- vllm/distributed/device_communicators/neuron_communicator.py +20 -0
- vllm/distributed/device_communicators/pynccl.py +218 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +349 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/shm_broadcast.py +585 -0
- vllm/distributed/device_communicators/tpu_communicator.py +103 -0
- vllm/distributed/device_communicators/xpu_communicator.py +55 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +432 -0
- vllm/distributed/eplb/rebalance_algo.py +234 -0
- vllm/distributed/eplb/rebalance_execute.py +307 -0
- vllm/distributed/kv_events.py +356 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +12 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +128 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +133 -0
- vllm/distributed/kv_transfer/kv_connector/lmcache_connector.py +99 -0
- vllm/distributed/kv_transfer/kv_connector/mooncake_store_connector.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/simple_connector.py +329 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +109 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +283 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +167 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +201 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1103 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +485 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +533 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +265 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +389 -0
- vllm/distributed/kv_transfer/kv_connector_agent.py +77 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +71 -0
- vllm/distributed/parallel_state.py +1385 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1801 -0
- vllm/engine/async_llm_engine.py +1200 -0
- vllm/engine/async_timeout.py +173 -0
- vllm/engine/llm_engine.py +2101 -0
- vllm/engine/metrics.py +629 -0
- vllm/engine/metrics_types.py +94 -0
- vllm/engine/multiprocessing/__init__.py +148 -0
- vllm/engine/multiprocessing/client.py +681 -0
- vllm/engine/multiprocessing/engine.py +460 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +75 -0
- vllm/engine/output_processor/multi_step.py +216 -0
- vllm/engine/output_processor/single_step.py +145 -0
- vllm/engine/output_processor/stop_checker.py +131 -0
- vllm/engine/output_processor/util.py +28 -0
- vllm/engine/protocol.py +326 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1278 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +58 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +71 -0
- vllm/entrypoints/cli/openai.py +201 -0
- vllm/entrypoints/cli/run_batch.py +69 -0
- vllm/entrypoints/cli/serve.py +265 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/launcher.py +147 -0
- vllm/entrypoints/llm.py +1599 -0
- vllm/entrypoints/logger.py +50 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1495 -0
- vllm/entrypoints/openai/cli_args.py +331 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2096 -0
- vllm/entrypoints/openai/run_batch.py +473 -0
- vllm/entrypoints/openai/serving_chat.py +1258 -0
- vllm/entrypoints/openai/serving_classification.py +160 -0
- vllm/entrypoints/openai/serving_completion.py +618 -0
- vllm/entrypoints/openai/serving_embedding.py +201 -0
- vllm/entrypoints/openai/serving_engine.py +988 -0
- vllm/entrypoints/openai/serving_models.py +315 -0
- vllm/entrypoints/openai/serving_pooling.py +234 -0
- vllm/entrypoints/openai/serving_score.py +431 -0
- vllm/entrypoints/openai/serving_tokenization.py +157 -0
- vllm/entrypoints/openai/serving_transcription.py +132 -0
- vllm/entrypoints/openai/speech_to_text.py +395 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +25 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +371 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +267 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +466 -0
- vllm/entrypoints/score_utils.py +50 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/utils.py +262 -0
- vllm/env_override.py +41 -0
- vllm/envs.py +1029 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +401 -0
- vllm/executor/mp_distributed_executor.py +244 -0
- vllm/executor/msgspec_utils.py +30 -0
- vllm/executor/multiproc_worker_utils.py +313 -0
- vllm/executor/ray_distributed_executor.py +701 -0
- vllm/executor/ray_utils.py +399 -0
- vllm/executor/uniproc_executor.py +139 -0
- vllm/forward_context.py +185 -0
- vllm/inputs/__init__.py +41 -0
- vllm/inputs/data.py +331 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +924 -0
- vllm/inputs/registry.py +245 -0
- vllm/jsontree.py +80 -0
- vllm/logger.py +212 -0
- vllm/logging_utils/__init__.py +8 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +18 -0
- vllm/logits_process.py +119 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +355 -0
- vllm/lora/layers.py +1285 -0
- vllm/lora/lora.py +199 -0
- vllm/lora/models.py +818 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +290 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +244 -0
- vllm/lora/ops/triton_ops/utils.py +120 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +145 -0
- vllm/lora/peft_helper.py +136 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +485 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +290 -0
- vllm/lora/punica_wrapper/punica_hpu.py +145 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +405 -0
- vllm/lora/punica_wrapper/utils.py +164 -0
- vllm/lora/request.py +99 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +240 -0
- vllm/lora/worker_manager.py +256 -0
- vllm/model_executor/__init__.py +16 -0
- vllm/model_executor/custom_op.py +208 -0
- vllm/model_executor/guided_decoding/__init__.py +181 -0
- vllm/model_executor/guided_decoding/guidance_decoding.py +63 -0
- vllm/model_executor/guided_decoding/guidance_logits_processors.py +104 -0
- vllm/model_executor/guided_decoding/guided_fields.py +41 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +67 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +155 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +284 -0
- vllm/model_executor/guided_decoding/utils.py +242 -0
- vllm/model_executor/guided_decoding/xgrammar_decoding.py +426 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +420 -0
- vllm/model_executor/layers/fused_moe/__init__.py +78 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +298 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +140 -0
- vllm/model_executor/layers/fused_moe/config.py +456 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +215 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +645 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +250 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +231 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +183 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1021 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +234 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1734 -0
- vllm/model_executor/layers/fused_moe/layer.py +1528 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +598 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +224 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +190 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +233 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +66 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +429 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +136 -0
- vllm/model_executor/layers/fused_moe/utils.py +144 -0
- vllm/model_executor/layers/layernorm.py +287 -0
- vllm/model_executor/layers/lightning_attn.py +652 -0
- vllm/model_executor/layers/linear.py +1547 -0
- vllm/model_executor/layers/logits_processor.py +197 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/mamba2_metadata.py +125 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +245 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +731 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +105 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +262 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +589 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +751 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +232 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +206 -0
- vllm/model_executor/layers/pooler.py +473 -0
- vllm/model_executor/layers/quantization/__init__.py +160 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/auto_round.py +310 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +523 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +164 -0
- vllm/model_executor/layers/quantization/bitblas.py +462 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +396 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +694 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +1613 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +24 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +358 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +149 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +150 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepgemm.py +83 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +195 -0
- vllm/model_executor/layers/quantization/experts_int8.py +204 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +950 -0
- vllm/model_executor/layers/quantization/gguf.py +577 -0
- vllm/model_executor/layers/quantization/gptq.py +278 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +446 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +679 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +332 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +250 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +90 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +83 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +300 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +132 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +131 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +87 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +139 -0
- vllm/model_executor/layers/quantization/marlin.py +263 -0
- vllm/model_executor/layers/quantization/modelopt.py +747 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +457 -0
- vllm/model_executor/layers/quantization/neuron_quant.py +76 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +127 -0
- vllm/model_executor/layers/quantization/qqq.py +275 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +437 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +245 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +126 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +157 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +289 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +212 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +121 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +208 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +653 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +95 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +485 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +476 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +283 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +325 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_qqq.py +126 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +45 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +146 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +573 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +405 -0
- vllm/model_executor/layers/rejection_sampler.py +406 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding.py +2025 -0
- vllm/model_executor/layers/sampler.py +1204 -0
- vllm/model_executor/layers/spec_decode_base_sampler.py +259 -0
- vllm/model_executor/layers/typical_acceptance_sampler.py +166 -0
- vllm/model_executor/layers/utils.py +116 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +77 -0
- vllm/model_executor/model_loader/base_loader.py +43 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +613 -0
- vllm/model_executor/model_loader/default_loader.py +282 -0
- vllm/model_executor/model_loader/dummy_loader.py +27 -0
- vllm/model_executor/model_loader/gguf_loader.py +120 -0
- vllm/model_executor/model_loader/neuron.py +476 -0
- vllm/model_executor/model_loader/neuronx_distributed.py +685 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +109 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +201 -0
- vllm/model_executor/model_loader/tensorizer.py +602 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +127 -0
- vllm/model_executor/model_loader/tpu.py +113 -0
- vllm/model_executor/model_loader/utils.py +315 -0
- vllm/model_executor/model_loader/weight_utils.py +782 -0
- vllm/model_executor/models/__init__.py +30 -0
- vllm/model_executor/models/adapters.py +375 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/arctic.py +559 -0
- vllm/model_executor/models/aria.py +670 -0
- vllm/model_executor/models/aya_vision.py +486 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bamba.py +558 -0
- vllm/model_executor/models/bart.py +938 -0
- vllm/model_executor/models/bert.py +513 -0
- vllm/model_executor/models/bert_with_rope.py +617 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +728 -0
- vllm/model_executor/models/bloom.py +373 -0
- vllm/model_executor/models/chameleon.py +1146 -0
- vllm/model_executor/models/chatglm.py +478 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/commandr.py +471 -0
- vllm/model_executor/models/config.py +200 -0
- vllm/model_executor/models/constant_size_cache.py +137 -0
- vllm/model_executor/models/dbrx.py +472 -0
- vllm/model_executor/models/deepseek.py +486 -0
- vllm/model_executor/models/deepseek_mtp.py +281 -0
- vllm/model_executor/models/deepseek_v2.py +935 -0
- vllm/model_executor/models/deepseek_vl2.py +660 -0
- vllm/model_executor/models/dots1.py +536 -0
- vllm/model_executor/models/eagle.py +261 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +583 -0
- vllm/model_executor/models/exaone.py +551 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +510 -0
- vllm/model_executor/models/falcon_h1.py +708 -0
- vllm/model_executor/models/florence2.py +1113 -0
- vllm/model_executor/models/fuyu.py +406 -0
- vllm/model_executor/models/gemma.py +427 -0
- vllm/model_executor/models/gemma2.py +427 -0
- vllm/model_executor/models/gemma3.py +535 -0
- vllm/model_executor/models/gemma3_mm.py +729 -0
- vllm/model_executor/models/gemma3n.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1590 -0
- vllm/model_executor/models/glm4v.py +657 -0
- vllm/model_executor/models/gpt2.py +382 -0
- vllm/model_executor/models/gpt_bigcode.py +335 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +332 -0
- vllm/model_executor/models/granite.py +493 -0
- vllm/model_executor/models/granite_speech.py +790 -0
- vllm/model_executor/models/granitemoe.py +437 -0
- vllm/model_executor/models/granitemoehybrid.py +653 -0
- vllm/model_executor/models/granitemoeshared.py +341 -0
- vllm/model_executor/models/gritlm.py +224 -0
- vllm/model_executor/models/grok1.py +546 -0
- vllm/model_executor/models/h2ovl.py +549 -0
- vllm/model_executor/models/hunyuan_v1_moe.py +897 -0
- vllm/model_executor/models/idefics2_vision_model.py +389 -0
- vllm/model_executor/models/idefics3.py +786 -0
- vllm/model_executor/models/interfaces.py +681 -0
- vllm/model_executor/models/interfaces_base.py +164 -0
- vllm/model_executor/models/intern_vit.py +480 -0
- vllm/model_executor/models/internlm2.py +455 -0
- vllm/model_executor/models/internlm2_ve.py +147 -0
- vllm/model_executor/models/internvl.py +1432 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +592 -0
- vllm/model_executor/models/keye.py +1736 -0
- vllm/model_executor/models/kimi_vl.py +585 -0
- vllm/model_executor/models/llama.py +644 -0
- vllm/model_executor/models/llama4.py +531 -0
- vllm/model_executor/models/llama_eagle.py +165 -0
- vllm/model_executor/models/llama_eagle3.py +263 -0
- vllm/model_executor/models/llava.py +887 -0
- vllm/model_executor/models/llava_next.py +604 -0
- vllm/model_executor/models/llava_next_video.py +492 -0
- vllm/model_executor/models/llava_onevision.py +985 -0
- vllm/model_executor/models/mamba.py +273 -0
- vllm/model_executor/models/mamba2.py +320 -0
- vllm/model_executor/models/mamba_cache.py +76 -0
- vllm/model_executor/models/medusa.py +219 -0
- vllm/model_executor/models/mimo.py +192 -0
- vllm/model_executor/models/mimo_mtp.py +285 -0
- vllm/model_executor/models/minicpm.py +592 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +391 -0
- vllm/model_executor/models/minicpmo.py +772 -0
- vllm/model_executor/models/minicpmv.py +1307 -0
- vllm/model_executor/models/minimax_cache.py +36 -0
- vllm/model_executor/models/minimax_text_01.py +1301 -0
- vllm/model_executor/models/minimax_vl_01.py +374 -0
- vllm/model_executor/models/mistral3.py +624 -0
- vllm/model_executor/models/mixtral.py +488 -0
- vllm/model_executor/models/mixtral_quant.py +453 -0
- vllm/model_executor/models/mllama.py +1682 -0
- vllm/model_executor/models/mllama4.py +947 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +339 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1576 -0
- vllm/model_executor/models/moonvit.py +630 -0
- vllm/model_executor/models/mpt.py +331 -0
- vllm/model_executor/models/nemotron.py +508 -0
- vllm/model_executor/models/nemotron_h.py +588 -0
- vllm/model_executor/models/nemotron_nas.py +484 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +389 -0
- vllm/model_executor/models/olmo2.py +414 -0
- vllm/model_executor/models/olmoe.py +468 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +349 -0
- vllm/model_executor/models/ovis.py +577 -0
- vllm/model_executor/models/paligemma.py +419 -0
- vllm/model_executor/models/persimmon.py +344 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3_small.py +465 -0
- vllm/model_executor/models/phi3v.py +733 -0
- vllm/model_executor/models/phi4mm.py +1258 -0
- vllm/model_executor/models/phi4mm_audio.py +1233 -0
- vllm/model_executor/models/phi4mm_utils.py +1884 -0
- vllm/model_executor/models/phimoe.py +674 -0
- vllm/model_executor/models/pixtral.py +1329 -0
- vllm/model_executor/models/plamo2.py +738 -0
- vllm/model_executor/models/prithvi_geospatial_mae.py +240 -0
- vllm/model_executor/models/qwen.py +362 -0
- vllm/model_executor/models/qwen2.py +501 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +923 -0
- vllm/model_executor/models/qwen2_5_vl.py +1175 -0
- vllm/model_executor/models/qwen2_audio.py +420 -0
- vllm/model_executor/models/qwen2_moe.py +540 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1513 -0
- vllm/model_executor/models/qwen3.py +325 -0
- vllm/model_executor/models/qwen3_moe.py +541 -0
- vllm/model_executor/models/qwen_vl.py +796 -0
- vllm/model_executor/models/registry.py +634 -0
- vllm/model_executor/models/roberta.py +271 -0
- vllm/model_executor/models/siglip.py +524 -0
- vllm/model_executor/models/skyworkr1v.py +961 -0
- vllm/model_executor/models/smolvlm.py +52 -0
- vllm/model_executor/models/solar.py +506 -0
- vllm/model_executor/models/stablelm.py +343 -0
- vllm/model_executor/models/starcoder2.py +356 -0
- vllm/model_executor/models/tarsier.py +652 -0
- vllm/model_executor/models/telechat2.py +140 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/transformers.py +509 -0
- vllm/model_executor/models/ultravox.py +670 -0
- vllm/model_executor/models/utils.py +744 -0
- vllm/model_executor/models/vision.py +147 -0
- vllm/model_executor/models/whisper.py +886 -0
- vllm/model_executor/models/zamba2.py +1036 -0
- vllm/model_executor/parameter.py +459 -0
- vllm/model_executor/pooling_metadata.py +72 -0
- vllm/model_executor/sampling_metadata.py +597 -0
- vllm/model_executor/utils.py +80 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +219 -0
- vllm/multimodal/hasher.py +91 -0
- vllm/multimodal/image.py +103 -0
- vllm/multimodal/inputs.py +878 -0
- vllm/multimodal/parse.py +499 -0
- vllm/multimodal/processing.py +1948 -0
- vllm/multimodal/profiling.py +283 -0
- vllm/multimodal/registry.py +331 -0
- vllm/multimodal/utils.py +492 -0
- vllm/multimodal/video.py +227 -0
- vllm/outputs.py +516 -0
- vllm/platforms/__init__.py +291 -0
- vllm/platforms/cpu.py +281 -0
- vllm/platforms/cuda.py +568 -0
- vllm/platforms/hpu.py +106 -0
- vllm/platforms/interface.py +551 -0
- vllm/platforms/neuron.py +150 -0
- vllm/platforms/rocm.py +453 -0
- vllm/platforms/tpu.py +206 -0
- vllm/platforms/xpu.py +192 -0
- vllm/plugins/__init__.py +94 -0
- vllm/plugins/lora_resolvers/README.md +15 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +64 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/prompt_adapter/__init__.py +0 -0
- vllm/prompt_adapter/layers.py +83 -0
- vllm/prompt_adapter/models.py +358 -0
- vllm/prompt_adapter/request.py +37 -0
- vllm/prompt_adapter/utils.py +98 -0
- vllm/prompt_adapter/worker_manager.py +179 -0
- vllm/py.typed +2 -0
- vllm/reasoning/__init__.py +15 -0
- vllm/reasoning/abs_reasoning_parsers.py +192 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/qwen3_reasoning_parser.py +151 -0
- vllm/sampling_params.py +602 -0
- vllm/scalar_type.py +347 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +1568 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +506 -0
- vllm/spec_decode/draft_model_runner.py +349 -0
- vllm/spec_decode/interfaces.py +99 -0
- vllm/spec_decode/medusa_worker.py +138 -0
- vllm/spec_decode/metrics.py +213 -0
- vllm/spec_decode/mlp_speculator_worker.py +94 -0
- vllm/spec_decode/mqa_scorer.py +160 -0
- vllm/spec_decode/multi_step_worker.py +423 -0
- vllm/spec_decode/ngram_worker.py +196 -0
- vllm/spec_decode/proposer_worker_base.py +59 -0
- vllm/spec_decode/smaller_tp_proposer_worker.py +196 -0
- vllm/spec_decode/spec_decode_worker.py +1326 -0
- vllm/spec_decode/target_model_runner.py +45 -0
- vllm/spec_decode/top1_proposer.py +275 -0
- vllm/spec_decode/util.py +277 -0
- vllm/test_utils.py +130 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +131 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +60 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/config.py +922 -0
- vllm/transformers_utils/configs/__init__.py +57 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/cohere2.py +195 -0
- vllm/transformers_utils/configs/dbrx.py +280 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/eagle.py +85 -0
- vllm/transformers_utils/configs/exaone.py +190 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +238 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/minimax_text_01.py +70 -0
- vllm/transformers_utils/configs/minimax_vl_01.py +71 -0
- vllm/transformers_utils/configs/mllama.py +31 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/mpt.py +180 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nvlm_d.py +31 -0
- vllm/transformers_utils/configs/ovis.py +184 -0
- vllm/transformers_utils/configs/skyworkr1v.py +54 -0
- vllm/transformers_utils/configs/solar.py +247 -0
- vllm/transformers_utils/configs/telechat2.py +64 -0
- vllm/transformers_utils/configs/ultravox.py +108 -0
- vllm/transformers_utils/detokenizer.py +168 -0
- vllm/transformers_utils/detokenizer_utils.py +189 -0
- vllm/transformers_utils/processor.py +221 -0
- vllm/transformers_utils/processors/__init__.py +8 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +363 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/s3_utils.py +162 -0
- vllm/transformers_utils/tokenizer.py +302 -0
- vllm/transformers_utils/tokenizer_base.py +149 -0
- vllm/transformers_utils/tokenizer_group.py +120 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +493 -0
- vllm/transformers_utils/utils.py +99 -0
- vllm/triton_utils/__init__.py +14 -0
- vllm/triton_utils/importing.py +94 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3008 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +184 -0
- vllm/v1/attention/backends/flash_attn.py +757 -0
- vllm/v1/attention/backends/flashinfer.py +680 -0
- vllm/v1/attention/backends/flex_attention.py +491 -0
- vllm/v1/attention/backends/mamba_attn.py +192 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +978 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +98 -0
- vllm/v1/attention/backends/mla/flashmla.py +180 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +241 -0
- vllm/v1/attention/backends/mla/triton_mla.py +177 -0
- vllm/v1/attention/backends/pallas.py +320 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +609 -0
- vllm/v1/attention/backends/triton_attn.py +449 -0
- vllm/v1/attention/backends/utils.py +310 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +349 -0
- vllm/v1/core/encoder_cache_manager.py +254 -0
- vllm/v1/core/kv_cache_coordinator.py +369 -0
- vllm/v1/core/kv_cache_manager.py +398 -0
- vllm/v1/core/kv_cache_utils.py +999 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/interface.py +150 -0
- vllm/v1/core/sched/output.py +157 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1115 -0
- vllm/v1/core/sched/utils.py +36 -0
- vllm/v1/core/single_type_kv_cache_manager.py +444 -0
- vllm/v1/engine/__init__.py +179 -0
- vllm/v1/engine/async_llm.py +626 -0
- vllm/v1/engine/coordinator.py +278 -0
- vllm/v1/engine/core.py +1046 -0
- vllm/v1/engine/core_client.py +1049 -0
- vllm/v1/engine/detokenizer.py +292 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +322 -0
- vllm/v1/engine/logprobs.py +200 -0
- vllm/v1/engine/mm_input_cache.py +91 -0
- vllm/v1/engine/output_processor.py +477 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +422 -0
- vllm/v1/engine/utils.py +546 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +113 -0
- vllm/v1/executor/multiproc_executor.py +532 -0
- vllm/v1/executor/ray_distributed_executor.py +62 -0
- vllm/v1/kv_cache_interface.py +223 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +557 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +131 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +240 -0
- vllm/v1/outputs.py +124 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +17 -0
- vllm/v1/request.py +229 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor.py +517 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +296 -0
- vllm/v1/sample/rejection_sampler.py +631 -0
- vllm/v1/sample/sampler.py +226 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +145 -0
- vllm/v1/serial_utils.py +315 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +441 -0
- vllm/v1/spec_decode/medusa.py +64 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +178 -0
- vllm/v1/spec_decode/ngram_proposer.py +132 -0
- vllm/v1/spec_decode/utils.py +41 -0
- vllm/v1/structured_output/__init__.py +227 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +318 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +175 -0
- vllm/v1/utils.py +377 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +142 -0
- vllm/v1/worker/cpu_model_runner.py +91 -0
- vllm/v1/worker/cpu_worker.py +153 -0
- vllm/v1/worker/gpu_input_batch.py +757 -0
- vllm/v1/worker/gpu_model_runner.py +2739 -0
- vllm/v1/worker/gpu_worker.py +408 -0
- vllm/v1/worker/lora_model_runner_mixin.py +177 -0
- vllm/v1/worker/tpu_input_batch.py +585 -0
- vllm/v1/worker/tpu_model_runner.py +1849 -0
- vllm/v1/worker/tpu_worker.py +315 -0
- vllm/v1/worker/utils.py +112 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +33 -0
- vllm/v1/worker/xpu_worker.py +165 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +145 -0
- vllm/worker/cpu_enc_dec_model_runner.py +326 -0
- vllm/worker/cpu_model_runner.py +671 -0
- vllm/worker/cpu_pooling_model_runner.py +125 -0
- vllm/worker/cpu_worker.py +452 -0
- vllm/worker/enc_dec_model_runner.py +555 -0
- vllm/worker/hpu_model_runner.py +2320 -0
- vllm/worker/hpu_worker.py +484 -0
- vllm/worker/model_runner.py +2178 -0
- vllm/worker/model_runner_base.py +282 -0
- vllm/worker/multi_step_hpu_worker.py +123 -0
- vllm/worker/multi_step_model_runner.py +911 -0
- vllm/worker/multi_step_neuron_model_runner.py +84 -0
- vllm/worker/multi_step_neuronx_distributed_model_runner.py +63 -0
- vllm/worker/multi_step_tpu_worker.py +108 -0
- vllm/worker/multi_step_worker.py +197 -0
- vllm/worker/neuron_model_runner.py +460 -0
- vllm/worker/neuron_worker.py +193 -0
- vllm/worker/neuronx_distributed_model_runner.py +294 -0
- vllm/worker/pooling_model_runner.py +211 -0
- vllm/worker/tpu_model_runner.py +909 -0
- vllm/worker/tpu_worker.py +337 -0
- vllm/worker/utils.py +53 -0
- vllm/worker/worker.py +577 -0
- vllm/worker/worker_base.py +646 -0
- vllm/worker/xpu_model_runner.py +606 -0
- vllm/worker/xpu_worker.py +186 -0
- vllm_cpu-0.9.2.post2.dist-info/METADATA +339 -0
- vllm_cpu-0.9.2.post2.dist-info/RECORD +1236 -0
- vllm_cpu-0.9.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.9.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.9.2.post2.dist-info/top_level.txt +1 -0
vllm/benchmarks/serve.py
ADDED
|
@@ -0,0 +1,1063 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
r"""Benchmark online serving throughput.
|
|
4
|
+
|
|
5
|
+
On the server side, run one of the following commands
|
|
6
|
+
to launch the vLLM OpenAI API server:
|
|
7
|
+
vllm serve <your_model> <engine arguments>
|
|
8
|
+
|
|
9
|
+
On the client side, run:
|
|
10
|
+
vllm bench serve \
|
|
11
|
+
--endpoint-type <endpoint_type. Default 'openai'> \
|
|
12
|
+
--label <benchmark result label. Default using endpoint_type> \
|
|
13
|
+
--model <your_model> \
|
|
14
|
+
--dataset-name <dataset_name. Default 'random'> \
|
|
15
|
+
--request-rate <request_rate. Default inf> \
|
|
16
|
+
--num-prompts <num_prompts. Default 1000>
|
|
17
|
+
"""
|
|
18
|
+
import argparse
|
|
19
|
+
import asyncio
|
|
20
|
+
import gc
|
|
21
|
+
import json
|
|
22
|
+
import os
|
|
23
|
+
import random
|
|
24
|
+
import time
|
|
25
|
+
import warnings
|
|
26
|
+
from collections.abc import AsyncGenerator, Iterable
|
|
27
|
+
from dataclasses import dataclass
|
|
28
|
+
from datetime import datetime
|
|
29
|
+
from typing import Any, Literal, Optional
|
|
30
|
+
|
|
31
|
+
import numpy as np
|
|
32
|
+
from tqdm.asyncio import tqdm
|
|
33
|
+
from transformers import PreTrainedTokenizerBase
|
|
34
|
+
|
|
35
|
+
from vllm.benchmarks.datasets import (SampleRequest, add_dataset_parser,
|
|
36
|
+
get_samples)
|
|
37
|
+
from vllm.benchmarks.endpoint_request_func import (ASYNC_REQUEST_FUNCS,
|
|
38
|
+
OPENAI_COMPATIBLE_BACKENDS,
|
|
39
|
+
RequestFuncInput,
|
|
40
|
+
RequestFuncOutput)
|
|
41
|
+
from vllm.benchmarks.utils import (convert_to_pytorch_benchmark_format,
|
|
42
|
+
write_to_json)
|
|
43
|
+
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
44
|
+
|
|
45
|
+
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
@dataclass
|
|
49
|
+
class BenchmarkMetrics:
|
|
50
|
+
completed: int
|
|
51
|
+
total_input: int
|
|
52
|
+
total_output: int
|
|
53
|
+
request_throughput: float
|
|
54
|
+
request_goodput: float
|
|
55
|
+
output_throughput: float
|
|
56
|
+
total_token_throughput: float
|
|
57
|
+
mean_ttft_ms: float
|
|
58
|
+
median_ttft_ms: float
|
|
59
|
+
std_ttft_ms: float
|
|
60
|
+
percentiles_ttft_ms: list[tuple[float, float]]
|
|
61
|
+
mean_tpot_ms: float
|
|
62
|
+
median_tpot_ms: float
|
|
63
|
+
std_tpot_ms: float
|
|
64
|
+
percentiles_tpot_ms: list[tuple[float, float]]
|
|
65
|
+
mean_itl_ms: float
|
|
66
|
+
median_itl_ms: float
|
|
67
|
+
std_itl_ms: float
|
|
68
|
+
percentiles_itl_ms: list[tuple[float, float]]
|
|
69
|
+
# E2EL stands for end-to-end latency per request.
|
|
70
|
+
# It is the time taken on the client side from sending
|
|
71
|
+
# a request to receiving a complete response.
|
|
72
|
+
mean_e2el_ms: float
|
|
73
|
+
median_e2el_ms: float
|
|
74
|
+
std_e2el_ms: float
|
|
75
|
+
percentiles_e2el_ms: list[tuple[float, float]]
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def _get_current_request_rate(
|
|
79
|
+
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
|
|
80
|
+
ramp_up_start_rps: Optional[int],
|
|
81
|
+
ramp_up_end_rps: Optional[int],
|
|
82
|
+
request_index: int,
|
|
83
|
+
total_requests: int,
|
|
84
|
+
request_rate: float,
|
|
85
|
+
) -> float:
|
|
86
|
+
if (ramp_up_strategy and ramp_up_start_rps is not None
|
|
87
|
+
and ramp_up_end_rps is not None):
|
|
88
|
+
progress = request_index / max(total_requests - 1, 1)
|
|
89
|
+
if ramp_up_strategy == "linear":
|
|
90
|
+
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
|
|
91
|
+
return ramp_up_start_rps + increase
|
|
92
|
+
elif ramp_up_strategy == "exponential":
|
|
93
|
+
ratio = ramp_up_end_rps / ramp_up_start_rps
|
|
94
|
+
return ramp_up_start_rps * (ratio**progress)
|
|
95
|
+
else:
|
|
96
|
+
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
|
|
97
|
+
return request_rate
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
async def get_request(
|
|
101
|
+
input_requests: list[SampleRequest],
|
|
102
|
+
request_rate: float,
|
|
103
|
+
burstiness: float = 1.0,
|
|
104
|
+
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
|
|
105
|
+
ramp_up_start_rps: Optional[int] = None,
|
|
106
|
+
ramp_up_end_rps: Optional[int] = None,
|
|
107
|
+
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
|
|
108
|
+
"""
|
|
109
|
+
Asynchronously generates requests at a specified rate
|
|
110
|
+
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
input_requests:
|
|
114
|
+
A list of input requests, each represented as a SampleRequest.
|
|
115
|
+
request_rate:
|
|
116
|
+
The rate at which requests are generated (requests/s).
|
|
117
|
+
burstiness (optional):
|
|
118
|
+
The burstiness factor of the request generation.
|
|
119
|
+
Only takes effect when request_rate is not inf.
|
|
120
|
+
Default value is 1, which follows a Poisson process.
|
|
121
|
+
Otherwise, the request intervals follow a gamma distribution.
|
|
122
|
+
A lower burstiness value (0 < burstiness < 1) results
|
|
123
|
+
in more bursty requests, while a higher burstiness value
|
|
124
|
+
(burstiness > 1) results in a more uniform arrival of requests.
|
|
125
|
+
ramp_up_strategy (optional):
|
|
126
|
+
The ramp-up strategy. Can be "linear" or "exponential".
|
|
127
|
+
If None, uses constant request rate (specified by request_rate).
|
|
128
|
+
ramp_up_start_rps (optional):
|
|
129
|
+
The starting request rate for ramp-up.
|
|
130
|
+
ramp_up_end_rps (optional):
|
|
131
|
+
The ending request rate for ramp-up.
|
|
132
|
+
"""
|
|
133
|
+
assert burstiness > 0, (
|
|
134
|
+
f"A positive burstiness factor is expected, but given {burstiness}.")
|
|
135
|
+
# Convert to list to get length for ramp-up calculations
|
|
136
|
+
if isinstance(input_requests, Iterable) and not isinstance(
|
|
137
|
+
input_requests, list):
|
|
138
|
+
input_requests = list(input_requests)
|
|
139
|
+
|
|
140
|
+
total_requests = len(input_requests)
|
|
141
|
+
request_index = 0
|
|
142
|
+
|
|
143
|
+
for request in input_requests:
|
|
144
|
+
current_request_rate = _get_current_request_rate(ramp_up_strategy,
|
|
145
|
+
ramp_up_start_rps,
|
|
146
|
+
ramp_up_end_rps,
|
|
147
|
+
request_index,
|
|
148
|
+
total_requests,
|
|
149
|
+
request_rate)
|
|
150
|
+
|
|
151
|
+
yield request, current_request_rate
|
|
152
|
+
|
|
153
|
+
request_index += 1
|
|
154
|
+
|
|
155
|
+
if current_request_rate == float("inf"):
|
|
156
|
+
# If the request rate is infinity, then we don't need to wait.
|
|
157
|
+
continue
|
|
158
|
+
|
|
159
|
+
theta = 1.0 / (current_request_rate * burstiness)
|
|
160
|
+
|
|
161
|
+
# Sample the request interval from the gamma distribution.
|
|
162
|
+
# If burstiness is 1, it follows exponential distribution.
|
|
163
|
+
interval = np.random.gamma(shape=burstiness, scale=theta)
|
|
164
|
+
# The next request will be sent after the interval.
|
|
165
|
+
await asyncio.sleep(interval)
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
def calculate_metrics(
|
|
169
|
+
input_requests: list[SampleRequest],
|
|
170
|
+
outputs: list[RequestFuncOutput],
|
|
171
|
+
dur_s: float,
|
|
172
|
+
tokenizer: PreTrainedTokenizerBase,
|
|
173
|
+
selected_percentiles: list[float],
|
|
174
|
+
goodput_config_dict: dict[str, float],
|
|
175
|
+
) -> tuple[BenchmarkMetrics, list[int]]:
|
|
176
|
+
"""Calculate the metrics for the benchmark.
|
|
177
|
+
|
|
178
|
+
Args:
|
|
179
|
+
input_requests: The input requests.
|
|
180
|
+
outputs: The outputs of the requests.
|
|
181
|
+
dur_s: The duration of the benchmark.
|
|
182
|
+
tokenizer: The tokenizer to use.
|
|
183
|
+
selected_percentiles: The percentiles to select.
|
|
184
|
+
goodput_config_dict: The goodput configuration.
|
|
185
|
+
|
|
186
|
+
Returns:
|
|
187
|
+
A tuple of the benchmark metrics and the actual output lengths.
|
|
188
|
+
"""
|
|
189
|
+
actual_output_lens: list[int] = []
|
|
190
|
+
total_input = 0
|
|
191
|
+
completed = 0
|
|
192
|
+
good_completed = 0
|
|
193
|
+
itls: list[float] = []
|
|
194
|
+
tpots: list[float] = []
|
|
195
|
+
all_tpots: list[float] = []
|
|
196
|
+
ttfts: list[float] = []
|
|
197
|
+
e2els: list[float] = []
|
|
198
|
+
for i in range(len(outputs)):
|
|
199
|
+
if outputs[i].success:
|
|
200
|
+
output_len = outputs[i].output_tokens
|
|
201
|
+
|
|
202
|
+
if not output_len:
|
|
203
|
+
# We use the tokenizer to count the number of output tokens
|
|
204
|
+
# for some serving backends instead of looking at
|
|
205
|
+
# len(outputs[i].itl) since multiple output tokens may be
|
|
206
|
+
# bundled together
|
|
207
|
+
# Note : this may inflate the output token count slightly
|
|
208
|
+
output_len = len(
|
|
209
|
+
tokenizer(outputs[i].generated_text,
|
|
210
|
+
add_special_tokens=False).input_ids)
|
|
211
|
+
actual_output_lens.append(output_len)
|
|
212
|
+
total_input += input_requests[i].prompt_len
|
|
213
|
+
tpot = 0
|
|
214
|
+
if output_len > 1:
|
|
215
|
+
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
|
216
|
+
tpot = latency_minus_ttft / (output_len - 1)
|
|
217
|
+
tpots.append(tpot)
|
|
218
|
+
# Note: if output_len <= 1, we regard tpot as 0 for goodput
|
|
219
|
+
all_tpots.append(tpot)
|
|
220
|
+
itls += outputs[i].itl
|
|
221
|
+
ttfts.append(outputs[i].ttft)
|
|
222
|
+
e2els.append(outputs[i].latency)
|
|
223
|
+
completed += 1
|
|
224
|
+
else:
|
|
225
|
+
actual_output_lens.append(0)
|
|
226
|
+
|
|
227
|
+
if goodput_config_dict:
|
|
228
|
+
valid_metrics = []
|
|
229
|
+
slo_values = []
|
|
230
|
+
|
|
231
|
+
if "ttft" in goodput_config_dict:
|
|
232
|
+
valid_metrics.append(ttfts)
|
|
233
|
+
slo_values.append(goodput_config_dict["ttft"] /
|
|
234
|
+
MILLISECONDS_TO_SECONDS_CONVERSION)
|
|
235
|
+
if "tpot" in goodput_config_dict:
|
|
236
|
+
valid_metrics.append(all_tpots)
|
|
237
|
+
slo_values.append(goodput_config_dict["tpot"] /
|
|
238
|
+
MILLISECONDS_TO_SECONDS_CONVERSION)
|
|
239
|
+
if "e2el" in goodput_config_dict:
|
|
240
|
+
valid_metrics.append(e2els)
|
|
241
|
+
slo_values.append(goodput_config_dict["e2el"] /
|
|
242
|
+
MILLISECONDS_TO_SECONDS_CONVERSION)
|
|
243
|
+
|
|
244
|
+
for req_metric in zip(*valid_metrics):
|
|
245
|
+
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
|
|
246
|
+
if is_good_req:
|
|
247
|
+
good_completed += 1
|
|
248
|
+
|
|
249
|
+
if completed == 0:
|
|
250
|
+
warnings.warn(
|
|
251
|
+
"All requests failed. This is likely due to a misconfiguration "
|
|
252
|
+
"on the benchmark arguments.",
|
|
253
|
+
stacklevel=2)
|
|
254
|
+
metrics = BenchmarkMetrics(
|
|
255
|
+
completed=completed,
|
|
256
|
+
total_input=total_input,
|
|
257
|
+
total_output=sum(actual_output_lens),
|
|
258
|
+
request_throughput=completed / dur_s,
|
|
259
|
+
request_goodput=good_completed / dur_s,
|
|
260
|
+
output_throughput=sum(actual_output_lens) / dur_s,
|
|
261
|
+
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
|
|
262
|
+
mean_ttft_ms=np.mean(ttfts or 0) *
|
|
263
|
+
1000, # ttfts is empty if streaming is not supported by the endpoint
|
|
264
|
+
std_ttft_ms=np.std(ttfts or 0) * 1000,
|
|
265
|
+
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
|
266
|
+
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
|
|
267
|
+
for p in selected_percentiles],
|
|
268
|
+
mean_tpot_ms=np.mean(tpots or 0) * 1000,
|
|
269
|
+
std_tpot_ms=np.std(tpots or 0) * 1000,
|
|
270
|
+
median_tpot_ms=np.median(tpots or 0) * 1000,
|
|
271
|
+
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
|
|
272
|
+
for p in selected_percentiles],
|
|
273
|
+
mean_itl_ms=np.mean(itls or 0) * 1000,
|
|
274
|
+
std_itl_ms=np.std(itls or 0) * 1000,
|
|
275
|
+
median_itl_ms=np.median(itls or 0) * 1000,
|
|
276
|
+
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
|
|
277
|
+
for p in selected_percentiles],
|
|
278
|
+
mean_e2el_ms=np.mean(e2els or 0) * 1000,
|
|
279
|
+
std_e2el_ms=np.std(e2els or 0) * 1000,
|
|
280
|
+
median_e2el_ms=np.median(e2els or 0) * 1000,
|
|
281
|
+
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
|
|
282
|
+
for p in selected_percentiles],
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
return metrics, actual_output_lens
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
async def benchmark(
|
|
289
|
+
endpoint_type: str,
|
|
290
|
+
api_url: str,
|
|
291
|
+
base_url: str,
|
|
292
|
+
model_id: str,
|
|
293
|
+
model_name: str,
|
|
294
|
+
tokenizer: PreTrainedTokenizerBase,
|
|
295
|
+
input_requests: list[SampleRequest],
|
|
296
|
+
logprobs: Optional[int],
|
|
297
|
+
request_rate: float,
|
|
298
|
+
burstiness: float,
|
|
299
|
+
disable_tqdm: bool,
|
|
300
|
+
profile: bool,
|
|
301
|
+
selected_percentile_metrics: list[str],
|
|
302
|
+
selected_percentiles: list[float],
|
|
303
|
+
ignore_eos: bool,
|
|
304
|
+
goodput_config_dict: dict[str, float],
|
|
305
|
+
max_concurrency: Optional[int],
|
|
306
|
+
lora_modules: Optional[Iterable[str]],
|
|
307
|
+
extra_body: Optional[dict],
|
|
308
|
+
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
|
|
309
|
+
ramp_up_start_rps: Optional[int] = None,
|
|
310
|
+
ramp_up_end_rps: Optional[int] = None,
|
|
311
|
+
):
|
|
312
|
+
if endpoint_type in ASYNC_REQUEST_FUNCS:
|
|
313
|
+
request_func = ASYNC_REQUEST_FUNCS[endpoint_type]
|
|
314
|
+
else:
|
|
315
|
+
raise ValueError(f"Unknown endpoint_type: {endpoint_type}")
|
|
316
|
+
|
|
317
|
+
print("Starting initial single prompt test run...")
|
|
318
|
+
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
|
|
319
|
+
input_requests[0].prompt,
|
|
320
|
+
input_requests[0].prompt_len,
|
|
321
|
+
input_requests[0].expected_output_len,
|
|
322
|
+
input_requests[0].multi_modal_data,
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
assert test_mm_content is None or isinstance(test_mm_content, dict)
|
|
326
|
+
test_input = RequestFuncInput(
|
|
327
|
+
model=model_id,
|
|
328
|
+
model_name=model_name,
|
|
329
|
+
prompt=test_prompt,
|
|
330
|
+
api_url=api_url,
|
|
331
|
+
prompt_len=test_prompt_len,
|
|
332
|
+
output_len=test_output_len,
|
|
333
|
+
logprobs=logprobs,
|
|
334
|
+
multi_modal_content=test_mm_content,
|
|
335
|
+
ignore_eos=ignore_eos,
|
|
336
|
+
extra_body=extra_body,
|
|
337
|
+
)
|
|
338
|
+
|
|
339
|
+
test_output = await request_func(request_func_input=test_input)
|
|
340
|
+
if not test_output.success:
|
|
341
|
+
raise ValueError(
|
|
342
|
+
"Initial test run failed - Please make sure benchmark arguments "
|
|
343
|
+
f"are correctly specified. Error: {test_output.error}")
|
|
344
|
+
else:
|
|
345
|
+
print("Initial test run completed. Starting main benchmark run...")
|
|
346
|
+
|
|
347
|
+
if lora_modules:
|
|
348
|
+
# For each input request, choose a LoRA module at random.
|
|
349
|
+
lora_modules = iter(
|
|
350
|
+
[random.choice(lora_modules) for _ in range(len(input_requests))])
|
|
351
|
+
|
|
352
|
+
if profile:
|
|
353
|
+
print("Starting profiler...")
|
|
354
|
+
profile_input = RequestFuncInput(model=model_id,
|
|
355
|
+
model_name=model_name,
|
|
356
|
+
prompt=test_prompt,
|
|
357
|
+
api_url=base_url + "/start_profile",
|
|
358
|
+
prompt_len=test_prompt_len,
|
|
359
|
+
output_len=test_output_len,
|
|
360
|
+
logprobs=logprobs,
|
|
361
|
+
multi_modal_content=test_mm_content,
|
|
362
|
+
ignore_eos=ignore_eos,
|
|
363
|
+
extra_body=extra_body)
|
|
364
|
+
profile_output = await request_func(request_func_input=profile_input)
|
|
365
|
+
if profile_output.success:
|
|
366
|
+
print("Profiler started")
|
|
367
|
+
|
|
368
|
+
distribution = ("Poisson process" if burstiness == 1.0
|
|
369
|
+
else "Gamma distribution")
|
|
370
|
+
|
|
371
|
+
if ramp_up_strategy is not None:
|
|
372
|
+
print(f"Traffic ramp-up strategy: {ramp_up_strategy}.")
|
|
373
|
+
print(f"Will increase RPS from {ramp_up_start_rps} to "
|
|
374
|
+
f"{ramp_up_end_rps} RPS over the duration of the benchmark.")
|
|
375
|
+
else:
|
|
376
|
+
print(f"Traffic request rate: {request_rate}")
|
|
377
|
+
|
|
378
|
+
print(f"Burstiness factor: {burstiness} ({distribution})")
|
|
379
|
+
print(f"Maximum request concurrency: {max_concurrency}")
|
|
380
|
+
|
|
381
|
+
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
|
382
|
+
|
|
383
|
+
# This can be used once the minimum Python version is 3.10 or higher,
|
|
384
|
+
# and it will simplify the code in limited_request_func.
|
|
385
|
+
# semaphore = (asyncio.Semaphore(max_concurrency)
|
|
386
|
+
# if max_concurrency else contextlib.nullcontext())
|
|
387
|
+
semaphore = (asyncio.Semaphore(max_concurrency)
|
|
388
|
+
if max_concurrency else None)
|
|
389
|
+
|
|
390
|
+
async def limited_request_func(request_func_input, pbar):
|
|
391
|
+
if semaphore is None:
|
|
392
|
+
return await request_func(request_func_input=request_func_input,
|
|
393
|
+
pbar=pbar)
|
|
394
|
+
async with semaphore:
|
|
395
|
+
return await request_func(request_func_input=request_func_input,
|
|
396
|
+
pbar=pbar)
|
|
397
|
+
|
|
398
|
+
benchmark_start_time = time.perf_counter()
|
|
399
|
+
tasks: list[asyncio.Task] = []
|
|
400
|
+
|
|
401
|
+
rps_change_events = []
|
|
402
|
+
last_int_rps = -1
|
|
403
|
+
if ramp_up_strategy is not None and ramp_up_start_rps is not None:
|
|
404
|
+
last_int_rps = ramp_up_start_rps
|
|
405
|
+
rps_change_events.append({
|
|
406
|
+
"rps": last_int_rps,
|
|
407
|
+
"timestamp": datetime.now().isoformat(),
|
|
408
|
+
})
|
|
409
|
+
|
|
410
|
+
async for request, current_request_rate in get_request(
|
|
411
|
+
input_requests, request_rate, burstiness, ramp_up_strategy,
|
|
412
|
+
ramp_up_start_rps, ramp_up_end_rps):
|
|
413
|
+
if ramp_up_strategy is not None:
|
|
414
|
+
current_int_rps = int(current_request_rate)
|
|
415
|
+
if current_int_rps > last_int_rps:
|
|
416
|
+
timestamp = datetime.now().isoformat()
|
|
417
|
+
for rps_val in range(last_int_rps + 1, current_int_rps + 1):
|
|
418
|
+
rps_change_events.append({
|
|
419
|
+
"rps": rps_val,
|
|
420
|
+
"timestamp": timestamp
|
|
421
|
+
})
|
|
422
|
+
last_int_rps = current_int_rps
|
|
423
|
+
prompt, prompt_len, output_len, mm_content = (
|
|
424
|
+
request.prompt,
|
|
425
|
+
request.prompt_len,
|
|
426
|
+
request.expected_output_len,
|
|
427
|
+
request.multi_modal_data,
|
|
428
|
+
)
|
|
429
|
+
req_model_id, req_model_name = model_id, model_name
|
|
430
|
+
if lora_modules:
|
|
431
|
+
req_lora_module = next(lora_modules)
|
|
432
|
+
req_model_id, req_model_name = req_lora_module, req_lora_module
|
|
433
|
+
|
|
434
|
+
request_func_input = RequestFuncInput(model=req_model_id,
|
|
435
|
+
model_name=req_model_name,
|
|
436
|
+
prompt=prompt,
|
|
437
|
+
api_url=api_url,
|
|
438
|
+
prompt_len=prompt_len,
|
|
439
|
+
output_len=output_len,
|
|
440
|
+
logprobs=logprobs,
|
|
441
|
+
multi_modal_content=mm_content,
|
|
442
|
+
ignore_eos=ignore_eos,
|
|
443
|
+
extra_body=extra_body)
|
|
444
|
+
tasks.append(
|
|
445
|
+
asyncio.create_task(
|
|
446
|
+
limited_request_func(request_func_input=request_func_input,
|
|
447
|
+
pbar=pbar)))
|
|
448
|
+
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
|
449
|
+
|
|
450
|
+
if profile:
|
|
451
|
+
print("Stopping profiler...")
|
|
452
|
+
profile_input = RequestFuncInput(
|
|
453
|
+
model=model_id,
|
|
454
|
+
prompt=test_prompt,
|
|
455
|
+
api_url=base_url + "/stop_profile",
|
|
456
|
+
prompt_len=test_prompt_len,
|
|
457
|
+
output_len=test_output_len,
|
|
458
|
+
logprobs=logprobs,
|
|
459
|
+
)
|
|
460
|
+
profile_output = await request_func(request_func_input=profile_input)
|
|
461
|
+
if profile_output.success:
|
|
462
|
+
print("Profiler stopped")
|
|
463
|
+
|
|
464
|
+
if pbar is not None:
|
|
465
|
+
pbar.close()
|
|
466
|
+
|
|
467
|
+
benchmark_duration = time.perf_counter() - benchmark_start_time
|
|
468
|
+
|
|
469
|
+
metrics, actual_output_lens = calculate_metrics(
|
|
470
|
+
input_requests=input_requests,
|
|
471
|
+
outputs=outputs,
|
|
472
|
+
dur_s=benchmark_duration,
|
|
473
|
+
tokenizer=tokenizer,
|
|
474
|
+
selected_percentiles=selected_percentiles,
|
|
475
|
+
goodput_config_dict=goodput_config_dict,
|
|
476
|
+
)
|
|
477
|
+
|
|
478
|
+
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
|
479
|
+
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
|
480
|
+
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
|
|
481
|
+
benchmark_duration))
|
|
482
|
+
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
|
483
|
+
print("{:<40} {:<10}".format("Total generated tokens:",
|
|
484
|
+
metrics.total_output))
|
|
485
|
+
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
|
486
|
+
metrics.request_throughput))
|
|
487
|
+
if goodput_config_dict:
|
|
488
|
+
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
|
489
|
+
metrics.request_goodput))
|
|
490
|
+
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
|
491
|
+
metrics.output_throughput))
|
|
492
|
+
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
|
|
493
|
+
metrics.total_token_throughput))
|
|
494
|
+
|
|
495
|
+
result = {
|
|
496
|
+
"duration": benchmark_duration,
|
|
497
|
+
"completed": metrics.completed,
|
|
498
|
+
"total_input_tokens": metrics.total_input,
|
|
499
|
+
"total_output_tokens": metrics.total_output,
|
|
500
|
+
"request_throughput": metrics.request_throughput,
|
|
501
|
+
"request_goodput":
|
|
502
|
+
metrics.request_goodput if goodput_config_dict else None,
|
|
503
|
+
"output_throughput": metrics.output_throughput,
|
|
504
|
+
"total_token_throughput": metrics.total_token_throughput,
|
|
505
|
+
"input_lens": [output.prompt_len for output in outputs],
|
|
506
|
+
"output_lens": actual_output_lens,
|
|
507
|
+
"ttfts": [output.ttft for output in outputs],
|
|
508
|
+
"itls": [output.itl for output in outputs],
|
|
509
|
+
"generated_texts": [output.generated_text for output in outputs],
|
|
510
|
+
"errors": [output.error for output in outputs],
|
|
511
|
+
}
|
|
512
|
+
|
|
513
|
+
if rps_change_events:
|
|
514
|
+
result["rps_change_events"] = rps_change_events
|
|
515
|
+
|
|
516
|
+
def process_one_metric(
|
|
517
|
+
# E.g., "ttft"
|
|
518
|
+
metric_attribute_name: str,
|
|
519
|
+
# E.g., "TTFT"
|
|
520
|
+
metric_name: str,
|
|
521
|
+
# E.g., "Time to First Token"
|
|
522
|
+
metric_header: str,
|
|
523
|
+
):
|
|
524
|
+
# This function prints and adds statistics of the specified
|
|
525
|
+
# metric.
|
|
526
|
+
if metric_attribute_name not in selected_percentile_metrics:
|
|
527
|
+
return
|
|
528
|
+
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
|
|
529
|
+
print("{:<40} {:<10.2f}".format(
|
|
530
|
+
f"Mean {metric_name} (ms):",
|
|
531
|
+
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
|
|
532
|
+
print("{:<40} {:<10.2f}".format(
|
|
533
|
+
f"Median {metric_name} (ms):",
|
|
534
|
+
getattr(metrics, f"median_{metric_attribute_name}_ms")))
|
|
535
|
+
result[f"mean_{metric_attribute_name}_ms"] = getattr(
|
|
536
|
+
metrics, f"mean_{metric_attribute_name}_ms")
|
|
537
|
+
result[f"median_{metric_attribute_name}_ms"] = getattr(
|
|
538
|
+
metrics, f"median_{metric_attribute_name}_ms")
|
|
539
|
+
result[f"std_{metric_attribute_name}_ms"] = getattr(
|
|
540
|
+
metrics, f"std_{metric_attribute_name}_ms")
|
|
541
|
+
for p, value in getattr(metrics,
|
|
542
|
+
f"percentiles_{metric_attribute_name}_ms"):
|
|
543
|
+
p_word = str(int(p)) if int(p) == p else str(p)
|
|
544
|
+
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
|
|
545
|
+
value))
|
|
546
|
+
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
|
|
547
|
+
|
|
548
|
+
process_one_metric("ttft", "TTFT", "Time to First Token")
|
|
549
|
+
process_one_metric("tpot", "TPOT",
|
|
550
|
+
"Time per Output Token (excl. 1st token)")
|
|
551
|
+
process_one_metric("itl", "ITL", "Inter-token Latency")
|
|
552
|
+
process_one_metric("e2el", "E2EL", "End-to-end Latency")
|
|
553
|
+
|
|
554
|
+
print("=" * 50)
|
|
555
|
+
|
|
556
|
+
return result
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
def check_goodput_args(args):
|
|
560
|
+
# Check and parse goodput arguments
|
|
561
|
+
goodput_config_dict = {}
|
|
562
|
+
VALID_NAMES = ["ttft", "tpot", "e2el"]
|
|
563
|
+
if args.goodput:
|
|
564
|
+
goodput_config_dict = parse_goodput(args.goodput)
|
|
565
|
+
for slo_name, slo_val in goodput_config_dict.items():
|
|
566
|
+
if slo_name not in VALID_NAMES:
|
|
567
|
+
raise ValueError(
|
|
568
|
+
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
|
569
|
+
"The service level objective name should be one of "
|
|
570
|
+
f"{str(VALID_NAMES)}. ")
|
|
571
|
+
if slo_val < 0:
|
|
572
|
+
raise ValueError(
|
|
573
|
+
f"Invalid value found, {slo_name}: {slo_val}. "
|
|
574
|
+
"The service level objective value should be "
|
|
575
|
+
"non-negative.")
|
|
576
|
+
return goodput_config_dict
|
|
577
|
+
|
|
578
|
+
|
|
579
|
+
def parse_goodput(slo_pairs):
|
|
580
|
+
goodput_config_dict = {}
|
|
581
|
+
try:
|
|
582
|
+
for slo_pair in slo_pairs:
|
|
583
|
+
slo_name, slo_val = slo_pair.split(":")
|
|
584
|
+
goodput_config_dict[slo_name] = float(slo_val)
|
|
585
|
+
except ValueError as err:
|
|
586
|
+
raise argparse.ArgumentTypeError(
|
|
587
|
+
"Invalid format found for service level objectives. "
|
|
588
|
+
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
|
589
|
+
"pairs, where the key is a metric name, and the value is a "
|
|
590
|
+
"number in milliseconds.") from err
|
|
591
|
+
return goodput_config_dict
|
|
592
|
+
|
|
593
|
+
|
|
594
|
+
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
|
595
|
+
results: dict[str, Any],
|
|
596
|
+
file_name: str) -> None:
|
|
597
|
+
metrics = [
|
|
598
|
+
"median_ttft_ms", "mean_ttft_ms", "std_ttft_ms", "p99_ttft_ms",
|
|
599
|
+
"mean_tpot_ms", "median_tpot_ms", "std_tpot_ms", "p99_tpot_ms",
|
|
600
|
+
"median_itl_ms", "mean_itl_ms", "std_itl_ms", "p99_itl_ms"
|
|
601
|
+
]
|
|
602
|
+
# These raw data might be useful, but they are rather big. They can be added
|
|
603
|
+
# later if needed
|
|
604
|
+
ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
|
|
605
|
+
pt_records = convert_to_pytorch_benchmark_format(
|
|
606
|
+
args=args,
|
|
607
|
+
metrics={k: [results[k]]
|
|
608
|
+
for k in metrics},
|
|
609
|
+
extra_info={
|
|
610
|
+
k: results[k]
|
|
611
|
+
for k in results if k not in metrics and k not in ignored_metrics
|
|
612
|
+
})
|
|
613
|
+
if pt_records:
|
|
614
|
+
# Don't use json suffix here as we don't want CI to pick it up
|
|
615
|
+
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
|
|
616
|
+
write_to_json(pt_file, pt_records)
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
def add_cli_args(parser: argparse.ArgumentParser):
|
|
620
|
+
add_dataset_parser(parser)
|
|
621
|
+
parser.add_argument(
|
|
622
|
+
"--endpoint-type",
|
|
623
|
+
type=str,
|
|
624
|
+
default="openai",
|
|
625
|
+
choices=list(ASYNC_REQUEST_FUNCS.keys()),
|
|
626
|
+
)
|
|
627
|
+
parser.add_argument(
|
|
628
|
+
"--label",
|
|
629
|
+
type=str,
|
|
630
|
+
default=None,
|
|
631
|
+
help="The label (prefix) of the benchmark results. If not specified, "
|
|
632
|
+
"the endpoint type will be used as the label.",
|
|
633
|
+
)
|
|
634
|
+
parser.add_argument(
|
|
635
|
+
"--backend",
|
|
636
|
+
type=str,
|
|
637
|
+
default="vllm",
|
|
638
|
+
choices=list(ASYNC_REQUEST_FUNCS.keys()),
|
|
639
|
+
)
|
|
640
|
+
parser.add_argument(
|
|
641
|
+
"--base-url",
|
|
642
|
+
type=str,
|
|
643
|
+
default=None,
|
|
644
|
+
help="Server or API base url if not using http host and port.",
|
|
645
|
+
)
|
|
646
|
+
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
|
|
647
|
+
parser.add_argument("--host", type=str, default="127.0.0.1")
|
|
648
|
+
parser.add_argument("--port", type=int, default=8000)
|
|
649
|
+
parser.add_argument(
|
|
650
|
+
"--endpoint",
|
|
651
|
+
type=str,
|
|
652
|
+
default="/v1/completions",
|
|
653
|
+
help="API endpoint.",
|
|
654
|
+
)
|
|
655
|
+
parser.add_argument(
|
|
656
|
+
"--max-concurrency",
|
|
657
|
+
type=int,
|
|
658
|
+
default=None,
|
|
659
|
+
help="Maximum number of concurrent requests. This can be used "
|
|
660
|
+
"to help simulate an environment where a higher level component "
|
|
661
|
+
"is enforcing a maximum number of concurrent requests. While the "
|
|
662
|
+
"--request-rate argument controls the rate at which requests are "
|
|
663
|
+
"initiated, this argument will control how many are actually allowed "
|
|
664
|
+
"to execute at a time. This means that when used in combination, the "
|
|
665
|
+
"actual request rate may be lower than specified with --request-rate, "
|
|
666
|
+
"if the server is not processing requests fast enough to keep up.")
|
|
667
|
+
|
|
668
|
+
parser.add_argument(
|
|
669
|
+
"--model",
|
|
670
|
+
type=str,
|
|
671
|
+
required=True,
|
|
672
|
+
help="Name of the model.",
|
|
673
|
+
)
|
|
674
|
+
parser.add_argument(
|
|
675
|
+
"--tokenizer",
|
|
676
|
+
type=str,
|
|
677
|
+
help=
|
|
678
|
+
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
|
679
|
+
)
|
|
680
|
+
parser.add_argument("--use-beam-search", action="store_true")
|
|
681
|
+
parser.add_argument(
|
|
682
|
+
"--logprobs",
|
|
683
|
+
type=int,
|
|
684
|
+
default=None,
|
|
685
|
+
help=("Number of logprobs-per-token to compute & return as part of "
|
|
686
|
+
"the request. If unspecified, then either (1) if beam search "
|
|
687
|
+
"is disabled, no logprobs are computed & a single dummy "
|
|
688
|
+
"logprob is returned for each token; or (2) if beam search "
|
|
689
|
+
"is enabled 1 logprob per token is computed"),
|
|
690
|
+
)
|
|
691
|
+
parser.add_argument(
|
|
692
|
+
"--request-rate",
|
|
693
|
+
type=float,
|
|
694
|
+
default=float("inf"),
|
|
695
|
+
help="Number of requests per second. If this is inf, "
|
|
696
|
+
"then all the requests are sent at time 0. "
|
|
697
|
+
"Otherwise, we use Poisson process or gamma distribution "
|
|
698
|
+
"to synthesize the request arrival times.",
|
|
699
|
+
)
|
|
700
|
+
parser.add_argument(
|
|
701
|
+
"--burstiness",
|
|
702
|
+
type=float,
|
|
703
|
+
default=1.0,
|
|
704
|
+
help="Burstiness factor of the request generation. "
|
|
705
|
+
"Only take effect when request_rate is not inf. "
|
|
706
|
+
"Default value is 1, which follows Poisson process. "
|
|
707
|
+
"Otherwise, the request intervals follow a gamma distribution. "
|
|
708
|
+
"A lower burstiness value (0 < burstiness < 1) results in more "
|
|
709
|
+
"bursty requests. A higher burstiness value (burstiness > 1) "
|
|
710
|
+
"results in a more uniform arrival of requests.",
|
|
711
|
+
)
|
|
712
|
+
parser.add_argument(
|
|
713
|
+
"--trust-remote-code",
|
|
714
|
+
action="store_true",
|
|
715
|
+
help="Trust remote code from huggingface",
|
|
716
|
+
)
|
|
717
|
+
parser.add_argument(
|
|
718
|
+
"--disable-tqdm",
|
|
719
|
+
action="store_true",
|
|
720
|
+
help="Specify to disable tqdm progress bar.",
|
|
721
|
+
)
|
|
722
|
+
parser.add_argument(
|
|
723
|
+
"--profile",
|
|
724
|
+
action="store_true",
|
|
725
|
+
help="Use Torch Profiler. The endpoint must be launched with "
|
|
726
|
+
"VLLM_TORCH_PROFILER_DIR to enable profiler.",
|
|
727
|
+
)
|
|
728
|
+
parser.add_argument(
|
|
729
|
+
"--save-result",
|
|
730
|
+
action="store_true",
|
|
731
|
+
help="Specify to save benchmark results to a json file",
|
|
732
|
+
)
|
|
733
|
+
parser.add_argument(
|
|
734
|
+
"--save-detailed",
|
|
735
|
+
action="store_true",
|
|
736
|
+
help="When saving the results, whether to include per request "
|
|
737
|
+
"information such as response, error, ttfs, tpots, etc.",
|
|
738
|
+
)
|
|
739
|
+
parser.add_argument(
|
|
740
|
+
"--append-result",
|
|
741
|
+
action="store_true",
|
|
742
|
+
help="Append the benchmark result to the existing json file.",
|
|
743
|
+
)
|
|
744
|
+
parser.add_argument(
|
|
745
|
+
"--metadata",
|
|
746
|
+
metavar="KEY=VALUE",
|
|
747
|
+
nargs="*",
|
|
748
|
+
help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
|
|
749
|
+
"for metadata of this run to be saved in the result JSON file "
|
|
750
|
+
"for record keeping purposes.",
|
|
751
|
+
)
|
|
752
|
+
parser.add_argument(
|
|
753
|
+
"--result-dir",
|
|
754
|
+
type=str,
|
|
755
|
+
default=None,
|
|
756
|
+
help="Specify directory to save benchmark json results."
|
|
757
|
+
"If not specified, results are saved in the current directory.",
|
|
758
|
+
)
|
|
759
|
+
parser.add_argument(
|
|
760
|
+
"--result-filename",
|
|
761
|
+
type=str,
|
|
762
|
+
default=None,
|
|
763
|
+
help="Specify the filename to save benchmark json results."
|
|
764
|
+
"If not specified, results will be saved in "
|
|
765
|
+
"{label}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" # noqa
|
|
766
|
+
" format.",
|
|
767
|
+
)
|
|
768
|
+
parser.add_argument(
|
|
769
|
+
"--ignore-eos",
|
|
770
|
+
action="store_true",
|
|
771
|
+
help="Set ignore_eos flag when sending the benchmark request."
|
|
772
|
+
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
|
|
773
|
+
parser.add_argument(
|
|
774
|
+
"--percentile-metrics",
|
|
775
|
+
type=str,
|
|
776
|
+
default="ttft,tpot,itl",
|
|
777
|
+
help="Comma-separated list of selected metrics to report percentils. "
|
|
778
|
+
"This argument specifies the metrics to report percentiles. "
|
|
779
|
+
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". ")
|
|
780
|
+
parser.add_argument(
|
|
781
|
+
"--metric-percentiles",
|
|
782
|
+
type=str,
|
|
783
|
+
default="99",
|
|
784
|
+
help="Comma-separated list of percentiles for selected metrics. "
|
|
785
|
+
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
|
786
|
+
"Default value is \"99\"."
|
|
787
|
+
"Use \"--percentile-metrics\" to select metrics.",
|
|
788
|
+
)
|
|
789
|
+
parser.add_argument(
|
|
790
|
+
"--goodput",
|
|
791
|
+
nargs="+",
|
|
792
|
+
required=False,
|
|
793
|
+
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
|
|
794
|
+
"pairs, where the key is a metric name, and the value is in "
|
|
795
|
+
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
|
|
796
|
+
"separated by spaces. Allowed request level metric names are "
|
|
797
|
+
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
|
|
798
|
+
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
|
799
|
+
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
|
|
800
|
+
)
|
|
801
|
+
|
|
802
|
+
sampling_group = parser.add_argument_group("sampling parameters")
|
|
803
|
+
sampling_group.add_argument(
|
|
804
|
+
"--top-p",
|
|
805
|
+
type=float,
|
|
806
|
+
default=None,
|
|
807
|
+
help="Top-p sampling parameter. Only has effect on "
|
|
808
|
+
"openai-compatible backends.",
|
|
809
|
+
)
|
|
810
|
+
sampling_group.add_argument(
|
|
811
|
+
"--top-k",
|
|
812
|
+
type=int,
|
|
813
|
+
default=None,
|
|
814
|
+
help="Top-k sampling parameter. Only has effect on "
|
|
815
|
+
"openai-compatible backends.",
|
|
816
|
+
)
|
|
817
|
+
sampling_group.add_argument(
|
|
818
|
+
"--min-p",
|
|
819
|
+
type=float,
|
|
820
|
+
default=None,
|
|
821
|
+
help="Min-p sampling parameter. Only has effect on "
|
|
822
|
+
"openai-compatible backends.",
|
|
823
|
+
)
|
|
824
|
+
sampling_group.add_argument(
|
|
825
|
+
"--temperature",
|
|
826
|
+
type=float,
|
|
827
|
+
default=None,
|
|
828
|
+
help="Temperature sampling parameter. Only has effect on "
|
|
829
|
+
"openai-compatible backends. If not specified, default to greedy "
|
|
830
|
+
"decoding (i.e. temperature==0.0).",
|
|
831
|
+
)
|
|
832
|
+
|
|
833
|
+
parser.add_argument(
|
|
834
|
+
'--tokenizer-mode',
|
|
835
|
+
type=str,
|
|
836
|
+
default="auto",
|
|
837
|
+
choices=['auto', 'slow', 'mistral', 'custom'],
|
|
838
|
+
help='The tokenizer mode.\n\n* "auto" will use the '
|
|
839
|
+
'fast tokenizer if available.\n* "slow" will '
|
|
840
|
+
'always use the slow tokenizer. \n* '
|
|
841
|
+
'"mistral" will always use the `mistral_common` tokenizer. \n*'
|
|
842
|
+
'"custom" will use --tokenizer to select the preregistered tokenizer.')
|
|
843
|
+
|
|
844
|
+
parser.add_argument("--served-model-name",
|
|
845
|
+
type=str,
|
|
846
|
+
default=None,
|
|
847
|
+
help="The model name used in the API. "
|
|
848
|
+
"If not specified, the model name will be the "
|
|
849
|
+
"same as the ``--model`` argument. ")
|
|
850
|
+
|
|
851
|
+
parser.add_argument("--lora-modules",
|
|
852
|
+
nargs='+',
|
|
853
|
+
default=None,
|
|
854
|
+
help="A subset of LoRA module names passed in when "
|
|
855
|
+
"launching the server. For each request, the "
|
|
856
|
+
"script chooses a LoRA module at random.")
|
|
857
|
+
|
|
858
|
+
parser.add_argument(
|
|
859
|
+
"--ramp-up-strategy",
|
|
860
|
+
type=str,
|
|
861
|
+
default=None,
|
|
862
|
+
choices=["linear", "exponential"],
|
|
863
|
+
help="The ramp-up strategy. This would be used to "
|
|
864
|
+
"ramp up the request rate from initial RPS to final "
|
|
865
|
+
"RPS rate (specified by --ramp-up-start-rps and "
|
|
866
|
+
"--ramp-up-end-rps.) over the duration of the benchmark."
|
|
867
|
+
)
|
|
868
|
+
parser.add_argument(
|
|
869
|
+
"--ramp-up-start-rps",
|
|
870
|
+
type=int,
|
|
871
|
+
default=None,
|
|
872
|
+
help="The starting request rate for ramp-up (RPS). "
|
|
873
|
+
"Needs to be specified when --ramp-up-strategy is used.",
|
|
874
|
+
)
|
|
875
|
+
parser.add_argument(
|
|
876
|
+
"--ramp-up-end-rps",
|
|
877
|
+
type=int,
|
|
878
|
+
default=None,
|
|
879
|
+
help="The ending request rate for ramp-up (RPS). "
|
|
880
|
+
"Needs to be specified when --ramp-up-strategy is used.",
|
|
881
|
+
)
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
def main(args: argparse.Namespace):
|
|
885
|
+
print(args)
|
|
886
|
+
random.seed(args.seed)
|
|
887
|
+
np.random.seed(args.seed)
|
|
888
|
+
|
|
889
|
+
# Validate ramp-up arguments
|
|
890
|
+
if args.ramp_up_strategy is not None:
|
|
891
|
+
if args.request_rate != float("inf"):
|
|
892
|
+
raise ValueError(
|
|
893
|
+
"When using ramp-up, do not specify --request-rate. "
|
|
894
|
+
"The request rate will be controlled by ramp-up parameters. "
|
|
895
|
+
"Please remove the --request-rate argument."
|
|
896
|
+
)
|
|
897
|
+
if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
|
|
898
|
+
raise ValueError(
|
|
899
|
+
"When using --ramp-up-strategy, both --ramp-up-start-rps and "
|
|
900
|
+
"--ramp-up-end-rps must be specified"
|
|
901
|
+
)
|
|
902
|
+
if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
|
|
903
|
+
raise ValueError("Ramp-up start and end RPS must be non-negative")
|
|
904
|
+
if args.ramp_up_start_rps > args.ramp_up_end_rps:
|
|
905
|
+
raise ValueError("Ramp-up start RPS must be less than end RPS")
|
|
906
|
+
if (args.ramp_up_strategy == "exponential"
|
|
907
|
+
and args.ramp_up_start_rps == 0):
|
|
908
|
+
raise ValueError(
|
|
909
|
+
"For exponential ramp-up, the start RPS cannot be 0.")
|
|
910
|
+
|
|
911
|
+
endpoint_type = args.endpoint_type
|
|
912
|
+
label = args.label
|
|
913
|
+
model_id = args.model
|
|
914
|
+
model_name = args.served_model_name
|
|
915
|
+
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
|
|
916
|
+
tokenizer_mode = args.tokenizer_mode
|
|
917
|
+
|
|
918
|
+
if args.base_url is not None:
|
|
919
|
+
api_url = f"{args.base_url}{args.endpoint}"
|
|
920
|
+
base_url = f"{args.base_url}"
|
|
921
|
+
else:
|
|
922
|
+
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
|
|
923
|
+
base_url = f"http://{args.host}:{args.port}"
|
|
924
|
+
|
|
925
|
+
tokenizer = get_tokenizer(tokenizer_id,
|
|
926
|
+
tokenizer_mode=tokenizer_mode,
|
|
927
|
+
trust_remote_code=args.trust_remote_code)
|
|
928
|
+
|
|
929
|
+
if args.dataset_name is None:
|
|
930
|
+
raise ValueError(
|
|
931
|
+
"Please specify '--dataset-name' and the corresponding "
|
|
932
|
+
"'--dataset-path' if required.")
|
|
933
|
+
|
|
934
|
+
# Load the dataset.
|
|
935
|
+
input_requests = get_samples(args, tokenizer)
|
|
936
|
+
goodput_config_dict = check_goodput_args(args)
|
|
937
|
+
|
|
938
|
+
# Collect the sampling parameters.
|
|
939
|
+
sampling_params = {
|
|
940
|
+
k: v
|
|
941
|
+
for k, v in {
|
|
942
|
+
"top_p": args.top_p,
|
|
943
|
+
"top_k": args.top_k,
|
|
944
|
+
"min_p": args.min_p,
|
|
945
|
+
"temperature": args.temperature,
|
|
946
|
+
}.items() if v is not None
|
|
947
|
+
}
|
|
948
|
+
|
|
949
|
+
# Sampling parameters are only supported by openai-compatible backend.
|
|
950
|
+
if sampling_params and args.backend not in OPENAI_COMPATIBLE_BACKENDS:
|
|
951
|
+
raise ValueError("Sampling parameters are only supported by "
|
|
952
|
+
"openai-compatible backends.")
|
|
953
|
+
|
|
954
|
+
if "temperature" not in sampling_params:
|
|
955
|
+
sampling_params["temperature"] = 0.0 # Default to greedy decoding.
|
|
956
|
+
|
|
957
|
+
# Avoid GC processing "static" data - reduce pause times.
|
|
958
|
+
gc.collect()
|
|
959
|
+
gc.freeze()
|
|
960
|
+
|
|
961
|
+
benchmark_result = asyncio.run(
|
|
962
|
+
benchmark(
|
|
963
|
+
endpoint_type=args.endpoint_type,
|
|
964
|
+
api_url=api_url,
|
|
965
|
+
base_url=base_url,
|
|
966
|
+
model_id=model_id,
|
|
967
|
+
model_name=model_name,
|
|
968
|
+
tokenizer=tokenizer,
|
|
969
|
+
input_requests=input_requests,
|
|
970
|
+
logprobs=args.logprobs,
|
|
971
|
+
request_rate=args.request_rate,
|
|
972
|
+
burstiness=args.burstiness,
|
|
973
|
+
disable_tqdm=args.disable_tqdm,
|
|
974
|
+
profile=args.profile,
|
|
975
|
+
selected_percentile_metrics=args.percentile_metrics.split(","),
|
|
976
|
+
selected_percentiles=[
|
|
977
|
+
float(p) for p in args.metric_percentiles.split(",")
|
|
978
|
+
],
|
|
979
|
+
ignore_eos=args.ignore_eos,
|
|
980
|
+
goodput_config_dict=goodput_config_dict,
|
|
981
|
+
max_concurrency=args.max_concurrency,
|
|
982
|
+
lora_modules=args.lora_modules,
|
|
983
|
+
extra_body=sampling_params,
|
|
984
|
+
ramp_up_strategy=args.ramp_up_strategy,
|
|
985
|
+
ramp_up_start_rps=args.ramp_up_start_rps,
|
|
986
|
+
ramp_up_end_rps=args.ramp_up_end_rps,
|
|
987
|
+
))
|
|
988
|
+
|
|
989
|
+
# Save config and results to json
|
|
990
|
+
if args.save_result or args.append_result:
|
|
991
|
+
result_json: dict[str, Any] = {}
|
|
992
|
+
|
|
993
|
+
# Setup
|
|
994
|
+
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
995
|
+
result_json["date"] = current_dt
|
|
996
|
+
result_json["endpoint_type"] = args.endpoint_type
|
|
997
|
+
result_json["label"] = label
|
|
998
|
+
result_json["model_id"] = model_id
|
|
999
|
+
result_json["tokenizer_id"] = tokenizer_id
|
|
1000
|
+
result_json["num_prompts"] = args.num_prompts
|
|
1001
|
+
|
|
1002
|
+
# Metadata
|
|
1003
|
+
if args.metadata:
|
|
1004
|
+
for item in args.metadata:
|
|
1005
|
+
if "=" in item:
|
|
1006
|
+
kvstring = item.split("=")
|
|
1007
|
+
result_json[kvstring[0].strip()] = kvstring[1].strip()
|
|
1008
|
+
else:
|
|
1009
|
+
raise ValueError(
|
|
1010
|
+
"Invalid metadata format. Please use KEY=VALUE format."
|
|
1011
|
+
)
|
|
1012
|
+
|
|
1013
|
+
# Traffic
|
|
1014
|
+
result_json["request_rate"] = (args.request_rate if args.request_rate
|
|
1015
|
+
< float("inf") else "inf")
|
|
1016
|
+
result_json["burstiness"] = args.burstiness
|
|
1017
|
+
result_json["max_concurrency"] = args.max_concurrency
|
|
1018
|
+
|
|
1019
|
+
if args.ramp_up_strategy is not None:
|
|
1020
|
+
result_json["ramp_up_strategy"] = args.ramp_up_strategy
|
|
1021
|
+
result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
|
|
1022
|
+
result_json["ramp_up_end_rps"] = args.ramp_up_end_rps
|
|
1023
|
+
|
|
1024
|
+
# Merge with benchmark result
|
|
1025
|
+
result_json = {**result_json, **benchmark_result}
|
|
1026
|
+
|
|
1027
|
+
if not args.save_detailed:
|
|
1028
|
+
# Remove fields with too many data points
|
|
1029
|
+
for field in [
|
|
1030
|
+
"input_lens",
|
|
1031
|
+
"output_lens",
|
|
1032
|
+
"ttfts",
|
|
1033
|
+
"itls",
|
|
1034
|
+
"generated_texts",
|
|
1035
|
+
"errors",
|
|
1036
|
+
]:
|
|
1037
|
+
if field in result_json:
|
|
1038
|
+
del result_json[field]
|
|
1039
|
+
if field in benchmark_result:
|
|
1040
|
+
del benchmark_result[field]
|
|
1041
|
+
|
|
1042
|
+
# Save to file
|
|
1043
|
+
base_model_id = model_id.split("/")[-1]
|
|
1044
|
+
max_concurrency_str = (f"-concurrency{args.max_concurrency}"
|
|
1045
|
+
if args.max_concurrency is not None else "")
|
|
1046
|
+
label = label or endpoint_type
|
|
1047
|
+
if args.ramp_up_strategy is not None:
|
|
1048
|
+
file_name = f"{label}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
|
|
1049
|
+
else:
|
|
1050
|
+
file_name = f"{label}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
|
|
1051
|
+
if args.result_filename:
|
|
1052
|
+
file_name = args.result_filename
|
|
1053
|
+
if args.result_dir:
|
|
1054
|
+
os.makedirs(args.result_dir, exist_ok=True)
|
|
1055
|
+
file_name = os.path.join(args.result_dir, file_name)
|
|
1056
|
+
with open(file_name,
|
|
1057
|
+
mode="a+" if args.append_result else "w",
|
|
1058
|
+
encoding="utf-8") as outfile:
|
|
1059
|
+
# Append a newline.
|
|
1060
|
+
if args.append_result and outfile.tell() != 0:
|
|
1061
|
+
outfile.write("\n")
|
|
1062
|
+
json.dump(result_json, outfile)
|
|
1063
|
+
save_to_pytorch_benchmark_format(args, result_json, file_name)
|