vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1712) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1511 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3206 -0
  6. vllm/_ipex_ops.py +445 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +62 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/layer.py +913 -0
  15. vllm/attention/utils/__init__.py +0 -0
  16. vllm/attention/utils/kv_sharing_utils.py +33 -0
  17. vllm/attention/utils/kv_transfer_utils.py +60 -0
  18. vllm/beam_search.py +88 -0
  19. vllm/benchmarks/__init__.py +0 -0
  20. vllm/benchmarks/datasets.py +3277 -0
  21. vllm/benchmarks/latency.py +172 -0
  22. vllm/benchmarks/lib/__init__.py +3 -0
  23. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  24. vllm/benchmarks/lib/ready_checker.py +72 -0
  25. vllm/benchmarks/lib/utils.py +79 -0
  26. vllm/benchmarks/mm_processor.py +363 -0
  27. vllm/benchmarks/serve.py +1761 -0
  28. vllm/benchmarks/startup.py +321 -0
  29. vllm/benchmarks/sweep/__init__.py +0 -0
  30. vllm/benchmarks/sweep/cli.py +41 -0
  31. vllm/benchmarks/sweep/param_sweep.py +159 -0
  32. vllm/benchmarks/sweep/plot.py +675 -0
  33. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  34. vllm/benchmarks/sweep/serve.py +450 -0
  35. vllm/benchmarks/sweep/serve_sla.py +459 -0
  36. vllm/benchmarks/sweep/server.py +114 -0
  37. vllm/benchmarks/sweep/sla_sweep.py +138 -0
  38. vllm/benchmarks/sweep/utils.py +4 -0
  39. vllm/benchmarks/throughput.py +946 -0
  40. vllm/collect_env.py +857 -0
  41. vllm/compilation/__init__.py +0 -0
  42. vllm/compilation/activation_quant_fusion.py +214 -0
  43. vllm/compilation/backends.py +840 -0
  44. vllm/compilation/base_static_graph.py +57 -0
  45. vllm/compilation/caching.py +196 -0
  46. vllm/compilation/collective_fusion.py +1224 -0
  47. vllm/compilation/compiler_interface.py +639 -0
  48. vllm/compilation/counter.py +50 -0
  49. vllm/compilation/cuda_graph.py +309 -0
  50. vllm/compilation/decorators.py +662 -0
  51. vllm/compilation/fix_functionalization.py +266 -0
  52. vllm/compilation/fusion.py +570 -0
  53. vllm/compilation/fusion_attn.py +363 -0
  54. vllm/compilation/fx_utils.py +92 -0
  55. vllm/compilation/inductor_pass.py +145 -0
  56. vllm/compilation/matcher_utils.py +454 -0
  57. vllm/compilation/monitor.py +62 -0
  58. vllm/compilation/noop_elimination.py +130 -0
  59. vllm/compilation/partition_rules.py +75 -0
  60. vllm/compilation/pass_manager.py +164 -0
  61. vllm/compilation/piecewise_backend.py +191 -0
  62. vllm/compilation/post_cleanup.py +21 -0
  63. vllm/compilation/qk_norm_rope_fusion.py +244 -0
  64. vllm/compilation/rocm_aiter_fusion.py +401 -0
  65. vllm/compilation/sequence_parallelism.py +368 -0
  66. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  67. vllm/compilation/vllm_inductor_pass.py +180 -0
  68. vllm/compilation/wrapper.py +329 -0
  69. vllm/config/__init__.py +112 -0
  70. vllm/config/attention.py +114 -0
  71. vllm/config/cache.py +233 -0
  72. vllm/config/compilation.py +1149 -0
  73. vllm/config/device.py +75 -0
  74. vllm/config/ec_transfer.py +110 -0
  75. vllm/config/kv_events.py +56 -0
  76. vllm/config/kv_transfer.py +119 -0
  77. vllm/config/load.py +124 -0
  78. vllm/config/lora.py +102 -0
  79. vllm/config/model.py +2026 -0
  80. vllm/config/model_arch.py +57 -0
  81. vllm/config/multimodal.py +247 -0
  82. vllm/config/observability.py +157 -0
  83. vllm/config/parallel.py +703 -0
  84. vllm/config/pooler.py +188 -0
  85. vllm/config/profiler.py +199 -0
  86. vllm/config/scheduler.py +298 -0
  87. vllm/config/speculative.py +656 -0
  88. vllm/config/speech_to_text.py +39 -0
  89. vllm/config/structured_outputs.py +78 -0
  90. vllm/config/utils.py +374 -0
  91. vllm/config/vllm.py +1487 -0
  92. vllm/connections.py +189 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +301 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +43 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +509 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +303 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +346 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  106. vllm/distributed/device_communicators/pynccl.py +386 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  113. vllm/distributed/device_communicators/symm_mem.py +156 -0
  114. vllm/distributed/device_communicators/xpu_communicator.py +98 -0
  115. vllm/distributed/ec_transfer/__init__.py +14 -0
  116. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  117. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  118. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  119. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  120. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  121. vllm/distributed/eplb/__init__.py +3 -0
  122. vllm/distributed/eplb/async_worker.py +115 -0
  123. vllm/distributed/eplb/eplb_state.py +1192 -0
  124. vllm/distributed/eplb/policy/__init__.py +19 -0
  125. vllm/distributed/eplb/policy/abstract.py +43 -0
  126. vllm/distributed/eplb/policy/default.py +376 -0
  127. vllm/distributed/eplb/rebalance_execute.py +699 -0
  128. vllm/distributed/kv_events.py +505 -0
  129. vllm/distributed/kv_transfer/README.md +29 -0
  130. vllm/distributed/kv_transfer/__init__.py +20 -0
  131. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  132. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  133. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  134. vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  142. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  159. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  160. vllm/distributed/parallel_state.py +1809 -0
  161. vllm/distributed/utils.py +545 -0
  162. vllm/engine/__init__.py +0 -0
  163. vllm/engine/arg_utils.py +2137 -0
  164. vllm/engine/async_llm_engine.py +6 -0
  165. vllm/engine/llm_engine.py +6 -0
  166. vllm/engine/protocol.py +194 -0
  167. vllm/entrypoints/__init__.py +0 -0
  168. vllm/entrypoints/anthropic/__init__.py +0 -0
  169. vllm/entrypoints/anthropic/protocol.py +162 -0
  170. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  171. vllm/entrypoints/api_server.py +186 -0
  172. vllm/entrypoints/chat_utils.py +1912 -0
  173. vllm/entrypoints/cli/__init__.py +19 -0
  174. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/base.py +25 -0
  176. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  177. vllm/entrypoints/cli/benchmark/main.py +57 -0
  178. vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  180. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  181. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  182. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  183. vllm/entrypoints/cli/collect_env.py +38 -0
  184. vllm/entrypoints/cli/main.py +79 -0
  185. vllm/entrypoints/cli/openai.py +260 -0
  186. vllm/entrypoints/cli/run_batch.py +68 -0
  187. vllm/entrypoints/cli/serve.py +253 -0
  188. vllm/entrypoints/cli/types.py +29 -0
  189. vllm/entrypoints/constants.py +12 -0
  190. vllm/entrypoints/context.py +898 -0
  191. vllm/entrypoints/grpc_server.py +531 -0
  192. vllm/entrypoints/launcher.py +175 -0
  193. vllm/entrypoints/llm.py +1807 -0
  194. vllm/entrypoints/logger.py +86 -0
  195. vllm/entrypoints/openai/__init__.py +0 -0
  196. vllm/entrypoints/openai/api_server.py +1390 -0
  197. vllm/entrypoints/openai/cli_args.py +320 -0
  198. vllm/entrypoints/openai/orca_metrics.py +120 -0
  199. vllm/entrypoints/openai/parser/__init__.py +0 -0
  200. vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
  201. vllm/entrypoints/openai/parser/responses_parser.py +176 -0
  202. vllm/entrypoints/openai/protocol.py +2566 -0
  203. vllm/entrypoints/openai/run_batch.py +635 -0
  204. vllm/entrypoints/openai/serving_chat.py +1897 -0
  205. vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
  206. vllm/entrypoints/openai/serving_completion.py +740 -0
  207. vllm/entrypoints/openai/serving_engine.py +1612 -0
  208. vllm/entrypoints/openai/serving_models.py +309 -0
  209. vllm/entrypoints/openai/serving_responses.py +2552 -0
  210. vllm/entrypoints/openai/serving_transcription.py +168 -0
  211. vllm/entrypoints/openai/speech_to_text.py +711 -0
  212. vllm/entrypoints/openai/utils.py +49 -0
  213. vllm/entrypoints/pooling/__init__.py +16 -0
  214. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  215. vllm/entrypoints/pooling/classify/api_router.py +48 -0
  216. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  217. vllm/entrypoints/pooling/classify/serving.py +233 -0
  218. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  219. vllm/entrypoints/pooling/embed/api_router.py +65 -0
  220. vllm/entrypoints/pooling/embed/conftest.py +28 -0
  221. vllm/entrypoints/pooling/embed/protocol.py +217 -0
  222. vllm/entrypoints/pooling/embed/serving.py +684 -0
  223. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  224. vllm/entrypoints/pooling/pooling/api_router.py +62 -0
  225. vllm/entrypoints/pooling/pooling/protocol.py +146 -0
  226. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  227. vllm/entrypoints/pooling/score/__init__.py +0 -0
  228. vllm/entrypoints/pooling/score/api_router.py +147 -0
  229. vllm/entrypoints/pooling/score/protocol.py +146 -0
  230. vllm/entrypoints/pooling/score/serving.py +511 -0
  231. vllm/entrypoints/renderer.py +411 -0
  232. vllm/entrypoints/responses_utils.py +218 -0
  233. vllm/entrypoints/sagemaker/__init__.py +4 -0
  234. vllm/entrypoints/sagemaker/routes.py +118 -0
  235. vllm/entrypoints/score_utils.py +271 -0
  236. vllm/entrypoints/serve/__init__.py +94 -0
  237. vllm/entrypoints/serve/cache/__init__.py +0 -0
  238. vllm/entrypoints/serve/cache/api_router.py +61 -0
  239. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  240. vllm/entrypoints/serve/disagg/api_router.py +109 -0
  241. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  242. vllm/entrypoints/serve/disagg/serving.py +285 -0
  243. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  244. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  245. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  246. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  247. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  248. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  249. vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
  250. vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
  251. vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
  252. vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
  253. vllm/entrypoints/serve/lora/__init__.py +0 -0
  254. vllm/entrypoints/serve/lora/api_router.py +70 -0
  255. vllm/entrypoints/serve/profile/__init__.py +0 -0
  256. vllm/entrypoints/serve/profile/api_router.py +46 -0
  257. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  258. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  259. vllm/entrypoints/serve/rpc/__init__.py +0 -0
  260. vllm/entrypoints/serve/rpc/api_router.py +61 -0
  261. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  262. vllm/entrypoints/serve/sleep/api_router.py +56 -0
  263. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  264. vllm/entrypoints/serve/tokenize/api_router.py +112 -0
  265. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +187 -0
  268. vllm/entrypoints/tool_server.py +234 -0
  269. vllm/entrypoints/utils.py +336 -0
  270. vllm/env_override.py +402 -0
  271. vllm/envs.py +1791 -0
  272. vllm/exceptions.py +36 -0
  273. vllm/forward_context.py +375 -0
  274. vllm/grpc/__init__.py +17 -0
  275. vllm/grpc/compile_protos.py +94 -0
  276. vllm/grpc/vllm_engine.proto +195 -0
  277. vllm/grpc/vllm_engine_pb2.py +77 -0
  278. vllm/grpc/vllm_engine_pb2.pyi +213 -0
  279. vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
  280. vllm/inputs/__init__.py +44 -0
  281. vllm/inputs/data.py +359 -0
  282. vllm/inputs/parse.py +147 -0
  283. vllm/inputs/preprocess.py +716 -0
  284. vllm/logger.py +303 -0
  285. vllm/logging_utils/__init__.py +13 -0
  286. vllm/logging_utils/dump_input.py +83 -0
  287. vllm/logging_utils/formatter.py +127 -0
  288. vllm/logging_utils/lazy.py +20 -0
  289. vllm/logging_utils/log_time.py +34 -0
  290. vllm/logits_process.py +121 -0
  291. vllm/logprobs.py +206 -0
  292. vllm/lora/__init__.py +0 -0
  293. vllm/lora/layers/__init__.py +43 -0
  294. vllm/lora/layers/base.py +66 -0
  295. vllm/lora/layers/base_linear.py +172 -0
  296. vllm/lora/layers/column_parallel_linear.py +577 -0
  297. vllm/lora/layers/fused_moe.py +739 -0
  298. vllm/lora/layers/logits_processor.py +203 -0
  299. vllm/lora/layers/replicated_linear.py +70 -0
  300. vllm/lora/layers/row_parallel_linear.py +176 -0
  301. vllm/lora/layers/utils.py +115 -0
  302. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  303. vllm/lora/lora_model.py +221 -0
  304. vllm/lora/lora_weights.py +227 -0
  305. vllm/lora/model_manager.py +858 -0
  306. vllm/lora/ops/__init__.py +0 -0
  307. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  308. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  309. vllm/lora/ops/torch_ops/__init__.py +20 -0
  310. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  311. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  312. vllm/lora/ops/triton_ops/__init__.py +21 -0
  313. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
  314. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  315. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  316. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  317. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  318. vllm/lora/ops/triton_ops/utils.py +313 -0
  319. vllm/lora/peft_helper.py +128 -0
  320. vllm/lora/punica_wrapper/__init__.py +10 -0
  321. vllm/lora/punica_wrapper/punica_base.py +493 -0
  322. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  323. vllm/lora/punica_wrapper/punica_gpu.py +413 -0
  324. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  325. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  326. vllm/lora/punica_wrapper/utils.py +150 -0
  327. vllm/lora/request.py +60 -0
  328. vllm/lora/resolver.py +88 -0
  329. vllm/lora/utils.py +281 -0
  330. vllm/lora/worker_manager.py +278 -0
  331. vllm/model_executor/__init__.py +9 -0
  332. vllm/model_executor/custom_op.py +203 -0
  333. vllm/model_executor/layers/__init__.py +0 -0
  334. vllm/model_executor/layers/activation.py +628 -0
  335. vllm/model_executor/layers/attention/__init__.py +0 -0
  336. vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
  337. vllm/model_executor/layers/attention/cross_attention.py +182 -0
  338. vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
  339. vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
  340. vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
  341. vllm/model_executor/layers/attention_layer_base.py +34 -0
  342. vllm/model_executor/layers/batch_invariant.py +1063 -0
  343. vllm/model_executor/layers/conv.py +262 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +120 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1111 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  645. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  646. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  647. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  648. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  649. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  650. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  651. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
  652. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
  653. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
  654. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  655. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  656. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
  657. vllm/model_executor/layers/fused_moe/fallback.py +127 -0
  658. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
  659. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
  660. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
  661. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  662. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
  663. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
  664. vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
  665. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
  666. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
  667. vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
  668. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
  669. vllm/model_executor/layers/fused_moe/layer.py +2169 -0
  670. vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
  671. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  672. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  673. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  674. vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
  675. vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
  676. vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
  677. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  678. vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
  679. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
  680. vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
  681. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  682. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  683. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  684. vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
  685. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
  686. vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
  687. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
  688. vllm/model_executor/layers/fused_moe/utils.py +382 -0
  689. vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
  690. vllm/model_executor/layers/kda.py +442 -0
  691. vllm/model_executor/layers/layernorm.py +451 -0
  692. vllm/model_executor/layers/lightning_attn.py +735 -0
  693. vllm/model_executor/layers/linear.py +1478 -0
  694. vllm/model_executor/layers/logits_processor.py +109 -0
  695. vllm/model_executor/layers/mamba/__init__.py +0 -0
  696. vllm/model_executor/layers/mamba/abstract.py +68 -0
  697. vllm/model_executor/layers/mamba/linear_attn.py +410 -0
  698. vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
  699. vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
  700. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  701. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  702. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  703. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  704. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  705. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  706. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  707. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  708. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  709. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  710. vllm/model_executor/layers/mamba/short_conv.py +254 -0
  711. vllm/model_executor/layers/mla.py +179 -0
  712. vllm/model_executor/layers/pooler/__init__.py +5 -0
  713. vllm/model_executor/layers/pooler/abstract.py +39 -0
  714. vllm/model_executor/layers/pooler/activations.py +162 -0
  715. vllm/model_executor/layers/pooler/common.py +32 -0
  716. vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
  717. vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
  718. vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
  719. vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
  720. vllm/model_executor/layers/pooler/special.py +128 -0
  721. vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
  722. vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
  723. vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
  724. vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
  725. vllm/model_executor/layers/quantization/__init__.py +195 -0
  726. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  727. vllm/model_executor/layers/quantization/awq.py +277 -0
  728. vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
  729. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  730. vllm/model_executor/layers/quantization/base_config.py +170 -0
  731. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  732. vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
  733. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  734. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
  735. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
  736. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
  737. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  738. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  739. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  740. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
  741. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  742. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  743. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  744. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  745. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  746. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
  747. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  748. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  749. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  750. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  751. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  752. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  753. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  754. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  755. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  756. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  757. vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
  758. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  759. vllm/model_executor/layers/quantization/experts_int8.py +209 -0
  760. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  761. vllm/model_executor/layers/quantization/fp8.py +1224 -0
  762. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  763. vllm/model_executor/layers/quantization/gguf.py +682 -0
  764. vllm/model_executor/layers/quantization/gptq.py +393 -0
  765. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  766. vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
  767. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  768. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  769. vllm/model_executor/layers/quantization/inc.py +65 -0
  770. vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
  771. vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
  772. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  773. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  774. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
  775. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  776. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  777. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  778. vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
  779. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  780. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  781. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
  782. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  783. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  784. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  785. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  786. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
  787. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  788. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  789. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  790. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
  791. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  792. vllm/model_executor/layers/quantization/modelopt.py +1665 -0
  793. vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
  794. vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
  795. vllm/model_executor/layers/quantization/petit.py +319 -0
  796. vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
  797. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  798. vllm/model_executor/layers/quantization/quark/quark.py +570 -0
  799. vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
  800. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  801. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  802. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  803. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  804. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  805. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  806. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  807. vllm/model_executor/layers/quantization/rtn.py +626 -0
  808. vllm/model_executor/layers/quantization/schema.py +90 -0
  809. vllm/model_executor/layers/quantization/torchao.py +380 -0
  810. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  811. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  812. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1002. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1003. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1004. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1005. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1006. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1007. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1008. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1009. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1010. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1011. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1012. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1013. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1014. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1015. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1016. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1017. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1018. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1019. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1020. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1021. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1022. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1023. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1024. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1025. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1026. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1027. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1028. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
  1029. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
  1030. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
  1031. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1032. vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
  1033. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1034. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1035. vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
  1036. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
  1037. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1038. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1039. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1040. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1041. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1042. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1043. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1044. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1045. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1046. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1047. vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
  1048. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1049. vllm/model_executor/layers/resampler.py +283 -0
  1050. vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
  1051. vllm/model_executor/layers/rotary_embedding/base.py +282 -0
  1052. vllm/model_executor/layers/rotary_embedding/common.py +289 -0
  1053. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
  1054. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
  1055. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1056. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1057. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1058. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1059. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1060. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
  1061. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1062. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1063. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1064. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1065. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1066. vllm/model_executor/layers/utils.py +251 -0
  1067. vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
  1068. vllm/model_executor/model_loader/__init__.py +150 -0
  1069. vllm/model_executor/model_loader/base_loader.py +71 -0
  1070. vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
  1071. vllm/model_executor/model_loader/default_loader.py +304 -0
  1072. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1073. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1074. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1075. vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
  1076. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1077. vllm/model_executor/model_loader/tensorizer.py +793 -0
  1078. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1079. vllm/model_executor/model_loader/utils.py +299 -0
  1080. vllm/model_executor/model_loader/weight_utils.py +1183 -0
  1081. vllm/model_executor/models/__init__.py +44 -0
  1082. vllm/model_executor/models/adapters.py +592 -0
  1083. vllm/model_executor/models/afmoe.py +697 -0
  1084. vllm/model_executor/models/aimv2.py +248 -0
  1085. vllm/model_executor/models/apertus.py +567 -0
  1086. vllm/model_executor/models/arcee.py +428 -0
  1087. vllm/model_executor/models/arctic.py +633 -0
  1088. vllm/model_executor/models/aria.py +663 -0
  1089. vllm/model_executor/models/audioflamingo3.py +639 -0
  1090. vllm/model_executor/models/aya_vision.py +448 -0
  1091. vllm/model_executor/models/bagel.py +591 -0
  1092. vllm/model_executor/models/baichuan.py +493 -0
  1093. vllm/model_executor/models/bailing_moe.py +643 -0
  1094. vllm/model_executor/models/bamba.py +511 -0
  1095. vllm/model_executor/models/bee.py +157 -0
  1096. vllm/model_executor/models/bert.py +911 -0
  1097. vllm/model_executor/models/bert_with_rope.py +729 -0
  1098. vllm/model_executor/models/blip.py +350 -0
  1099. vllm/model_executor/models/blip2.py +736 -0
  1100. vllm/model_executor/models/bloom.py +390 -0
  1101. vllm/model_executor/models/chameleon.py +1095 -0
  1102. vllm/model_executor/models/chatglm.py +502 -0
  1103. vllm/model_executor/models/clip.py +1045 -0
  1104. vllm/model_executor/models/cohere2_vision.py +470 -0
  1105. vllm/model_executor/models/commandr.py +469 -0
  1106. vllm/model_executor/models/config.py +571 -0
  1107. vllm/model_executor/models/dbrx.py +484 -0
  1108. vllm/model_executor/models/deepencoder.py +679 -0
  1109. vllm/model_executor/models/deepseek_eagle.py +253 -0
  1110. vllm/model_executor/models/deepseek_mtp.py +447 -0
  1111. vllm/model_executor/models/deepseek_ocr.py +601 -0
  1112. vllm/model_executor/models/deepseek_v2.py +1727 -0
  1113. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1114. vllm/model_executor/models/dots1.py +566 -0
  1115. vllm/model_executor/models/dots_ocr.py +830 -0
  1116. vllm/model_executor/models/ernie45.py +53 -0
  1117. vllm/model_executor/models/ernie45_moe.py +755 -0
  1118. vllm/model_executor/models/ernie45_vl.py +1702 -0
  1119. vllm/model_executor/models/ernie45_vl_moe.py +801 -0
  1120. vllm/model_executor/models/ernie_mtp.py +278 -0
  1121. vllm/model_executor/models/exaone.py +524 -0
  1122. vllm/model_executor/models/exaone4.py +518 -0
  1123. vllm/model_executor/models/exaone_moe.py +579 -0
  1124. vllm/model_executor/models/exaone_moe_mtp.py +255 -0
  1125. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1126. vllm/model_executor/models/falcon.py +543 -0
  1127. vllm/model_executor/models/falcon_h1.py +675 -0
  1128. vllm/model_executor/models/flex_olmo.py +155 -0
  1129. vllm/model_executor/models/fuyu.py +371 -0
  1130. vllm/model_executor/models/gemma.py +425 -0
  1131. vllm/model_executor/models/gemma2.py +435 -0
  1132. vllm/model_executor/models/gemma3.py +520 -0
  1133. vllm/model_executor/models/gemma3_mm.py +664 -0
  1134. vllm/model_executor/models/gemma3n.py +1166 -0
  1135. vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
  1136. vllm/model_executor/models/gemma3n_mm.py +820 -0
  1137. vllm/model_executor/models/glm.py +24 -0
  1138. vllm/model_executor/models/glm4.py +295 -0
  1139. vllm/model_executor/models/glm4_1v.py +1823 -0
  1140. vllm/model_executor/models/glm4_moe.py +725 -0
  1141. vllm/model_executor/models/glm4_moe_mtp.py +365 -0
  1142. vllm/model_executor/models/glm4v.py +783 -0
  1143. vllm/model_executor/models/glmasr.py +1154 -0
  1144. vllm/model_executor/models/glmasr_utils.py +188 -0
  1145. vllm/model_executor/models/gpt2.py +385 -0
  1146. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1147. vllm/model_executor/models/gpt_j.py +346 -0
  1148. vllm/model_executor/models/gpt_neox.py +340 -0
  1149. vllm/model_executor/models/gpt_oss.py +745 -0
  1150. vllm/model_executor/models/granite.py +475 -0
  1151. vllm/model_executor/models/granite_speech.py +919 -0
  1152. vllm/model_executor/models/granitemoe.py +561 -0
  1153. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1154. vllm/model_executor/models/granitemoeshared.py +328 -0
  1155. vllm/model_executor/models/gritlm.py +242 -0
  1156. vllm/model_executor/models/grok1.py +803 -0
  1157. vllm/model_executor/models/h2ovl.py +554 -0
  1158. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1159. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1160. vllm/model_executor/models/hyperclovax_vision.py +1163 -0
  1161. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1162. vllm/model_executor/models/idefics3.py +734 -0
  1163. vllm/model_executor/models/interfaces.py +1180 -0
  1164. vllm/model_executor/models/interfaces_base.py +252 -0
  1165. vllm/model_executor/models/intern_vit.py +454 -0
  1166. vllm/model_executor/models/internlm2.py +451 -0
  1167. vllm/model_executor/models/internlm2_ve.py +139 -0
  1168. vllm/model_executor/models/interns1.py +828 -0
  1169. vllm/model_executor/models/interns1_vit.py +433 -0
  1170. vllm/model_executor/models/internvl.py +1436 -0
  1171. vllm/model_executor/models/iquest_loopcoder.py +595 -0
  1172. vllm/model_executor/models/isaac.py +1503 -0
  1173. vllm/model_executor/models/jais.py +397 -0
  1174. vllm/model_executor/models/jais2.py +508 -0
  1175. vllm/model_executor/models/jamba.py +599 -0
  1176. vllm/model_executor/models/jina_vl.py +145 -0
  1177. vllm/model_executor/models/kanana_v.py +756 -0
  1178. vllm/model_executor/models/keye.py +1709 -0
  1179. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1180. vllm/model_executor/models/kimi_linear.py +659 -0
  1181. vllm/model_executor/models/kimi_vl.py +577 -0
  1182. vllm/model_executor/models/lfm2.py +515 -0
  1183. vllm/model_executor/models/lfm2_moe.py +746 -0
  1184. vllm/model_executor/models/lfm2_vl.py +732 -0
  1185. vllm/model_executor/models/lightonocr.py +197 -0
  1186. vllm/model_executor/models/llama.py +724 -0
  1187. vllm/model_executor/models/llama4.py +860 -0
  1188. vllm/model_executor/models/llama4_eagle.py +225 -0
  1189. vllm/model_executor/models/llama_eagle.py +213 -0
  1190. vllm/model_executor/models/llama_eagle3.py +375 -0
  1191. vllm/model_executor/models/llava.py +879 -0
  1192. vllm/model_executor/models/llava_next.py +583 -0
  1193. vllm/model_executor/models/llava_next_video.py +467 -0
  1194. vllm/model_executor/models/llava_onevision.py +922 -0
  1195. vllm/model_executor/models/longcat_flash.py +767 -0
  1196. vllm/model_executor/models/longcat_flash_mtp.py +348 -0
  1197. vllm/model_executor/models/mamba.py +276 -0
  1198. vllm/model_executor/models/mamba2.py +288 -0
  1199. vllm/model_executor/models/medusa.py +179 -0
  1200. vllm/model_executor/models/midashenglm.py +826 -0
  1201. vllm/model_executor/models/mimo.py +188 -0
  1202. vllm/model_executor/models/mimo_mtp.py +294 -0
  1203. vllm/model_executor/models/mimo_v2_flash.py +718 -0
  1204. vllm/model_executor/models/minicpm.py +660 -0
  1205. vllm/model_executor/models/minicpm3.py +233 -0
  1206. vllm/model_executor/models/minicpm_eagle.py +386 -0
  1207. vllm/model_executor/models/minicpmo.py +768 -0
  1208. vllm/model_executor/models/minicpmv.py +1742 -0
  1209. vllm/model_executor/models/minimax_m2.py +552 -0
  1210. vllm/model_executor/models/minimax_text_01.py +1008 -0
  1211. vllm/model_executor/models/minimax_vl_01.py +395 -0
  1212. vllm/model_executor/models/mistral3.py +638 -0
  1213. vllm/model_executor/models/mistral_large_3.py +63 -0
  1214. vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
  1215. vllm/model_executor/models/mixtral.py +599 -0
  1216. vllm/model_executor/models/mllama4.py +1170 -0
  1217. vllm/model_executor/models/mlp_speculator.py +235 -0
  1218. vllm/model_executor/models/modernbert.py +458 -0
  1219. vllm/model_executor/models/module_mapping.py +74 -0
  1220. vllm/model_executor/models/molmo.py +1592 -0
  1221. vllm/model_executor/models/moonvit.py +601 -0
  1222. vllm/model_executor/models/mpt.py +335 -0
  1223. vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
  1224. vllm/model_executor/models/nemotron.py +499 -0
  1225. vllm/model_executor/models/nemotron_h.py +902 -0
  1226. vllm/model_executor/models/nemotron_nas.py +474 -0
  1227. vllm/model_executor/models/nemotron_parse.py +958 -0
  1228. vllm/model_executor/models/nemotron_vl.py +651 -0
  1229. vllm/model_executor/models/nvlm_d.py +216 -0
  1230. vllm/model_executor/models/olmo.py +412 -0
  1231. vllm/model_executor/models/olmo2.py +454 -0
  1232. vllm/model_executor/models/olmoe.py +498 -0
  1233. vllm/model_executor/models/opencua.py +262 -0
  1234. vllm/model_executor/models/openpangu.py +1378 -0
  1235. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1236. vllm/model_executor/models/opt.py +426 -0
  1237. vllm/model_executor/models/orion.py +365 -0
  1238. vllm/model_executor/models/ouro.py +507 -0
  1239. vllm/model_executor/models/ovis.py +557 -0
  1240. vllm/model_executor/models/ovis2_5.py +661 -0
  1241. vllm/model_executor/models/paddleocr_vl.py +1261 -0
  1242. vllm/model_executor/models/paligemma.py +429 -0
  1243. vllm/model_executor/models/persimmon.py +373 -0
  1244. vllm/model_executor/models/phi.py +363 -0
  1245. vllm/model_executor/models/phi3.py +18 -0
  1246. vllm/model_executor/models/phi3v.py +729 -0
  1247. vllm/model_executor/models/phi4mm.py +1250 -0
  1248. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1249. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1250. vllm/model_executor/models/phimoe.py +671 -0
  1251. vllm/model_executor/models/pixtral.py +1437 -0
  1252. vllm/model_executor/models/plamo2.py +993 -0
  1253. vllm/model_executor/models/plamo3.py +437 -0
  1254. vllm/model_executor/models/qwen.py +377 -0
  1255. vllm/model_executor/models/qwen2.py +600 -0
  1256. vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
  1257. vllm/model_executor/models/qwen2_5_vl.py +1598 -0
  1258. vllm/model_executor/models/qwen2_audio.py +478 -0
  1259. vllm/model_executor/models/qwen2_moe.py +604 -0
  1260. vllm/model_executor/models/qwen2_rm.py +120 -0
  1261. vllm/model_executor/models/qwen2_vl.py +1588 -0
  1262. vllm/model_executor/models/qwen3.py +331 -0
  1263. vllm/model_executor/models/qwen3_moe.py +752 -0
  1264. vllm/model_executor/models/qwen3_next.py +1410 -0
  1265. vllm/model_executor/models/qwen3_next_mtp.py +293 -0
  1266. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
  1267. vllm/model_executor/models/qwen3_vl.py +2120 -0
  1268. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1269. vllm/model_executor/models/qwen_vl.py +821 -0
  1270. vllm/model_executor/models/radio.py +573 -0
  1271. vllm/model_executor/models/registry.py +1218 -0
  1272. vllm/model_executor/models/roberta.py +239 -0
  1273. vllm/model_executor/models/rvl.py +107 -0
  1274. vllm/model_executor/models/seed_oss.py +492 -0
  1275. vllm/model_executor/models/siglip.py +1259 -0
  1276. vllm/model_executor/models/siglip2.py +495 -0
  1277. vllm/model_executor/models/siglip2navit.py +660 -0
  1278. vllm/model_executor/models/skyworkr1v.py +951 -0
  1279. vllm/model_executor/models/smolvlm.py +38 -0
  1280. vllm/model_executor/models/solar.py +484 -0
  1281. vllm/model_executor/models/stablelm.py +354 -0
  1282. vllm/model_executor/models/starcoder2.py +365 -0
  1283. vllm/model_executor/models/step3_text.py +554 -0
  1284. vllm/model_executor/models/step3_vl.py +1147 -0
  1285. vllm/model_executor/models/swin.py +500 -0
  1286. vllm/model_executor/models/tarsier.py +624 -0
  1287. vllm/model_executor/models/telechat2.py +153 -0
  1288. vllm/model_executor/models/teleflm.py +78 -0
  1289. vllm/model_executor/models/terratorch.py +318 -0
  1290. vllm/model_executor/models/transformers/__init__.py +127 -0
  1291. vllm/model_executor/models/transformers/base.py +523 -0
  1292. vllm/model_executor/models/transformers/causal.py +65 -0
  1293. vllm/model_executor/models/transformers/legacy.py +90 -0
  1294. vllm/model_executor/models/transformers/moe.py +329 -0
  1295. vllm/model_executor/models/transformers/multimodal.py +441 -0
  1296. vllm/model_executor/models/transformers/pooling.py +102 -0
  1297. vllm/model_executor/models/transformers/utils.py +253 -0
  1298. vllm/model_executor/models/ultravox.py +786 -0
  1299. vllm/model_executor/models/utils.py +832 -0
  1300. vllm/model_executor/models/vision.py +546 -0
  1301. vllm/model_executor/models/voxtral.py +867 -0
  1302. vllm/model_executor/models/voxtral_streaming.py +304 -0
  1303. vllm/model_executor/models/whisper.py +993 -0
  1304. vllm/model_executor/models/whisper_utils.py +299 -0
  1305. vllm/model_executor/models/zamba2.py +986 -0
  1306. vllm/model_executor/parameter.py +642 -0
  1307. vllm/model_executor/utils.py +113 -0
  1308. vllm/model_executor/warmup/__init__.py +0 -0
  1309. vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
  1310. vllm/model_executor/warmup/kernel_warmup.py +97 -0
  1311. vllm/model_inspection.py +136 -0
  1312. vllm/multimodal/__init__.py +38 -0
  1313. vllm/multimodal/audio.py +287 -0
  1314. vllm/multimodal/base.py +60 -0
  1315. vllm/multimodal/cache.py +829 -0
  1316. vllm/multimodal/evs.py +294 -0
  1317. vllm/multimodal/hasher.py +123 -0
  1318. vllm/multimodal/image.py +155 -0
  1319. vllm/multimodal/inputs.py +1027 -0
  1320. vllm/multimodal/parse.py +674 -0
  1321. vllm/multimodal/processing.py +2469 -0
  1322. vllm/multimodal/profiling.py +351 -0
  1323. vllm/multimodal/registry.py +375 -0
  1324. vllm/multimodal/utils.py +550 -0
  1325. vllm/multimodal/video.py +512 -0
  1326. vllm/outputs.py +347 -0
  1327. vllm/platforms/__init__.py +277 -0
  1328. vllm/platforms/cpu.py +423 -0
  1329. vllm/platforms/cuda.py +618 -0
  1330. vllm/platforms/interface.py +707 -0
  1331. vllm/platforms/rocm.py +586 -0
  1332. vllm/platforms/tpu.py +20 -0
  1333. vllm/platforms/xpu.py +262 -0
  1334. vllm/plugins/__init__.py +81 -0
  1335. vllm/plugins/io_processors/__init__.py +68 -0
  1336. vllm/plugins/io_processors/interface.py +77 -0
  1337. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1338. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1339. vllm/pooling_params.py +229 -0
  1340. vllm/profiler/__init__.py +0 -0
  1341. vllm/profiler/layerwise_profile.py +392 -0
  1342. vllm/profiler/utils.py +151 -0
  1343. vllm/profiler/wrapper.py +241 -0
  1344. vllm/py.typed +2 -0
  1345. vllm/ray/__init__.py +0 -0
  1346. vllm/ray/lazy_utils.py +30 -0
  1347. vllm/ray/ray_env.py +79 -0
  1348. vllm/reasoning/__init__.py +96 -0
  1349. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1350. vllm/reasoning/basic_parsers.py +175 -0
  1351. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1352. vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
  1353. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1354. vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
  1355. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1356. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1357. vllm/reasoning/holo2_reasoning_parser.py +89 -0
  1358. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1359. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1360. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1361. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1362. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1363. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1364. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1365. vllm/reasoning/step3_reasoning_parser.py +113 -0
  1366. vllm/sampling_params.py +629 -0
  1367. vllm/scalar_type.py +355 -0
  1368. vllm/scripts.py +17 -0
  1369. vllm/sequence.py +64 -0
  1370. vllm/tasks.py +13 -0
  1371. vllm/third_party/__init__.py +0 -0
  1372. vllm/third_party/pynvml.py +6140 -0
  1373. vllm/tokenizers/__init__.py +18 -0
  1374. vllm/tokenizers/deepseek_v32.py +187 -0
  1375. vllm/tokenizers/deepseek_v32_encoding.py +463 -0
  1376. vllm/tokenizers/detokenizer_utils.py +198 -0
  1377. vllm/tokenizers/grok2.py +443 -0
  1378. vllm/tokenizers/hf.py +119 -0
  1379. vllm/tokenizers/mistral.py +543 -0
  1380. vllm/tokenizers/protocol.py +123 -0
  1381. vllm/tokenizers/registry.py +238 -0
  1382. vllm/tool_parsers/__init__.py +158 -0
  1383. vllm/tool_parsers/abstract_tool_parser.py +274 -0
  1384. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1385. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1386. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1387. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1388. vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
  1389. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1390. vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
  1391. vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
  1392. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1393. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1394. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1395. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1396. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1397. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1398. vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
  1399. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1400. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1401. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1402. vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
  1403. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1404. vllm/tool_parsers/mistral_tool_parser.py +612 -0
  1405. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1406. vllm/tool_parsers/openai_tool_parser.py +111 -0
  1407. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1408. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1409. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1410. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1411. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1412. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1413. vllm/tool_parsers/utils.py +229 -0
  1414. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1415. vllm/tracing.py +135 -0
  1416. vllm/transformers_utils/__init__.py +26 -0
  1417. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1418. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1419. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1420. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1421. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1422. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1423. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1424. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1425. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1426. vllm/transformers_utils/config.py +1169 -0
  1427. vllm/transformers_utils/config_parser_base.py +20 -0
  1428. vllm/transformers_utils/configs/__init__.py +106 -0
  1429. vllm/transformers_utils/configs/afmoe.py +87 -0
  1430. vllm/transformers_utils/configs/arctic.py +216 -0
  1431. vllm/transformers_utils/configs/bagel.py +53 -0
  1432. vllm/transformers_utils/configs/chatglm.py +75 -0
  1433. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1434. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1435. vllm/transformers_utils/configs/eagle.py +90 -0
  1436. vllm/transformers_utils/configs/falcon.py +89 -0
  1437. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1438. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1439. vllm/transformers_utils/configs/isaac.py +100 -0
  1440. vllm/transformers_utils/configs/jais.py +243 -0
  1441. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1442. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1443. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1444. vllm/transformers_utils/configs/medusa.py +65 -0
  1445. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1446. vllm/transformers_utils/configs/mistral.py +263 -0
  1447. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1448. vllm/transformers_utils/configs/moonvit.py +33 -0
  1449. vllm/transformers_utils/configs/nemotron.py +220 -0
  1450. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1451. vllm/transformers_utils/configs/olmo3.py +83 -0
  1452. vllm/transformers_utils/configs/ovis.py +182 -0
  1453. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1454. vllm/transformers_utils/configs/radio.py +98 -0
  1455. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1456. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1457. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1458. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1459. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1460. vllm/transformers_utils/configs/ultravox.py +120 -0
  1461. vllm/transformers_utils/dynamic_module.py +70 -0
  1462. vllm/transformers_utils/gguf_utils.py +280 -0
  1463. vllm/transformers_utils/model_arch_config_convertor.py +402 -0
  1464. vllm/transformers_utils/processor.py +424 -0
  1465. vllm/transformers_utils/processors/__init__.py +25 -0
  1466. vllm/transformers_utils/processors/bagel.py +78 -0
  1467. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1468. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1469. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1470. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1471. vllm/transformers_utils/processors/ovis.py +453 -0
  1472. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1473. vllm/transformers_utils/repo_utils.py +287 -0
  1474. vllm/transformers_utils/runai_utils.py +102 -0
  1475. vllm/transformers_utils/s3_utils.py +95 -0
  1476. vllm/transformers_utils/tokenizer.py +19 -0
  1477. vllm/transformers_utils/utils.py +112 -0
  1478. vllm/triton_utils/__init__.py +20 -0
  1479. vllm/triton_utils/importing.py +103 -0
  1480. vllm/usage/__init__.py +0 -0
  1481. vllm/usage/usage_lib.py +278 -0
  1482. vllm/utils/__init__.py +36 -0
  1483. vllm/utils/argparse_utils.py +491 -0
  1484. vllm/utils/async_utils.py +310 -0
  1485. vllm/utils/cache.py +214 -0
  1486. vllm/utils/collection_utils.py +112 -0
  1487. vllm/utils/counter.py +45 -0
  1488. vllm/utils/deep_gemm.py +424 -0
  1489. vllm/utils/flashinfer.py +602 -0
  1490. vllm/utils/func_utils.py +236 -0
  1491. vllm/utils/gc_utils.py +151 -0
  1492. vllm/utils/hashing.py +117 -0
  1493. vllm/utils/import_utils.py +438 -0
  1494. vllm/utils/jsontree.py +158 -0
  1495. vllm/utils/math_utils.py +32 -0
  1496. vllm/utils/mem_constants.py +13 -0
  1497. vllm/utils/mem_utils.py +285 -0
  1498. vllm/utils/nccl.py +64 -0
  1499. vllm/utils/network_utils.py +331 -0
  1500. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1501. vllm/utils/platform_utils.py +59 -0
  1502. vllm/utils/profiling.py +56 -0
  1503. vllm/utils/registry.py +51 -0
  1504. vllm/utils/serial_utils.py +214 -0
  1505. vllm/utils/system_utils.py +296 -0
  1506. vllm/utils/tensor_schema.py +255 -0
  1507. vllm/utils/torch_utils.py +781 -0
  1508. vllm/v1/__init__.py +0 -0
  1509. vllm/v1/attention/__init__.py +0 -0
  1510. vllm/v1/attention/backend.py +736 -0
  1511. vllm/v1/attention/backends/__init__.py +0 -0
  1512. vllm/v1/attention/backends/cpu_attn.py +501 -0
  1513. vllm/v1/attention/backends/fa_utils.py +126 -0
  1514. vllm/v1/attention/backends/flash_attn.py +1092 -0
  1515. vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
  1516. vllm/v1/attention/backends/flashinfer.py +1713 -0
  1517. vllm/v1/attention/backends/flex_attention.py +1024 -0
  1518. vllm/v1/attention/backends/gdn_attn.py +382 -0
  1519. vllm/v1/attention/backends/linear_attn.py +77 -0
  1520. vllm/v1/attention/backends/mamba1_attn.py +28 -0
  1521. vllm/v1/attention/backends/mamba2_attn.py +256 -0
  1522. vllm/v1/attention/backends/mamba_attn.py +313 -0
  1523. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1524. vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
  1525. vllm/v1/attention/backends/mla/common.py +2156 -0
  1526. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1527. vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
  1528. vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
  1529. vllm/v1/attention/backends/mla/flashmla.py +321 -0
  1530. vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
  1531. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1532. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
  1533. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
  1534. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1535. vllm/v1/attention/backends/registry.py +258 -0
  1536. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1537. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1538. vllm/v1/attention/backends/rocm_attn.py +405 -0
  1539. vllm/v1/attention/backends/short_conv_attn.py +26 -0
  1540. vllm/v1/attention/backends/tree_attn.py +430 -0
  1541. vllm/v1/attention/backends/triton_attn.py +578 -0
  1542. vllm/v1/attention/backends/utils.py +978 -0
  1543. vllm/v1/attention/ops/__init__.py +0 -0
  1544. vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
  1545. vllm/v1/attention/ops/common.py +469 -0
  1546. vllm/v1/attention/ops/flashmla.py +254 -0
  1547. vllm/v1/attention/ops/merge_attn_states.py +47 -0
  1548. vllm/v1/attention/ops/paged_attn.py +51 -0
  1549. vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
  1550. vllm/v1/attention/ops/prefix_prefill.py +862 -0
  1551. vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  1552. vllm/v1/attention/ops/triton_decode_attention.py +709 -0
  1553. vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
  1554. vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
  1555. vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
  1556. vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
  1557. vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
  1558. vllm/v1/attention/selector.py +145 -0
  1559. vllm/v1/core/__init__.py +0 -0
  1560. vllm/v1/core/block_pool.py +489 -0
  1561. vllm/v1/core/encoder_cache_manager.py +402 -0
  1562. vllm/v1/core/kv_cache_coordinator.py +560 -0
  1563. vllm/v1/core/kv_cache_manager.py +485 -0
  1564. vllm/v1/core/kv_cache_metrics.py +96 -0
  1565. vllm/v1/core/kv_cache_utils.py +1642 -0
  1566. vllm/v1/core/sched/__init__.py +0 -0
  1567. vllm/v1/core/sched/async_scheduler.py +66 -0
  1568. vllm/v1/core/sched/interface.py +205 -0
  1569. vllm/v1/core/sched/output.py +261 -0
  1570. vllm/v1/core/sched/request_queue.py +208 -0
  1571. vllm/v1/core/sched/scheduler.py +1936 -0
  1572. vllm/v1/core/sched/utils.py +64 -0
  1573. vllm/v1/core/single_type_kv_cache_manager.py +926 -0
  1574. vllm/v1/cudagraph_dispatcher.py +183 -0
  1575. vllm/v1/engine/__init__.py +224 -0
  1576. vllm/v1/engine/async_llm.py +874 -0
  1577. vllm/v1/engine/coordinator.py +396 -0
  1578. vllm/v1/engine/core.py +1614 -0
  1579. vllm/v1/engine/core_client.py +1422 -0
  1580. vllm/v1/engine/detokenizer.py +351 -0
  1581. vllm/v1/engine/exceptions.py +18 -0
  1582. vllm/v1/engine/input_processor.py +713 -0
  1583. vllm/v1/engine/llm_engine.py +415 -0
  1584. vllm/v1/engine/logprobs.py +245 -0
  1585. vllm/v1/engine/output_processor.py +715 -0
  1586. vllm/v1/engine/parallel_sampling.py +150 -0
  1587. vllm/v1/engine/utils.py +1086 -0
  1588. vllm/v1/executor/__init__.py +6 -0
  1589. vllm/v1/executor/abstract.py +352 -0
  1590. vllm/v1/executor/multiproc_executor.py +888 -0
  1591. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1592. vllm/v1/executor/ray_executor.py +623 -0
  1593. vllm/v1/executor/ray_utils.py +468 -0
  1594. vllm/v1/executor/uniproc_executor.py +186 -0
  1595. vllm/v1/kv_cache_interface.py +485 -0
  1596. vllm/v1/kv_offload/__init__.py +0 -0
  1597. vllm/v1/kv_offload/abstract.py +161 -0
  1598. vllm/v1/kv_offload/arc_manager.py +237 -0
  1599. vllm/v1/kv_offload/backend.py +97 -0
  1600. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1601. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1602. vllm/v1/kv_offload/cpu.py +109 -0
  1603. vllm/v1/kv_offload/factory.py +58 -0
  1604. vllm/v1/kv_offload/lru_manager.py +139 -0
  1605. vllm/v1/kv_offload/mediums.py +39 -0
  1606. vllm/v1/kv_offload/spec.py +70 -0
  1607. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1608. vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
  1609. vllm/v1/kv_offload/worker/worker.py +163 -0
  1610. vllm/v1/metrics/__init__.py +0 -0
  1611. vllm/v1/metrics/loggers.py +1320 -0
  1612. vllm/v1/metrics/perf.py +1244 -0
  1613. vllm/v1/metrics/prometheus.py +82 -0
  1614. vllm/v1/metrics/ray_wrappers.py +194 -0
  1615. vllm/v1/metrics/reader.py +257 -0
  1616. vllm/v1/metrics/stats.py +440 -0
  1617. vllm/v1/outputs.py +242 -0
  1618. vllm/v1/pool/__init__.py +0 -0
  1619. vllm/v1/pool/metadata.py +124 -0
  1620. vllm/v1/request.py +281 -0
  1621. vllm/v1/sample/__init__.py +0 -0
  1622. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1623. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1624. vllm/v1/sample/logits_processor/interface.py +106 -0
  1625. vllm/v1/sample/logits_processor/state.py +165 -0
  1626. vllm/v1/sample/metadata.py +44 -0
  1627. vllm/v1/sample/ops/__init__.py +0 -0
  1628. vllm/v1/sample/ops/bad_words.py +57 -0
  1629. vllm/v1/sample/ops/logprobs.py +25 -0
  1630. vllm/v1/sample/ops/penalties.py +57 -0
  1631. vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
  1632. vllm/v1/sample/rejection_sampler.py +822 -0
  1633. vllm/v1/sample/sampler.py +319 -0
  1634. vllm/v1/sample/tpu/__init__.py +0 -0
  1635. vllm/v1/sample/tpu/metadata.py +120 -0
  1636. vllm/v1/sample/tpu/sampler.py +215 -0
  1637. vllm/v1/serial_utils.py +514 -0
  1638. vllm/v1/spec_decode/__init__.py +0 -0
  1639. vllm/v1/spec_decode/eagle.py +1346 -0
  1640. vllm/v1/spec_decode/medusa.py +73 -0
  1641. vllm/v1/spec_decode/metadata.py +66 -0
  1642. vllm/v1/spec_decode/metrics.py +225 -0
  1643. vllm/v1/spec_decode/ngram_proposer.py +281 -0
  1644. vllm/v1/spec_decode/suffix_decoding.py +95 -0
  1645. vllm/v1/spec_decode/utils.py +109 -0
  1646. vllm/v1/structured_output/__init__.py +337 -0
  1647. vllm/v1/structured_output/backend_guidance.py +291 -0
  1648. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1649. vllm/v1/structured_output/backend_outlines.py +324 -0
  1650. vllm/v1/structured_output/backend_types.py +136 -0
  1651. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1652. vllm/v1/structured_output/request.py +91 -0
  1653. vllm/v1/structured_output/utils.py +457 -0
  1654. vllm/v1/utils.py +466 -0
  1655. vllm/v1/worker/__init__.py +0 -0
  1656. vllm/v1/worker/block_table.py +343 -0
  1657. vllm/v1/worker/cp_utils.py +42 -0
  1658. vllm/v1/worker/cpu_model_runner.py +122 -0
  1659. vllm/v1/worker/cpu_worker.py +192 -0
  1660. vllm/v1/worker/dp_utils.py +240 -0
  1661. vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
  1662. vllm/v1/worker/gpu/README.md +4 -0
  1663. vllm/v1/worker/gpu/__init__.py +0 -0
  1664. vllm/v1/worker/gpu/async_utils.py +98 -0
  1665. vllm/v1/worker/gpu/attn_utils.py +183 -0
  1666. vllm/v1/worker/gpu/block_table.py +222 -0
  1667. vllm/v1/worker/gpu/buffer_utils.py +224 -0
  1668. vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
  1669. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1670. vllm/v1/worker/gpu/input_batch.py +526 -0
  1671. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1672. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1673. vllm/v1/worker/gpu/mm/__init__.py +0 -0
  1674. vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
  1675. vllm/v1/worker/gpu/model_runner.py +1005 -0
  1676. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1677. vllm/v1/worker/gpu/sample/gumbel.py +106 -0
  1678. vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
  1679. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1680. vllm/v1/worker/gpu/sample/metadata.py +79 -0
  1681. vllm/v1/worker/gpu/sample/min_p.py +58 -0
  1682. vllm/v1/worker/gpu/sample/output.py +14 -0
  1683. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1684. vllm/v1/worker/gpu/sample/sampler.py +88 -0
  1685. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1686. vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
  1687. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1688. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1689. vllm/v1/worker/gpu/states.py +282 -0
  1690. vllm/v1/worker/gpu/structured_outputs.py +100 -0
  1691. vllm/v1/worker/gpu_input_batch.py +1030 -0
  1692. vllm/v1/worker/gpu_model_runner.py +5761 -0
  1693. vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
  1694. vllm/v1/worker/gpu_worker.py +968 -0
  1695. vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
  1696. vllm/v1/worker/lora_model_runner_mixin.py +225 -0
  1697. vllm/v1/worker/tpu_input_batch.py +574 -0
  1698. vllm/v1/worker/tpu_worker.py +18 -0
  1699. vllm/v1/worker/ubatch_utils.py +112 -0
  1700. vllm/v1/worker/ubatching.py +242 -0
  1701. vllm/v1/worker/utils.py +400 -0
  1702. vllm/v1/worker/worker_base.py +372 -0
  1703. vllm/v1/worker/workspace.py +253 -0
  1704. vllm/v1/worker/xpu_model_runner.py +48 -0
  1705. vllm/v1/worker/xpu_worker.py +174 -0
  1706. vllm/version.py +39 -0
  1707. vllm/vllm_flash_attn/.gitkeep +0 -0
  1708. vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
  1709. vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
  1710. vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
  1711. vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
  1712. vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2137 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import argparse
5
+ import copy
6
+ import dataclasses
7
+ import functools
8
+ import json
9
+ import sys
10
+ from collections.abc import Callable
11
+ from dataclasses import MISSING, dataclass, fields, is_dataclass
12
+ from itertools import permutations
13
+ from types import UnionType
14
+ from typing import (
15
+ TYPE_CHECKING,
16
+ Annotated,
17
+ Any,
18
+ Literal,
19
+ TypeAlias,
20
+ TypeVar,
21
+ Union,
22
+ cast,
23
+ get_args,
24
+ get_origin,
25
+ )
26
+
27
+ import huggingface_hub
28
+ import regex as re
29
+ import torch
30
+ from pydantic import TypeAdapter, ValidationError
31
+ from pydantic.fields import FieldInfo
32
+ from typing_extensions import TypeIs
33
+
34
+ import vllm.envs as envs
35
+ from vllm.config import (
36
+ AttentionConfig,
37
+ CacheConfig,
38
+ CompilationConfig,
39
+ ConfigType,
40
+ DeviceConfig,
41
+ ECTransferConfig,
42
+ EPLBConfig,
43
+ KVEventsConfig,
44
+ KVTransferConfig,
45
+ LoadConfig,
46
+ LoRAConfig,
47
+ ModelConfig,
48
+ MultiModalConfig,
49
+ ObservabilityConfig,
50
+ ParallelConfig,
51
+ PoolerConfig,
52
+ ProfilerConfig,
53
+ SchedulerConfig,
54
+ SpeculativeConfig,
55
+ StructuredOutputsConfig,
56
+ VllmConfig,
57
+ get_attr_docs,
58
+ )
59
+ from vllm.config.cache import (
60
+ BlockSize,
61
+ CacheDType,
62
+ KVOffloadingBackend,
63
+ MambaDType,
64
+ PrefixCachingHashAlgo,
65
+ )
66
+ from vllm.config.device import Device
67
+ from vllm.config.model import (
68
+ ConvertOption,
69
+ HfOverrides,
70
+ LogprobsMode,
71
+ ModelDType,
72
+ RunnerOption,
73
+ TokenizerMode,
74
+ )
75
+ from vllm.config.multimodal import MMCacheType, MMEncoderTPMode
76
+ from vllm.config.observability import DetailedTraceModules
77
+ from vllm.config.parallel import DistributedExecutorBackend, ExpertPlacementStrategy
78
+ from vllm.config.scheduler import SchedulerPolicy
79
+ from vllm.config.utils import get_field
80
+ from vllm.config.vllm import OptimizationLevel
81
+ from vllm.logger import init_logger, suppress_logging
82
+ from vllm.platforms import CpuArchEnum, current_platform
83
+ from vllm.plugins import load_general_plugins
84
+ from vllm.ray.lazy_utils import is_in_ray_actor, is_ray_initialized
85
+ from vllm.transformers_utils.config import (
86
+ is_interleaved,
87
+ maybe_override_with_speculators,
88
+ )
89
+ from vllm.transformers_utils.gguf_utils import is_gguf
90
+ from vllm.transformers_utils.repo_utils import get_model_path
91
+ from vllm.transformers_utils.utils import is_cloud_storage
92
+ from vllm.utils.argparse_utils import FlexibleArgumentParser
93
+ from vllm.utils.mem_constants import GiB_bytes
94
+ from vllm.utils.network_utils import get_ip
95
+ from vllm.utils.torch_utils import resolve_kv_cache_dtype_string
96
+ from vllm.v1.attention.backends.registry import AttentionBackendEnum
97
+ from vllm.v1.sample.logits_processor import LogitsProcessor
98
+
99
+ if TYPE_CHECKING:
100
+ from vllm.model_executor.layers.quantization import QuantizationMethods
101
+ from vllm.model_executor.model_loader import LoadFormats
102
+ from vllm.usage.usage_lib import UsageContext
103
+ from vllm.v1.executor import Executor
104
+ else:
105
+ Executor = Any
106
+ QuantizationMethods = Any
107
+ LoadFormats = Any
108
+ UsageContext = Any
109
+
110
+
111
+ logger = init_logger(__name__)
112
+
113
+ # object is used to allow for special typing forms
114
+ T = TypeVar("T")
115
+ TypeHint: TypeAlias = type[Any] | object
116
+ TypeHintT: TypeAlias = type[T] | object
117
+
118
+
119
+ def parse_type(return_type: Callable[[str], T]) -> Callable[[str], T]:
120
+ def _parse_type(val: str) -> T:
121
+ try:
122
+ return return_type(val)
123
+ except ValueError as e:
124
+ raise argparse.ArgumentTypeError(
125
+ f"Value {val} cannot be converted to {return_type}."
126
+ ) from e
127
+
128
+ return _parse_type
129
+
130
+
131
+ def optional_type(return_type: Callable[[str], T]) -> Callable[[str], T | None]:
132
+ def _optional_type(val: str) -> T | None:
133
+ if val == "" or val == "None":
134
+ return None
135
+ return parse_type(return_type)(val)
136
+
137
+ return _optional_type
138
+
139
+
140
+ def union_dict_and_str(val: str) -> str | dict[str, str] | None:
141
+ if not re.match(r"(?s)^\s*{.*}\s*$", val):
142
+ return str(val)
143
+ return optional_type(json.loads)(val)
144
+
145
+
146
+ def is_type(type_hint: TypeHint, type: TypeHintT) -> TypeIs[TypeHintT]:
147
+ """Check if the type hint is a specific type."""
148
+ return type_hint is type or get_origin(type_hint) is type
149
+
150
+
151
+ def contains_type(type_hints: set[TypeHint], type: TypeHintT) -> bool:
152
+ """Check if the type hints contain a specific type."""
153
+ return any(is_type(type_hint, type) for type_hint in type_hints)
154
+
155
+
156
+ def get_type(type_hints: set[TypeHint], type: TypeHintT) -> TypeHintT:
157
+ """Get the specific type from the type hints."""
158
+ return next((th for th in type_hints if is_type(th, type)), None)
159
+
160
+
161
+ def literal_to_kwargs(type_hints: set[TypeHint]) -> dict[str, Any]:
162
+ """Get the `type` and `choices` from a `Literal` type hint in `type_hints`.
163
+
164
+ If `type_hints` also contains `str`, we use `metavar` instead of `choices`.
165
+ """
166
+ type_hint = get_type(type_hints, Literal)
167
+ options = get_args(type_hint)
168
+ option_type = type(options[0])
169
+ if not all(isinstance(option, option_type) for option in options):
170
+ raise ValueError(
171
+ "All options must be of the same type. "
172
+ f"Got {options} with types {[type(c) for c in options]}"
173
+ )
174
+ kwarg = "metavar" if contains_type(type_hints, str) else "choices"
175
+ return {"type": option_type, kwarg: sorted(options)}
176
+
177
+
178
+ def collection_to_kwargs(type_hints: set[TypeHint], type: TypeHint) -> dict[str, Any]:
179
+ type_hint = get_type(type_hints, type)
180
+ types = get_args(type_hint)
181
+ elem_type = types[0]
182
+
183
+ # Handle Ellipsis
184
+ assert all(t is elem_type for t in types if t is not Ellipsis), (
185
+ f"All non-Ellipsis elements must be of the same type. Got {types}."
186
+ )
187
+
188
+ # Handle Union types
189
+ if get_origin(elem_type) in {Union, UnionType}:
190
+ # Union for Union[X, Y] and UnionType for X | Y
191
+ assert str in get_args(elem_type), (
192
+ "If element can have multiple types, one must be 'str' "
193
+ f"(i.e. 'list[int | str]'). Got {elem_type}."
194
+ )
195
+ elem_type = str
196
+
197
+ return {
198
+ "type": elem_type,
199
+ "nargs": "+" if type is not tuple or Ellipsis in types else len(types),
200
+ }
201
+
202
+
203
+ def is_not_builtin(type_hint: TypeHint) -> bool:
204
+ """Check if the class is not a built-in type."""
205
+ return type_hint.__module__ != "builtins"
206
+
207
+
208
+ def get_type_hints(type_hint: TypeHint) -> set[TypeHint]:
209
+ """Extract type hints from Annotated or Union type hints."""
210
+ type_hints: set[TypeHint] = set()
211
+ origin = get_origin(type_hint)
212
+ args = get_args(type_hint)
213
+
214
+ if origin is Annotated:
215
+ type_hints.update(get_type_hints(args[0]))
216
+ elif origin in {Union, UnionType}:
217
+ # Union for Union[X, Y] and UnionType for X | Y
218
+ for arg in args:
219
+ type_hints.update(get_type_hints(arg))
220
+ else:
221
+ type_hints.add(type_hint)
222
+
223
+ return type_hints
224
+
225
+
226
+ def is_online_quantization(quantization: Any) -> bool:
227
+ return quantization in ["inc"]
228
+
229
+
230
+ NEEDS_HELP = (
231
+ any("--help" in arg for arg in sys.argv) # vllm SUBCOMMAND --help
232
+ or (argv0 := sys.argv[0]).endswith("mkdocs") # mkdocs SUBCOMMAND
233
+ or argv0.endswith("mkdocs/__main__.py") # python -m mkdocs SUBCOMMAND
234
+ )
235
+
236
+
237
+ @functools.lru_cache(maxsize=30)
238
+ def _compute_kwargs(cls: ConfigType) -> dict[str, dict[str, Any]]:
239
+ # Save time only getting attr docs if we're generating help text
240
+ cls_docs = get_attr_docs(cls) if NEEDS_HELP else {}
241
+ kwargs = {}
242
+ for field in fields(cls):
243
+ # Get the set of possible types for the field
244
+ type_hints: set[TypeHint] = get_type_hints(field.type)
245
+
246
+ # If the field is a dataclass, we can use the model_validate_json
247
+ generator = (th for th in type_hints if is_dataclass(th))
248
+ dataclass_cls = next(generator, None)
249
+
250
+ # Get the default value of the field
251
+ if field.default is not MISSING:
252
+ default = field.default
253
+ # Handle pydantic.Field defaults
254
+ if isinstance(default, FieldInfo):
255
+ if default.default_factory is None:
256
+ default = default.default
257
+ else:
258
+ # VllmConfig's Fields have default_factory set to config classes.
259
+ # These could emit logs on init, which would be confusing.
260
+ with suppress_logging():
261
+ default = default.default_factory()
262
+ elif field.default_factory is not MISSING:
263
+ default = field.default_factory()
264
+
265
+ # Get the help text for the field
266
+ name = field.name
267
+ help = cls_docs.get(name, "").strip()
268
+ # Escape % for argparse
269
+ help = help.replace("%", "%%")
270
+
271
+ # Initialise the kwargs dictionary for the field
272
+ kwargs[name] = {"default": default, "help": help}
273
+
274
+ # Set other kwargs based on the type hints
275
+ json_tip = (
276
+ "Should either be a valid JSON string or JSON keys passed individually."
277
+ )
278
+ if dataclass_cls is not None:
279
+
280
+ def parse_dataclass(val: str, cls=dataclass_cls) -> Any:
281
+ try:
282
+ return TypeAdapter(cls).validate_json(val)
283
+ except ValidationError as e:
284
+ raise argparse.ArgumentTypeError(repr(e)) from e
285
+
286
+ kwargs[name]["type"] = parse_dataclass
287
+ kwargs[name]["help"] += f"\n\n{json_tip}"
288
+ elif contains_type(type_hints, bool):
289
+ # Creates --no-<name> and --<name> flags
290
+ kwargs[name]["action"] = argparse.BooleanOptionalAction
291
+ elif contains_type(type_hints, Literal):
292
+ kwargs[name].update(literal_to_kwargs(type_hints))
293
+ elif contains_type(type_hints, tuple):
294
+ kwargs[name].update(collection_to_kwargs(type_hints, tuple))
295
+ elif contains_type(type_hints, list):
296
+ kwargs[name].update(collection_to_kwargs(type_hints, list))
297
+ elif contains_type(type_hints, set):
298
+ kwargs[name].update(collection_to_kwargs(type_hints, set))
299
+ elif contains_type(type_hints, int):
300
+ if name == "max_model_len":
301
+ kwargs[name]["type"] = human_readable_int_or_auto
302
+ kwargs[name]["help"] += f"\n\n{human_readable_int_or_auto.__doc__}"
303
+ elif name in ("max_num_batched_tokens", "kv_cache_memory_bytes"):
304
+ kwargs[name]["type"] = human_readable_int
305
+ kwargs[name]["help"] += f"\n\n{human_readable_int.__doc__}"
306
+ else:
307
+ kwargs[name]["type"] = int
308
+ elif contains_type(type_hints, float):
309
+ kwargs[name]["type"] = float
310
+ elif contains_type(type_hints, dict) and (
311
+ contains_type(type_hints, str)
312
+ or any(is_not_builtin(th) for th in type_hints)
313
+ ):
314
+ kwargs[name]["type"] = union_dict_and_str
315
+ elif contains_type(type_hints, dict):
316
+ kwargs[name]["type"] = parse_type(json.loads)
317
+ kwargs[name]["help"] += f"\n\n{json_tip}"
318
+ elif contains_type(type_hints, str) or any(
319
+ is_not_builtin(th) for th in type_hints
320
+ ):
321
+ kwargs[name]["type"] = str
322
+ else:
323
+ raise ValueError(f"Unsupported type {type_hints} for argument {name}.")
324
+
325
+ # If the type hint was a sequence of literals, use the helper function
326
+ # to update the type and choices
327
+ if get_origin(kwargs[name].get("type")) is Literal:
328
+ kwargs[name].update(literal_to_kwargs({kwargs[name]["type"]}))
329
+
330
+ # If None is in type_hints, make the argument optional.
331
+ # But not if it's a bool, argparse will handle this better.
332
+ if type(None) in type_hints and not contains_type(type_hints, bool):
333
+ kwargs[name]["type"] = optional_type(kwargs[name]["type"])
334
+ if kwargs[name].get("choices"):
335
+ kwargs[name]["choices"].append("None")
336
+ return kwargs
337
+
338
+
339
+ def get_kwargs(cls: ConfigType) -> dict[str, dict[str, Any]]:
340
+ """Return argparse kwargs for the given Config dataclass.
341
+
342
+ If `--help` or `mkdocs` are not present in the command line command, the
343
+ attribute documentation will not be included in the help output.
344
+
345
+ The heavy computation is cached via functools.lru_cache, and a deep copy
346
+ is returned so callers can mutate the dictionary without affecting the
347
+ cached version.
348
+ """
349
+ return copy.deepcopy(_compute_kwargs(cls))
350
+
351
+
352
+ @dataclass
353
+ class EngineArgs:
354
+ """Arguments for vLLM engine."""
355
+
356
+ model: str = ModelConfig.model
357
+ enable_return_routed_experts: bool = ModelConfig.enable_return_routed_experts
358
+ model_weights: str = ModelConfig.model_weights
359
+ served_model_name: str | list[str] | None = ModelConfig.served_model_name
360
+ tokenizer: str | None = ModelConfig.tokenizer
361
+ hf_config_path: str | None = ModelConfig.hf_config_path
362
+ runner: RunnerOption = ModelConfig.runner
363
+ convert: ConvertOption = ModelConfig.convert
364
+ skip_tokenizer_init: bool = ModelConfig.skip_tokenizer_init
365
+ enable_prompt_embeds: bool = ModelConfig.enable_prompt_embeds
366
+ tokenizer_mode: TokenizerMode | str = ModelConfig.tokenizer_mode
367
+ trust_remote_code: bool = ModelConfig.trust_remote_code
368
+ allowed_local_media_path: str = ModelConfig.allowed_local_media_path
369
+ allowed_media_domains: list[str] | None = ModelConfig.allowed_media_domains
370
+ download_dir: str | None = LoadConfig.download_dir
371
+ safetensors_load_strategy: str = LoadConfig.safetensors_load_strategy
372
+ load_format: str | LoadFormats = LoadConfig.load_format
373
+ config_format: str = ModelConfig.config_format
374
+ dtype: ModelDType = ModelConfig.dtype
375
+ kv_cache_dtype: CacheDType = CacheConfig.cache_dtype
376
+ seed: int = ModelConfig.seed
377
+ max_model_len: int | None = ModelConfig.max_model_len
378
+ cudagraph_capture_sizes: list[int] | None = (
379
+ CompilationConfig.cudagraph_capture_sizes
380
+ )
381
+ max_cudagraph_capture_size: int | None = get_field(
382
+ CompilationConfig, "max_cudagraph_capture_size"
383
+ )
384
+ # Note: Specifying a custom executor backend by passing a class
385
+ # is intended for expert use only. The API may change without
386
+ # notice.
387
+ distributed_executor_backend: (
388
+ str | DistributedExecutorBackend | type[Executor] | None
389
+ ) = ParallelConfig.distributed_executor_backend
390
+ # number of P/D disaggregation (or other disaggregation) workers
391
+ pipeline_parallel_size: int = ParallelConfig.pipeline_parallel_size
392
+ master_addr: str = ParallelConfig.master_addr
393
+ master_port: int = ParallelConfig.master_port
394
+ nnodes: int = ParallelConfig.nnodes
395
+ node_rank: int = ParallelConfig.node_rank
396
+ tensor_parallel_size: int = ParallelConfig.tensor_parallel_size
397
+ prefill_context_parallel_size: int = ParallelConfig.prefill_context_parallel_size
398
+ decode_context_parallel_size: int = ParallelConfig.decode_context_parallel_size
399
+ dcp_kv_cache_interleave_size: int = ParallelConfig.dcp_kv_cache_interleave_size
400
+ cp_kv_cache_interleave_size: int = ParallelConfig.cp_kv_cache_interleave_size
401
+ data_parallel_size: int = ParallelConfig.data_parallel_size
402
+ data_parallel_rank: int | None = None
403
+ data_parallel_start_rank: int | None = None
404
+ data_parallel_size_local: int | None = None
405
+ data_parallel_address: str | None = None
406
+ data_parallel_rpc_port: int | None = None
407
+ data_parallel_hybrid_lb: bool = False
408
+ data_parallel_external_lb: bool = False
409
+ data_parallel_backend: str = ParallelConfig.data_parallel_backend
410
+ enable_expert_parallel: bool = ParallelConfig.enable_expert_parallel
411
+ all2all_backend: str = ParallelConfig.all2all_backend
412
+ enable_dbo: bool = ParallelConfig.enable_dbo
413
+ ubatch_size: int = ParallelConfig.ubatch_size
414
+ dbo_decode_token_threshold: int = ParallelConfig.dbo_decode_token_threshold
415
+ dbo_prefill_token_threshold: int = ParallelConfig.dbo_prefill_token_threshold
416
+ disable_nccl_for_dp_synchronization: bool | None = (
417
+ ParallelConfig.disable_nccl_for_dp_synchronization
418
+ )
419
+ eplb_config: EPLBConfig = get_field(ParallelConfig, "eplb_config")
420
+ enable_eplb: bool = ParallelConfig.enable_eplb
421
+ expert_placement_strategy: ExpertPlacementStrategy = (
422
+ ParallelConfig.expert_placement_strategy
423
+ )
424
+ _api_process_count: int = ParallelConfig._api_process_count
425
+ _api_process_rank: int = ParallelConfig._api_process_rank
426
+ max_parallel_loading_workers: int | None = (
427
+ ParallelConfig.max_parallel_loading_workers
428
+ )
429
+ block_size: BlockSize | None = CacheConfig.block_size
430
+ enable_prefix_caching: bool | None = None
431
+ prefix_caching_hash_algo: PrefixCachingHashAlgo = (
432
+ CacheConfig.prefix_caching_hash_algo
433
+ )
434
+ disable_sliding_window: bool = ModelConfig.disable_sliding_window
435
+ disable_cascade_attn: bool = ModelConfig.disable_cascade_attn
436
+ swap_space: float = CacheConfig.swap_space
437
+ cpu_offload_gb: float = CacheConfig.cpu_offload_gb
438
+ gpu_memory_utilization: float = CacheConfig.gpu_memory_utilization
439
+ kv_cache_memory_bytes: int | None = CacheConfig.kv_cache_memory_bytes
440
+ max_num_batched_tokens: int | None = None
441
+ max_num_partial_prefills: int = SchedulerConfig.max_num_partial_prefills
442
+ max_long_partial_prefills: int = SchedulerConfig.max_long_partial_prefills
443
+ long_prefill_token_threshold: int = SchedulerConfig.long_prefill_token_threshold
444
+ max_num_seqs: int | None = None
445
+ max_logprobs: int = ModelConfig.max_logprobs
446
+ logprobs_mode: LogprobsMode = ModelConfig.logprobs_mode
447
+ disable_log_stats: bool = False
448
+ aggregate_engine_logging: bool = False
449
+ revision: str | None = ModelConfig.revision
450
+ code_revision: str | None = ModelConfig.code_revision
451
+ hf_token: bool | str | None = ModelConfig.hf_token
452
+ hf_overrides: HfOverrides = get_field(ModelConfig, "hf_overrides")
453
+ tokenizer_revision: str | None = ModelConfig.tokenizer_revision
454
+ quantization: QuantizationMethods | None = ModelConfig.quantization
455
+ allow_deprecated_quantization: bool = ModelConfig.allow_deprecated_quantization
456
+ enforce_eager: bool = ModelConfig.enforce_eager
457
+ disable_custom_all_reduce: bool = ParallelConfig.disable_custom_all_reduce
458
+ limit_mm_per_prompt: dict[str, int | dict[str, int]] = get_field(
459
+ MultiModalConfig, "limit_per_prompt"
460
+ )
461
+ enable_mm_embeds: bool = MultiModalConfig.enable_mm_embeds
462
+ interleave_mm_strings: bool = MultiModalConfig.interleave_mm_strings
463
+ media_io_kwargs: dict[str, dict[str, Any]] = get_field(
464
+ MultiModalConfig, "media_io_kwargs"
465
+ )
466
+ mm_processor_kwargs: dict[str, Any] | None = MultiModalConfig.mm_processor_kwargs
467
+ mm_processor_cache_gb: float = MultiModalConfig.mm_processor_cache_gb
468
+ mm_processor_cache_type: MMCacheType | None = (
469
+ MultiModalConfig.mm_processor_cache_type
470
+ )
471
+ mm_shm_cache_max_object_size_mb: int = (
472
+ MultiModalConfig.mm_shm_cache_max_object_size_mb
473
+ )
474
+ mm_encoder_tp_mode: MMEncoderTPMode = MultiModalConfig.mm_encoder_tp_mode
475
+ mm_encoder_attn_backend: AttentionBackendEnum | str | None = (
476
+ MultiModalConfig.mm_encoder_attn_backend
477
+ )
478
+ io_processor_plugin: str | None = None
479
+ skip_mm_profiling: bool = MultiModalConfig.skip_mm_profiling
480
+ video_pruning_rate: float = MultiModalConfig.video_pruning_rate
481
+ # LoRA fields
482
+ enable_lora: bool = False
483
+ max_loras: int = LoRAConfig.max_loras
484
+ max_lora_rank: int = LoRAConfig.max_lora_rank
485
+ default_mm_loras: dict[str, str] | None = LoRAConfig.default_mm_loras
486
+ fully_sharded_loras: bool = LoRAConfig.fully_sharded_loras
487
+ max_cpu_loras: int | None = LoRAConfig.max_cpu_loras
488
+ lora_dtype: str | torch.dtype | None = LoRAConfig.lora_dtype
489
+ enable_tower_connector_lora: bool = LoRAConfig.enable_tower_connector_lora
490
+
491
+ ray_workers_use_nsight: bool = ParallelConfig.ray_workers_use_nsight
492
+ num_gpu_blocks_override: int | None = CacheConfig.num_gpu_blocks_override
493
+ model_loader_extra_config: dict = get_field(LoadConfig, "model_loader_extra_config")
494
+ ignore_patterns: str | list[str] = get_field(LoadConfig, "ignore_patterns")
495
+
496
+ enable_chunked_prefill: bool | None = None
497
+ disable_chunked_mm_input: bool = SchedulerConfig.disable_chunked_mm_input
498
+
499
+ disable_hybrid_kv_cache_manager: bool | None = (
500
+ SchedulerConfig.disable_hybrid_kv_cache_manager
501
+ )
502
+
503
+ structured_outputs_config: StructuredOutputsConfig = get_field(
504
+ VllmConfig, "structured_outputs_config"
505
+ )
506
+ reasoning_parser: str = StructuredOutputsConfig.reasoning_parser
507
+ reasoning_parser_plugin: str | None = None
508
+
509
+ logits_processor_pattern: str | None = ModelConfig.logits_processor_pattern
510
+
511
+ speculative_config: dict[str, Any] | None = None
512
+
513
+ show_hidden_metrics_for_version: str | None = (
514
+ ObservabilityConfig.show_hidden_metrics_for_version
515
+ )
516
+ otlp_traces_endpoint: str | None = ObservabilityConfig.otlp_traces_endpoint
517
+ collect_detailed_traces: list[DetailedTraceModules] | None = (
518
+ ObservabilityConfig.collect_detailed_traces
519
+ )
520
+ kv_cache_metrics: bool = ObservabilityConfig.kv_cache_metrics
521
+ kv_cache_metrics_sample: float = get_field(
522
+ ObservabilityConfig, "kv_cache_metrics_sample"
523
+ )
524
+ cudagraph_metrics: bool = ObservabilityConfig.cudagraph_metrics
525
+ enable_layerwise_nvtx_tracing: bool = (
526
+ ObservabilityConfig.enable_layerwise_nvtx_tracing
527
+ )
528
+ enable_mfu_metrics: bool = ObservabilityConfig.enable_mfu_metrics
529
+ enable_logging_iteration_details: bool = (
530
+ ObservabilityConfig.enable_logging_iteration_details
531
+ )
532
+ enable_mm_processor_stats: bool = ObservabilityConfig.enable_mm_processor_stats
533
+ scheduling_policy: SchedulerPolicy = SchedulerConfig.policy
534
+ scheduler_cls: str | type[object] | None = SchedulerConfig.scheduler_cls
535
+
536
+ pooler_config: PoolerConfig | None = ModelConfig.pooler_config
537
+ compilation_config: CompilationConfig = get_field(VllmConfig, "compilation_config")
538
+ attention_config: AttentionConfig = get_field(VllmConfig, "attention_config")
539
+ worker_cls: str = ParallelConfig.worker_cls
540
+ worker_extension_cls: str = ParallelConfig.worker_extension_cls
541
+
542
+ profiler_config: ProfilerConfig = get_field(VllmConfig, "profiler_config")
543
+
544
+ kv_transfer_config: KVTransferConfig | None = None
545
+ kv_events_config: KVEventsConfig | None = None
546
+
547
+ ec_transfer_config: ECTransferConfig | None = None
548
+
549
+ generation_config: str = ModelConfig.generation_config
550
+ enable_sleep_mode: bool = ModelConfig.enable_sleep_mode
551
+ override_generation_config: dict[str, Any] = get_field(
552
+ ModelConfig, "override_generation_config"
553
+ )
554
+ model_impl: str = ModelConfig.model_impl
555
+ override_attention_dtype: str = ModelConfig.override_attention_dtype
556
+ attention_backend: AttentionBackendEnum | None = AttentionConfig.backend
557
+
558
+ calculate_kv_scales: bool = CacheConfig.calculate_kv_scales
559
+ mamba_cache_dtype: MambaDType = CacheConfig.mamba_cache_dtype
560
+ mamba_ssm_cache_dtype: MambaDType = CacheConfig.mamba_ssm_cache_dtype
561
+ mamba_block_size: int | None = get_field(CacheConfig, "mamba_block_size")
562
+
563
+ additional_config: dict[str, Any] = get_field(VllmConfig, "additional_config")
564
+
565
+ use_tqdm_on_load: bool = LoadConfig.use_tqdm_on_load
566
+ pt_load_map_location: str = LoadConfig.pt_load_map_location
567
+
568
+ logits_processors: list[str | type[LogitsProcessor]] | None = (
569
+ ModelConfig.logits_processors
570
+ )
571
+ """Custom logitproc types"""
572
+
573
+ async_scheduling: bool | None = SchedulerConfig.async_scheduling
574
+
575
+ stream_interval: int = SchedulerConfig.stream_interval
576
+
577
+ kv_sharing_fast_prefill: bool = CacheConfig.kv_sharing_fast_prefill
578
+ optimization_level: OptimizationLevel = VllmConfig.optimization_level
579
+
580
+ kv_offloading_size: float | None = CacheConfig.kv_offloading_size
581
+ kv_offloading_backend: KVOffloadingBackend = CacheConfig.kv_offloading_backend
582
+ tokens_only: bool = False
583
+
584
+ def __post_init__(self):
585
+ # support `EngineArgs(compilation_config={...})`
586
+ # without having to manually construct a
587
+ # CompilationConfig object
588
+ if isinstance(self.compilation_config, dict):
589
+ self.compilation_config = CompilationConfig(**self.compilation_config)
590
+ if isinstance(self.attention_config, dict):
591
+ self.attention_config = AttentionConfig(**self.attention_config)
592
+ if isinstance(self.eplb_config, dict):
593
+ self.eplb_config = EPLBConfig(**self.eplb_config)
594
+ # Setup plugins
595
+ from vllm.plugins import load_general_plugins
596
+
597
+ load_general_plugins()
598
+ # when use hf offline,replace model and tokenizer id to local model path
599
+ if huggingface_hub.constants.HF_HUB_OFFLINE:
600
+ model_id = self.model
601
+ self.model = get_model_path(self.model, self.revision)
602
+ if model_id is not self.model:
603
+ logger.info(
604
+ "HF_HUB_OFFLINE is True, replace model_id [%s] to model_path [%s]",
605
+ model_id,
606
+ self.model,
607
+ )
608
+ if self.tokenizer is not None:
609
+ tokenizer_id = self.tokenizer
610
+ self.tokenizer = get_model_path(self.tokenizer, self.tokenizer_revision)
611
+ if tokenizer_id is not self.tokenizer:
612
+ logger.info(
613
+ "HF_HUB_OFFLINE is True, replace tokenizer_id [%s] "
614
+ "to tokenizer_path [%s]",
615
+ tokenizer_id,
616
+ self.tokenizer,
617
+ )
618
+
619
+ @staticmethod
620
+ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
621
+ """Shared CLI arguments for vLLM engine."""
622
+
623
+ # Model arguments
624
+ model_kwargs = get_kwargs(ModelConfig)
625
+ model_group = parser.add_argument_group(
626
+ title="ModelConfig",
627
+ description=ModelConfig.__doc__,
628
+ )
629
+ if not ("serve" in sys.argv[1:] and "--help" in sys.argv[1:]):
630
+ model_group.add_argument("--model", **model_kwargs["model"])
631
+ model_group.add_argument("--runner", **model_kwargs["runner"])
632
+ model_group.add_argument("--convert", **model_kwargs["convert"])
633
+ model_group.add_argument("--tokenizer", **model_kwargs["tokenizer"])
634
+ model_group.add_argument("--tokenizer-mode", **model_kwargs["tokenizer_mode"])
635
+ model_group.add_argument(
636
+ "--trust-remote-code", **model_kwargs["trust_remote_code"]
637
+ )
638
+ model_group.add_argument("--dtype", **model_kwargs["dtype"])
639
+ model_group.add_argument("--seed", **model_kwargs["seed"])
640
+ model_group.add_argument("--hf-config-path", **model_kwargs["hf_config_path"])
641
+ model_group.add_argument(
642
+ "--allowed-local-media-path", **model_kwargs["allowed_local_media_path"]
643
+ )
644
+ model_group.add_argument(
645
+ "--allowed-media-domains", **model_kwargs["allowed_media_domains"]
646
+ )
647
+ model_group.add_argument("--revision", **model_kwargs["revision"])
648
+ model_group.add_argument("--code-revision", **model_kwargs["code_revision"])
649
+ model_group.add_argument(
650
+ "--tokenizer-revision", **model_kwargs["tokenizer_revision"]
651
+ )
652
+ model_group.add_argument("--max-model-len", **model_kwargs["max_model_len"])
653
+ model_group.add_argument("--quantization", "-q", **model_kwargs["quantization"])
654
+ model_group.add_argument(
655
+ "--allow-deprecated-quantization",
656
+ **model_kwargs["allow_deprecated_quantization"],
657
+ )
658
+ model_group.add_argument("--enforce-eager", **model_kwargs["enforce_eager"])
659
+ model_group.add_argument(
660
+ "--enable-return-routed-experts",
661
+ **model_kwargs["enable_return_routed_experts"],
662
+ )
663
+ model_group.add_argument("--max-logprobs", **model_kwargs["max_logprobs"])
664
+ model_group.add_argument("--logprobs-mode", **model_kwargs["logprobs_mode"])
665
+ model_group.add_argument(
666
+ "--disable-sliding-window", **model_kwargs["disable_sliding_window"]
667
+ )
668
+ model_group.add_argument(
669
+ "--disable-cascade-attn", **model_kwargs["disable_cascade_attn"]
670
+ )
671
+ model_group.add_argument(
672
+ "--skip-tokenizer-init", **model_kwargs["skip_tokenizer_init"]
673
+ )
674
+ model_group.add_argument(
675
+ "--enable-prompt-embeds", **model_kwargs["enable_prompt_embeds"]
676
+ )
677
+ model_group.add_argument(
678
+ "--served-model-name", **model_kwargs["served_model_name"]
679
+ )
680
+ model_group.add_argument("--config-format", **model_kwargs["config_format"])
681
+ # This one is a special case because it can bool
682
+ # or str. TODO: Handle this in get_kwargs
683
+ model_group.add_argument(
684
+ "--hf-token",
685
+ type=str,
686
+ nargs="?",
687
+ const=True,
688
+ default=model_kwargs["hf_token"]["default"],
689
+ help=model_kwargs["hf_token"]["help"],
690
+ )
691
+ model_group.add_argument("--hf-overrides", **model_kwargs["hf_overrides"])
692
+ model_group.add_argument("--pooler-config", **model_kwargs["pooler_config"])
693
+ model_group.add_argument(
694
+ "--logits-processor-pattern", **model_kwargs["logits_processor_pattern"]
695
+ )
696
+ model_group.add_argument(
697
+ "--generation-config", **model_kwargs["generation_config"]
698
+ )
699
+ model_group.add_argument(
700
+ "--override-generation-config", **model_kwargs["override_generation_config"]
701
+ )
702
+ model_group.add_argument(
703
+ "--enable-sleep-mode", **model_kwargs["enable_sleep_mode"]
704
+ )
705
+ model_group.add_argument("--model-impl", **model_kwargs["model_impl"])
706
+ model_group.add_argument(
707
+ "--override-attention-dtype", **model_kwargs["override_attention_dtype"]
708
+ )
709
+ model_group.add_argument(
710
+ "--logits-processors", **model_kwargs["logits_processors"]
711
+ )
712
+ model_group.add_argument(
713
+ "--io-processor-plugin", **model_kwargs["io_processor_plugin"]
714
+ )
715
+
716
+ # Model loading arguments
717
+ load_kwargs = get_kwargs(LoadConfig)
718
+ load_group = parser.add_argument_group(
719
+ title="LoadConfig",
720
+ description=LoadConfig.__doc__,
721
+ )
722
+ load_group.add_argument("--load-format", **load_kwargs["load_format"])
723
+ load_group.add_argument("--download-dir", **load_kwargs["download_dir"])
724
+ load_group.add_argument(
725
+ "--safetensors-load-strategy", **load_kwargs["safetensors_load_strategy"]
726
+ )
727
+ load_group.add_argument(
728
+ "--model-loader-extra-config", **load_kwargs["model_loader_extra_config"]
729
+ )
730
+ load_group.add_argument("--ignore-patterns", **load_kwargs["ignore_patterns"])
731
+ load_group.add_argument("--use-tqdm-on-load", **load_kwargs["use_tqdm_on_load"])
732
+ load_group.add_argument(
733
+ "--pt-load-map-location", **load_kwargs["pt_load_map_location"]
734
+ )
735
+
736
+ # Attention arguments
737
+ attention_kwargs = get_kwargs(AttentionConfig)
738
+ attention_group = parser.add_argument_group(
739
+ title="AttentionConfig",
740
+ description=AttentionConfig.__doc__,
741
+ )
742
+ attention_group.add_argument(
743
+ "--attention-backend", **attention_kwargs["backend"]
744
+ )
745
+
746
+ # Structured outputs arguments
747
+ structured_outputs_kwargs = get_kwargs(StructuredOutputsConfig)
748
+ structured_outputs_group = parser.add_argument_group(
749
+ title="StructuredOutputsConfig",
750
+ description=StructuredOutputsConfig.__doc__,
751
+ )
752
+ structured_outputs_group.add_argument(
753
+ "--reasoning-parser",
754
+ # Choices need to be validated after parsing to include plugins
755
+ **structured_outputs_kwargs["reasoning_parser"],
756
+ )
757
+ structured_outputs_group.add_argument(
758
+ "--reasoning-parser-plugin",
759
+ **structured_outputs_kwargs["reasoning_parser_plugin"],
760
+ )
761
+
762
+ # Parallel arguments
763
+ parallel_kwargs = get_kwargs(ParallelConfig)
764
+ parallel_group = parser.add_argument_group(
765
+ title="ParallelConfig",
766
+ description=ParallelConfig.__doc__,
767
+ )
768
+ parallel_group.add_argument(
769
+ "--distributed-executor-backend",
770
+ **parallel_kwargs["distributed_executor_backend"],
771
+ )
772
+ parallel_group.add_argument(
773
+ "--pipeline-parallel-size",
774
+ "-pp",
775
+ **parallel_kwargs["pipeline_parallel_size"],
776
+ )
777
+ parallel_group.add_argument("--master-addr", **parallel_kwargs["master_addr"])
778
+ parallel_group.add_argument("--master-port", **parallel_kwargs["master_port"])
779
+ parallel_group.add_argument("--nnodes", "-n", **parallel_kwargs["nnodes"])
780
+ parallel_group.add_argument("--node-rank", "-r", **parallel_kwargs["node_rank"])
781
+ parallel_group.add_argument(
782
+ "--tensor-parallel-size", "-tp", **parallel_kwargs["tensor_parallel_size"]
783
+ )
784
+ parallel_group.add_argument(
785
+ "--decode-context-parallel-size",
786
+ "-dcp",
787
+ **parallel_kwargs["decode_context_parallel_size"],
788
+ )
789
+ parallel_group.add_argument(
790
+ "--dcp-kv-cache-interleave-size",
791
+ **parallel_kwargs["dcp_kv_cache_interleave_size"],
792
+ )
793
+ parallel_group.add_argument(
794
+ "--cp-kv-cache-interleave-size",
795
+ **parallel_kwargs["cp_kv_cache_interleave_size"],
796
+ )
797
+ parallel_group.add_argument(
798
+ "--prefill-context-parallel-size",
799
+ "-pcp",
800
+ **parallel_kwargs["prefill_context_parallel_size"],
801
+ )
802
+ parallel_group.add_argument(
803
+ "--data-parallel-size", "-dp", **parallel_kwargs["data_parallel_size"]
804
+ )
805
+ parallel_group.add_argument(
806
+ "--data-parallel-rank",
807
+ "-dpn",
808
+ type=int,
809
+ help="Data parallel rank of this instance. "
810
+ "When set, enables external load balancer mode.",
811
+ )
812
+ parallel_group.add_argument(
813
+ "--data-parallel-start-rank",
814
+ "-dpr",
815
+ type=int,
816
+ help="Starting data parallel rank for secondary nodes.",
817
+ )
818
+ parallel_group.add_argument(
819
+ "--data-parallel-size-local",
820
+ "-dpl",
821
+ type=int,
822
+ help="Number of data parallel replicas to run on this node.",
823
+ )
824
+ parallel_group.add_argument(
825
+ "--data-parallel-address",
826
+ "-dpa",
827
+ type=str,
828
+ help="Address of data parallel cluster head-node.",
829
+ )
830
+ parallel_group.add_argument(
831
+ "--data-parallel-rpc-port",
832
+ "-dpp",
833
+ type=int,
834
+ help="Port for data parallel RPC communication.",
835
+ )
836
+ parallel_group.add_argument(
837
+ "--data-parallel-backend",
838
+ "-dpb",
839
+ type=str,
840
+ default="mp",
841
+ help='Backend for data parallel, either "mp" or "ray".',
842
+ )
843
+ parallel_group.add_argument(
844
+ "--data-parallel-hybrid-lb",
845
+ "-dph",
846
+ **parallel_kwargs["data_parallel_hybrid_lb"],
847
+ )
848
+ parallel_group.add_argument(
849
+ "--data-parallel-external-lb",
850
+ "-dpe",
851
+ **parallel_kwargs["data_parallel_external_lb"],
852
+ )
853
+ parallel_group.add_argument(
854
+ "--enable-expert-parallel",
855
+ "-ep",
856
+ **parallel_kwargs["enable_expert_parallel"],
857
+ )
858
+ parallel_group.add_argument(
859
+ "--all2all-backend", **parallel_kwargs["all2all_backend"]
860
+ )
861
+ parallel_group.add_argument("--enable-dbo", **parallel_kwargs["enable_dbo"])
862
+ parallel_group.add_argument(
863
+ "--ubatch-size",
864
+ **parallel_kwargs["ubatch_size"],
865
+ )
866
+ parallel_group.add_argument(
867
+ "--dbo-decode-token-threshold",
868
+ **parallel_kwargs["dbo_decode_token_threshold"],
869
+ )
870
+ parallel_group.add_argument(
871
+ "--dbo-prefill-token-threshold",
872
+ **parallel_kwargs["dbo_prefill_token_threshold"],
873
+ )
874
+ parallel_group.add_argument(
875
+ "--disable-nccl-for-dp-synchronization",
876
+ **parallel_kwargs["disable_nccl_for_dp_synchronization"],
877
+ )
878
+ parallel_group.add_argument("--enable-eplb", **parallel_kwargs["enable_eplb"])
879
+ parallel_group.add_argument("--eplb-config", **parallel_kwargs["eplb_config"])
880
+ parallel_group.add_argument(
881
+ "--expert-placement-strategy",
882
+ **parallel_kwargs["expert_placement_strategy"],
883
+ )
884
+
885
+ parallel_group.add_argument(
886
+ "--max-parallel-loading-workers",
887
+ **parallel_kwargs["max_parallel_loading_workers"],
888
+ )
889
+ parallel_group.add_argument(
890
+ "--ray-workers-use-nsight", **parallel_kwargs["ray_workers_use_nsight"]
891
+ )
892
+ parallel_group.add_argument(
893
+ "--disable-custom-all-reduce",
894
+ **parallel_kwargs["disable_custom_all_reduce"],
895
+ )
896
+ parallel_group.add_argument("--worker-cls", **parallel_kwargs["worker_cls"])
897
+ parallel_group.add_argument(
898
+ "--worker-extension-cls", **parallel_kwargs["worker_extension_cls"]
899
+ )
900
+
901
+ # KV cache arguments
902
+ cache_kwargs = get_kwargs(CacheConfig)
903
+ cache_group = parser.add_argument_group(
904
+ title="CacheConfig",
905
+ description=CacheConfig.__doc__,
906
+ )
907
+ cache_group.add_argument("--block-size", **cache_kwargs["block_size"])
908
+ cache_group.add_argument(
909
+ "--gpu-memory-utilization", **cache_kwargs["gpu_memory_utilization"]
910
+ )
911
+ cache_group.add_argument(
912
+ "--kv-cache-memory-bytes", **cache_kwargs["kv_cache_memory_bytes"]
913
+ )
914
+ cache_group.add_argument("--swap-space", **cache_kwargs["swap_space"])
915
+ cache_group.add_argument("--kv-cache-dtype", **cache_kwargs["cache_dtype"])
916
+ cache_group.add_argument(
917
+ "--num-gpu-blocks-override", **cache_kwargs["num_gpu_blocks_override"]
918
+ )
919
+ cache_group.add_argument(
920
+ "--enable-prefix-caching",
921
+ **{
922
+ **cache_kwargs["enable_prefix_caching"],
923
+ "default": None,
924
+ },
925
+ )
926
+ cache_group.add_argument(
927
+ "--prefix-caching-hash-algo", **cache_kwargs["prefix_caching_hash_algo"]
928
+ )
929
+ cache_group.add_argument("--cpu-offload-gb", **cache_kwargs["cpu_offload_gb"])
930
+ cache_group.add_argument(
931
+ "--calculate-kv-scales", **cache_kwargs["calculate_kv_scales"]
932
+ )
933
+ cache_group.add_argument(
934
+ "--kv-sharing-fast-prefill", **cache_kwargs["kv_sharing_fast_prefill"]
935
+ )
936
+ cache_group.add_argument(
937
+ "--mamba-cache-dtype", **cache_kwargs["mamba_cache_dtype"]
938
+ )
939
+ cache_group.add_argument(
940
+ "--mamba-ssm-cache-dtype", **cache_kwargs["mamba_ssm_cache_dtype"]
941
+ )
942
+ cache_group.add_argument(
943
+ "--mamba-block-size", **cache_kwargs["mamba_block_size"]
944
+ )
945
+ cache_group.add_argument(
946
+ "--kv-offloading-size", **cache_kwargs["kv_offloading_size"]
947
+ )
948
+ cache_group.add_argument(
949
+ "--kv-offloading-backend", **cache_kwargs["kv_offloading_backend"]
950
+ )
951
+
952
+ # Multimodal related configs
953
+ multimodal_kwargs = get_kwargs(MultiModalConfig)
954
+ multimodal_group = parser.add_argument_group(
955
+ title="MultiModalConfig",
956
+ description=MultiModalConfig.__doc__,
957
+ )
958
+ multimodal_group.add_argument(
959
+ "--limit-mm-per-prompt", **multimodal_kwargs["limit_per_prompt"]
960
+ )
961
+ multimodal_group.add_argument(
962
+ "--enable-mm-embeds", **multimodal_kwargs["enable_mm_embeds"]
963
+ )
964
+ multimodal_group.add_argument(
965
+ "--media-io-kwargs", **multimodal_kwargs["media_io_kwargs"]
966
+ )
967
+ multimodal_group.add_argument(
968
+ "--mm-processor-kwargs", **multimodal_kwargs["mm_processor_kwargs"]
969
+ )
970
+ multimodal_group.add_argument(
971
+ "--mm-processor-cache-gb", **multimodal_kwargs["mm_processor_cache_gb"]
972
+ )
973
+ multimodal_group.add_argument(
974
+ "--mm-processor-cache-type", **multimodal_kwargs["mm_processor_cache_type"]
975
+ )
976
+ multimodal_group.add_argument(
977
+ "--mm-shm-cache-max-object-size-mb",
978
+ **multimodal_kwargs["mm_shm_cache_max_object_size_mb"],
979
+ )
980
+ multimodal_group.add_argument(
981
+ "--mm-encoder-tp-mode", **multimodal_kwargs["mm_encoder_tp_mode"]
982
+ )
983
+ multimodal_group.add_argument(
984
+ "--mm-encoder-attn-backend",
985
+ **multimodal_kwargs["mm_encoder_attn_backend"],
986
+ )
987
+ multimodal_group.add_argument(
988
+ "--interleave-mm-strings", **multimodal_kwargs["interleave_mm_strings"]
989
+ )
990
+ multimodal_group.add_argument(
991
+ "--skip-mm-profiling", **multimodal_kwargs["skip_mm_profiling"]
992
+ )
993
+
994
+ multimodal_group.add_argument(
995
+ "--video-pruning-rate", **multimodal_kwargs["video_pruning_rate"]
996
+ )
997
+
998
+ # LoRA related configs
999
+ lora_kwargs = get_kwargs(LoRAConfig)
1000
+ lora_group = parser.add_argument_group(
1001
+ title="LoRAConfig",
1002
+ description=LoRAConfig.__doc__,
1003
+ )
1004
+ lora_group.add_argument(
1005
+ "--enable-lora",
1006
+ action=argparse.BooleanOptionalAction,
1007
+ help="If True, enable handling of LoRA adapters.",
1008
+ )
1009
+ lora_group.add_argument("--max-loras", **lora_kwargs["max_loras"])
1010
+ lora_group.add_argument("--max-lora-rank", **lora_kwargs["max_lora_rank"])
1011
+ lora_group.add_argument(
1012
+ "--lora-dtype",
1013
+ **lora_kwargs["lora_dtype"],
1014
+ )
1015
+ lora_group.add_argument(
1016
+ "--enable-tower-connector-lora",
1017
+ **lora_kwargs["enable_tower_connector_lora"],
1018
+ )
1019
+ lora_group.add_argument("--max-cpu-loras", **lora_kwargs["max_cpu_loras"])
1020
+ lora_group.add_argument(
1021
+ "--fully-sharded-loras", **lora_kwargs["fully_sharded_loras"]
1022
+ )
1023
+ lora_group.add_argument("--default-mm-loras", **lora_kwargs["default_mm_loras"])
1024
+
1025
+ # Observability arguments
1026
+ observability_kwargs = get_kwargs(ObservabilityConfig)
1027
+ observability_group = parser.add_argument_group(
1028
+ title="ObservabilityConfig",
1029
+ description=ObservabilityConfig.__doc__,
1030
+ )
1031
+ observability_group.add_argument(
1032
+ "--show-hidden-metrics-for-version",
1033
+ **observability_kwargs["show_hidden_metrics_for_version"],
1034
+ )
1035
+ observability_group.add_argument(
1036
+ "--otlp-traces-endpoint", **observability_kwargs["otlp_traces_endpoint"]
1037
+ )
1038
+ # TODO: generalise this special case
1039
+ choices = observability_kwargs["collect_detailed_traces"]["choices"]
1040
+ metavar = f"{{{','.join(choices)}}}"
1041
+ observability_kwargs["collect_detailed_traces"]["metavar"] = metavar
1042
+ observability_kwargs["collect_detailed_traces"]["choices"] += [
1043
+ ",".join(p) for p in permutations(get_args(DetailedTraceModules), r=2)
1044
+ ]
1045
+ observability_group.add_argument(
1046
+ "--collect-detailed-traces",
1047
+ **observability_kwargs["collect_detailed_traces"],
1048
+ )
1049
+ observability_group.add_argument(
1050
+ "--kv-cache-metrics", **observability_kwargs["kv_cache_metrics"]
1051
+ )
1052
+ observability_group.add_argument(
1053
+ "--kv-cache-metrics-sample",
1054
+ **observability_kwargs["kv_cache_metrics_sample"],
1055
+ )
1056
+ observability_group.add_argument(
1057
+ "--cudagraph-metrics",
1058
+ **observability_kwargs["cudagraph_metrics"],
1059
+ )
1060
+ observability_group.add_argument(
1061
+ "--enable-layerwise-nvtx-tracing",
1062
+ **observability_kwargs["enable_layerwise_nvtx_tracing"],
1063
+ )
1064
+ observability_group.add_argument(
1065
+ "--enable-mfu-metrics",
1066
+ **observability_kwargs["enable_mfu_metrics"],
1067
+ )
1068
+ observability_group.add_argument(
1069
+ "--enable-logging-iteration-details",
1070
+ **observability_kwargs["enable_logging_iteration_details"],
1071
+ )
1072
+
1073
+ # Scheduler arguments
1074
+ scheduler_kwargs = get_kwargs(SchedulerConfig)
1075
+ scheduler_group = parser.add_argument_group(
1076
+ title="SchedulerConfig",
1077
+ description=SchedulerConfig.__doc__,
1078
+ )
1079
+ scheduler_group.add_argument(
1080
+ "--max-num-batched-tokens",
1081
+ **{
1082
+ **scheduler_kwargs["max_num_batched_tokens"],
1083
+ "default": None,
1084
+ },
1085
+ )
1086
+ scheduler_group.add_argument(
1087
+ "--max-num-seqs",
1088
+ **{
1089
+ **scheduler_kwargs["max_num_seqs"],
1090
+ "default": None,
1091
+ },
1092
+ )
1093
+ scheduler_group.add_argument(
1094
+ "--max-num-partial-prefills", **scheduler_kwargs["max_num_partial_prefills"]
1095
+ )
1096
+ scheduler_group.add_argument(
1097
+ "--max-long-partial-prefills",
1098
+ **scheduler_kwargs["max_long_partial_prefills"],
1099
+ )
1100
+ scheduler_group.add_argument(
1101
+ "--long-prefill-token-threshold",
1102
+ **scheduler_kwargs["long_prefill_token_threshold"],
1103
+ )
1104
+ # multi-step scheduling has been removed; corresponding arguments
1105
+ # are no longer supported.
1106
+ scheduler_group.add_argument(
1107
+ "--scheduling-policy", **scheduler_kwargs["policy"]
1108
+ )
1109
+ scheduler_group.add_argument(
1110
+ "--enable-chunked-prefill",
1111
+ **{
1112
+ **scheduler_kwargs["enable_chunked_prefill"],
1113
+ "default": None,
1114
+ },
1115
+ )
1116
+ scheduler_group.add_argument(
1117
+ "--disable-chunked-mm-input", **scheduler_kwargs["disable_chunked_mm_input"]
1118
+ )
1119
+ scheduler_group.add_argument(
1120
+ "--scheduler-cls", **scheduler_kwargs["scheduler_cls"]
1121
+ )
1122
+ scheduler_group.add_argument(
1123
+ "--disable-hybrid-kv-cache-manager",
1124
+ **scheduler_kwargs["disable_hybrid_kv_cache_manager"],
1125
+ )
1126
+ scheduler_group.add_argument(
1127
+ "--async-scheduling", **scheduler_kwargs["async_scheduling"]
1128
+ )
1129
+ scheduler_group.add_argument(
1130
+ "--stream-interval", **scheduler_kwargs["stream_interval"]
1131
+ )
1132
+
1133
+ # Compilation arguments
1134
+ compilation_kwargs = get_kwargs(CompilationConfig)
1135
+ compilation_group = parser.add_argument_group(
1136
+ title="CompilationConfig",
1137
+ description=CompilationConfig.__doc__,
1138
+ )
1139
+ compilation_group.add_argument(
1140
+ "--cudagraph-capture-sizes", **compilation_kwargs["cudagraph_capture_sizes"]
1141
+ )
1142
+ compilation_group.add_argument(
1143
+ "--max-cudagraph-capture-size",
1144
+ **compilation_kwargs["max_cudagraph_capture_size"],
1145
+ )
1146
+
1147
+ # vLLM arguments
1148
+ vllm_kwargs = get_kwargs(VllmConfig)
1149
+ vllm_group = parser.add_argument_group(
1150
+ title="VllmConfig",
1151
+ description=VllmConfig.__doc__,
1152
+ )
1153
+ # We construct SpeculativeConfig using fields from other configs in
1154
+ # create_engine_config. So we set the type to a JSON string here to
1155
+ # delay the Pydantic validation that comes with SpeculativeConfig.
1156
+ vllm_kwargs["speculative_config"]["type"] = optional_type(json.loads)
1157
+ vllm_group.add_argument(
1158
+ "--speculative-config", **vllm_kwargs["speculative_config"]
1159
+ )
1160
+ vllm_group.add_argument(
1161
+ "--kv-transfer-config", **vllm_kwargs["kv_transfer_config"]
1162
+ )
1163
+ vllm_group.add_argument("--kv-events-config", **vllm_kwargs["kv_events_config"])
1164
+ vllm_group.add_argument(
1165
+ "--ec-transfer-config", **vllm_kwargs["ec_transfer_config"]
1166
+ )
1167
+ vllm_group.add_argument(
1168
+ "--compilation-config", "-cc", **vllm_kwargs["compilation_config"]
1169
+ )
1170
+ vllm_group.add_argument(
1171
+ "--attention-config", "-ac", **vllm_kwargs["attention_config"]
1172
+ )
1173
+ vllm_group.add_argument(
1174
+ "--additional-config", **vllm_kwargs["additional_config"]
1175
+ )
1176
+ vllm_group.add_argument(
1177
+ "--structured-outputs-config", **vllm_kwargs["structured_outputs_config"]
1178
+ )
1179
+ vllm_group.add_argument("--profiler-config", **vllm_kwargs["profiler_config"])
1180
+ vllm_group.add_argument(
1181
+ "--optimization-level", **vllm_kwargs["optimization_level"]
1182
+ )
1183
+
1184
+ # Other arguments
1185
+ parser.add_argument(
1186
+ "--disable-log-stats",
1187
+ action="store_true",
1188
+ help="Disable logging statistics.",
1189
+ )
1190
+
1191
+ parser.add_argument(
1192
+ "--aggregate-engine-logging",
1193
+ action="store_true",
1194
+ help="Log aggregate rather than per-engine statistics "
1195
+ "when using data parallelism.",
1196
+ )
1197
+ return parser
1198
+
1199
+ @classmethod
1200
+ def from_cli_args(cls, args: argparse.Namespace):
1201
+ # Get the list of attributes of this dataclass.
1202
+ attrs = [attr.name for attr in dataclasses.fields(cls)]
1203
+ # Set the attributes from the parsed arguments.
1204
+ engine_args = cls(
1205
+ **{attr: getattr(args, attr) for attr in attrs if hasattr(args, attr)}
1206
+ )
1207
+ return engine_args
1208
+
1209
+ def create_model_config(self) -> ModelConfig:
1210
+ # gguf file needs a specific model loader
1211
+ if is_gguf(self.model):
1212
+ self.quantization = self.load_format = "gguf"
1213
+
1214
+ if not envs.VLLM_ENABLE_V1_MULTIPROCESSING:
1215
+ logger.warning(
1216
+ "The global random seed is set to %d. Since "
1217
+ "VLLM_ENABLE_V1_MULTIPROCESSING is set to False, this may "
1218
+ "affect the random state of the Python process that "
1219
+ "launched vLLM.",
1220
+ self.seed,
1221
+ )
1222
+
1223
+ return ModelConfig(
1224
+ model=self.model,
1225
+ model_weights=self.model_weights,
1226
+ hf_config_path=self.hf_config_path,
1227
+ runner=self.runner,
1228
+ convert=self.convert,
1229
+ tokenizer=self.tokenizer,
1230
+ tokenizer_mode=self.tokenizer_mode,
1231
+ trust_remote_code=self.trust_remote_code,
1232
+ allowed_local_media_path=self.allowed_local_media_path,
1233
+ allowed_media_domains=self.allowed_media_domains,
1234
+ dtype=self.dtype,
1235
+ seed=self.seed,
1236
+ revision=self.revision,
1237
+ code_revision=self.code_revision,
1238
+ hf_token=self.hf_token,
1239
+ hf_overrides=self.hf_overrides,
1240
+ tokenizer_revision=self.tokenizer_revision,
1241
+ max_model_len=self.max_model_len,
1242
+ quantization=self.quantization,
1243
+ allow_deprecated_quantization=self.allow_deprecated_quantization,
1244
+ enforce_eager=self.enforce_eager,
1245
+ enable_return_routed_experts=self.enable_return_routed_experts,
1246
+ max_logprobs=self.max_logprobs,
1247
+ logprobs_mode=self.logprobs_mode,
1248
+ disable_sliding_window=self.disable_sliding_window,
1249
+ disable_cascade_attn=self.disable_cascade_attn,
1250
+ skip_tokenizer_init=self.skip_tokenizer_init,
1251
+ enable_prompt_embeds=self.enable_prompt_embeds,
1252
+ served_model_name=self.served_model_name,
1253
+ limit_mm_per_prompt=self.limit_mm_per_prompt,
1254
+ enable_mm_embeds=self.enable_mm_embeds,
1255
+ interleave_mm_strings=self.interleave_mm_strings,
1256
+ media_io_kwargs=self.media_io_kwargs,
1257
+ skip_mm_profiling=self.skip_mm_profiling,
1258
+ config_format=self.config_format,
1259
+ mm_processor_kwargs=self.mm_processor_kwargs,
1260
+ mm_processor_cache_gb=self.mm_processor_cache_gb,
1261
+ mm_processor_cache_type=self.mm_processor_cache_type,
1262
+ mm_shm_cache_max_object_size_mb=self.mm_shm_cache_max_object_size_mb,
1263
+ mm_encoder_tp_mode=self.mm_encoder_tp_mode,
1264
+ mm_encoder_attn_backend=self.mm_encoder_attn_backend,
1265
+ pooler_config=self.pooler_config,
1266
+ logits_processor_pattern=self.logits_processor_pattern,
1267
+ generation_config=self.generation_config,
1268
+ override_generation_config=self.override_generation_config,
1269
+ enable_sleep_mode=self.enable_sleep_mode,
1270
+ model_impl=self.model_impl,
1271
+ override_attention_dtype=self.override_attention_dtype,
1272
+ logits_processors=self.logits_processors,
1273
+ video_pruning_rate=self.video_pruning_rate,
1274
+ io_processor_plugin=self.io_processor_plugin,
1275
+ )
1276
+
1277
+ def validate_tensorizer_args(self):
1278
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
1279
+
1280
+ for key in self.model_loader_extra_config:
1281
+ if key in TensorizerConfig._fields:
1282
+ self.model_loader_extra_config["tensorizer_config"][key] = (
1283
+ self.model_loader_extra_config[key]
1284
+ )
1285
+
1286
+ def create_load_config(self) -> LoadConfig:
1287
+ if self.quantization == "bitsandbytes":
1288
+ self.load_format = "bitsandbytes"
1289
+
1290
+ if self.load_format == "tensorizer":
1291
+ if hasattr(self.model_loader_extra_config, "to_serializable"):
1292
+ self.model_loader_extra_config = (
1293
+ self.model_loader_extra_config.to_serializable()
1294
+ )
1295
+ self.model_loader_extra_config["tensorizer_config"] = {}
1296
+ self.model_loader_extra_config["tensorizer_config"]["tensorizer_dir"] = (
1297
+ self.model
1298
+ )
1299
+ self.validate_tensorizer_args()
1300
+
1301
+ return LoadConfig(
1302
+ load_format=self.load_format,
1303
+ download_dir=self.download_dir,
1304
+ safetensors_load_strategy=self.safetensors_load_strategy,
1305
+ device="cpu" if is_online_quantization(self.quantization) else None,
1306
+ model_loader_extra_config=self.model_loader_extra_config,
1307
+ ignore_patterns=self.ignore_patterns,
1308
+ use_tqdm_on_load=self.use_tqdm_on_load,
1309
+ pt_load_map_location=self.pt_load_map_location,
1310
+ )
1311
+
1312
+ def create_speculative_config(
1313
+ self,
1314
+ target_model_config: ModelConfig,
1315
+ target_parallel_config: ParallelConfig,
1316
+ ) -> SpeculativeConfig | None:
1317
+ """Initializes and returns a SpeculativeConfig object based on
1318
+ `speculative_config`.
1319
+
1320
+ This function utilizes `speculative_config` to create a
1321
+ SpeculativeConfig object. The `speculative_config` can either be
1322
+ provided as a JSON string input via CLI arguments or directly as a
1323
+ dictionary from the engine.
1324
+ """
1325
+ if self.speculative_config is None:
1326
+ return None
1327
+
1328
+ # Note(Shangming): These parameters are not obtained from the cli arg
1329
+ # '--speculative-config' and must be passed in when creating the engine
1330
+ # config.
1331
+ self.speculative_config.update(
1332
+ {
1333
+ "target_model_config": target_model_config,
1334
+ "target_parallel_config": target_parallel_config,
1335
+ }
1336
+ )
1337
+ return SpeculativeConfig(**self.speculative_config)
1338
+
1339
+ def create_engine_config(
1340
+ self,
1341
+ usage_context: UsageContext | None = None,
1342
+ headless: bool = False,
1343
+ ) -> VllmConfig:
1344
+ """
1345
+ Create the VllmConfig.
1346
+
1347
+ NOTE: If VllmConfig is incompatible, we raise an error.
1348
+ """
1349
+ current_platform.pre_register_and_update()
1350
+
1351
+ device_config = DeviceConfig(device=cast(Device, current_platform.device_type))
1352
+
1353
+ # Check if the model is a speculator and override model/tokenizer/config
1354
+ # BEFORE creating ModelConfig, so the config is created with the target model
1355
+ # Skip speculator detection for cloud storage models (eg: S3, GCS) since
1356
+ # HuggingFace cannot load configs directly from S3 URLs. S3 models can still
1357
+ # use speculators with explicit --speculative-config.
1358
+ if not is_cloud_storage(self.model):
1359
+ (self.model, self.tokenizer, self.speculative_config) = (
1360
+ maybe_override_with_speculators(
1361
+ model=self.model,
1362
+ tokenizer=self.tokenizer,
1363
+ revision=self.revision,
1364
+ trust_remote_code=self.trust_remote_code,
1365
+ vllm_speculative_config=self.speculative_config,
1366
+ )
1367
+ )
1368
+
1369
+ model_config = self.create_model_config()
1370
+ self.model = model_config.model
1371
+ self.model_weights = model_config.model_weights
1372
+ self.tokenizer = model_config.tokenizer
1373
+
1374
+ self._check_feature_supported(model_config)
1375
+ self._set_default_chunked_prefill_and_prefix_caching_args(model_config)
1376
+ self._set_default_max_num_seqs_and_batched_tokens_args(
1377
+ usage_context, model_config
1378
+ )
1379
+
1380
+ sliding_window: int | None = None
1381
+ if not is_interleaved(model_config.hf_text_config):
1382
+ # Only set CacheConfig.sliding_window if the model is all sliding
1383
+ # window. Otherwise CacheConfig.sliding_window will override the
1384
+ # global layers in interleaved sliding window models.
1385
+ sliding_window = model_config.get_sliding_window()
1386
+
1387
+ # Note(hc): In the current implementation of decode context
1388
+ # parallel(DCP), tp_size needs to be divisible by dcp_size,
1389
+ # because the world size does not change by dcp, it simply
1390
+ # reuses the GPUs of TP group, and split one TP group into
1391
+ # tp_size//dcp_size DCP groups.
1392
+ assert self.tensor_parallel_size % self.decode_context_parallel_size == 0, (
1393
+ f"tp_size={self.tensor_parallel_size} must be divisible by"
1394
+ f"dcp_size={self.decode_context_parallel_size}."
1395
+ )
1396
+
1397
+ # Resolve "auto" kv_cache_dtype to actual value from model config
1398
+ resolved_cache_dtype = resolve_kv_cache_dtype_string(
1399
+ self.kv_cache_dtype, model_config
1400
+ )
1401
+
1402
+ cache_config = CacheConfig(
1403
+ block_size=self.block_size,
1404
+ gpu_memory_utilization=self.gpu_memory_utilization,
1405
+ kv_cache_memory_bytes=self.kv_cache_memory_bytes,
1406
+ swap_space=self.swap_space,
1407
+ cache_dtype=resolved_cache_dtype,
1408
+ is_attention_free=model_config.is_attention_free,
1409
+ num_gpu_blocks_override=self.num_gpu_blocks_override,
1410
+ sliding_window=sliding_window,
1411
+ enable_prefix_caching=self.enable_prefix_caching,
1412
+ prefix_caching_hash_algo=self.prefix_caching_hash_algo,
1413
+ cpu_offload_gb=self.cpu_offload_gb,
1414
+ calculate_kv_scales=self.calculate_kv_scales,
1415
+ kv_sharing_fast_prefill=self.kv_sharing_fast_prefill,
1416
+ mamba_cache_dtype=self.mamba_cache_dtype,
1417
+ mamba_ssm_cache_dtype=self.mamba_ssm_cache_dtype,
1418
+ mamba_block_size=self.mamba_block_size,
1419
+ kv_offloading_size=self.kv_offloading_size,
1420
+ kv_offloading_backend=self.kv_offloading_backend,
1421
+ )
1422
+
1423
+ ray_runtime_env = None
1424
+ if is_ray_initialized():
1425
+ # Ray Serve LLM calls `create_engine_config` in the context
1426
+ # of a Ray task, therefore we check is_ray_initialized()
1427
+ # as opposed to is_in_ray_actor().
1428
+ import ray
1429
+
1430
+ ray_runtime_env = ray.get_runtime_context().runtime_env
1431
+ # Avoid logging sensitive environment variables
1432
+ sanitized_env = ray_runtime_env.to_dict() if ray_runtime_env else {}
1433
+ if "env_vars" in sanitized_env:
1434
+ sanitized_env["env_vars"] = {
1435
+ k: "***" for k in sanitized_env["env_vars"]
1436
+ }
1437
+ logger.info("Using ray runtime env (env vars redacted): %s", sanitized_env)
1438
+
1439
+ # Get the current placement group if Ray is initialized and
1440
+ # we are in a Ray actor. If so, then the placement group will be
1441
+ # passed to spawned processes.
1442
+ placement_group = None
1443
+ if is_in_ray_actor():
1444
+ import ray
1445
+
1446
+ # This call initializes Ray automatically if it is not initialized,
1447
+ # but we should not do this here.
1448
+ placement_group = ray.util.get_current_placement_group()
1449
+
1450
+ assert not headless or not self.data_parallel_hybrid_lb, (
1451
+ "data_parallel_hybrid_lb is not applicable in headless mode"
1452
+ )
1453
+ assert not (self.data_parallel_hybrid_lb and self.data_parallel_external_lb), (
1454
+ "data_parallel_hybrid_lb and data_parallel_external_lb cannot both be True."
1455
+ )
1456
+ assert self.data_parallel_backend == "mp" or self.nnodes == 1, (
1457
+ "nnodes > 1 is only supported with data_parallel_backend=mp"
1458
+ )
1459
+ inferred_data_parallel_rank = 0
1460
+ if self.nnodes > 1:
1461
+ world_size = (
1462
+ self.data_parallel_size
1463
+ * self.pipeline_parallel_size
1464
+ * self.tensor_parallel_size
1465
+ )
1466
+ world_size_within_dp = (
1467
+ self.pipeline_parallel_size * self.tensor_parallel_size
1468
+ )
1469
+ local_world_size = world_size // self.nnodes
1470
+ assert world_size % self.nnodes == 0, (
1471
+ f"world_size={world_size} must be divisible by nnodes={self.nnodes}."
1472
+ )
1473
+ assert self.node_rank < self.nnodes, (
1474
+ f"node_rank={self.node_rank} must be less than nnodes={self.nnodes}."
1475
+ )
1476
+ inferred_data_parallel_rank = (
1477
+ self.node_rank * local_world_size
1478
+ ) // world_size_within_dp
1479
+ if self.data_parallel_size > 1 and self.data_parallel_external_lb:
1480
+ self.data_parallel_rank = inferred_data_parallel_rank
1481
+ logger.info(
1482
+ "Inferred data_parallel_rank %d from node_rank %d for external lb",
1483
+ self.data_parallel_rank,
1484
+ self.node_rank,
1485
+ )
1486
+ elif self.data_parallel_size_local is None:
1487
+ # Infer data parallel size local for internal dplb:
1488
+ self.data_parallel_size_local = max(
1489
+ local_world_size // world_size_within_dp, 1
1490
+ )
1491
+ data_parallel_external_lb = (
1492
+ self.data_parallel_external_lb or self.data_parallel_rank is not None
1493
+ )
1494
+ # Local DP rank = 1, use pure-external LB.
1495
+ if data_parallel_external_lb:
1496
+ assert self.data_parallel_rank is not None, (
1497
+ "data_parallel_rank or node_rank must be specified if "
1498
+ "data_parallel_external_lb is enable."
1499
+ )
1500
+ assert self.data_parallel_size_local in (1, None), (
1501
+ "data_parallel_size_local must be 1 or None when data_parallel_rank "
1502
+ "is set"
1503
+ )
1504
+ data_parallel_size_local = 1
1505
+ # Use full external lb if we have local_size of 1.
1506
+ self.data_parallel_hybrid_lb = False
1507
+ elif self.data_parallel_size_local is not None:
1508
+ data_parallel_size_local = self.data_parallel_size_local
1509
+
1510
+ if self.data_parallel_start_rank and not headless:
1511
+ # Infer hybrid LB mode.
1512
+ self.data_parallel_hybrid_lb = True
1513
+
1514
+ if self.data_parallel_hybrid_lb and data_parallel_size_local == 1:
1515
+ # Use full external lb if we have local_size of 1.
1516
+ logger.warning(
1517
+ "data_parallel_hybrid_lb is not eligible when "
1518
+ "data_parallel_size_local = 1, autoswitch to "
1519
+ "data_parallel_external_lb."
1520
+ )
1521
+ data_parallel_external_lb = True
1522
+ self.data_parallel_hybrid_lb = False
1523
+
1524
+ if data_parallel_size_local == self.data_parallel_size:
1525
+ # Disable hybrid LB mode if set for a single node
1526
+ self.data_parallel_hybrid_lb = False
1527
+
1528
+ self.data_parallel_rank = (
1529
+ self.data_parallel_start_rank or inferred_data_parallel_rank
1530
+ )
1531
+ if self.nnodes > 1:
1532
+ logger.info(
1533
+ "Inferred data_parallel_rank %d from node_rank %d",
1534
+ self.data_parallel_rank,
1535
+ self.node_rank,
1536
+ )
1537
+ else:
1538
+ assert not self.data_parallel_hybrid_lb, (
1539
+ "data_parallel_size_local must be set to use data_parallel_hybrid_lb."
1540
+ )
1541
+
1542
+ if self.data_parallel_backend == "ray" and (
1543
+ envs.VLLM_RAY_DP_PACK_STRATEGY == "span"
1544
+ ):
1545
+ # Data parallel size defaults to 1 if DP ranks are spanning
1546
+ # multiple nodes
1547
+ data_parallel_size_local = 1
1548
+ else:
1549
+ # Otherwise local DP size defaults to global DP size if not set
1550
+ data_parallel_size_local = self.data_parallel_size
1551
+
1552
+ # DP address, used in multi-node case for torch distributed group
1553
+ # and ZMQ sockets.
1554
+ if self.data_parallel_address is None:
1555
+ if self.data_parallel_backend == "ray":
1556
+ host_ip = get_ip()
1557
+ logger.info(
1558
+ "Using host IP %s as ray-based data parallel address", host_ip
1559
+ )
1560
+ data_parallel_address = host_ip
1561
+ else:
1562
+ assert self.data_parallel_backend == "mp", (
1563
+ "data_parallel_backend can only be ray or mp, got %s",
1564
+ self.data_parallel_backend,
1565
+ )
1566
+ data_parallel_address = (
1567
+ self.master_addr or ParallelConfig.data_parallel_master_ip
1568
+ )
1569
+ else:
1570
+ data_parallel_address = self.data_parallel_address
1571
+
1572
+ # This port is only used when there are remote data parallel engines,
1573
+ # otherwise the local IPC transport is used.
1574
+ data_parallel_rpc_port = (
1575
+ self.data_parallel_rpc_port
1576
+ if (self.data_parallel_rpc_port is not None)
1577
+ else ParallelConfig.data_parallel_rpc_port
1578
+ )
1579
+
1580
+ if self.tokens_only and not model_config.skip_tokenizer_init:
1581
+ model_config.skip_tokenizer_init = True
1582
+ logger.info("Skipping tokenizer initialization for tokens-only mode.")
1583
+
1584
+ parallel_config = ParallelConfig(
1585
+ pipeline_parallel_size=self.pipeline_parallel_size,
1586
+ tensor_parallel_size=self.tensor_parallel_size,
1587
+ prefill_context_parallel_size=self.prefill_context_parallel_size,
1588
+ data_parallel_size=self.data_parallel_size,
1589
+ data_parallel_rank=self.data_parallel_rank or 0,
1590
+ data_parallel_external_lb=data_parallel_external_lb,
1591
+ data_parallel_size_local=data_parallel_size_local,
1592
+ master_addr=self.master_addr,
1593
+ master_port=self.master_port,
1594
+ nnodes=self.nnodes,
1595
+ node_rank=self.node_rank,
1596
+ data_parallel_master_ip=data_parallel_address,
1597
+ data_parallel_rpc_port=data_parallel_rpc_port,
1598
+ data_parallel_backend=self.data_parallel_backend,
1599
+ data_parallel_hybrid_lb=self.data_parallel_hybrid_lb,
1600
+ is_moe_model=model_config.is_moe,
1601
+ enable_expert_parallel=self.enable_expert_parallel,
1602
+ all2all_backend=self.all2all_backend,
1603
+ enable_dbo=self.enable_dbo,
1604
+ ubatch_size=self.ubatch_size,
1605
+ dbo_decode_token_threshold=self.dbo_decode_token_threshold,
1606
+ dbo_prefill_token_threshold=self.dbo_prefill_token_threshold,
1607
+ disable_nccl_for_dp_synchronization=self.disable_nccl_for_dp_synchronization,
1608
+ enable_eplb=self.enable_eplb,
1609
+ eplb_config=self.eplb_config,
1610
+ expert_placement_strategy=self.expert_placement_strategy,
1611
+ max_parallel_loading_workers=self.max_parallel_loading_workers,
1612
+ disable_custom_all_reduce=self.disable_custom_all_reduce,
1613
+ ray_workers_use_nsight=self.ray_workers_use_nsight,
1614
+ ray_runtime_env=ray_runtime_env,
1615
+ placement_group=placement_group,
1616
+ distributed_executor_backend=self.distributed_executor_backend,
1617
+ worker_cls=self.worker_cls,
1618
+ worker_extension_cls=self.worker_extension_cls,
1619
+ decode_context_parallel_size=self.decode_context_parallel_size,
1620
+ dcp_kv_cache_interleave_size=self.dcp_kv_cache_interleave_size,
1621
+ cp_kv_cache_interleave_size=self.cp_kv_cache_interleave_size,
1622
+ _api_process_count=self._api_process_count,
1623
+ _api_process_rank=self._api_process_rank,
1624
+ )
1625
+
1626
+ speculative_config = self.create_speculative_config(
1627
+ target_model_config=model_config,
1628
+ target_parallel_config=parallel_config,
1629
+ )
1630
+
1631
+ scheduler_config = SchedulerConfig(
1632
+ runner_type=model_config.runner_type,
1633
+ max_num_batched_tokens=self.max_num_batched_tokens,
1634
+ max_num_seqs=self.max_num_seqs,
1635
+ max_model_len=model_config.max_model_len,
1636
+ enable_chunked_prefill=self.enable_chunked_prefill,
1637
+ disable_chunked_mm_input=self.disable_chunked_mm_input,
1638
+ is_multimodal_model=model_config.is_multimodal_model,
1639
+ is_encoder_decoder=model_config.is_encoder_decoder,
1640
+ policy=self.scheduling_policy,
1641
+ scheduler_cls=self.scheduler_cls,
1642
+ max_num_partial_prefills=self.max_num_partial_prefills,
1643
+ max_long_partial_prefills=self.max_long_partial_prefills,
1644
+ long_prefill_token_threshold=self.long_prefill_token_threshold,
1645
+ disable_hybrid_kv_cache_manager=self.disable_hybrid_kv_cache_manager,
1646
+ async_scheduling=self.async_scheduling,
1647
+ stream_interval=self.stream_interval,
1648
+ )
1649
+
1650
+ if not model_config.is_multimodal_model and self.default_mm_loras:
1651
+ raise ValueError(
1652
+ "Default modality-specific LoRA(s) were provided for a "
1653
+ "non multimodal model"
1654
+ )
1655
+
1656
+ lora_config = (
1657
+ LoRAConfig(
1658
+ max_lora_rank=self.max_lora_rank,
1659
+ max_loras=self.max_loras,
1660
+ default_mm_loras=self.default_mm_loras,
1661
+ fully_sharded_loras=self.fully_sharded_loras,
1662
+ lora_dtype=self.lora_dtype,
1663
+ enable_tower_connector_lora=self.enable_tower_connector_lora,
1664
+ max_cpu_loras=self.max_cpu_loras
1665
+ if self.max_cpu_loras and self.max_cpu_loras > 0
1666
+ else None,
1667
+ )
1668
+ if self.enable_lora
1669
+ else None
1670
+ )
1671
+
1672
+ if (
1673
+ lora_config is not None
1674
+ and speculative_config is not None
1675
+ and scheduler_config.max_num_batched_tokens
1676
+ < (
1677
+ scheduler_config.max_num_seqs
1678
+ * (speculative_config.num_speculative_tokens + 1)
1679
+ )
1680
+ ):
1681
+ raise ValueError(
1682
+ "Consider increasing max_num_batched_tokens or "
1683
+ "decreasing num_speculative_tokens"
1684
+ )
1685
+
1686
+ # bitsandbytes pre-quantized model need a specific model loader
1687
+ if model_config.quantization == "bitsandbytes":
1688
+ self.quantization = self.load_format = "bitsandbytes"
1689
+
1690
+ # Attention config overrides
1691
+ attention_config = copy.deepcopy(self.attention_config)
1692
+ if self.attention_backend is not None:
1693
+ if attention_config.backend is not None:
1694
+ raise ValueError(
1695
+ "attention_backend and attention_config.backend "
1696
+ "are mutually exclusive"
1697
+ )
1698
+ # Convert string to enum if needed (CLI parsing returns a string)
1699
+ if isinstance(self.attention_backend, str):
1700
+ attention_config.backend = AttentionBackendEnum[
1701
+ self.attention_backend.upper()
1702
+ ]
1703
+ else:
1704
+ attention_config.backend = self.attention_backend
1705
+
1706
+ load_config = self.create_load_config()
1707
+
1708
+ # Pass reasoning_parser into StructuredOutputsConfig
1709
+ if self.reasoning_parser:
1710
+ self.structured_outputs_config.reasoning_parser = self.reasoning_parser
1711
+
1712
+ if self.reasoning_parser_plugin:
1713
+ self.structured_outputs_config.reasoning_parser_plugin = (
1714
+ self.reasoning_parser_plugin
1715
+ )
1716
+
1717
+ observability_config = ObservabilityConfig(
1718
+ show_hidden_metrics_for_version=self.show_hidden_metrics_for_version,
1719
+ otlp_traces_endpoint=self.otlp_traces_endpoint,
1720
+ collect_detailed_traces=self.collect_detailed_traces,
1721
+ kv_cache_metrics=self.kv_cache_metrics,
1722
+ kv_cache_metrics_sample=self.kv_cache_metrics_sample,
1723
+ cudagraph_metrics=self.cudagraph_metrics,
1724
+ enable_layerwise_nvtx_tracing=self.enable_layerwise_nvtx_tracing,
1725
+ enable_mfu_metrics=self.enable_mfu_metrics,
1726
+ enable_mm_processor_stats=self.enable_mm_processor_stats,
1727
+ enable_logging_iteration_details=self.enable_logging_iteration_details,
1728
+ )
1729
+
1730
+ # Compilation config overrides
1731
+ compilation_config = copy.deepcopy(self.compilation_config)
1732
+ if self.cudagraph_capture_sizes is not None:
1733
+ if compilation_config.cudagraph_capture_sizes is not None:
1734
+ raise ValueError(
1735
+ "cudagraph_capture_sizes and compilation_config."
1736
+ "cudagraph_capture_sizes are mutually exclusive"
1737
+ )
1738
+ compilation_config.cudagraph_capture_sizes = self.cudagraph_capture_sizes
1739
+ if self.max_cudagraph_capture_size is not None:
1740
+ if compilation_config.max_cudagraph_capture_size is not None:
1741
+ raise ValueError(
1742
+ "max_cudagraph_capture_size and compilation_config."
1743
+ "max_cudagraph_capture_size are mutually exclusive"
1744
+ )
1745
+ compilation_config.max_cudagraph_capture_size = (
1746
+ self.max_cudagraph_capture_size
1747
+ )
1748
+ config = VllmConfig(
1749
+ model_config=model_config,
1750
+ cache_config=cache_config,
1751
+ parallel_config=parallel_config,
1752
+ scheduler_config=scheduler_config,
1753
+ device_config=device_config,
1754
+ load_config=load_config,
1755
+ attention_config=attention_config,
1756
+ lora_config=lora_config,
1757
+ speculative_config=speculative_config,
1758
+ structured_outputs_config=self.structured_outputs_config,
1759
+ observability_config=observability_config,
1760
+ compilation_config=compilation_config,
1761
+ kv_transfer_config=self.kv_transfer_config,
1762
+ kv_events_config=self.kv_events_config,
1763
+ ec_transfer_config=self.ec_transfer_config,
1764
+ profiler_config=self.profiler_config,
1765
+ additional_config=self.additional_config,
1766
+ optimization_level=self.optimization_level,
1767
+ )
1768
+
1769
+ return config
1770
+
1771
+ def _check_feature_supported(self, model_config: ModelConfig):
1772
+ """Raise an error if the feature is not supported."""
1773
+ if self.logits_processor_pattern != EngineArgs.logits_processor_pattern:
1774
+ _raise_unsupported_error(feature_name="--logits-processor-pattern")
1775
+
1776
+ # No Concurrent Partial Prefills so far.
1777
+ if (
1778
+ self.max_num_partial_prefills != SchedulerConfig.max_num_partial_prefills
1779
+ or self.max_long_partial_prefills
1780
+ != SchedulerConfig.max_long_partial_prefills
1781
+ ):
1782
+ _raise_unsupported_error(feature_name="Concurrent Partial Prefill")
1783
+
1784
+ # N-gram, Medusa, and Eagle are supported for speculative decoding.
1785
+ if self.speculative_config is not None:
1786
+ # speculative_config could still be a dict at this point
1787
+ if isinstance(self.speculative_config, dict):
1788
+ method = self.speculative_config.get("method", None)
1789
+ else:
1790
+ method = self.speculative_config.method
1791
+
1792
+ if method == "draft_model":
1793
+ raise NotImplementedError(
1794
+ "Draft model speculative decoding is not supported yet. "
1795
+ "Please consider using other speculative decoding methods "
1796
+ "such as ngram, medusa, eagle, or mtp."
1797
+ )
1798
+
1799
+ if self.pipeline_parallel_size > 1:
1800
+ supports_pp = getattr(
1801
+ self.distributed_executor_backend, "supports_pp", False
1802
+ )
1803
+ if not supports_pp and self.distributed_executor_backend not in (
1804
+ ParallelConfig.distributed_executor_backend,
1805
+ "ray",
1806
+ "mp",
1807
+ "external_launcher",
1808
+ ):
1809
+ name = (
1810
+ "Pipeline Parallelism without Ray distributed "
1811
+ "executor or multiprocessing executor or external "
1812
+ "launcher"
1813
+ )
1814
+ _raise_unsupported_error(feature_name=name)
1815
+
1816
+ @classmethod
1817
+ def get_batch_defaults(
1818
+ cls,
1819
+ world_size: int,
1820
+ ) -> tuple[dict[UsageContext | None, int], dict[UsageContext | None, int]]:
1821
+ from vllm.usage.usage_lib import UsageContext
1822
+
1823
+ default_max_num_batched_tokens: dict[UsageContext | None, int]
1824
+ default_max_num_seqs: dict[UsageContext | None, int]
1825
+
1826
+ # When no user override, set the default values based on the usage
1827
+ # context.
1828
+ # Use different default values for different hardware.
1829
+
1830
+ # Try to query the device name on the current platform. If it fails,
1831
+ # it may be because the platform that imports vLLM is not the same
1832
+ # as the platform that vLLM is running on (e.g. the case of scaling
1833
+ # vLLM with Ray) and has no GPUs. In this case we use the default
1834
+ # values for non-H100/H200 GPUs.
1835
+ try:
1836
+ device_memory = current_platform.get_device_total_memory()
1837
+ device_name = current_platform.get_device_name().lower()
1838
+ except Exception:
1839
+ # This is only used to set default_max_num_batched_tokens
1840
+ device_memory = 0
1841
+ device_name = ""
1842
+
1843
+ # NOTE(Kuntai): Setting large `max_num_batched_tokens` for A100 reduces
1844
+ # throughput, see PR #17885 for more details.
1845
+ # So here we do an extra device name check to prevent such regression.
1846
+ if device_memory >= 70 * GiB_bytes and "a100" not in device_name:
1847
+ # For GPUs like H100 and MI300x, use larger default values.
1848
+ default_max_num_batched_tokens = {
1849
+ UsageContext.LLM_CLASS: 16384,
1850
+ UsageContext.OPENAI_API_SERVER: 8192,
1851
+ }
1852
+ default_max_num_seqs = {
1853
+ UsageContext.LLM_CLASS: 1024,
1854
+ UsageContext.OPENAI_API_SERVER: 1024,
1855
+ }
1856
+ else:
1857
+ # TODO(woosuk): Tune the default values for other hardware.
1858
+ default_max_num_batched_tokens = {
1859
+ UsageContext.LLM_CLASS: 8192,
1860
+ UsageContext.OPENAI_API_SERVER: 2048,
1861
+ }
1862
+ default_max_num_seqs = {
1863
+ UsageContext.LLM_CLASS: 256,
1864
+ UsageContext.OPENAI_API_SERVER: 256,
1865
+ }
1866
+
1867
+ # tpu specific default values.
1868
+ if current_platform.is_tpu():
1869
+ chip_name = current_platform.get_device_name()
1870
+
1871
+ if chip_name == "V6E":
1872
+ default_max_num_batched_tokens = {
1873
+ UsageContext.LLM_CLASS: 2048,
1874
+ UsageContext.OPENAI_API_SERVER: 1024,
1875
+ }
1876
+ elif chip_name == "V5E":
1877
+ default_max_num_batched_tokens = {
1878
+ UsageContext.LLM_CLASS: 1024,
1879
+ UsageContext.OPENAI_API_SERVER: 512,
1880
+ }
1881
+ elif chip_name == "V5P":
1882
+ default_max_num_batched_tokens = {
1883
+ UsageContext.LLM_CLASS: 512,
1884
+ UsageContext.OPENAI_API_SERVER: 256,
1885
+ }
1886
+
1887
+ # cpu specific default values.
1888
+ if current_platform.is_cpu():
1889
+ default_max_num_batched_tokens = {
1890
+ UsageContext.LLM_CLASS: 4096 * world_size,
1891
+ UsageContext.OPENAI_API_SERVER: 2048 * world_size,
1892
+ }
1893
+ default_max_num_seqs = {
1894
+ UsageContext.LLM_CLASS: 256 * world_size,
1895
+ UsageContext.OPENAI_API_SERVER: 128 * world_size,
1896
+ }
1897
+
1898
+ return default_max_num_batched_tokens, default_max_num_seqs
1899
+
1900
+ def _set_default_chunked_prefill_and_prefix_caching_args(
1901
+ self, model_config: ModelConfig
1902
+ ) -> None:
1903
+ default_chunked_prefill = model_config.is_chunked_prefill_supported
1904
+ default_prefix_caching = model_config.is_prefix_caching_supported
1905
+
1906
+ if self.enable_chunked_prefill is None:
1907
+ self.enable_chunked_prefill = default_chunked_prefill
1908
+
1909
+ logger.debug(
1910
+ "%s chunked prefill by default",
1911
+ "Enabling" if default_chunked_prefill else "Disabling",
1912
+ )
1913
+ elif (
1914
+ model_config.runner_type == "generate"
1915
+ and not self.enable_chunked_prefill
1916
+ and default_chunked_prefill
1917
+ ):
1918
+ logger.warning_once(
1919
+ "This model does not officially support disabling chunked prefill. "
1920
+ "Disabling this manually may cause the engine to crash "
1921
+ "or produce incorrect outputs.",
1922
+ scope="local",
1923
+ )
1924
+ elif (
1925
+ model_config.runner_type == "pooling"
1926
+ and self.enable_chunked_prefill
1927
+ and not default_chunked_prefill
1928
+ ):
1929
+ logger.warning_once(
1930
+ "This model does not officially support chunked prefill. "
1931
+ "Enabling this manually may cause the engine to crash "
1932
+ "or produce incorrect outputs.",
1933
+ scope="local",
1934
+ )
1935
+
1936
+ if self.enable_prefix_caching is None:
1937
+ self.enable_prefix_caching = default_prefix_caching
1938
+
1939
+ logger.debug(
1940
+ "%s prefix caching by default",
1941
+ "Enabling" if default_prefix_caching else "Disabling",
1942
+ )
1943
+ elif (
1944
+ model_config.runner_type == "pooling"
1945
+ and self.enable_prefix_caching
1946
+ and not default_prefix_caching
1947
+ ):
1948
+ logger.warning_once(
1949
+ "This model does not officially support prefix caching. "
1950
+ "Enabling this manually may cause the engine to crash "
1951
+ "or produce incorrect outputs.",
1952
+ scope="local",
1953
+ )
1954
+
1955
+ # Disable chunked prefill and prefix caching for:
1956
+ # POWER (ppc64le)/s390x/RISCV CPUs in V1
1957
+ if current_platform.is_cpu() and current_platform.get_cpu_architecture() in (
1958
+ CpuArchEnum.POWERPC,
1959
+ CpuArchEnum.S390X,
1960
+ CpuArchEnum.RISCV,
1961
+ ):
1962
+ logger.info(
1963
+ "Chunked prefill is not supported for ARM and POWER, "
1964
+ "S390X and RISC-V CPUs; "
1965
+ "disabling it for V1 backend."
1966
+ )
1967
+ self.enable_chunked_prefill = False
1968
+ logger.info(
1969
+ "Prefix caching is not supported for ARM and POWER, "
1970
+ "S390X and RISC-V CPUs; "
1971
+ "disabling it for V1 backend."
1972
+ )
1973
+ self.enable_prefix_caching = False
1974
+
1975
+ def _set_default_max_num_seqs_and_batched_tokens_args(
1976
+ self,
1977
+ usage_context: UsageContext | None,
1978
+ model_config: ModelConfig,
1979
+ ):
1980
+ world_size = self.pipeline_parallel_size * self.tensor_parallel_size
1981
+ (
1982
+ default_max_num_batched_tokens,
1983
+ default_max_num_seqs,
1984
+ ) = self.get_batch_defaults(world_size)
1985
+
1986
+ orig_max_num_batched_tokens = self.max_num_batched_tokens
1987
+ orig_max_num_seqs = self.max_num_seqs
1988
+
1989
+ if self.max_num_batched_tokens is None:
1990
+ self.max_num_batched_tokens = default_max_num_batched_tokens.get(
1991
+ usage_context,
1992
+ SchedulerConfig.DEFAULT_MAX_NUM_BATCHED_TOKENS,
1993
+ )
1994
+
1995
+ if self.max_num_seqs is None:
1996
+ self.max_num_seqs = default_max_num_seqs.get(
1997
+ usage_context,
1998
+ SchedulerConfig.DEFAULT_MAX_NUM_SEQS,
1999
+ )
2000
+
2001
+ if orig_max_num_batched_tokens is None:
2002
+ if not self.enable_chunked_prefill:
2003
+ # If max_model_len is too short, use the default for higher throughput.
2004
+ self.max_num_batched_tokens = max(
2005
+ model_config.max_model_len,
2006
+ self.max_num_batched_tokens,
2007
+ )
2008
+
2009
+ # When using default settings,
2010
+ # Ensure max_num_batched_tokens does not exceed model limit.
2011
+ # Some models (e.g., Whisper) have embeddings tied to max length.
2012
+ self.max_num_batched_tokens = min(
2013
+ self.max_num_seqs * model_config.max_model_len,
2014
+ self.max_num_batched_tokens,
2015
+ )
2016
+
2017
+ logger.debug(
2018
+ "Defaulting max_num_batched_tokens to %d for %s usage context.",
2019
+ self.max_num_batched_tokens,
2020
+ usage_context.value if usage_context else None,
2021
+ )
2022
+
2023
+ if orig_max_num_seqs is None:
2024
+ assert self.max_num_batched_tokens is not None # For type checking
2025
+ self.max_num_seqs = min(self.max_num_seqs, self.max_num_batched_tokens)
2026
+
2027
+ logger.debug(
2028
+ "Defaulting max_num_seqs to %d for %s usage context.",
2029
+ self.max_num_seqs,
2030
+ usage_context.value if usage_context else None,
2031
+ )
2032
+
2033
+
2034
+ @dataclass
2035
+ class AsyncEngineArgs(EngineArgs):
2036
+ """Arguments for asynchronous vLLM engine."""
2037
+
2038
+ enable_log_requests: bool = False
2039
+
2040
+ @staticmethod
2041
+ def add_cli_args(
2042
+ parser: FlexibleArgumentParser, async_args_only: bool = False
2043
+ ) -> FlexibleArgumentParser:
2044
+ # Initialize plugin to update the parser, for example, The plugin may
2045
+ # add a new kind of quantization method to --quantization argument or
2046
+ # a new device to --device argument.
2047
+ load_general_plugins()
2048
+ if not async_args_only:
2049
+ parser = EngineArgs.add_cli_args(parser)
2050
+ parser.add_argument(
2051
+ "--enable-log-requests",
2052
+ action=argparse.BooleanOptionalAction,
2053
+ default=AsyncEngineArgs.enable_log_requests,
2054
+ help="Enable logging requests.",
2055
+ )
2056
+ parser.add_argument(
2057
+ "--disable-log-requests",
2058
+ action=argparse.BooleanOptionalAction,
2059
+ default=not AsyncEngineArgs.enable_log_requests,
2060
+ help="[DEPRECATED] Disable logging requests.",
2061
+ deprecated=True,
2062
+ )
2063
+ current_platform.pre_register_and_update(parser)
2064
+ return parser
2065
+
2066
+
2067
+ def _raise_unsupported_error(feature_name: str):
2068
+ msg = (
2069
+ f"{feature_name} is not supported. We recommend to "
2070
+ f"remove {feature_name} from your config."
2071
+ )
2072
+ raise NotImplementedError(msg)
2073
+
2074
+
2075
+ def human_readable_int(value: str) -> int:
2076
+ """Parse human-readable integers like '1k', '2M', etc.
2077
+ Including decimal values with decimal multipliers.
2078
+
2079
+ Examples:
2080
+ - '1k' -> 1,000
2081
+ - '1K' -> 1,024
2082
+ - '25.6k' -> 25,600
2083
+ """
2084
+ value = value.strip()
2085
+
2086
+ match = re.fullmatch(r"(\d+(?:\.\d+)?)([kKmMgGtT])", value)
2087
+ if match:
2088
+ decimal_multiplier = {
2089
+ "k": 10**3,
2090
+ "m": 10**6,
2091
+ "g": 10**9,
2092
+ "t": 10**12,
2093
+ }
2094
+ binary_multiplier = {
2095
+ "K": 2**10,
2096
+ "M": 2**20,
2097
+ "G": 2**30,
2098
+ "T": 2**40,
2099
+ }
2100
+
2101
+ number, suffix = match.groups()
2102
+ if suffix in decimal_multiplier:
2103
+ mult = decimal_multiplier[suffix]
2104
+ return int(float(number) * mult)
2105
+ elif suffix in binary_multiplier:
2106
+ mult = binary_multiplier[suffix]
2107
+ # Do not allow decimals with binary multipliers
2108
+ try:
2109
+ return int(number) * mult
2110
+ except ValueError as e:
2111
+ raise argparse.ArgumentTypeError(
2112
+ "Decimals are not allowed "
2113
+ f"with binary suffixes like {suffix}. Did you mean to use "
2114
+ f"{number}{suffix.lower()} instead?"
2115
+ ) from e
2116
+
2117
+ # Regular plain number.
2118
+ return int(value)
2119
+
2120
+
2121
+ def human_readable_int_or_auto(value: str) -> int:
2122
+ """Parse human-readable integers like '1k', '2M', etc.
2123
+ Including decimal values with decimal multipliers.
2124
+ Also accepts -1 or 'auto' as a special value for auto-detection.
2125
+
2126
+ Examples:
2127
+ - '1k' -> 1,000
2128
+ - '1K' -> 1,024
2129
+ - '25.6k' -> 25,600
2130
+ - '-1' or 'auto' -> -1 (special value for auto-detection)
2131
+ """
2132
+ value = value.strip()
2133
+
2134
+ if value == "-1" or value.lower() == "auto":
2135
+ return -1
2136
+
2137
+ return human_readable_int(value)