vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1712) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1511 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3206 -0
  6. vllm/_ipex_ops.py +445 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +62 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/layer.py +913 -0
  15. vllm/attention/utils/__init__.py +0 -0
  16. vllm/attention/utils/kv_sharing_utils.py +33 -0
  17. vllm/attention/utils/kv_transfer_utils.py +60 -0
  18. vllm/beam_search.py +88 -0
  19. vllm/benchmarks/__init__.py +0 -0
  20. vllm/benchmarks/datasets.py +3277 -0
  21. vllm/benchmarks/latency.py +172 -0
  22. vllm/benchmarks/lib/__init__.py +3 -0
  23. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  24. vllm/benchmarks/lib/ready_checker.py +72 -0
  25. vllm/benchmarks/lib/utils.py +79 -0
  26. vllm/benchmarks/mm_processor.py +363 -0
  27. vllm/benchmarks/serve.py +1761 -0
  28. vllm/benchmarks/startup.py +321 -0
  29. vllm/benchmarks/sweep/__init__.py +0 -0
  30. vllm/benchmarks/sweep/cli.py +41 -0
  31. vllm/benchmarks/sweep/param_sweep.py +159 -0
  32. vllm/benchmarks/sweep/plot.py +675 -0
  33. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  34. vllm/benchmarks/sweep/serve.py +450 -0
  35. vllm/benchmarks/sweep/serve_sla.py +459 -0
  36. vllm/benchmarks/sweep/server.py +114 -0
  37. vllm/benchmarks/sweep/sla_sweep.py +138 -0
  38. vllm/benchmarks/sweep/utils.py +4 -0
  39. vllm/benchmarks/throughput.py +946 -0
  40. vllm/collect_env.py +857 -0
  41. vllm/compilation/__init__.py +0 -0
  42. vllm/compilation/activation_quant_fusion.py +214 -0
  43. vllm/compilation/backends.py +840 -0
  44. vllm/compilation/base_static_graph.py +57 -0
  45. vllm/compilation/caching.py +196 -0
  46. vllm/compilation/collective_fusion.py +1224 -0
  47. vllm/compilation/compiler_interface.py +639 -0
  48. vllm/compilation/counter.py +50 -0
  49. vllm/compilation/cuda_graph.py +309 -0
  50. vllm/compilation/decorators.py +662 -0
  51. vllm/compilation/fix_functionalization.py +266 -0
  52. vllm/compilation/fusion.py +570 -0
  53. vllm/compilation/fusion_attn.py +363 -0
  54. vllm/compilation/fx_utils.py +92 -0
  55. vllm/compilation/inductor_pass.py +145 -0
  56. vllm/compilation/matcher_utils.py +454 -0
  57. vllm/compilation/monitor.py +62 -0
  58. vllm/compilation/noop_elimination.py +130 -0
  59. vllm/compilation/partition_rules.py +75 -0
  60. vllm/compilation/pass_manager.py +164 -0
  61. vllm/compilation/piecewise_backend.py +191 -0
  62. vllm/compilation/post_cleanup.py +21 -0
  63. vllm/compilation/qk_norm_rope_fusion.py +244 -0
  64. vllm/compilation/rocm_aiter_fusion.py +401 -0
  65. vllm/compilation/sequence_parallelism.py +368 -0
  66. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  67. vllm/compilation/vllm_inductor_pass.py +180 -0
  68. vllm/compilation/wrapper.py +329 -0
  69. vllm/config/__init__.py +112 -0
  70. vllm/config/attention.py +114 -0
  71. vllm/config/cache.py +233 -0
  72. vllm/config/compilation.py +1149 -0
  73. vllm/config/device.py +75 -0
  74. vllm/config/ec_transfer.py +110 -0
  75. vllm/config/kv_events.py +56 -0
  76. vllm/config/kv_transfer.py +119 -0
  77. vllm/config/load.py +124 -0
  78. vllm/config/lora.py +102 -0
  79. vllm/config/model.py +2026 -0
  80. vllm/config/model_arch.py +57 -0
  81. vllm/config/multimodal.py +247 -0
  82. vllm/config/observability.py +157 -0
  83. vllm/config/parallel.py +703 -0
  84. vllm/config/pooler.py +188 -0
  85. vllm/config/profiler.py +199 -0
  86. vllm/config/scheduler.py +298 -0
  87. vllm/config/speculative.py +656 -0
  88. vllm/config/speech_to_text.py +39 -0
  89. vllm/config/structured_outputs.py +78 -0
  90. vllm/config/utils.py +374 -0
  91. vllm/config/vllm.py +1487 -0
  92. vllm/connections.py +189 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +301 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +43 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +509 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +303 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +346 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  106. vllm/distributed/device_communicators/pynccl.py +386 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  113. vllm/distributed/device_communicators/symm_mem.py +156 -0
  114. vllm/distributed/device_communicators/xpu_communicator.py +98 -0
  115. vllm/distributed/ec_transfer/__init__.py +14 -0
  116. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  117. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  118. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  119. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  120. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  121. vllm/distributed/eplb/__init__.py +3 -0
  122. vllm/distributed/eplb/async_worker.py +115 -0
  123. vllm/distributed/eplb/eplb_state.py +1192 -0
  124. vllm/distributed/eplb/policy/__init__.py +19 -0
  125. vllm/distributed/eplb/policy/abstract.py +43 -0
  126. vllm/distributed/eplb/policy/default.py +376 -0
  127. vllm/distributed/eplb/rebalance_execute.py +699 -0
  128. vllm/distributed/kv_events.py +505 -0
  129. vllm/distributed/kv_transfer/README.md +29 -0
  130. vllm/distributed/kv_transfer/__init__.py +20 -0
  131. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  132. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  133. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  134. vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  142. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  159. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  160. vllm/distributed/parallel_state.py +1809 -0
  161. vllm/distributed/utils.py +545 -0
  162. vllm/engine/__init__.py +0 -0
  163. vllm/engine/arg_utils.py +2137 -0
  164. vllm/engine/async_llm_engine.py +6 -0
  165. vllm/engine/llm_engine.py +6 -0
  166. vllm/engine/protocol.py +194 -0
  167. vllm/entrypoints/__init__.py +0 -0
  168. vllm/entrypoints/anthropic/__init__.py +0 -0
  169. vllm/entrypoints/anthropic/protocol.py +162 -0
  170. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  171. vllm/entrypoints/api_server.py +186 -0
  172. vllm/entrypoints/chat_utils.py +1912 -0
  173. vllm/entrypoints/cli/__init__.py +19 -0
  174. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/base.py +25 -0
  176. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  177. vllm/entrypoints/cli/benchmark/main.py +57 -0
  178. vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  180. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  181. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  182. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  183. vllm/entrypoints/cli/collect_env.py +38 -0
  184. vllm/entrypoints/cli/main.py +79 -0
  185. vllm/entrypoints/cli/openai.py +260 -0
  186. vllm/entrypoints/cli/run_batch.py +68 -0
  187. vllm/entrypoints/cli/serve.py +253 -0
  188. vllm/entrypoints/cli/types.py +29 -0
  189. vllm/entrypoints/constants.py +12 -0
  190. vllm/entrypoints/context.py +898 -0
  191. vllm/entrypoints/grpc_server.py +531 -0
  192. vllm/entrypoints/launcher.py +175 -0
  193. vllm/entrypoints/llm.py +1807 -0
  194. vllm/entrypoints/logger.py +86 -0
  195. vllm/entrypoints/openai/__init__.py +0 -0
  196. vllm/entrypoints/openai/api_server.py +1390 -0
  197. vllm/entrypoints/openai/cli_args.py +320 -0
  198. vllm/entrypoints/openai/orca_metrics.py +120 -0
  199. vllm/entrypoints/openai/parser/__init__.py +0 -0
  200. vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
  201. vllm/entrypoints/openai/parser/responses_parser.py +176 -0
  202. vllm/entrypoints/openai/protocol.py +2566 -0
  203. vllm/entrypoints/openai/run_batch.py +635 -0
  204. vllm/entrypoints/openai/serving_chat.py +1897 -0
  205. vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
  206. vllm/entrypoints/openai/serving_completion.py +740 -0
  207. vllm/entrypoints/openai/serving_engine.py +1612 -0
  208. vllm/entrypoints/openai/serving_models.py +309 -0
  209. vllm/entrypoints/openai/serving_responses.py +2552 -0
  210. vllm/entrypoints/openai/serving_transcription.py +168 -0
  211. vllm/entrypoints/openai/speech_to_text.py +711 -0
  212. vllm/entrypoints/openai/utils.py +49 -0
  213. vllm/entrypoints/pooling/__init__.py +16 -0
  214. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  215. vllm/entrypoints/pooling/classify/api_router.py +48 -0
  216. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  217. vllm/entrypoints/pooling/classify/serving.py +233 -0
  218. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  219. vllm/entrypoints/pooling/embed/api_router.py +65 -0
  220. vllm/entrypoints/pooling/embed/conftest.py +28 -0
  221. vllm/entrypoints/pooling/embed/protocol.py +217 -0
  222. vllm/entrypoints/pooling/embed/serving.py +684 -0
  223. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  224. vllm/entrypoints/pooling/pooling/api_router.py +62 -0
  225. vllm/entrypoints/pooling/pooling/protocol.py +146 -0
  226. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  227. vllm/entrypoints/pooling/score/__init__.py +0 -0
  228. vllm/entrypoints/pooling/score/api_router.py +147 -0
  229. vllm/entrypoints/pooling/score/protocol.py +146 -0
  230. vllm/entrypoints/pooling/score/serving.py +511 -0
  231. vllm/entrypoints/renderer.py +411 -0
  232. vllm/entrypoints/responses_utils.py +218 -0
  233. vllm/entrypoints/sagemaker/__init__.py +4 -0
  234. vllm/entrypoints/sagemaker/routes.py +118 -0
  235. vllm/entrypoints/score_utils.py +271 -0
  236. vllm/entrypoints/serve/__init__.py +94 -0
  237. vllm/entrypoints/serve/cache/__init__.py +0 -0
  238. vllm/entrypoints/serve/cache/api_router.py +61 -0
  239. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  240. vllm/entrypoints/serve/disagg/api_router.py +109 -0
  241. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  242. vllm/entrypoints/serve/disagg/serving.py +285 -0
  243. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  244. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  245. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  246. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  247. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  248. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  249. vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
  250. vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
  251. vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
  252. vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
  253. vllm/entrypoints/serve/lora/__init__.py +0 -0
  254. vllm/entrypoints/serve/lora/api_router.py +70 -0
  255. vllm/entrypoints/serve/profile/__init__.py +0 -0
  256. vllm/entrypoints/serve/profile/api_router.py +46 -0
  257. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  258. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  259. vllm/entrypoints/serve/rpc/__init__.py +0 -0
  260. vllm/entrypoints/serve/rpc/api_router.py +61 -0
  261. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  262. vllm/entrypoints/serve/sleep/api_router.py +56 -0
  263. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  264. vllm/entrypoints/serve/tokenize/api_router.py +112 -0
  265. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +187 -0
  268. vllm/entrypoints/tool_server.py +234 -0
  269. vllm/entrypoints/utils.py +336 -0
  270. vllm/env_override.py +402 -0
  271. vllm/envs.py +1791 -0
  272. vllm/exceptions.py +36 -0
  273. vllm/forward_context.py +375 -0
  274. vllm/grpc/__init__.py +17 -0
  275. vllm/grpc/compile_protos.py +94 -0
  276. vllm/grpc/vllm_engine.proto +195 -0
  277. vllm/grpc/vllm_engine_pb2.py +77 -0
  278. vllm/grpc/vllm_engine_pb2.pyi +213 -0
  279. vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
  280. vllm/inputs/__init__.py +44 -0
  281. vllm/inputs/data.py +359 -0
  282. vllm/inputs/parse.py +147 -0
  283. vllm/inputs/preprocess.py +716 -0
  284. vllm/logger.py +303 -0
  285. vllm/logging_utils/__init__.py +13 -0
  286. vllm/logging_utils/dump_input.py +83 -0
  287. vllm/logging_utils/formatter.py +127 -0
  288. vllm/logging_utils/lazy.py +20 -0
  289. vllm/logging_utils/log_time.py +34 -0
  290. vllm/logits_process.py +121 -0
  291. vllm/logprobs.py +206 -0
  292. vllm/lora/__init__.py +0 -0
  293. vllm/lora/layers/__init__.py +43 -0
  294. vllm/lora/layers/base.py +66 -0
  295. vllm/lora/layers/base_linear.py +172 -0
  296. vllm/lora/layers/column_parallel_linear.py +577 -0
  297. vllm/lora/layers/fused_moe.py +739 -0
  298. vllm/lora/layers/logits_processor.py +203 -0
  299. vllm/lora/layers/replicated_linear.py +70 -0
  300. vllm/lora/layers/row_parallel_linear.py +176 -0
  301. vllm/lora/layers/utils.py +115 -0
  302. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  303. vllm/lora/lora_model.py +221 -0
  304. vllm/lora/lora_weights.py +227 -0
  305. vllm/lora/model_manager.py +858 -0
  306. vllm/lora/ops/__init__.py +0 -0
  307. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  308. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  309. vllm/lora/ops/torch_ops/__init__.py +20 -0
  310. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  311. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  312. vllm/lora/ops/triton_ops/__init__.py +21 -0
  313. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
  314. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  315. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  316. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  317. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  318. vllm/lora/ops/triton_ops/utils.py +313 -0
  319. vllm/lora/peft_helper.py +128 -0
  320. vllm/lora/punica_wrapper/__init__.py +10 -0
  321. vllm/lora/punica_wrapper/punica_base.py +493 -0
  322. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  323. vllm/lora/punica_wrapper/punica_gpu.py +413 -0
  324. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  325. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  326. vllm/lora/punica_wrapper/utils.py +150 -0
  327. vllm/lora/request.py +60 -0
  328. vllm/lora/resolver.py +88 -0
  329. vllm/lora/utils.py +281 -0
  330. vllm/lora/worker_manager.py +278 -0
  331. vllm/model_executor/__init__.py +9 -0
  332. vllm/model_executor/custom_op.py +203 -0
  333. vllm/model_executor/layers/__init__.py +0 -0
  334. vllm/model_executor/layers/activation.py +628 -0
  335. vllm/model_executor/layers/attention/__init__.py +0 -0
  336. vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
  337. vllm/model_executor/layers/attention/cross_attention.py +182 -0
  338. vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
  339. vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
  340. vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
  341. vllm/model_executor/layers/attention_layer_base.py +34 -0
  342. vllm/model_executor/layers/batch_invariant.py +1063 -0
  343. vllm/model_executor/layers/conv.py +262 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +120 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1111 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  645. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  646. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  647. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  648. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  649. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  650. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  651. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
  652. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
  653. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
  654. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  655. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  656. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
  657. vllm/model_executor/layers/fused_moe/fallback.py +127 -0
  658. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
  659. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
  660. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
  661. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  662. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
  663. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
  664. vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
  665. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
  666. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
  667. vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
  668. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
  669. vllm/model_executor/layers/fused_moe/layer.py +2169 -0
  670. vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
  671. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  672. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  673. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  674. vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
  675. vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
  676. vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
  677. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  678. vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
  679. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
  680. vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
  681. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  682. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  683. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  684. vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
  685. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
  686. vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
  687. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
  688. vllm/model_executor/layers/fused_moe/utils.py +382 -0
  689. vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
  690. vllm/model_executor/layers/kda.py +442 -0
  691. vllm/model_executor/layers/layernorm.py +451 -0
  692. vllm/model_executor/layers/lightning_attn.py +735 -0
  693. vllm/model_executor/layers/linear.py +1478 -0
  694. vllm/model_executor/layers/logits_processor.py +109 -0
  695. vllm/model_executor/layers/mamba/__init__.py +0 -0
  696. vllm/model_executor/layers/mamba/abstract.py +68 -0
  697. vllm/model_executor/layers/mamba/linear_attn.py +410 -0
  698. vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
  699. vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
  700. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  701. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  702. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  703. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  704. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  705. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  706. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  707. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  708. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  709. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  710. vllm/model_executor/layers/mamba/short_conv.py +254 -0
  711. vllm/model_executor/layers/mla.py +179 -0
  712. vllm/model_executor/layers/pooler/__init__.py +5 -0
  713. vllm/model_executor/layers/pooler/abstract.py +39 -0
  714. vllm/model_executor/layers/pooler/activations.py +162 -0
  715. vllm/model_executor/layers/pooler/common.py +32 -0
  716. vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
  717. vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
  718. vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
  719. vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
  720. vllm/model_executor/layers/pooler/special.py +128 -0
  721. vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
  722. vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
  723. vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
  724. vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
  725. vllm/model_executor/layers/quantization/__init__.py +195 -0
  726. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  727. vllm/model_executor/layers/quantization/awq.py +277 -0
  728. vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
  729. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  730. vllm/model_executor/layers/quantization/base_config.py +170 -0
  731. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  732. vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
  733. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  734. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
  735. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
  736. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
  737. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  738. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  739. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  740. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
  741. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  742. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  743. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  744. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  745. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  746. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
  747. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  748. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  749. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  750. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  751. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  752. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  753. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  754. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  755. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  756. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  757. vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
  758. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  759. vllm/model_executor/layers/quantization/experts_int8.py +209 -0
  760. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  761. vllm/model_executor/layers/quantization/fp8.py +1224 -0
  762. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  763. vllm/model_executor/layers/quantization/gguf.py +682 -0
  764. vllm/model_executor/layers/quantization/gptq.py +393 -0
  765. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  766. vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
  767. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  768. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  769. vllm/model_executor/layers/quantization/inc.py +65 -0
  770. vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
  771. vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
  772. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  773. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  774. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
  775. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  776. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  777. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  778. vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
  779. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  780. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  781. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
  782. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  783. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  784. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  785. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  786. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
  787. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  788. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  789. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  790. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
  791. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  792. vllm/model_executor/layers/quantization/modelopt.py +1665 -0
  793. vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
  794. vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
  795. vllm/model_executor/layers/quantization/petit.py +319 -0
  796. vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
  797. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  798. vllm/model_executor/layers/quantization/quark/quark.py +570 -0
  799. vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
  800. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  801. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  802. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  803. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  804. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  805. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  806. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  807. vllm/model_executor/layers/quantization/rtn.py +626 -0
  808. vllm/model_executor/layers/quantization/schema.py +90 -0
  809. vllm/model_executor/layers/quantization/torchao.py +380 -0
  810. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  811. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  812. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1002. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1003. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1004. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1005. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1006. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1007. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1008. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1009. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1010. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1011. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1012. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1013. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1014. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1015. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1016. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1017. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1018. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1019. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1020. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1021. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1022. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1023. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1024. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1025. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1026. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1027. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1028. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
  1029. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
  1030. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
  1031. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1032. vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
  1033. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1034. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1035. vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
  1036. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
  1037. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1038. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1039. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1040. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1041. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1042. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1043. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1044. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1045. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1046. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1047. vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
  1048. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1049. vllm/model_executor/layers/resampler.py +283 -0
  1050. vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
  1051. vllm/model_executor/layers/rotary_embedding/base.py +282 -0
  1052. vllm/model_executor/layers/rotary_embedding/common.py +289 -0
  1053. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
  1054. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
  1055. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1056. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1057. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1058. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1059. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1060. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
  1061. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1062. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1063. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1064. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1065. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1066. vllm/model_executor/layers/utils.py +251 -0
  1067. vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
  1068. vllm/model_executor/model_loader/__init__.py +150 -0
  1069. vllm/model_executor/model_loader/base_loader.py +71 -0
  1070. vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
  1071. vllm/model_executor/model_loader/default_loader.py +304 -0
  1072. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1073. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1074. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1075. vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
  1076. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1077. vllm/model_executor/model_loader/tensorizer.py +793 -0
  1078. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1079. vllm/model_executor/model_loader/utils.py +299 -0
  1080. vllm/model_executor/model_loader/weight_utils.py +1183 -0
  1081. vllm/model_executor/models/__init__.py +44 -0
  1082. vllm/model_executor/models/adapters.py +592 -0
  1083. vllm/model_executor/models/afmoe.py +697 -0
  1084. vllm/model_executor/models/aimv2.py +248 -0
  1085. vllm/model_executor/models/apertus.py +567 -0
  1086. vllm/model_executor/models/arcee.py +428 -0
  1087. vllm/model_executor/models/arctic.py +633 -0
  1088. vllm/model_executor/models/aria.py +663 -0
  1089. vllm/model_executor/models/audioflamingo3.py +639 -0
  1090. vllm/model_executor/models/aya_vision.py +448 -0
  1091. vllm/model_executor/models/bagel.py +591 -0
  1092. vllm/model_executor/models/baichuan.py +493 -0
  1093. vllm/model_executor/models/bailing_moe.py +643 -0
  1094. vllm/model_executor/models/bamba.py +511 -0
  1095. vllm/model_executor/models/bee.py +157 -0
  1096. vllm/model_executor/models/bert.py +911 -0
  1097. vllm/model_executor/models/bert_with_rope.py +729 -0
  1098. vllm/model_executor/models/blip.py +350 -0
  1099. vllm/model_executor/models/blip2.py +736 -0
  1100. vllm/model_executor/models/bloom.py +390 -0
  1101. vllm/model_executor/models/chameleon.py +1095 -0
  1102. vllm/model_executor/models/chatglm.py +502 -0
  1103. vllm/model_executor/models/clip.py +1045 -0
  1104. vllm/model_executor/models/cohere2_vision.py +470 -0
  1105. vllm/model_executor/models/commandr.py +469 -0
  1106. vllm/model_executor/models/config.py +571 -0
  1107. vllm/model_executor/models/dbrx.py +484 -0
  1108. vllm/model_executor/models/deepencoder.py +679 -0
  1109. vllm/model_executor/models/deepseek_eagle.py +253 -0
  1110. vllm/model_executor/models/deepseek_mtp.py +447 -0
  1111. vllm/model_executor/models/deepseek_ocr.py +601 -0
  1112. vllm/model_executor/models/deepseek_v2.py +1727 -0
  1113. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1114. vllm/model_executor/models/dots1.py +566 -0
  1115. vllm/model_executor/models/dots_ocr.py +830 -0
  1116. vllm/model_executor/models/ernie45.py +53 -0
  1117. vllm/model_executor/models/ernie45_moe.py +755 -0
  1118. vllm/model_executor/models/ernie45_vl.py +1702 -0
  1119. vllm/model_executor/models/ernie45_vl_moe.py +801 -0
  1120. vllm/model_executor/models/ernie_mtp.py +278 -0
  1121. vllm/model_executor/models/exaone.py +524 -0
  1122. vllm/model_executor/models/exaone4.py +518 -0
  1123. vllm/model_executor/models/exaone_moe.py +579 -0
  1124. vllm/model_executor/models/exaone_moe_mtp.py +255 -0
  1125. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1126. vllm/model_executor/models/falcon.py +543 -0
  1127. vllm/model_executor/models/falcon_h1.py +675 -0
  1128. vllm/model_executor/models/flex_olmo.py +155 -0
  1129. vllm/model_executor/models/fuyu.py +371 -0
  1130. vllm/model_executor/models/gemma.py +425 -0
  1131. vllm/model_executor/models/gemma2.py +435 -0
  1132. vllm/model_executor/models/gemma3.py +520 -0
  1133. vllm/model_executor/models/gemma3_mm.py +664 -0
  1134. vllm/model_executor/models/gemma3n.py +1166 -0
  1135. vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
  1136. vllm/model_executor/models/gemma3n_mm.py +820 -0
  1137. vllm/model_executor/models/glm.py +24 -0
  1138. vllm/model_executor/models/glm4.py +295 -0
  1139. vllm/model_executor/models/glm4_1v.py +1823 -0
  1140. vllm/model_executor/models/glm4_moe.py +725 -0
  1141. vllm/model_executor/models/glm4_moe_mtp.py +365 -0
  1142. vllm/model_executor/models/glm4v.py +783 -0
  1143. vllm/model_executor/models/glmasr.py +1154 -0
  1144. vllm/model_executor/models/glmasr_utils.py +188 -0
  1145. vllm/model_executor/models/gpt2.py +385 -0
  1146. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1147. vllm/model_executor/models/gpt_j.py +346 -0
  1148. vllm/model_executor/models/gpt_neox.py +340 -0
  1149. vllm/model_executor/models/gpt_oss.py +745 -0
  1150. vllm/model_executor/models/granite.py +475 -0
  1151. vllm/model_executor/models/granite_speech.py +919 -0
  1152. vllm/model_executor/models/granitemoe.py +561 -0
  1153. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1154. vllm/model_executor/models/granitemoeshared.py +328 -0
  1155. vllm/model_executor/models/gritlm.py +242 -0
  1156. vllm/model_executor/models/grok1.py +803 -0
  1157. vllm/model_executor/models/h2ovl.py +554 -0
  1158. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1159. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1160. vllm/model_executor/models/hyperclovax_vision.py +1163 -0
  1161. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1162. vllm/model_executor/models/idefics3.py +734 -0
  1163. vllm/model_executor/models/interfaces.py +1180 -0
  1164. vllm/model_executor/models/interfaces_base.py +252 -0
  1165. vllm/model_executor/models/intern_vit.py +454 -0
  1166. vllm/model_executor/models/internlm2.py +451 -0
  1167. vllm/model_executor/models/internlm2_ve.py +139 -0
  1168. vllm/model_executor/models/interns1.py +828 -0
  1169. vllm/model_executor/models/interns1_vit.py +433 -0
  1170. vllm/model_executor/models/internvl.py +1436 -0
  1171. vllm/model_executor/models/iquest_loopcoder.py +595 -0
  1172. vllm/model_executor/models/isaac.py +1503 -0
  1173. vllm/model_executor/models/jais.py +397 -0
  1174. vllm/model_executor/models/jais2.py +508 -0
  1175. vllm/model_executor/models/jamba.py +599 -0
  1176. vllm/model_executor/models/jina_vl.py +145 -0
  1177. vllm/model_executor/models/kanana_v.py +756 -0
  1178. vllm/model_executor/models/keye.py +1709 -0
  1179. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1180. vllm/model_executor/models/kimi_linear.py +659 -0
  1181. vllm/model_executor/models/kimi_vl.py +577 -0
  1182. vllm/model_executor/models/lfm2.py +515 -0
  1183. vllm/model_executor/models/lfm2_moe.py +746 -0
  1184. vllm/model_executor/models/lfm2_vl.py +732 -0
  1185. vllm/model_executor/models/lightonocr.py +197 -0
  1186. vllm/model_executor/models/llama.py +724 -0
  1187. vllm/model_executor/models/llama4.py +860 -0
  1188. vllm/model_executor/models/llama4_eagle.py +225 -0
  1189. vllm/model_executor/models/llama_eagle.py +213 -0
  1190. vllm/model_executor/models/llama_eagle3.py +375 -0
  1191. vllm/model_executor/models/llava.py +879 -0
  1192. vllm/model_executor/models/llava_next.py +583 -0
  1193. vllm/model_executor/models/llava_next_video.py +467 -0
  1194. vllm/model_executor/models/llava_onevision.py +922 -0
  1195. vllm/model_executor/models/longcat_flash.py +767 -0
  1196. vllm/model_executor/models/longcat_flash_mtp.py +348 -0
  1197. vllm/model_executor/models/mamba.py +276 -0
  1198. vllm/model_executor/models/mamba2.py +288 -0
  1199. vllm/model_executor/models/medusa.py +179 -0
  1200. vllm/model_executor/models/midashenglm.py +826 -0
  1201. vllm/model_executor/models/mimo.py +188 -0
  1202. vllm/model_executor/models/mimo_mtp.py +294 -0
  1203. vllm/model_executor/models/mimo_v2_flash.py +718 -0
  1204. vllm/model_executor/models/minicpm.py +660 -0
  1205. vllm/model_executor/models/minicpm3.py +233 -0
  1206. vllm/model_executor/models/minicpm_eagle.py +386 -0
  1207. vllm/model_executor/models/minicpmo.py +768 -0
  1208. vllm/model_executor/models/minicpmv.py +1742 -0
  1209. vllm/model_executor/models/minimax_m2.py +552 -0
  1210. vllm/model_executor/models/minimax_text_01.py +1008 -0
  1211. vllm/model_executor/models/minimax_vl_01.py +395 -0
  1212. vllm/model_executor/models/mistral3.py +638 -0
  1213. vllm/model_executor/models/mistral_large_3.py +63 -0
  1214. vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
  1215. vllm/model_executor/models/mixtral.py +599 -0
  1216. vllm/model_executor/models/mllama4.py +1170 -0
  1217. vllm/model_executor/models/mlp_speculator.py +235 -0
  1218. vllm/model_executor/models/modernbert.py +458 -0
  1219. vllm/model_executor/models/module_mapping.py +74 -0
  1220. vllm/model_executor/models/molmo.py +1592 -0
  1221. vllm/model_executor/models/moonvit.py +601 -0
  1222. vllm/model_executor/models/mpt.py +335 -0
  1223. vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
  1224. vllm/model_executor/models/nemotron.py +499 -0
  1225. vllm/model_executor/models/nemotron_h.py +902 -0
  1226. vllm/model_executor/models/nemotron_nas.py +474 -0
  1227. vllm/model_executor/models/nemotron_parse.py +958 -0
  1228. vllm/model_executor/models/nemotron_vl.py +651 -0
  1229. vllm/model_executor/models/nvlm_d.py +216 -0
  1230. vllm/model_executor/models/olmo.py +412 -0
  1231. vllm/model_executor/models/olmo2.py +454 -0
  1232. vllm/model_executor/models/olmoe.py +498 -0
  1233. vllm/model_executor/models/opencua.py +262 -0
  1234. vllm/model_executor/models/openpangu.py +1378 -0
  1235. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1236. vllm/model_executor/models/opt.py +426 -0
  1237. vllm/model_executor/models/orion.py +365 -0
  1238. vllm/model_executor/models/ouro.py +507 -0
  1239. vllm/model_executor/models/ovis.py +557 -0
  1240. vllm/model_executor/models/ovis2_5.py +661 -0
  1241. vllm/model_executor/models/paddleocr_vl.py +1261 -0
  1242. vllm/model_executor/models/paligemma.py +429 -0
  1243. vllm/model_executor/models/persimmon.py +373 -0
  1244. vllm/model_executor/models/phi.py +363 -0
  1245. vllm/model_executor/models/phi3.py +18 -0
  1246. vllm/model_executor/models/phi3v.py +729 -0
  1247. vllm/model_executor/models/phi4mm.py +1250 -0
  1248. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1249. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1250. vllm/model_executor/models/phimoe.py +671 -0
  1251. vllm/model_executor/models/pixtral.py +1437 -0
  1252. vllm/model_executor/models/plamo2.py +993 -0
  1253. vllm/model_executor/models/plamo3.py +437 -0
  1254. vllm/model_executor/models/qwen.py +377 -0
  1255. vllm/model_executor/models/qwen2.py +600 -0
  1256. vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
  1257. vllm/model_executor/models/qwen2_5_vl.py +1598 -0
  1258. vllm/model_executor/models/qwen2_audio.py +478 -0
  1259. vllm/model_executor/models/qwen2_moe.py +604 -0
  1260. vllm/model_executor/models/qwen2_rm.py +120 -0
  1261. vllm/model_executor/models/qwen2_vl.py +1588 -0
  1262. vllm/model_executor/models/qwen3.py +331 -0
  1263. vllm/model_executor/models/qwen3_moe.py +752 -0
  1264. vllm/model_executor/models/qwen3_next.py +1410 -0
  1265. vllm/model_executor/models/qwen3_next_mtp.py +293 -0
  1266. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
  1267. vllm/model_executor/models/qwen3_vl.py +2120 -0
  1268. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1269. vllm/model_executor/models/qwen_vl.py +821 -0
  1270. vllm/model_executor/models/radio.py +573 -0
  1271. vllm/model_executor/models/registry.py +1218 -0
  1272. vllm/model_executor/models/roberta.py +239 -0
  1273. vllm/model_executor/models/rvl.py +107 -0
  1274. vllm/model_executor/models/seed_oss.py +492 -0
  1275. vllm/model_executor/models/siglip.py +1259 -0
  1276. vllm/model_executor/models/siglip2.py +495 -0
  1277. vllm/model_executor/models/siglip2navit.py +660 -0
  1278. vllm/model_executor/models/skyworkr1v.py +951 -0
  1279. vllm/model_executor/models/smolvlm.py +38 -0
  1280. vllm/model_executor/models/solar.py +484 -0
  1281. vllm/model_executor/models/stablelm.py +354 -0
  1282. vllm/model_executor/models/starcoder2.py +365 -0
  1283. vllm/model_executor/models/step3_text.py +554 -0
  1284. vllm/model_executor/models/step3_vl.py +1147 -0
  1285. vllm/model_executor/models/swin.py +500 -0
  1286. vllm/model_executor/models/tarsier.py +624 -0
  1287. vllm/model_executor/models/telechat2.py +153 -0
  1288. vllm/model_executor/models/teleflm.py +78 -0
  1289. vllm/model_executor/models/terratorch.py +318 -0
  1290. vllm/model_executor/models/transformers/__init__.py +127 -0
  1291. vllm/model_executor/models/transformers/base.py +523 -0
  1292. vllm/model_executor/models/transformers/causal.py +65 -0
  1293. vllm/model_executor/models/transformers/legacy.py +90 -0
  1294. vllm/model_executor/models/transformers/moe.py +329 -0
  1295. vllm/model_executor/models/transformers/multimodal.py +441 -0
  1296. vllm/model_executor/models/transformers/pooling.py +102 -0
  1297. vllm/model_executor/models/transformers/utils.py +253 -0
  1298. vllm/model_executor/models/ultravox.py +786 -0
  1299. vllm/model_executor/models/utils.py +832 -0
  1300. vllm/model_executor/models/vision.py +546 -0
  1301. vllm/model_executor/models/voxtral.py +867 -0
  1302. vllm/model_executor/models/voxtral_streaming.py +304 -0
  1303. vllm/model_executor/models/whisper.py +993 -0
  1304. vllm/model_executor/models/whisper_utils.py +299 -0
  1305. vllm/model_executor/models/zamba2.py +986 -0
  1306. vllm/model_executor/parameter.py +642 -0
  1307. vllm/model_executor/utils.py +113 -0
  1308. vllm/model_executor/warmup/__init__.py +0 -0
  1309. vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
  1310. vllm/model_executor/warmup/kernel_warmup.py +97 -0
  1311. vllm/model_inspection.py +136 -0
  1312. vllm/multimodal/__init__.py +38 -0
  1313. vllm/multimodal/audio.py +287 -0
  1314. vllm/multimodal/base.py +60 -0
  1315. vllm/multimodal/cache.py +829 -0
  1316. vllm/multimodal/evs.py +294 -0
  1317. vllm/multimodal/hasher.py +123 -0
  1318. vllm/multimodal/image.py +155 -0
  1319. vllm/multimodal/inputs.py +1027 -0
  1320. vllm/multimodal/parse.py +674 -0
  1321. vllm/multimodal/processing.py +2469 -0
  1322. vllm/multimodal/profiling.py +351 -0
  1323. vllm/multimodal/registry.py +375 -0
  1324. vllm/multimodal/utils.py +550 -0
  1325. vllm/multimodal/video.py +512 -0
  1326. vllm/outputs.py +347 -0
  1327. vllm/platforms/__init__.py +277 -0
  1328. vllm/platforms/cpu.py +423 -0
  1329. vllm/platforms/cuda.py +618 -0
  1330. vllm/platforms/interface.py +707 -0
  1331. vllm/platforms/rocm.py +586 -0
  1332. vllm/platforms/tpu.py +20 -0
  1333. vllm/platforms/xpu.py +262 -0
  1334. vllm/plugins/__init__.py +81 -0
  1335. vllm/plugins/io_processors/__init__.py +68 -0
  1336. vllm/plugins/io_processors/interface.py +77 -0
  1337. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1338. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1339. vllm/pooling_params.py +229 -0
  1340. vllm/profiler/__init__.py +0 -0
  1341. vllm/profiler/layerwise_profile.py +392 -0
  1342. vllm/profiler/utils.py +151 -0
  1343. vllm/profiler/wrapper.py +241 -0
  1344. vllm/py.typed +2 -0
  1345. vllm/ray/__init__.py +0 -0
  1346. vllm/ray/lazy_utils.py +30 -0
  1347. vllm/ray/ray_env.py +79 -0
  1348. vllm/reasoning/__init__.py +96 -0
  1349. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1350. vllm/reasoning/basic_parsers.py +175 -0
  1351. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1352. vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
  1353. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1354. vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
  1355. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1356. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1357. vllm/reasoning/holo2_reasoning_parser.py +89 -0
  1358. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1359. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1360. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1361. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1362. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1363. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1364. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1365. vllm/reasoning/step3_reasoning_parser.py +113 -0
  1366. vllm/sampling_params.py +629 -0
  1367. vllm/scalar_type.py +355 -0
  1368. vllm/scripts.py +17 -0
  1369. vllm/sequence.py +64 -0
  1370. vllm/tasks.py +13 -0
  1371. vllm/third_party/__init__.py +0 -0
  1372. vllm/third_party/pynvml.py +6140 -0
  1373. vllm/tokenizers/__init__.py +18 -0
  1374. vllm/tokenizers/deepseek_v32.py +187 -0
  1375. vllm/tokenizers/deepseek_v32_encoding.py +463 -0
  1376. vllm/tokenizers/detokenizer_utils.py +198 -0
  1377. vllm/tokenizers/grok2.py +443 -0
  1378. vllm/tokenizers/hf.py +119 -0
  1379. vllm/tokenizers/mistral.py +543 -0
  1380. vllm/tokenizers/protocol.py +123 -0
  1381. vllm/tokenizers/registry.py +238 -0
  1382. vllm/tool_parsers/__init__.py +158 -0
  1383. vllm/tool_parsers/abstract_tool_parser.py +274 -0
  1384. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1385. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1386. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1387. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1388. vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
  1389. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1390. vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
  1391. vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
  1392. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1393. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1394. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1395. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1396. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1397. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1398. vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
  1399. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1400. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1401. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1402. vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
  1403. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1404. vllm/tool_parsers/mistral_tool_parser.py +612 -0
  1405. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1406. vllm/tool_parsers/openai_tool_parser.py +111 -0
  1407. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1408. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1409. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1410. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1411. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1412. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1413. vllm/tool_parsers/utils.py +229 -0
  1414. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1415. vllm/tracing.py +135 -0
  1416. vllm/transformers_utils/__init__.py +26 -0
  1417. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1418. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1419. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1420. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1421. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1422. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1423. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1424. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1425. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1426. vllm/transformers_utils/config.py +1169 -0
  1427. vllm/transformers_utils/config_parser_base.py +20 -0
  1428. vllm/transformers_utils/configs/__init__.py +106 -0
  1429. vllm/transformers_utils/configs/afmoe.py +87 -0
  1430. vllm/transformers_utils/configs/arctic.py +216 -0
  1431. vllm/transformers_utils/configs/bagel.py +53 -0
  1432. vllm/transformers_utils/configs/chatglm.py +75 -0
  1433. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1434. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1435. vllm/transformers_utils/configs/eagle.py +90 -0
  1436. vllm/transformers_utils/configs/falcon.py +89 -0
  1437. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1438. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1439. vllm/transformers_utils/configs/isaac.py +100 -0
  1440. vllm/transformers_utils/configs/jais.py +243 -0
  1441. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1442. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1443. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1444. vllm/transformers_utils/configs/medusa.py +65 -0
  1445. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1446. vllm/transformers_utils/configs/mistral.py +263 -0
  1447. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1448. vllm/transformers_utils/configs/moonvit.py +33 -0
  1449. vllm/transformers_utils/configs/nemotron.py +220 -0
  1450. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1451. vllm/transformers_utils/configs/olmo3.py +83 -0
  1452. vllm/transformers_utils/configs/ovis.py +182 -0
  1453. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1454. vllm/transformers_utils/configs/radio.py +98 -0
  1455. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1456. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1457. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1458. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1459. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1460. vllm/transformers_utils/configs/ultravox.py +120 -0
  1461. vllm/transformers_utils/dynamic_module.py +70 -0
  1462. vllm/transformers_utils/gguf_utils.py +280 -0
  1463. vllm/transformers_utils/model_arch_config_convertor.py +402 -0
  1464. vllm/transformers_utils/processor.py +424 -0
  1465. vllm/transformers_utils/processors/__init__.py +25 -0
  1466. vllm/transformers_utils/processors/bagel.py +78 -0
  1467. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1468. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1469. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1470. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1471. vllm/transformers_utils/processors/ovis.py +453 -0
  1472. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1473. vllm/transformers_utils/repo_utils.py +287 -0
  1474. vllm/transformers_utils/runai_utils.py +102 -0
  1475. vllm/transformers_utils/s3_utils.py +95 -0
  1476. vllm/transformers_utils/tokenizer.py +19 -0
  1477. vllm/transformers_utils/utils.py +112 -0
  1478. vllm/triton_utils/__init__.py +20 -0
  1479. vllm/triton_utils/importing.py +103 -0
  1480. vllm/usage/__init__.py +0 -0
  1481. vllm/usage/usage_lib.py +278 -0
  1482. vllm/utils/__init__.py +36 -0
  1483. vllm/utils/argparse_utils.py +491 -0
  1484. vllm/utils/async_utils.py +310 -0
  1485. vllm/utils/cache.py +214 -0
  1486. vllm/utils/collection_utils.py +112 -0
  1487. vllm/utils/counter.py +45 -0
  1488. vllm/utils/deep_gemm.py +424 -0
  1489. vllm/utils/flashinfer.py +602 -0
  1490. vllm/utils/func_utils.py +236 -0
  1491. vllm/utils/gc_utils.py +151 -0
  1492. vllm/utils/hashing.py +117 -0
  1493. vllm/utils/import_utils.py +438 -0
  1494. vllm/utils/jsontree.py +158 -0
  1495. vllm/utils/math_utils.py +32 -0
  1496. vllm/utils/mem_constants.py +13 -0
  1497. vllm/utils/mem_utils.py +285 -0
  1498. vllm/utils/nccl.py +64 -0
  1499. vllm/utils/network_utils.py +331 -0
  1500. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1501. vllm/utils/platform_utils.py +59 -0
  1502. vllm/utils/profiling.py +56 -0
  1503. vllm/utils/registry.py +51 -0
  1504. vllm/utils/serial_utils.py +214 -0
  1505. vllm/utils/system_utils.py +296 -0
  1506. vllm/utils/tensor_schema.py +255 -0
  1507. vllm/utils/torch_utils.py +781 -0
  1508. vllm/v1/__init__.py +0 -0
  1509. vllm/v1/attention/__init__.py +0 -0
  1510. vllm/v1/attention/backend.py +736 -0
  1511. vllm/v1/attention/backends/__init__.py +0 -0
  1512. vllm/v1/attention/backends/cpu_attn.py +501 -0
  1513. vllm/v1/attention/backends/fa_utils.py +126 -0
  1514. vllm/v1/attention/backends/flash_attn.py +1092 -0
  1515. vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
  1516. vllm/v1/attention/backends/flashinfer.py +1713 -0
  1517. vllm/v1/attention/backends/flex_attention.py +1024 -0
  1518. vllm/v1/attention/backends/gdn_attn.py +382 -0
  1519. vllm/v1/attention/backends/linear_attn.py +77 -0
  1520. vllm/v1/attention/backends/mamba1_attn.py +28 -0
  1521. vllm/v1/attention/backends/mamba2_attn.py +256 -0
  1522. vllm/v1/attention/backends/mamba_attn.py +313 -0
  1523. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1524. vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
  1525. vllm/v1/attention/backends/mla/common.py +2156 -0
  1526. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1527. vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
  1528. vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
  1529. vllm/v1/attention/backends/mla/flashmla.py +321 -0
  1530. vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
  1531. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1532. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
  1533. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
  1534. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1535. vllm/v1/attention/backends/registry.py +258 -0
  1536. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1537. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1538. vllm/v1/attention/backends/rocm_attn.py +405 -0
  1539. vllm/v1/attention/backends/short_conv_attn.py +26 -0
  1540. vllm/v1/attention/backends/tree_attn.py +430 -0
  1541. vllm/v1/attention/backends/triton_attn.py +578 -0
  1542. vllm/v1/attention/backends/utils.py +978 -0
  1543. vllm/v1/attention/ops/__init__.py +0 -0
  1544. vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
  1545. vllm/v1/attention/ops/common.py +469 -0
  1546. vllm/v1/attention/ops/flashmla.py +254 -0
  1547. vllm/v1/attention/ops/merge_attn_states.py +47 -0
  1548. vllm/v1/attention/ops/paged_attn.py +51 -0
  1549. vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
  1550. vllm/v1/attention/ops/prefix_prefill.py +862 -0
  1551. vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  1552. vllm/v1/attention/ops/triton_decode_attention.py +709 -0
  1553. vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
  1554. vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
  1555. vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
  1556. vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
  1557. vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
  1558. vllm/v1/attention/selector.py +145 -0
  1559. vllm/v1/core/__init__.py +0 -0
  1560. vllm/v1/core/block_pool.py +489 -0
  1561. vllm/v1/core/encoder_cache_manager.py +402 -0
  1562. vllm/v1/core/kv_cache_coordinator.py +560 -0
  1563. vllm/v1/core/kv_cache_manager.py +485 -0
  1564. vllm/v1/core/kv_cache_metrics.py +96 -0
  1565. vllm/v1/core/kv_cache_utils.py +1642 -0
  1566. vllm/v1/core/sched/__init__.py +0 -0
  1567. vllm/v1/core/sched/async_scheduler.py +66 -0
  1568. vllm/v1/core/sched/interface.py +205 -0
  1569. vllm/v1/core/sched/output.py +261 -0
  1570. vllm/v1/core/sched/request_queue.py +208 -0
  1571. vllm/v1/core/sched/scheduler.py +1936 -0
  1572. vllm/v1/core/sched/utils.py +64 -0
  1573. vllm/v1/core/single_type_kv_cache_manager.py +926 -0
  1574. vllm/v1/cudagraph_dispatcher.py +183 -0
  1575. vllm/v1/engine/__init__.py +224 -0
  1576. vllm/v1/engine/async_llm.py +874 -0
  1577. vllm/v1/engine/coordinator.py +396 -0
  1578. vllm/v1/engine/core.py +1614 -0
  1579. vllm/v1/engine/core_client.py +1422 -0
  1580. vllm/v1/engine/detokenizer.py +351 -0
  1581. vllm/v1/engine/exceptions.py +18 -0
  1582. vllm/v1/engine/input_processor.py +713 -0
  1583. vllm/v1/engine/llm_engine.py +415 -0
  1584. vllm/v1/engine/logprobs.py +245 -0
  1585. vllm/v1/engine/output_processor.py +715 -0
  1586. vllm/v1/engine/parallel_sampling.py +150 -0
  1587. vllm/v1/engine/utils.py +1086 -0
  1588. vllm/v1/executor/__init__.py +6 -0
  1589. vllm/v1/executor/abstract.py +352 -0
  1590. vllm/v1/executor/multiproc_executor.py +888 -0
  1591. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1592. vllm/v1/executor/ray_executor.py +623 -0
  1593. vllm/v1/executor/ray_utils.py +468 -0
  1594. vllm/v1/executor/uniproc_executor.py +186 -0
  1595. vllm/v1/kv_cache_interface.py +485 -0
  1596. vllm/v1/kv_offload/__init__.py +0 -0
  1597. vllm/v1/kv_offload/abstract.py +161 -0
  1598. vllm/v1/kv_offload/arc_manager.py +237 -0
  1599. vllm/v1/kv_offload/backend.py +97 -0
  1600. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1601. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1602. vllm/v1/kv_offload/cpu.py +109 -0
  1603. vllm/v1/kv_offload/factory.py +58 -0
  1604. vllm/v1/kv_offload/lru_manager.py +139 -0
  1605. vllm/v1/kv_offload/mediums.py +39 -0
  1606. vllm/v1/kv_offload/spec.py +70 -0
  1607. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1608. vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
  1609. vllm/v1/kv_offload/worker/worker.py +163 -0
  1610. vllm/v1/metrics/__init__.py +0 -0
  1611. vllm/v1/metrics/loggers.py +1320 -0
  1612. vllm/v1/metrics/perf.py +1244 -0
  1613. vllm/v1/metrics/prometheus.py +82 -0
  1614. vllm/v1/metrics/ray_wrappers.py +194 -0
  1615. vllm/v1/metrics/reader.py +257 -0
  1616. vllm/v1/metrics/stats.py +440 -0
  1617. vllm/v1/outputs.py +242 -0
  1618. vllm/v1/pool/__init__.py +0 -0
  1619. vllm/v1/pool/metadata.py +124 -0
  1620. vllm/v1/request.py +281 -0
  1621. vllm/v1/sample/__init__.py +0 -0
  1622. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1623. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1624. vllm/v1/sample/logits_processor/interface.py +106 -0
  1625. vllm/v1/sample/logits_processor/state.py +165 -0
  1626. vllm/v1/sample/metadata.py +44 -0
  1627. vllm/v1/sample/ops/__init__.py +0 -0
  1628. vllm/v1/sample/ops/bad_words.py +57 -0
  1629. vllm/v1/sample/ops/logprobs.py +25 -0
  1630. vllm/v1/sample/ops/penalties.py +57 -0
  1631. vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
  1632. vllm/v1/sample/rejection_sampler.py +822 -0
  1633. vllm/v1/sample/sampler.py +319 -0
  1634. vllm/v1/sample/tpu/__init__.py +0 -0
  1635. vllm/v1/sample/tpu/metadata.py +120 -0
  1636. vllm/v1/sample/tpu/sampler.py +215 -0
  1637. vllm/v1/serial_utils.py +514 -0
  1638. vllm/v1/spec_decode/__init__.py +0 -0
  1639. vllm/v1/spec_decode/eagle.py +1346 -0
  1640. vllm/v1/spec_decode/medusa.py +73 -0
  1641. vllm/v1/spec_decode/metadata.py +66 -0
  1642. vllm/v1/spec_decode/metrics.py +225 -0
  1643. vllm/v1/spec_decode/ngram_proposer.py +281 -0
  1644. vllm/v1/spec_decode/suffix_decoding.py +95 -0
  1645. vllm/v1/spec_decode/utils.py +109 -0
  1646. vllm/v1/structured_output/__init__.py +337 -0
  1647. vllm/v1/structured_output/backend_guidance.py +291 -0
  1648. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1649. vllm/v1/structured_output/backend_outlines.py +324 -0
  1650. vllm/v1/structured_output/backend_types.py +136 -0
  1651. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1652. vllm/v1/structured_output/request.py +91 -0
  1653. vllm/v1/structured_output/utils.py +457 -0
  1654. vllm/v1/utils.py +466 -0
  1655. vllm/v1/worker/__init__.py +0 -0
  1656. vllm/v1/worker/block_table.py +343 -0
  1657. vllm/v1/worker/cp_utils.py +42 -0
  1658. vllm/v1/worker/cpu_model_runner.py +122 -0
  1659. vllm/v1/worker/cpu_worker.py +192 -0
  1660. vllm/v1/worker/dp_utils.py +240 -0
  1661. vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
  1662. vllm/v1/worker/gpu/README.md +4 -0
  1663. vllm/v1/worker/gpu/__init__.py +0 -0
  1664. vllm/v1/worker/gpu/async_utils.py +98 -0
  1665. vllm/v1/worker/gpu/attn_utils.py +183 -0
  1666. vllm/v1/worker/gpu/block_table.py +222 -0
  1667. vllm/v1/worker/gpu/buffer_utils.py +224 -0
  1668. vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
  1669. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1670. vllm/v1/worker/gpu/input_batch.py +526 -0
  1671. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1672. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1673. vllm/v1/worker/gpu/mm/__init__.py +0 -0
  1674. vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
  1675. vllm/v1/worker/gpu/model_runner.py +1005 -0
  1676. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1677. vllm/v1/worker/gpu/sample/gumbel.py +106 -0
  1678. vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
  1679. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1680. vllm/v1/worker/gpu/sample/metadata.py +79 -0
  1681. vllm/v1/worker/gpu/sample/min_p.py +58 -0
  1682. vllm/v1/worker/gpu/sample/output.py +14 -0
  1683. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1684. vllm/v1/worker/gpu/sample/sampler.py +88 -0
  1685. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1686. vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
  1687. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1688. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1689. vllm/v1/worker/gpu/states.py +282 -0
  1690. vllm/v1/worker/gpu/structured_outputs.py +100 -0
  1691. vllm/v1/worker/gpu_input_batch.py +1030 -0
  1692. vllm/v1/worker/gpu_model_runner.py +5761 -0
  1693. vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
  1694. vllm/v1/worker/gpu_worker.py +968 -0
  1695. vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
  1696. vllm/v1/worker/lora_model_runner_mixin.py +225 -0
  1697. vllm/v1/worker/tpu_input_batch.py +574 -0
  1698. vllm/v1/worker/tpu_worker.py +18 -0
  1699. vllm/v1/worker/ubatch_utils.py +112 -0
  1700. vllm/v1/worker/ubatching.py +242 -0
  1701. vllm/v1/worker/utils.py +400 -0
  1702. vllm/v1/worker/worker_base.py +372 -0
  1703. vllm/v1/worker/workspace.py +253 -0
  1704. vllm/v1/worker/xpu_model_runner.py +48 -0
  1705. vllm/v1/worker/xpu_worker.py +174 -0
  1706. vllm/version.py +39 -0
  1707. vllm/vllm_flash_attn/.gitkeep +0 -0
  1708. vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
  1709. vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
  1710. vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
  1711. vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
  1712. vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2469 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import contextvars
4
+ import threading
5
+ import time
6
+ from abc import ABC, abstractmethod
7
+ from collections import defaultdict
8
+ from collections.abc import Callable, Generator, ItemsView, Iterable, Mapping, Sequence
9
+ from contextlib import contextmanager
10
+ from dataclasses import dataclass, field, replace
11
+ from enum import Enum
12
+ from functools import lru_cache
13
+ from typing import (
14
+ TYPE_CHECKING,
15
+ Any,
16
+ Generic,
17
+ NamedTuple,
18
+ Protocol,
19
+ TypeAlias,
20
+ cast,
21
+ overload,
22
+ )
23
+
24
+ import regex as re
25
+ import torch
26
+ from typing_extensions import TypeVar, assert_never
27
+
28
+ from vllm.logger import init_logger
29
+ from vllm.tokenizers import TokenizerLike
30
+ from vllm.transformers_utils.processor import cached_processor_from_config
31
+ from vllm.utils.collection_utils import flatten_2d_lists, full_groupby
32
+ from vllm.utils.func_utils import get_allowed_kwarg_only_overrides
33
+ from vllm.utils.jsontree import JSONTree, json_map_leaves
34
+
35
+ from .hasher import MultiModalHasher
36
+ from .inputs import (
37
+ MultiModalDataDict,
38
+ MultiModalEncDecInputs,
39
+ MultiModalFieldConfig,
40
+ MultiModalInputs,
41
+ MultiModalKwargsItem,
42
+ MultiModalKwargsItems,
43
+ MultiModalKwargsOptionalItems,
44
+ MultiModalUUIDDict,
45
+ PlaceholderRange,
46
+ )
47
+ from .parse import (
48
+ DictEmbeddingItems,
49
+ EmbeddingItems,
50
+ MultiModalDataItems,
51
+ MultiModalDataParser,
52
+ )
53
+
54
+ if TYPE_CHECKING:
55
+ from transformers.configuration_utils import PretrainedConfig
56
+ from transformers.feature_extraction_utils import BatchFeature
57
+ from transformers.processing_utils import ProcessorMixin
58
+
59
+ from vllm.config import ModelConfig, ObservabilityConfig
60
+
61
+ from .cache import BaseMultiModalProcessorCache
62
+ from .profiling import BaseDummyInputsBuilder
63
+ else:
64
+ PretrainedConfig = object
65
+ BatchFeature = object
66
+ ProcessorMixin = object
67
+
68
+ ModelConfig = object
69
+ ObservabilityConfig = object
70
+
71
+ BaseMultiModalProcessorCache = object
72
+
73
+ logger = init_logger(__name__)
74
+
75
+ _S = TypeVar("_S", str, list[int])
76
+
77
+ _request_id_context: contextvars.ContextVar[str | None] = contextvars.ContextVar(
78
+ "_request_id_context", default=None
79
+ )
80
+
81
+
82
+ def get_current_request_id() -> str | None:
83
+ """Get the current request_id from the context, if available."""
84
+ return _request_id_context.get()
85
+
86
+
87
+ @contextmanager
88
+ def set_request_id(request_id: str) -> Generator[None, None, None]:
89
+ """Context manager to set the request_id for the current context."""
90
+ token = _request_id_context.set(request_id)
91
+ try:
92
+ yield
93
+ finally:
94
+ _request_id_context.reset(token)
95
+
96
+
97
+ @dataclass
98
+ class MultiModalProcessorTimingStats:
99
+ """Per-request timing statistics for multimodal processor stages."""
100
+
101
+ hf_processor_time: float = 0.0
102
+ """Time spent in HuggingFace processor calls (seconds)."""
103
+
104
+ hashing_time: float = 0.0
105
+ """Time spent computing multimodal item hashes (seconds)."""
106
+
107
+ cache_lookup_time: float = 0.0
108
+ """Time spent in cache lookups and merges (seconds)."""
109
+
110
+ prompt_update_time: float = 0.0
111
+ """Time spent applying prompt updates and finding placeholders (seconds)."""
112
+
113
+ total_time: float = 0.0
114
+ """Total processing time (seconds)."""
115
+
116
+ def to_dict(self) -> dict[str, float]:
117
+ """Convert stats to a dictionary for JSON serialization."""
118
+ return {
119
+ "hf_processor_time": self.hf_processor_time,
120
+ "hashing_time": self.hashing_time,
121
+ "cache_lookup_time": self.cache_lookup_time,
122
+ "prompt_update_time": self.prompt_update_time,
123
+ "total_time": self.total_time,
124
+ }
125
+
126
+
127
+ def get_timing_stats_from_engine_client(
128
+ engine_client: Any,
129
+ ) -> dict[str, dict[str, float]]:
130
+ """
131
+ Get all timing stats from the context associated with the engine client.
132
+
133
+ Args:
134
+ engine_client: The engine client that has input_processor.
135
+
136
+ Returns:
137
+ A dictionary mapping request_id to stats dict.
138
+ """
139
+ try:
140
+ if not engine_client.vllm_config.observability_config.enable_mm_processor_stats:
141
+ return {}
142
+ except (AttributeError, RuntimeError):
143
+ return {}
144
+
145
+ try:
146
+ input_processor = engine_client.input_processor
147
+ input_preprocessor = input_processor.input_preprocessor
148
+
149
+ if hasattr(input_preprocessor, "_get_mm_processor"):
150
+ mm_processor = input_preprocessor._get_mm_processor()
151
+ if mm_processor is not None and hasattr(mm_processor, "info"):
152
+ ctx = mm_processor.info.ctx
153
+ return ctx.get_all_timing_stats()
154
+ except (AttributeError, RuntimeError):
155
+ pass
156
+
157
+ return {}
158
+
159
+
160
+ @contextmanager
161
+ def _timed_operation(ctx: "InputProcessingContext", stage_name: str):
162
+ """
163
+ Context manager to time an operation using the context's timing stats.
164
+
165
+ The request_id is automatically retrieved from the context variable,
166
+ so it doesn't need to be passed as a parameter.
167
+
168
+ Args:
169
+ ctx: The InputProcessingContext containing the timing stats registry.
170
+ stage_name: Name of the stage being timed.
171
+ """
172
+ request_id = get_current_request_id()
173
+ if ctx is None or request_id is None:
174
+ yield
175
+ return
176
+
177
+ stats = ctx.get_timing_stats(request_id)
178
+ if stats is None:
179
+ yield
180
+ return
181
+
182
+ start_time = time.perf_counter()
183
+ try:
184
+ yield
185
+ finally:
186
+ elapsed = time.perf_counter() - start_time
187
+ if stage_name == "hf_processor":
188
+ stats.hf_processor_time += elapsed
189
+ elif stage_name == "hashing":
190
+ stats.hashing_time += elapsed
191
+ elif stage_name == "cache_lookup":
192
+ stats.cache_lookup_time += elapsed
193
+ elif stage_name == "prompt_update":
194
+ stats.prompt_update_time += elapsed
195
+ stats.total_time += elapsed
196
+
197
+
198
+ PromptSeq: TypeAlias = str | list[int]
199
+ """A token sequence (list of token IDs) or text."""
200
+
201
+
202
+ @lru_cache(maxsize=2048)
203
+ def _cached_encode(
204
+ tokenizer: TokenizerLike,
205
+ text: str,
206
+ *,
207
+ add_special_tokens: bool = True,
208
+ ) -> list[int]:
209
+ return tokenizer.encode(text, add_special_tokens=add_special_tokens)
210
+
211
+
212
+ @lru_cache(maxsize=2048)
213
+ def _cached_decode(
214
+ tokenizer: TokenizerLike,
215
+ token_ids: tuple[int, ...],
216
+ *,
217
+ skip_special_tokens: bool = False,
218
+ ) -> str:
219
+ return tokenizer.decode(list(token_ids), skip_special_tokens=skip_special_tokens)
220
+
221
+
222
+ def _seq2text(
223
+ tokenizer: TokenizerLike | None,
224
+ seq: PromptSeq,
225
+ *,
226
+ use_cache: bool = True,
227
+ ) -> str:
228
+ if isinstance(seq, str):
229
+ return seq
230
+
231
+ if tokenizer is None:
232
+ raise ValueError("You cannot decode tokens when `skip_tokenizer_init=True`")
233
+
234
+ if not use_cache:
235
+ return tokenizer.decode(seq)
236
+
237
+ return _cached_decode(tokenizer, tuple(seq))
238
+
239
+
240
+ def _seq2tokens(
241
+ tokenizer: TokenizerLike | None,
242
+ seq: PromptSeq,
243
+ *,
244
+ use_cache: bool = True,
245
+ ) -> list[int]:
246
+ if isinstance(seq, str):
247
+ if tokenizer is None:
248
+ raise ValueError("You cannot encode text when `skip_tokenizer_init=True`")
249
+
250
+ if not use_cache:
251
+ return tokenizer.encode(seq, add_special_tokens=False)
252
+
253
+ return _cached_encode(tokenizer, seq, add_special_tokens=False)
254
+
255
+ return seq
256
+
257
+
258
+ class _GetMatchIndex(Protocol):
259
+ def __call__(
260
+ self,
261
+ tokenizer: TokenizerLike | None,
262
+ prompt: PromptSeq,
263
+ start_idx: int = 0,
264
+ ) -> int | None: ...
265
+
266
+
267
+ @dataclass
268
+ class PromptIndex:
269
+ """Resolves to an index in the prompt."""
270
+
271
+ get_match_index: _GetMatchIndex
272
+
273
+
274
+ class PromptIndexTargets:
275
+ @staticmethod
276
+ def start() -> PromptIndex:
277
+ """
278
+ Resolves to the start of the prompt (before the first token).
279
+
280
+ This results in a match even if the prompt is empty.
281
+ """
282
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: 0)
283
+
284
+ @staticmethod
285
+ def prefix(seq: PromptSeq) -> PromptIndex:
286
+ """
287
+ Resolves to a location in the prompt after the given prefix.
288
+ """
289
+
290
+ def get_match_index(
291
+ tokenizer: TokenizerLike | None,
292
+ prompt: PromptSeq,
293
+ start_idx: int = 0,
294
+ ) -> int | None:
295
+ if start_idx != 0:
296
+ return None
297
+
298
+ prefix = seq
299
+
300
+ if isinstance(prompt, str):
301
+ # Make both `str`
302
+ prefix = _seq2text(tokenizer, prefix, use_cache=False)
303
+ else:
304
+ # Make both `list[int]`
305
+ prefix = _seq2tokens(tokenizer, prefix, use_cache=False)
306
+
307
+ match_idx = len(prefix)
308
+ return match_idx if prompt[:match_idx] == prefix else None
309
+
310
+ return PromptIndex(get_match_index)
311
+
312
+ @staticmethod
313
+ def end() -> PromptIndex:
314
+ """
315
+ Resolves to the end of the prompt (after the last token).
316
+
317
+ This results in a match even if the prompt is empty.
318
+ """
319
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: len(prompt))
320
+
321
+
322
+ UpdateTarget: TypeAlias = PromptSeq | PromptIndex
323
+ """
324
+ The token sequence or text to update.
325
+ """
326
+
327
+ PromptUpdateTarget: TypeAlias = Callable[[int], UpdateTarget] | UpdateTarget
328
+ """
329
+ Given the index of the processed item within
330
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
331
+ output the corresponding token sequence (or text).
332
+
333
+ For convenience, you can directly pass in the token sequence (or text)
334
+ instead of a function if it does not depend on the input.
335
+ """
336
+
337
+
338
+ @dataclass
339
+ class PromptUpdateDetails(Generic[_S]):
340
+ """Details about the token sequence or text that are part of the update."""
341
+
342
+ full: _S
343
+ """The full content."""
344
+
345
+ is_embed: Callable[[TokenizerLike | None, PromptSeq], torch.Tensor] | None = None
346
+ """
347
+ Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
348
+ return a boolean mask of shape `(len(full),)` indicating which positions
349
+ of `full` to assign embeddings to.
350
+
351
+ `None` (default) means to assign embeddings to all positions of `full`.
352
+
353
+ The embeddings are obtained by calling
354
+ [`SupportsMultiModal.embed_multimodal`][vllm.model_executor.models.interfaces.SupportsMultiModal.embed_multimodal].
355
+ """
356
+
357
+ @staticmethod
358
+ def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
359
+ return PromptUpdateDetails(full=seq)
360
+
361
+ @staticmethod
362
+ def select_text(
363
+ seq: _S,
364
+ embed_text: str,
365
+ ) -> "PromptUpdateDetails[_S]":
366
+ def is_embed(tokenizer: TokenizerLike | None, full: PromptSeq) -> torch.Tensor:
367
+ embed_token_ids = _seq2tokens(tokenizer, embed_text, use_cache=False)
368
+ token_ids = _seq2tokens(tokenizer, full)
369
+
370
+ return torch.isin(
371
+ torch.tensor(token_ids),
372
+ torch.tensor(embed_token_ids),
373
+ )
374
+
375
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
376
+
377
+ @staticmethod
378
+ def select_token_id(
379
+ seq: _S,
380
+ embed_token_id: int,
381
+ ) -> "PromptUpdateDetails[_S]":
382
+ def is_embed(tokenizer: TokenizerLike | None, full: PromptSeq) -> torch.Tensor:
383
+ token_ids = _seq2tokens(tokenizer, full)
384
+
385
+ return torch.tensor(token_ids) == embed_token_id
386
+
387
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
388
+
389
+
390
+ PromptUpdateInfo: TypeAlias = PromptSeq | PromptUpdateDetails
391
+ """
392
+ The token sequence or text that are part of the update.
393
+
394
+ If only part of the content corresponds to feature placeholders, you can
395
+ use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
396
+ specify which part.
397
+ """
398
+
399
+ PromptUpdateContent: TypeAlias = Callable[[int], PromptUpdateInfo] | PromptUpdateInfo
400
+ """
401
+ Given the index of the processed item within
402
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
403
+ output the corresponding token sequence (or text).
404
+
405
+ For convenience, you can directly pass in the token sequence (or text)
406
+ instead of a function if it does not depend on the input.
407
+ """
408
+
409
+
410
+ class UpdateMode(str, Enum):
411
+ INSERT = "insert"
412
+ REPLACE = "replace"
413
+
414
+
415
+ @dataclass
416
+ class PromptUpdate(ABC):
417
+ """
418
+ Defines how to update a prompt with placeholder tokens.
419
+ """
420
+
421
+ modality: str
422
+ """The modality for which the update is made."""
423
+
424
+ target: PromptUpdateTarget
425
+ """The token sequence (or text) to update."""
426
+
427
+ @property
428
+ @abstractmethod
429
+ def content(self) -> PromptUpdateContent:
430
+ """The placeholder tokens that are part of the update."""
431
+ raise NotImplementedError
432
+
433
+ @property
434
+ @abstractmethod
435
+ def mode(self) -> UpdateMode:
436
+ """Defines how to update the prompt."""
437
+ raise NotImplementedError
438
+
439
+ def _resolve_target(self, item_idx: int) -> UpdateTarget:
440
+ target = self.target
441
+ if callable(target):
442
+ target = target(item_idx)
443
+
444
+ return target
445
+
446
+ def _resolve_content(self, item_idx: int) -> PromptUpdateDetails:
447
+ content = self.content
448
+ if callable(content):
449
+ content = content(item_idx)
450
+
451
+ if not isinstance(content, PromptUpdateDetails):
452
+ content = PromptUpdateDetails.from_seq(content)
453
+
454
+ return content
455
+
456
+ def resolve(self, item_idx: int) -> "ResolvedPromptUpdate":
457
+ """
458
+ Given the index of the processed item within
459
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
460
+ output a copy of this object with its lazy attributes resolved.
461
+ """
462
+ return ResolvedPromptUpdate(
463
+ modality=self.modality,
464
+ item_idx=item_idx,
465
+ mode=self.mode,
466
+ target=self._resolve_target(item_idx),
467
+ content=self._resolve_content(item_idx),
468
+ )
469
+
470
+
471
+ @dataclass
472
+ class PromptInsertion(PromptUpdate):
473
+ """
474
+ Defines how to insert placeholder tokens into a prompt.
475
+
476
+ Example:
477
+
478
+ For each image, insert a number of `<image>` feature placeholders
479
+ equal to the feature size of the vision encoder after the `<s>` token:
480
+
481
+ ```python
482
+ PromptInsertion(
483
+ modality="image",
484
+ target="<s>",
485
+ insertion="<image>" * image_feature_size,
486
+ )
487
+ ```
488
+
489
+ Insert these tokens at the start of the prompt:
490
+
491
+ ```python
492
+ PromptInsertion(
493
+ modality="image",
494
+ target=PromptIndexTargets.start(),
495
+ insertion="<image>" * image_feature_size,
496
+ )
497
+ ```
498
+
499
+ Insert these tokens after a prefix `Images:`:
500
+
501
+ ```python
502
+ PromptInsertion(
503
+ modality="image",
504
+ target=PromptIndexTargets.prefix("Images:"),
505
+ insertion="<image>" * image_feature_size,
506
+ )
507
+ ```
508
+
509
+ Insert these tokens at the end of the prompt:
510
+
511
+ ```python
512
+ PromptInsertion(
513
+ modality="image",
514
+ target=PromptIndexTargets.end(),
515
+ insertion="<image>" * image_feature_size,
516
+ )
517
+ ```
518
+ """
519
+
520
+ insertion: PromptUpdateContent = field(repr=False)
521
+ """
522
+ Given the index of the processed item within
523
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
524
+ output the token sequence (or text) to insert right after
525
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
526
+
527
+ For convenience, you can directly pass in the token sequence (or text)
528
+ instead of a function if it does not depend on the input.
529
+ """
530
+
531
+ @property
532
+ def content(self) -> PromptUpdateContent:
533
+ return self.insertion
534
+
535
+ @property
536
+ def mode(self) -> UpdateMode:
537
+ return UpdateMode.INSERT
538
+
539
+
540
+ @dataclass
541
+ class PromptReplacement(PromptUpdate):
542
+ """
543
+ Defines how to replace portions of an input prompt with placeholder tokens.
544
+
545
+ Example:
546
+
547
+ For each image, replace one `<image>` input placeholder in the prompt
548
+ with a number of `<image>` feature placeholders
549
+ equal to the feature size of the vision encoder:
550
+
551
+ ```python
552
+ PromptReplacement(
553
+ modality="image",
554
+ target="<image>",
555
+ replacement="<image>" * image_feature_size,
556
+ )
557
+ ```
558
+
559
+ As above, but further pad the feature placeholders with `<image_bos>`
560
+ and `<image_eos>`, which are not supposed to be passed to the vision
561
+ encoder:
562
+
563
+ ```python
564
+ PromptReplacement(
565
+ modality="image",
566
+ target="<image>",
567
+ replacement=PromptUpdateDetails(
568
+ full="".join(
569
+ [
570
+ "<image_bos>",
571
+ "<image>" * image_feature_size,
572
+ "<image_eos>",
573
+ ]
574
+ ),
575
+ features="<image>" * image_feature_size,
576
+ ),
577
+ )
578
+ ```
579
+
580
+ To avoid unnecessary tokenization during prompt replacement,
581
+ we recommended passing token sequences instead of text:
582
+
583
+ ```python
584
+ PromptReplacement(
585
+ modality="image",
586
+ target=[image_token_id],
587
+ replacement=PromptUpdateDetails(
588
+ full=(
589
+ [image_bos_id] + [image_token_id] * image_feature_size + [image_eos_id]
590
+ ),
591
+ features=[image_token_id] * image_feature_size,
592
+ ),
593
+ )
594
+ ```
595
+ """
596
+
597
+ replacement: PromptUpdateContent = field(repr=False)
598
+ """
599
+ Given the index of the processed item within
600
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
601
+ output the token sequence (or text) to replace
602
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
603
+
604
+ For convenience, you can directly pass in the token sequence (or text)
605
+ instead of a function if it does not depend on the input.
606
+ """
607
+
608
+ @property
609
+ def content(self) -> PromptUpdateContent:
610
+ return self.replacement
611
+
612
+ @property
613
+ def mode(self) -> UpdateMode:
614
+ return UpdateMode.REPLACE
615
+
616
+
617
+ class _HasModalityAttr(Protocol):
618
+ modality: str
619
+
620
+
621
+ class _HasModalityProp(Protocol):
622
+ @property
623
+ def modality(self) -> str: ...
624
+
625
+
626
+ _M = TypeVar("_M", bound=_HasModalityAttr | _HasModalityProp)
627
+
628
+
629
+ def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
630
+ """
631
+ Convenience function to apply
632
+ [`full_groupby`][vllm.utils.collection_utils.full_groupby]
633
+ based on modality.
634
+ """
635
+ return full_groupby(values, key=lambda x: x.modality)
636
+
637
+
638
+ class PromptTargetMatch(NamedTuple):
639
+ start_idx: int
640
+ end_idx: int
641
+
642
+
643
+ @dataclass(frozen=True)
644
+ class ResolvedPromptUpdate:
645
+ """
646
+ A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] with its
647
+ lazy attributes resolved, apart from those related to tokenization.
648
+ """
649
+
650
+ modality: str
651
+ """The modality for which the update is made."""
652
+
653
+ item_idx: int
654
+ """The index within `modality` of the item this update pertains to."""
655
+
656
+ mode: UpdateMode
657
+ """Defines how to update the prompt."""
658
+
659
+ target: UpdateTarget
660
+ """The token sequence (or text) to update."""
661
+
662
+ content: PromptUpdateDetails = field(repr=False)
663
+ """The placeholder tokens that are part of the update."""
664
+
665
+ def iter_token_matches(
666
+ self,
667
+ prompt: list[int],
668
+ tokenizer: TokenizerLike | None,
669
+ *,
670
+ start_idx: int = 0,
671
+ ) -> Generator[PromptTargetMatch]:
672
+ """Yield each instance of `self.target` found in `prompt`."""
673
+ target = self.target
674
+
675
+ if isinstance(target, PromptIndex):
676
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
677
+ if match_idx is not None:
678
+ yield PromptTargetMatch(match_idx, match_idx)
679
+
680
+ return
681
+
682
+ target_token_ids = _seq2tokens(tokenizer, target)
683
+
684
+ for match in iter_token_matches(prompt, target_token_ids, start_idx=start_idx):
685
+ yield PromptTargetMatch(match.start_idx, match.end_idx)
686
+
687
+ def iter_text_matches(
688
+ self,
689
+ prompt: str,
690
+ tokenizer: TokenizerLike | None,
691
+ *,
692
+ start_idx: int = 0,
693
+ ) -> Generator[PromptTargetMatch]:
694
+ """Yield each instance of `self.target` found in `prompt`."""
695
+ target = self.target
696
+
697
+ if isinstance(target, PromptIndex):
698
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
699
+ if match_idx is not None:
700
+ yield PromptTargetMatch(match_idx, match_idx)
701
+
702
+ return
703
+
704
+ target_text = _seq2text(tokenizer, target)
705
+
706
+ for match in re.finditer(re.escape(target_text), prompt, pos=start_idx):
707
+ yield PromptTargetMatch(match.start(), match.end())
708
+
709
+ def iter_matches(
710
+ self,
711
+ prompt: list[int] | str,
712
+ tokenizer: TokenizerLike | None,
713
+ *,
714
+ start_idx: int = 0,
715
+ ) -> Generator[PromptTargetMatch]:
716
+ """Yield each instance of `self.target` found in `prompt`."""
717
+ if isinstance(prompt, str):
718
+ return self.iter_text_matches(prompt, tokenizer, start_idx=start_idx)
719
+
720
+ return self.iter_token_matches(prompt, tokenizer, start_idx=start_idx)
721
+
722
+ def with_target(self, target: UpdateTarget):
723
+ return replace(self, target=target)
724
+
725
+ def with_content(self, content: PromptUpdateInfo):
726
+ if not isinstance(content, PromptUpdateDetails):
727
+ content = PromptUpdateDetails.from_seq(content)
728
+
729
+ return replace(self, content=content)
730
+
731
+
732
+ class _TokenMatch(NamedTuple):
733
+ start_idx: int
734
+ end_idx: int
735
+
736
+
737
+ def iter_token_matches(
738
+ token_ids: list[int],
739
+ match_ids: list[int],
740
+ *,
741
+ start_idx: int = 0,
742
+ ) -> Generator[_TokenMatch]:
743
+ """
744
+ Yield each occurrence of `match_ids` in `token_ids`.
745
+
746
+ Note that empty matches are ignored.
747
+ """
748
+ prompt_len = len(token_ids)
749
+ match_len = len(match_ids)
750
+
751
+ if match_len == 0:
752
+ return
753
+
754
+ while start_idx < prompt_len - match_len + 1:
755
+ end_idx = start_idx + match_len
756
+
757
+ if token_ids[start_idx:end_idx] == match_ids:
758
+ yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
759
+
760
+ # Exclude overlapping matches
761
+ start_idx = end_idx
762
+ else:
763
+ start_idx += 1
764
+
765
+
766
+ def replace_token_matches(
767
+ token_ids: list[int],
768
+ match_ids: list[int],
769
+ new_ids: list[int],
770
+ ) -> list[int]:
771
+ """
772
+ Replace each occurrence of `match_ids` in `token_ids`
773
+ with `new_ids`.
774
+
775
+ Note that empty matches are ignored.
776
+ """
777
+ out_seqs = list[list[int]]()
778
+ prev_end_idx = 0
779
+
780
+ for match in iter_token_matches(token_ids, match_ids):
781
+ start_idx = match.start_idx
782
+ end_idx = match.end_idx
783
+
784
+ out_seqs.append(token_ids[prev_end_idx:start_idx])
785
+ out_seqs.append(new_ids)
786
+ prev_end_idx = end_idx
787
+
788
+ out_seqs.append(token_ids[prev_end_idx:])
789
+
790
+ return flatten_2d_lists(out_seqs)
791
+
792
+
793
+ @dataclass
794
+ class PlaceholderFeaturesInfo:
795
+ modality: str
796
+ item_idx: int
797
+ start_idx: int
798
+ tokens: list[int]
799
+ is_embed: torch.Tensor | None
800
+
801
+ @property
802
+ def length(self) -> int:
803
+ return len(self.tokens)
804
+
805
+ def to_range(self) -> PlaceholderRange:
806
+ # TODO: Is it worth it to optimize this by stripping the
807
+ # leading and ending positions where `is_embed=False`?
808
+ return PlaceholderRange(
809
+ offset=self.start_idx,
810
+ length=self.length,
811
+ is_embed=self.is_embed,
812
+ )
813
+
814
+
815
+ _MatchToApply = tuple[tuple[str, int], tuple[PromptTargetMatch, int]]
816
+
817
+
818
+ def _find_matches(
819
+ prompt: _S,
820
+ mm_prompt_updates: "MultiModalPromptUpdates",
821
+ tokenizer: TokenizerLike | None,
822
+ *,
823
+ prev_end_idx: int = 0,
824
+ current_result: "MultiModalPromptUpdatesApplyResult",
825
+ ) -> tuple[UpdateMode | None, list[_MatchToApply]]:
826
+ mode: UpdateMode | None = None
827
+ mm_matches = dict[tuple[str, int], tuple[PromptTargetMatch, int]]()
828
+
829
+ for modality, modality_updates in mm_prompt_updates.items():
830
+ for item_idx, item_updates in enumerate(modality_updates):
831
+ if current_result[modality][item_idx] is not None:
832
+ continue # Updates have already been applied for this item
833
+
834
+ for update_idx, update in enumerate(item_updates):
835
+ if (modality, item_idx) in mm_matches:
836
+ break # Already found a match for this item
837
+
838
+ for match in update.iter_matches(
839
+ prompt,
840
+ tokenizer,
841
+ start_idx=prev_end_idx,
842
+ ):
843
+ # All matches should share the same mode
844
+ if mode is None:
845
+ mode = update.mode
846
+ elif mode != update.mode:
847
+ continue
848
+
849
+ mm_matches[(modality, item_idx)] = match, update_idx
850
+ break # Get only the first valid match per item
851
+
852
+ # Prioritize earlier matches
853
+ matches_to_apply = sorted(mm_matches.items(), key=lambda item: item[1][0])
854
+
855
+ # To avoid conflicts, only replace one non-empty item at a time
856
+ if mode == UpdateMode.REPLACE:
857
+ matches_to_apply_ = list[_MatchToApply]()
858
+ has_non_empty_matches = False
859
+
860
+ for item in matches_to_apply:
861
+ _, (match, _) = item
862
+ if match.start_idx == match.end_idx:
863
+ matches_to_apply_.append(item)
864
+ elif not has_non_empty_matches:
865
+ has_non_empty_matches = True
866
+ matches_to_apply_.append(item)
867
+
868
+ matches_to_apply = matches_to_apply_
869
+
870
+ return mode, matches_to_apply
871
+
872
+
873
+ def _all_items_found(
874
+ mm_item_counts: dict[str, int],
875
+ mm_found_counts: dict[str, int],
876
+ ) -> bool:
877
+ return all(
878
+ item_idx >= mm_item_counts[modality]
879
+ for modality, item_idx in mm_found_counts.items()
880
+ )
881
+
882
+
883
+ def _apply_matches(
884
+ prompt: _S,
885
+ mm_prompt_updates: "MultiModalPromptUpdates",
886
+ tokenizer: TokenizerLike | None,
887
+ ) -> tuple[list[_S], "MultiModalPromptUpdatesApplyResult"]:
888
+ mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
889
+
890
+ out_seqs = list[str | list[int]]()
891
+ out_result: MultiModalPromptUpdatesApplyResult = {
892
+ m: [None] * len(items) for m, items in mm_prompt_updates.items()
893
+ }
894
+
895
+ # Early exit if no items to find
896
+ mm_found_counts = {
897
+ m: sum(r is not None for r in res) for m, res in out_result.items()
898
+ }
899
+ if _all_items_found(mm_item_counts, mm_found_counts):
900
+ return [prompt], out_result
901
+
902
+ prev_end_idx = 0
903
+ while True:
904
+ mode, matches_to_apply = _find_matches(
905
+ prompt,
906
+ mm_prompt_updates,
907
+ tokenizer,
908
+ prev_end_idx=prev_end_idx,
909
+ current_result=out_result,
910
+ )
911
+
912
+ if mode is None:
913
+ break # No more matches to find
914
+
915
+ for (modality, item_idx), (match, update_idx) in matches_to_apply:
916
+ matched_update = mm_prompt_updates[modality][item_idx][update_idx]
917
+ matched_content = matched_update.content.full
918
+
919
+ if mode == UpdateMode.INSERT:
920
+ end_idx_to_insert = match.end_idx
921
+ elif mode == UpdateMode.REPLACE:
922
+ end_idx_to_insert = match.start_idx
923
+ else:
924
+ assert_never(mode)
925
+
926
+ out_seqs.append(prompt[prev_end_idx:end_idx_to_insert])
927
+ out_seqs.append(
928
+ _seq2text(tokenizer, matched_content)
929
+ if isinstance(prompt, str)
930
+ else _seq2tokens(tokenizer, matched_content)
931
+ )
932
+ out_result[modality][item_idx] = update_idx
933
+
934
+ # Exclude overlapping matches
935
+ prev_end_idx = match.end_idx
936
+
937
+ # Early exit if all items found
938
+ mm_found_counts = {
939
+ m: sum(r is not None for r in res) for m, res in out_result.items()
940
+ }
941
+ if _all_items_found(mm_item_counts, mm_found_counts):
942
+ break
943
+
944
+ out_seqs.append(prompt[prev_end_idx:])
945
+
946
+ return cast(list[_S], out_seqs), out_result
947
+
948
+
949
+ def apply_token_matches(
950
+ prompt: list[int],
951
+ mm_prompt_updates: "MultiModalPromptUpdates",
952
+ tokenizer: TokenizerLike | None,
953
+ ) -> tuple[list[int], "MultiModalPromptUpdatesApplyResult"]:
954
+ """
955
+ Apply the updates in `mm_prompt_updates` to `prompt`.
956
+
957
+ Matches are exclusive even when multiple modalities share
958
+ the same placeholder tokens. In that case, the modality that
959
+ appears earlier in `mm_prompt_updates` takes priority.
960
+ """
961
+ token_id_seqs, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
962
+
963
+ return flatten_2d_lists(token_id_seqs), result
964
+
965
+
966
+ def apply_text_matches(
967
+ prompt: str,
968
+ mm_prompt_updates: "MultiModalPromptUpdates",
969
+ tokenizer: TokenizerLike | None,
970
+ ) -> tuple[str, "MultiModalPromptUpdatesApplyResult"]:
971
+ """
972
+ Apply the updates in `mm_prompt_updates` to `prompt`.
973
+
974
+ Matches are exclusive even when multiple modalities share
975
+ the same placeholder tokens. In that case, the modality that
976
+ appears earlier in `mm_prompt_updates` takes priority.
977
+ """
978
+ texts, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
979
+
980
+ return "".join(texts), result
981
+
982
+
983
+ def _iter_placeholders(
984
+ prompt: list[int],
985
+ mm_prompt_updates: "MultiModalPromptUpdates",
986
+ tokenizer: TokenizerLike | None,
987
+ ) -> Iterable[PlaceholderFeaturesInfo]:
988
+ """
989
+ Yield each set of placeholder tokens found in `prompt`.
990
+
991
+ Matches are exclusive even when multiple modalities share
992
+ the same placeholder tokens. In that case, the modality that
993
+ appears earlier in `mm_prompt_updates` takes priority.
994
+
995
+ Note that empty matches are ignored.
996
+ """
997
+ mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
998
+ item_idx_by_modality = {modality: 0 for modality in mm_prompt_updates}
999
+
1000
+ if _all_items_found(mm_item_counts, item_idx_by_modality):
1001
+ return
1002
+
1003
+ prompt_len = len(prompt)
1004
+ start_idx = 0
1005
+
1006
+ while start_idx < prompt_len:
1007
+ found = False
1008
+
1009
+ for modality, modality_updates in mm_prompt_updates.items():
1010
+ item_idx = item_idx_by_modality[modality]
1011
+ if item_idx >= mm_item_counts.get(modality, 0):
1012
+ continue
1013
+
1014
+ for update in modality_updates[item_idx]:
1015
+ content = update.content
1016
+ content_tokens_full = _seq2tokens(tokenizer, content.full)
1017
+ content_len_full = len(content_tokens_full)
1018
+ end_idx_full = start_idx + content_len_full
1019
+
1020
+ if content_len_full == 0 or end_idx_full > prompt_len:
1021
+ continue
1022
+
1023
+ if prompt[start_idx:end_idx_full] == content_tokens_full:
1024
+ content_is_embed = content.is_embed
1025
+ if content_is_embed is not None:
1026
+ content_is_embed = content_is_embed(tokenizer, content.full)
1027
+
1028
+ yield PlaceholderFeaturesInfo(
1029
+ modality=modality,
1030
+ item_idx=item_idx,
1031
+ start_idx=start_idx,
1032
+ tokens=content_tokens_full,
1033
+ is_embed=content_is_embed,
1034
+ )
1035
+
1036
+ # Exclude overlapping matches
1037
+ start_idx = end_idx_full
1038
+ item_idx_by_modality[modality] += 1
1039
+ found = True
1040
+ break
1041
+
1042
+ if found:
1043
+ if _all_items_found(mm_item_counts, item_idx_by_modality):
1044
+ return
1045
+
1046
+ break # Go back to the outer while loop
1047
+
1048
+ if not found:
1049
+ start_idx += 1
1050
+
1051
+
1052
+ def find_mm_placeholders(
1053
+ prompt: list[int],
1054
+ mm_prompt_updates: "MultiModalPromptUpdates",
1055
+ tokenizer: TokenizerLike | None,
1056
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
1057
+ it = _iter_placeholders(prompt, mm_prompt_updates, tokenizer)
1058
+ return dict(full_groupby_modality(it))
1059
+
1060
+
1061
+ _T = TypeVar("_T")
1062
+ _C = TypeVar("_C", bound=PretrainedConfig, default=PretrainedConfig)
1063
+ _P = TypeVar("_P", bound=ProcessorMixin, default=ProcessorMixin)
1064
+
1065
+
1066
+ @dataclass(frozen=True)
1067
+ class InputProcessingContext:
1068
+ """
1069
+ Contains information about the model which may be used to
1070
+ modify the inputs.
1071
+ """
1072
+
1073
+ model_config: ModelConfig
1074
+ """The configuration of the model."""
1075
+
1076
+ tokenizer: TokenizerLike | None
1077
+ """The tokenizer used to tokenize the inputs."""
1078
+
1079
+ observability_config: "ObservabilityConfig | None" = field(
1080
+ default=None, compare=False, repr=False
1081
+ )
1082
+ """Configuration for observability features."""
1083
+
1084
+ timing_stats_registry: dict[str, MultiModalProcessorTimingStats] = field(
1085
+ default_factory=dict, compare=False, repr=False
1086
+ )
1087
+ """Registry for storing timing stats keyed by request_id."""
1088
+
1089
+ _timing_stats_registry_lock: threading.Lock = field(
1090
+ default_factory=threading.Lock, compare=False, repr=False
1091
+ )
1092
+ """Lock for thread-safe access to timing_stats_registry."""
1093
+
1094
+ def get_tokenizer(self) -> TokenizerLike:
1095
+ if self.tokenizer is None:
1096
+ raise ValueError(
1097
+ "You cannot pass text prompts when `skip_tokenizer_init=True`"
1098
+ )
1099
+
1100
+ return self.tokenizer
1101
+
1102
+ @overload
1103
+ def get_hf_config(self, /) -> PretrainedConfig: ...
1104
+
1105
+ @overload
1106
+ def get_hf_config(
1107
+ self,
1108
+ typ: type[_C] | tuple[type[_C], ...],
1109
+ /,
1110
+ ) -> _C: ...
1111
+
1112
+ def get_hf_config(
1113
+ self,
1114
+ typ: type[Any] | tuple[type[Any], ...] | None = None,
1115
+ /,
1116
+ ) -> Any:
1117
+ """
1118
+ Get the HuggingFace configuration
1119
+ (`transformers.PretrainedConfig`) of the model,
1120
+ additionally checking its type.
1121
+
1122
+ Raises:
1123
+ TypeError: If the configuration is not of the specified type.
1124
+ """
1125
+ if typ is None:
1126
+ from transformers.configuration_utils import PretrainedConfig
1127
+
1128
+ typ = PretrainedConfig
1129
+
1130
+ hf_config = self.model_config.hf_config
1131
+ if not isinstance(hf_config, typ):
1132
+ raise TypeError(
1133
+ "Invalid type of HuggingFace config. "
1134
+ f"Expected type: {typ}, but "
1135
+ f"found type: {type(hf_config)}"
1136
+ )
1137
+
1138
+ return hf_config
1139
+
1140
+ def get_hf_image_processor_config(self) -> dict[str, Any]:
1141
+ """
1142
+ Get the HuggingFace image processor configuration of the model.
1143
+ """
1144
+ return self.model_config.hf_image_processor_config
1145
+
1146
+ def get_mm_config(self):
1147
+ """
1148
+ Get the multimodal config of the model.
1149
+
1150
+ Raises:
1151
+ RuntimeError: If the model is not a multimodal model.
1152
+ """
1153
+ mm_config = self.model_config.multimodal_config
1154
+ if mm_config is None:
1155
+ raise RuntimeError("Not a multimodal model")
1156
+
1157
+ return mm_config
1158
+
1159
+ @overload
1160
+ def get_hf_processor(self, /, **kwargs: object) -> ProcessorMixin: ...
1161
+
1162
+ @overload
1163
+ def get_hf_processor(
1164
+ self,
1165
+ typ: type[_P] | tuple[type[_P], ...],
1166
+ /,
1167
+ **kwargs: object,
1168
+ ) -> _P: ...
1169
+
1170
+ def get_hf_processor(
1171
+ self,
1172
+ typ: type[Any] | tuple[type[Any], ...] | None = None,
1173
+ /,
1174
+ **kwargs: object,
1175
+ ) -> Any:
1176
+ """
1177
+ Get the HuggingFace processor
1178
+ (`transformers.ProcessorMixin`) of the model,
1179
+ additionally checking its type.
1180
+
1181
+ Raises:
1182
+ TypeError: If the processor is not of the specified type.
1183
+ """
1184
+ if typ is None:
1185
+ from transformers.processing_utils import ProcessorMixin
1186
+
1187
+ typ = ProcessorMixin
1188
+
1189
+ from vllm.tokenizers.mistral import MistralTokenizer
1190
+
1191
+ tokenizer = self.tokenizer
1192
+ if isinstance(tokenizer, MistralTokenizer):
1193
+ tokenizer = tokenizer.transformers_tokenizer
1194
+
1195
+ return cached_processor_from_config(
1196
+ self.model_config,
1197
+ processor_cls=typ,
1198
+ tokenizer=tokenizer,
1199
+ **kwargs,
1200
+ )
1201
+
1202
+ def init_processor(
1203
+ self,
1204
+ typ: type[_T],
1205
+ /,
1206
+ **kwargs: object,
1207
+ ) -> _T:
1208
+ """
1209
+ Initialize a HuggingFace-like processor class, merging the
1210
+ keyword arguments with those in the model's configuration.
1211
+ """
1212
+ mm_config = self.model_config.get_multimodal_config()
1213
+ base_kwargs = mm_config.mm_processor_kwargs
1214
+ if base_kwargs is None:
1215
+ base_kwargs = {}
1216
+
1217
+ merged_kwargs = {**base_kwargs, **kwargs}
1218
+
1219
+ return typ(**merged_kwargs)
1220
+
1221
+ def _postprocess_output(
1222
+ self,
1223
+ output: JSONTree,
1224
+ ) -> JSONTree:
1225
+ def _postprocess_one(x: object):
1226
+ if isinstance(x, torch.Tensor): # noqa: SIM102
1227
+ # This mimics the behavior of transformers.BatchFeature
1228
+ if x.is_floating_point():
1229
+ x = x.to(dtype=self.model_config.dtype)
1230
+
1231
+ return x
1232
+
1233
+ return json_map_leaves(_postprocess_one, output)
1234
+
1235
+ def call_hf_processor(
1236
+ self,
1237
+ hf_processor: ProcessorMixin,
1238
+ data: Mapping[str, object],
1239
+ kwargs: Mapping[str, object] = {},
1240
+ *,
1241
+ num_tries: int = 1,
1242
+ max_tries: int = 5,
1243
+ ) -> BatchFeature | JSONTree:
1244
+ """
1245
+ Call `hf_processor` on the prompt `data`
1246
+ (text, image, audio...) with configurable options `kwargs`.
1247
+ """
1248
+ assert callable(hf_processor)
1249
+
1250
+ mm_config = self.model_config.get_multimodal_config()
1251
+ merged_kwargs = mm_config.merge_mm_processor_kwargs(kwargs)
1252
+
1253
+ allowed_kwargs = get_allowed_kwarg_only_overrides(
1254
+ hf_processor,
1255
+ merged_kwargs,
1256
+ requires_kw_only=False,
1257
+ allow_var_kwargs=True,
1258
+ )
1259
+
1260
+ try:
1261
+ output = hf_processor(**data, **allowed_kwargs, return_tensors="pt")
1262
+ except Exception as exc:
1263
+ # See https://github.com/huggingface/tokenizers/issues/537
1264
+ if (
1265
+ isinstance(exc, RuntimeError)
1266
+ and exc
1267
+ and exc.args[0] == "Already borrowed"
1268
+ and num_tries < max_tries
1269
+ ):
1270
+ logger.warning(
1271
+ "Failed to acquire tokenizer in current thread. "
1272
+ "Retrying (%d/%d)...",
1273
+ num_tries,
1274
+ max_tries,
1275
+ )
1276
+ time.sleep(0.5)
1277
+ return self.call_hf_processor(
1278
+ hf_processor,
1279
+ data,
1280
+ kwargs,
1281
+ num_tries=num_tries + 1,
1282
+ max_tries=max_tries,
1283
+ )
1284
+
1285
+ msg = (
1286
+ f"Failed to apply {type(hf_processor).__name__} "
1287
+ f"on data={data} with kwargs={allowed_kwargs}"
1288
+ )
1289
+
1290
+ raise ValueError(msg) from exc
1291
+
1292
+ # this emulates output.to(dtype=self.model_config.dtype)
1293
+ from transformers.feature_extraction_utils import BatchFeature
1294
+
1295
+ if isinstance(output, BatchFeature):
1296
+ output_ = self._postprocess_output(output.data)
1297
+ return BatchFeature(output_)
1298
+
1299
+ logger.warning_once(
1300
+ "%s did not return `BatchFeature`. "
1301
+ "Make sure to match the behaviour of `ProcessorMixin` when "
1302
+ "implementing custom processors.",
1303
+ type(hf_processor).__name__,
1304
+ )
1305
+
1306
+ return self._postprocess_output(output)
1307
+
1308
+ def get_timing_stats(
1309
+ self, request_id: str
1310
+ ) -> MultiModalProcessorTimingStats | None:
1311
+ """
1312
+ Get timing stats for a request.
1313
+ """
1314
+ if (
1315
+ self.observability_config is None
1316
+ or not self.observability_config.enable_mm_processor_stats
1317
+ ):
1318
+ return None
1319
+ with self._timing_stats_registry_lock:
1320
+ return self.timing_stats_registry.get(request_id)
1321
+
1322
+ def create_timing_stats(self, request_id: str) -> MultiModalProcessorTimingStats:
1323
+ """
1324
+ Create and store timing stats in the registry for a request.
1325
+
1326
+ This should be called at the start of processing for a request.
1327
+ The stats object is created immediately and stored in the registry.
1328
+ """
1329
+ if (
1330
+ self.observability_config is None
1331
+ or not self.observability_config.enable_mm_processor_stats
1332
+ ):
1333
+ return MultiModalProcessorTimingStats()
1334
+
1335
+ with self._timing_stats_registry_lock:
1336
+ if request_id in self.timing_stats_registry:
1337
+ raise ValueError(
1338
+ f"Timing stats already exist for request_id: {request_id}"
1339
+ )
1340
+ stats = MultiModalProcessorTimingStats()
1341
+ self.timing_stats_registry[request_id] = stats
1342
+ return stats
1343
+
1344
+ def clear_timing_stats_registry(self) -> int:
1345
+ """
1346
+ Clear all stats from the registry. Returns the number of stats cleared.
1347
+ """
1348
+ if (
1349
+ self.observability_config is None
1350
+ or not self.observability_config.enable_mm_processor_stats
1351
+ ):
1352
+ return 0
1353
+ with self._timing_stats_registry_lock:
1354
+ count = len(self.timing_stats_registry)
1355
+ self.timing_stats_registry.clear()
1356
+ return count
1357
+
1358
+ def get_all_timing_stats(self) -> dict[str, dict[str, float]]:
1359
+ """
1360
+ Get all timing stats as a dictionary for API endpoints.
1361
+ """
1362
+ if (
1363
+ self.observability_config is None
1364
+ or not self.observability_config.enable_mm_processor_stats
1365
+ ):
1366
+ return {}
1367
+ with self._timing_stats_registry_lock:
1368
+ return {
1369
+ rid: stats.to_dict()
1370
+ for rid, stats in self.timing_stats_registry.items()
1371
+ }
1372
+
1373
+
1374
+ class BaseProcessingInfo:
1375
+ """Base class to provide the information necessary for data processing."""
1376
+
1377
+ def __init__(self, ctx: InputProcessingContext) -> None:
1378
+ super().__init__()
1379
+
1380
+ self.ctx = ctx
1381
+
1382
+ @property
1383
+ def model_id(self) -> str:
1384
+ return self.ctx.model_config.model
1385
+
1386
+ def get_tokenizer(self) -> TokenizerLike:
1387
+ return self.ctx.get_tokenizer()
1388
+
1389
+ def get_hf_config(self) -> PretrainedConfig:
1390
+ return self.ctx.get_hf_config()
1391
+
1392
+ def get_hf_processor(self, **kwargs: object) -> ProcessorMixin:
1393
+ """
1394
+ Subclasses can override this method to handle
1395
+ specific kwargs from model config or user inputs.
1396
+ """
1397
+ return self.ctx.get_hf_processor(**kwargs)
1398
+
1399
+ @abstractmethod
1400
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
1401
+ """
1402
+ Return the maximum supported number of items for each modality.
1403
+
1404
+ A value of `None` means unlimited number of items.
1405
+
1406
+ Omitting a modality from the returned dictionary means that
1407
+ it is not supported at all.
1408
+ """
1409
+ raise NotImplementedError
1410
+
1411
+ def get_allowed_mm_limits(self) -> Mapping[str, int]:
1412
+ """Return the maximum allowed number of items for each modality."""
1413
+ supported_mm_limits = self.get_supported_mm_limits()
1414
+ mm_config = self.ctx.get_mm_config()
1415
+
1416
+ allowed_limits = dict[str, int]()
1417
+ for modality, supported_limit in supported_mm_limits.items():
1418
+ user_limit = mm_config.get_limit_per_prompt(modality)
1419
+
1420
+ allowed_limits[modality] = (
1421
+ user_limit
1422
+ if supported_limit is None
1423
+ else min(user_limit, supported_limit)
1424
+ )
1425
+
1426
+ return allowed_limits
1427
+
1428
+ def get_mm_max_tokens_per_item(
1429
+ self,
1430
+ seq_len: int,
1431
+ mm_counts: Mapping[str, int],
1432
+ ) -> Mapping[str, int] | None:
1433
+ """
1434
+ Return the maximum number of tokens per item of for each modality.
1435
+
1436
+ When `None` (the default) is returned, vLLM will generate dummy inputs
1437
+ (images/videos) at maximum possible sizes and process them to determine
1438
+ the maximum token count per modality.
1439
+
1440
+ This approach works but can be very slow for certain models (e.g.,
1441
+ Qwen2.5-VL), leading to very long startup time. For better performance,
1442
+ each model can override this method to return pre-computed maximum token
1443
+ counts, avoiding the need for dummy input generation and processing.
1444
+
1445
+ Note:
1446
+ The maximum number of tokens per item of each modality returned
1447
+ from this function should respect the model's maximum sequence
1448
+ length and the maximum number of items of each modality allowed,
1449
+ and agree with dummy inputs (images/videos) at maximum possible
1450
+ sizes.
1451
+ """
1452
+ return None
1453
+
1454
+
1455
+ _I = TypeVar("_I", bound=BaseProcessingInfo)
1456
+
1457
+ MultiModalHashes = dict[str, list[str]]
1458
+ """
1459
+ A collection of the multi-modal hash for each item, with a similar structure as
1460
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1461
+ """
1462
+
1463
+ MultiModalIsCached = dict[str, list[bool]]
1464
+ """
1465
+ A collection of the `is_cached` flag for each item, with a similar structure as
1466
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1467
+ """
1468
+
1469
+ MultiModalPromptUpdates = Mapping[str, list[Sequence[ResolvedPromptUpdate]]]
1470
+ """
1471
+ A collection of prompt updates with a similar structure as
1472
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1473
+ """
1474
+
1475
+ MultiModalPromptUpdatesApplyResult = Mapping[str, list[int | None]]
1476
+ """
1477
+ For an item `MultiModalPromptUpdates[k][i]`,
1478
+ `MultiModalPromptUpdatesApplyResult[k][i]` represents the index of the
1479
+ `ResolvedPromptUpdate` instance that has been applied, or `None` if none of the
1480
+ `ResolvedPromptUpdate` instances have been applied.
1481
+ """
1482
+
1483
+
1484
+ class MultiModalProcessingInfo(NamedTuple):
1485
+ kwargs: MultiModalKwargsOptionalItems
1486
+ hashes: MultiModalHashes
1487
+ prompt_updates: MultiModalPromptUpdates
1488
+
1489
+
1490
+ class BaseMultiModalProcessor(ABC, Generic[_I]):
1491
+ """
1492
+ Abstract base class to process multi-modal inputs to be used in vLLM.
1493
+
1494
+ Not to be confused with `transformers.ProcessorMixin`.
1495
+ """
1496
+
1497
+ def __init__(
1498
+ self,
1499
+ info: _I,
1500
+ dummy_inputs: "BaseDummyInputsBuilder[_I]",
1501
+ *,
1502
+ cache: BaseMultiModalProcessorCache | None = None,
1503
+ ) -> None:
1504
+ super().__init__()
1505
+
1506
+ self.info = info
1507
+ self.dummy_inputs = dummy_inputs
1508
+ self.cache = cache
1509
+
1510
+ self.data_parser = self._get_data_parser()
1511
+
1512
+ # Avoid unnecessary recomputation
1513
+ self._supported_mm_limits = self.info.get_supported_mm_limits()
1514
+ self._allowed_mm_limits = self.info.get_allowed_mm_limits()
1515
+
1516
+ @property
1517
+ def supported_mm_limits(self):
1518
+ return self._supported_mm_limits
1519
+
1520
+ @property
1521
+ def allowed_mm_limits(self):
1522
+ return self._allowed_mm_limits
1523
+
1524
+ def __call__(
1525
+ self,
1526
+ prompt: str,
1527
+ mm_data: MultiModalDataDict,
1528
+ hf_processor_mm_kwargs: Mapping[str, object],
1529
+ *,
1530
+ mm_uuids: MultiModalUUIDDict | None = None,
1531
+ ) -> MultiModalInputs:
1532
+ return self.apply(prompt, mm_data, hf_processor_mm_kwargs, mm_uuids=mm_uuids)
1533
+
1534
+ def _get_data_parser(self) -> MultiModalDataParser:
1535
+ """
1536
+ Construct a parser to preprocess multi-modal data items
1537
+ before passing them to
1538
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1539
+
1540
+ You can support additional modalities by creating a subclass
1541
+ of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
1542
+ that has additional subparsers.
1543
+ """
1544
+ # Get expected hidden size for embedding validation if mm_embeds enabled
1545
+ # This validates hidden dimensions to prevent vulnerabilities: embeddings
1546
+ # with correct ndim but wrong shape could cause crashes at inference time
1547
+ mm_config = self.info.ctx.model_config.get_multimodal_config()
1548
+ expected_hidden_size = None
1549
+ if mm_config.enable_mm_embeds:
1550
+ expected_hidden_size = self.info.ctx.model_config.get_inputs_embeds_size()
1551
+
1552
+ return MultiModalDataParser(expected_hidden_size=expected_hidden_size)
1553
+
1554
+ def validate_num_items(
1555
+ self,
1556
+ modality: str,
1557
+ num_items: int,
1558
+ ) -> None:
1559
+ supported_limit = self.supported_mm_limits.get(modality, 0)
1560
+ allowed_limit = self.allowed_mm_limits.get(modality, 0)
1561
+
1562
+ if supported_limit is None:
1563
+ supported_limit = allowed_limit
1564
+
1565
+ limit = min(supported_limit, allowed_limit)
1566
+
1567
+ if num_items > limit:
1568
+ msg = f"At most {limit} {modality}(s) may be provided in one prompt."
1569
+
1570
+ if num_items <= supported_limit:
1571
+ msg += " Set `--limit-mm-per-prompt` to increase this limit."
1572
+
1573
+ raise ValueError(msg)
1574
+
1575
+ def _to_mm_items(
1576
+ self,
1577
+ mm_data: MultiModalDataDict,
1578
+ ) -> MultiModalDataItems:
1579
+ """
1580
+ Normalize
1581
+ [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
1582
+ to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
1583
+ before passing them to
1584
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1585
+ """
1586
+ mm_items = self.data_parser.parse_mm_data(mm_data)
1587
+
1588
+ mm_config = self.info.ctx.model_config.get_multimodal_config()
1589
+ if not mm_config.enable_mm_embeds:
1590
+ for modality, items in mm_items.items():
1591
+ if isinstance(items, (EmbeddingItems, DictEmbeddingItems)):
1592
+ raise ValueError(
1593
+ f"You must set `--enable-mm-embeds` to input "
1594
+ f"`{modality}_embeds`"
1595
+ )
1596
+
1597
+ for modality, items in mm_items.items():
1598
+ self.validate_num_items(modality, len(items))
1599
+
1600
+ return mm_items
1601
+
1602
+ @abstractmethod
1603
+ def _get_mm_fields_config(
1604
+ self,
1605
+ hf_inputs: BatchFeature,
1606
+ hf_processor_mm_kwargs: Mapping[str, object],
1607
+ ) -> Mapping[str, MultiModalFieldConfig]:
1608
+ """Given the HF-processed data, output the metadata of each field."""
1609
+ raise NotImplementedError
1610
+
1611
+ @abstractmethod
1612
+ def _get_prompt_updates(
1613
+ self,
1614
+ mm_items: MultiModalDataItems,
1615
+ hf_processor_mm_kwargs: Mapping[str, object],
1616
+ out_mm_kwargs: MultiModalKwargsItems,
1617
+ ) -> Sequence[PromptUpdate]:
1618
+ """
1619
+ Given the original multi-modal items for this modality
1620
+ and HF-processed data, output the updates to perform.
1621
+
1622
+ The information returned by this method is used to update token inputs
1623
+ which bypass the HF processor. It is also used to update the output of
1624
+ HF processor if the HF process does not apply prompt updates to text
1625
+ inputs.
1626
+
1627
+ Moreover, this information is critical to determine the token positions
1628
+ in order to construct
1629
+ [`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
1630
+ for each multi-modal item.
1631
+ """
1632
+ raise NotImplementedError
1633
+
1634
+ def _bind_and_group_updates(
1635
+ self,
1636
+ prompt_updates: Sequence[PromptUpdate],
1637
+ mm_item_counts: Mapping[str, int],
1638
+ ) -> MultiModalPromptUpdates:
1639
+ return {
1640
+ modality: [
1641
+ [update.resolve(item_idx) for update in updates]
1642
+ for item_idx in range(mm_item_counts.get(modality, 0))
1643
+ ]
1644
+ for modality, updates in full_groupby_modality(prompt_updates)
1645
+ }
1646
+
1647
+ def _get_mm_prompt_updates(
1648
+ self,
1649
+ mm_items: MultiModalDataItems,
1650
+ hf_processor_mm_kwargs: Mapping[str, object],
1651
+ out_mm_kwargs: MultiModalKwargsItems,
1652
+ ) -> MultiModalPromptUpdates:
1653
+ unbound_prompt_updates = self._get_prompt_updates(
1654
+ mm_items=mm_items,
1655
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1656
+ out_mm_kwargs=out_mm_kwargs,
1657
+ )
1658
+
1659
+ mm_prompt_updates = self._bind_and_group_updates(
1660
+ unbound_prompt_updates,
1661
+ mm_items.get_all_counts(),
1662
+ )
1663
+
1664
+ for modality, prompt_updates in mm_prompt_updates.items():
1665
+ for item_idx, item_prompt_updates in enumerate(prompt_updates):
1666
+ if len(item_prompt_updates) > 1:
1667
+ logger.warning_once(
1668
+ "Detected %d prompt updates for `mm_items[%r][%s]`. "
1669
+ "Multiple prompt updates per item is now "
1670
+ "deprecated and may be removed in v0.13. "
1671
+ "Instead, please specify dynamic update targets "
1672
+ "in the same prompt update definition by passing "
1673
+ "a function to `PromptUpdate.target`.",
1674
+ len(prompt_updates),
1675
+ modality,
1676
+ item_idx,
1677
+ )
1678
+
1679
+ return mm_prompt_updates
1680
+
1681
+ def _find_mm_placeholders(
1682
+ self,
1683
+ new_token_ids: list[int],
1684
+ mm_prompt_updates: MultiModalPromptUpdates,
1685
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
1686
+ tokenizer = self.info.get_tokenizer()
1687
+
1688
+ return find_mm_placeholders(new_token_ids, mm_prompt_updates, tokenizer)
1689
+
1690
+ def _get_hf_mm_data(
1691
+ self,
1692
+ mm_items: MultiModalDataItems,
1693
+ ) -> tuple[Mapping[str, object], Mapping[str, object]]:
1694
+ processor_data = dict[str, object]()
1695
+ passthrough_data = dict[str, object]()
1696
+
1697
+ for items in mm_items.values():
1698
+ processor_data.update(items.get_processor_data())
1699
+ passthrough_data.update(items.get_passthrough_data())
1700
+
1701
+ return processor_data, passthrough_data
1702
+
1703
+ def _call_hf_processor(
1704
+ self,
1705
+ prompt: str,
1706
+ # Not to be confused with `mm_data` in `self.apply`.
1707
+ # This refers to the data to be passed to HF processor.
1708
+ mm_data: Mapping[str, object],
1709
+ mm_kwargs: Mapping[str, object],
1710
+ tok_kwargs: Mapping[str, object],
1711
+ ) -> BatchFeature:
1712
+ """
1713
+ Call the HF processor on the prompt text and
1714
+ associated multi-modal data.
1715
+ """
1716
+ with _timed_operation(self.info.ctx, "hf_processor"):
1717
+ return self.info.ctx.call_hf_processor(
1718
+ self.info.get_hf_processor(**mm_kwargs),
1719
+ dict(text=prompt, **mm_data),
1720
+ dict(**mm_kwargs, **tok_kwargs),
1721
+ )
1722
+
1723
+ def _hf_processor_applies_updates(
1724
+ self,
1725
+ prompt_text: str,
1726
+ mm_items: MultiModalDataItems,
1727
+ hf_processor_mm_kwargs: Mapping[str, object],
1728
+ tokenization_kwargs: Mapping[str, object],
1729
+ ) -> bool:
1730
+ """
1731
+ Return whether the HF processor applies prompt updates.
1732
+
1733
+ For most HF processors, this should be `True` when multi-modal
1734
+ data items are passed, but `False` when multi-modal embeddings
1735
+ are passed.
1736
+ """
1737
+ return not any(
1738
+ isinstance(items, (EmbeddingItems, DictEmbeddingItems))
1739
+ for items in mm_items.values()
1740
+ )
1741
+
1742
+ def _apply_hf_processor_text_mm(
1743
+ self,
1744
+ prompt_text: str,
1745
+ mm_items: MultiModalDataItems,
1746
+ hf_processor_mm_kwargs: Mapping[str, object],
1747
+ tokenization_kwargs: Mapping[str, object],
1748
+ ) -> tuple[list[int], BatchFeature, bool]:
1749
+ """
1750
+ Apply the HF processor on the prompt text and multi-modal data
1751
+ together.
1752
+
1753
+ In addition, return whether prompt updates have been applied.
1754
+ """
1755
+ processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
1756
+
1757
+ processed_data = self._call_hf_processor(
1758
+ prompt=prompt_text,
1759
+ mm_data=processor_data,
1760
+ mm_kwargs=hf_processor_mm_kwargs,
1761
+ tok_kwargs=tokenization_kwargs,
1762
+ )
1763
+ processed_data.update(passthrough_data)
1764
+
1765
+ (prompt_ids,) = processed_data.pop("input_ids").tolist()
1766
+
1767
+ is_update_applied = self._hf_processor_applies_updates(
1768
+ prompt_text=prompt_text,
1769
+ mm_items=mm_items,
1770
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1771
+ tokenization_kwargs=tokenization_kwargs,
1772
+ )
1773
+
1774
+ return prompt_ids, processed_data, is_update_applied
1775
+
1776
+ def _apply_hf_processor_text_only(
1777
+ self,
1778
+ prompt_text: str,
1779
+ tokenization_kwargs: Mapping[str, object],
1780
+ ) -> list[int]:
1781
+ """
1782
+ Apply the HF processor on the prompt text only.
1783
+
1784
+ Since HF processor requires that text and multi-modal items
1785
+ correspond to each other, we create dummy multi-modal items
1786
+ to go along with the text.
1787
+ """
1788
+ prompt_ids, _, _ = self._apply_hf_processor_text_mm(
1789
+ prompt_text=prompt_text,
1790
+ mm_items=MultiModalDataItems({}),
1791
+ hf_processor_mm_kwargs={},
1792
+ tokenization_kwargs=tokenization_kwargs,
1793
+ )
1794
+
1795
+ return prompt_ids
1796
+
1797
+ def _apply_hf_processor_tokens_only(
1798
+ self,
1799
+ prompt_tokens: list[int],
1800
+ ) -> list[int]:
1801
+ """
1802
+ Apply the HF processor on the prompt tokens only.
1803
+
1804
+ Most HF processors accept prompt text but not prompt tokens.
1805
+ If the HF processor adds or removes tokens that are not related to
1806
+ multi-modal data, you should override this method so it is consistent
1807
+ with the output of
1808
+ [`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
1809
+ on the
1810
+ corresponding text.
1811
+ """
1812
+ return prompt_tokens
1813
+
1814
+ def _apply_hf_processor_mm_only(
1815
+ self,
1816
+ mm_items: MultiModalDataItems,
1817
+ hf_processor_mm_kwargs: Mapping[str, object],
1818
+ tokenization_kwargs: Mapping[str, object],
1819
+ ) -> BatchFeature:
1820
+ """
1821
+ Apply the HF processor on the multi-modal data only.
1822
+
1823
+ Since HF processor requires that text and multi-modal items
1824
+ correspond to each other, we generate dummy text using
1825
+ [`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
1826
+ to go along with the multi-modal data.
1827
+ """
1828
+ mm_counts = mm_items.get_all_counts()
1829
+
1830
+ _, mm_processed_data, _ = self._apply_hf_processor_text_mm(
1831
+ prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
1832
+ mm_items=mm_items,
1833
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1834
+ tokenization_kwargs=tokenization_kwargs,
1835
+ )
1836
+
1837
+ return mm_processed_data
1838
+
1839
+ def _apply_hf_processor_main(
1840
+ self,
1841
+ prompt: str | list[int],
1842
+ mm_items: MultiModalDataItems,
1843
+ hf_processor_mm_kwargs: Mapping[str, object],
1844
+ tokenization_kwargs: Mapping[str, object],
1845
+ *,
1846
+ enable_hf_prompt_update: bool,
1847
+ ) -> tuple[list[int], BatchFeature, bool]:
1848
+ """
1849
+ Apply the HF processor on the prompt text and multi-modal data.
1850
+
1851
+ In addition, return whether prompt updates have been applied
1852
+ (for most HF processors, this should be `True`).
1853
+
1854
+ Note:
1855
+ If `enable_hf_prompt_update=False`, we use HF processor
1856
+ to perform prompt updates if available; HF processor requires
1857
+ that the prompt corresponds to multi-modal items.
1858
+ """
1859
+ if isinstance(prompt, str):
1860
+ if enable_hf_prompt_update:
1861
+ return self._apply_hf_processor_text_mm(
1862
+ prompt_text=prompt,
1863
+ mm_items=mm_items,
1864
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1865
+ tokenization_kwargs=tokenization_kwargs,
1866
+ )
1867
+
1868
+ prompt_ids = self._apply_hf_processor_text_only(prompt, tokenization_kwargs)
1869
+ else:
1870
+ prompt_ids = self._apply_hf_processor_tokens_only(prompt)
1871
+
1872
+ mm_processed_data = self._apply_hf_processor_mm_only(
1873
+ mm_items=mm_items,
1874
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1875
+ tokenization_kwargs=tokenization_kwargs,
1876
+ )
1877
+
1878
+ return prompt_ids, mm_processed_data, False
1879
+
1880
+ def _hash_mm_items(
1881
+ self,
1882
+ mm_items: MultiModalDataItems,
1883
+ hf_processor_mm_kwargs: Mapping[str, object],
1884
+ tokenization_kwargs: Mapping[str, object],
1885
+ *,
1886
+ mm_uuids: MultiModalUUIDDict | None = None,
1887
+ ) -> MultiModalHashes:
1888
+ """Create MM hashes to be returned.
1889
+
1890
+
1891
+ Note: When overrides are provided via callers of `apply`,
1892
+ `_hash_mm_items` will be bypassed and the overrides will be used.
1893
+ """
1894
+ model_id = self.info.model_id
1895
+
1896
+ hashes: MultiModalHashes = {}
1897
+ mm_uuids = mm_uuids or {}
1898
+
1899
+ for modality, items in mm_items.items():
1900
+ if modality in mm_uuids:
1901
+ mm_uuids_per_modality = mm_uuids[modality]
1902
+ if isinstance(mm_uuids_per_modality, str):
1903
+ mm_uuids_per_modality = [mm_uuids_per_modality]
1904
+
1905
+ # For None entries, compute a hash; otherwise, use provided ID.
1906
+ computed: list[str] = []
1907
+ for i, item in enumerate(items.get_all_items_for_hash()):
1908
+ item_uuid = mm_uuids_per_modality[i]
1909
+
1910
+ # NOTE: Even if a item_uuid is provided, we still compute a
1911
+ # hash if `hf_processor_mm_kwargs` or `tokenization_kwargs`
1912
+ # are provided. This is because the processed multimodal
1913
+ # inputs can be different depending on the processor kwargs.
1914
+ if (
1915
+ item_uuid is None
1916
+ or hf_processor_mm_kwargs
1917
+ or tokenization_kwargs
1918
+ ):
1919
+ # NOTE: use provided hash string to hash with kwargs
1920
+ # if available for better performance.
1921
+ item = item_uuid if item_uuid is not None else item
1922
+ computed.append(
1923
+ MultiModalHasher.hash_kwargs(
1924
+ model_id=model_id,
1925
+ **{modality: item},
1926
+ **hf_processor_mm_kwargs,
1927
+ **tokenization_kwargs,
1928
+ )
1929
+ )
1930
+ else:
1931
+ computed.append(item_uuid)
1932
+ hashes[modality] = computed
1933
+ else:
1934
+ hashes[modality] = [
1935
+ MultiModalHasher.hash_kwargs(
1936
+ model_id=model_id,
1937
+ **{modality: item},
1938
+ **hf_processor_mm_kwargs,
1939
+ **tokenization_kwargs,
1940
+ )
1941
+ for item in items
1942
+ ]
1943
+
1944
+ return hashes
1945
+
1946
+ def _get_cache_missing_items(
1947
+ self,
1948
+ cache: BaseMultiModalProcessorCache,
1949
+ mm_data_items: MultiModalDataItems,
1950
+ mm_hashes: MultiModalHashes,
1951
+ ) -> tuple[MultiModalIsCached, MultiModalDataItems]:
1952
+ mm_is_cached = {
1953
+ modality: cache.is_cached(hashes) for modality, hashes in mm_hashes.items()
1954
+ }
1955
+
1956
+ mm_missing_idxs = {
1957
+ modality: [
1958
+ idx
1959
+ for idx, item_is_cached in enumerate(items_is_cached)
1960
+ if not item_is_cached
1961
+ ]
1962
+ for modality, items_is_cached in mm_is_cached.items()
1963
+ }
1964
+ mm_missing_data = {}
1965
+ for modality, idxs in mm_missing_idxs.items():
1966
+ missing_modality_data = []
1967
+ for idx in idxs:
1968
+ data = mm_data_items[modality][idx]
1969
+ if data is None:
1970
+ raise ValueError(
1971
+ f"Cache miss for {modality} at index {idx} "
1972
+ f"but data is not provided."
1973
+ )
1974
+ else:
1975
+ missing_modality_data.append(data)
1976
+ mm_missing_data[modality] = missing_modality_data
1977
+
1978
+ return mm_is_cached, self._to_mm_items(mm_missing_data)
1979
+
1980
+ def _recompute_cached_prompt_update(
1981
+ self,
1982
+ cached_update: ResolvedPromptUpdate,
1983
+ new_item_idx: int,
1984
+ ) -> ResolvedPromptUpdate:
1985
+ """
1986
+ Override this if other attributes of `ResolvedPromptUpdate`
1987
+ also need to be recomputed after retrieving from the cache.
1988
+ """
1989
+ return replace(cached_update, item_idx=new_item_idx)
1990
+
1991
+ def _merge_mm_kwargs(
1992
+ self,
1993
+ cache: BaseMultiModalProcessorCache,
1994
+ mm_hashes: MultiModalHashes,
1995
+ mm_is_cached: MultiModalIsCached,
1996
+ mm_missing_kwargs: MultiModalKwargsItems,
1997
+ mm_missing_prompt_updates: MultiModalPromptUpdates,
1998
+ ) -> tuple[MultiModalKwargsOptionalItems, MultiModalPromptUpdates]:
1999
+ # Need to touch all mm hashes before update to avoid hash in updated
2000
+ # list evict during update
2001
+ for hashes in mm_hashes.values():
2002
+ for item_hash in hashes:
2003
+ cache.touch_sender_cache_item(item_hash)
2004
+
2005
+ mm_missing_next_idx = defaultdict[str, int](lambda: 0)
2006
+
2007
+ merged_kwargs = defaultdict[str, list[MultiModalKwargsItem | None]](list)
2008
+ merged_prompt_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](
2009
+ list
2010
+ )
2011
+ for modality, hashes in mm_hashes.items():
2012
+ missing_kwargs = mm_missing_kwargs.get(modality, [])
2013
+ missing_prompt_updates = mm_missing_prompt_updates.get(modality, [])
2014
+
2015
+ for item_idx, item_hash in enumerate(hashes):
2016
+ if not mm_is_cached[modality][item_idx]:
2017
+ missing_next_idx = mm_missing_next_idx[modality]
2018
+ missing_kwargs_item = missing_kwargs[missing_next_idx]
2019
+ missing_updates_item = missing_prompt_updates[missing_next_idx]
2020
+
2021
+ mm_missing_next_idx[modality] += 1
2022
+
2023
+ item = missing_kwargs_item, missing_updates_item
2024
+ else:
2025
+ item = None
2026
+
2027
+ kwargs, updates = cache.get_and_update_item(item, item_hash)
2028
+
2029
+ merged_kwargs[modality].append(kwargs)
2030
+ merged_prompt_updates[modality].append(
2031
+ [
2032
+ self._recompute_cached_prompt_update(update, item_idx)
2033
+ for update in updates
2034
+ ]
2035
+ )
2036
+
2037
+ mm_kwargs = MultiModalKwargsItems(merged_kwargs)
2038
+ mm_prompt_updates = dict(merged_prompt_updates)
2039
+
2040
+ return mm_kwargs, mm_prompt_updates
2041
+
2042
+ def _apply_hf_processor(
2043
+ self,
2044
+ prompt: str | list[int],
2045
+ mm_data_items: MultiModalDataItems,
2046
+ hf_processor_mm_kwargs: Mapping[str, object],
2047
+ tokenization_kwargs: Mapping[str, object],
2048
+ *,
2049
+ mm_uuids: MultiModalUUIDDict | None = None,
2050
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
2051
+ (
2052
+ prompt_ids,
2053
+ mm_processed_data,
2054
+ is_update_applied,
2055
+ ) = self._apply_hf_processor_main(
2056
+ prompt=prompt,
2057
+ mm_items=mm_data_items,
2058
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
2059
+ tokenization_kwargs=tokenization_kwargs,
2060
+ enable_hf_prompt_update=True,
2061
+ )
2062
+
2063
+ mm_kwargs = MultiModalKwargsItems.from_hf_inputs(
2064
+ mm_processed_data,
2065
+ self._get_mm_fields_config(mm_processed_data, hf_processor_mm_kwargs),
2066
+ )
2067
+
2068
+ # Use overrides if provided; fallback to data-dependent hashing.
2069
+ with _timed_operation(self.info.ctx, "hashing"):
2070
+ mm_hashes = self._hash_mm_items(
2071
+ mm_data_items,
2072
+ hf_processor_mm_kwargs,
2073
+ tokenization_kwargs,
2074
+ mm_uuids=mm_uuids,
2075
+ )
2076
+
2077
+ mm_prompt_updates = self._get_mm_prompt_updates(
2078
+ mm_data_items,
2079
+ hf_processor_mm_kwargs,
2080
+ mm_kwargs,
2081
+ )
2082
+
2083
+ mm_info = MultiModalProcessingInfo(
2084
+ kwargs=mm_kwargs,
2085
+ hashes=mm_hashes,
2086
+ prompt_updates=mm_prompt_updates,
2087
+ )
2088
+
2089
+ return prompt_ids, mm_info, is_update_applied
2090
+
2091
+ def _cached_apply_hf_processor(
2092
+ self,
2093
+ prompt: str | list[int],
2094
+ mm_data_items: MultiModalDataItems,
2095
+ hf_processor_mm_kwargs: Mapping[str, object],
2096
+ tokenization_kwargs: Mapping[str, object],
2097
+ *,
2098
+ mm_uuids: MultiModalUUIDDict | None = None,
2099
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
2100
+ """
2101
+ Apply the HF processor on the full prompt text,
2102
+ caching the results and reusing cached results.
2103
+ """
2104
+ cache = self.cache
2105
+
2106
+ _, passthrough_data = self._get_hf_mm_data(mm_data_items)
2107
+ if cache is None or passthrough_data:
2108
+ return self._apply_hf_processor(
2109
+ prompt=prompt,
2110
+ mm_data_items=mm_data_items,
2111
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
2112
+ tokenization_kwargs=tokenization_kwargs,
2113
+ mm_uuids=mm_uuids,
2114
+ )
2115
+
2116
+ with _timed_operation(self.info.ctx, "hashing"):
2117
+ mm_hashes = self._hash_mm_items(
2118
+ mm_data_items,
2119
+ hf_processor_mm_kwargs,
2120
+ tokenization_kwargs,
2121
+ mm_uuids=mm_uuids,
2122
+ )
2123
+
2124
+ with _timed_operation(self.info.ctx, "cache_lookup"):
2125
+ mm_is_cached, mm_missing_data_items = self._get_cache_missing_items(
2126
+ cache=cache,
2127
+ mm_data_items=mm_data_items,
2128
+ mm_hashes=mm_hashes,
2129
+ )
2130
+
2131
+ # NOTE: `prompt` does not correspond to `mm_missing_data_items`,
2132
+ # so we can't apply prompt updates until the new multimodal
2133
+ # items are combined with the cached multimodal items
2134
+ (
2135
+ prompt_ids,
2136
+ mm_missing_processed_data,
2137
+ is_update_applied,
2138
+ ) = self._apply_hf_processor_main(
2139
+ prompt=prompt,
2140
+ mm_items=mm_missing_data_items,
2141
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
2142
+ tokenization_kwargs=tokenization_kwargs,
2143
+ enable_hf_prompt_update=False,
2144
+ )
2145
+
2146
+ mm_missing_kwargs = MultiModalKwargsItems.from_hf_inputs(
2147
+ mm_missing_processed_data,
2148
+ self._get_mm_fields_config(
2149
+ mm_missing_processed_data, hf_processor_mm_kwargs
2150
+ ),
2151
+ )
2152
+
2153
+ mm_missing_prompt_updates = self._get_mm_prompt_updates(
2154
+ mm_missing_data_items,
2155
+ hf_processor_mm_kwargs,
2156
+ mm_missing_kwargs,
2157
+ )
2158
+
2159
+ with _timed_operation(self.info.ctx, "cache_lookup"):
2160
+ mm_kwargs, mm_prompt_updates = self._merge_mm_kwargs(
2161
+ cache,
2162
+ mm_hashes=mm_hashes,
2163
+ mm_is_cached=mm_is_cached,
2164
+ mm_missing_kwargs=mm_missing_kwargs,
2165
+ mm_missing_prompt_updates=mm_missing_prompt_updates,
2166
+ )
2167
+
2168
+ mm_info = MultiModalProcessingInfo(
2169
+ kwargs=mm_kwargs,
2170
+ hashes=mm_hashes,
2171
+ prompt_updates=mm_prompt_updates,
2172
+ )
2173
+
2174
+ return prompt_ids, mm_info, is_update_applied
2175
+
2176
+ def _apply_token_matches(
2177
+ self,
2178
+ prompt: list[int],
2179
+ mm_prompt_updates: MultiModalPromptUpdates,
2180
+ ) -> tuple[list[int], MultiModalPromptUpdatesApplyResult]:
2181
+ tokenizer = self.info.get_tokenizer()
2182
+ return apply_token_matches(prompt, mm_prompt_updates, tokenizer)
2183
+
2184
+ def _apply_text_matches(
2185
+ self,
2186
+ prompt: str,
2187
+ mm_prompt_updates: MultiModalPromptUpdates,
2188
+ ) -> tuple[str, MultiModalPromptUpdatesApplyResult]:
2189
+ tokenizer = self.info.get_tokenizer()
2190
+ return apply_text_matches(prompt, mm_prompt_updates, tokenizer)
2191
+
2192
+ def _apply_prompt_updates(
2193
+ self,
2194
+ token_ids: list[int],
2195
+ mm_prompt_updates: MultiModalPromptUpdates,
2196
+ ) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
2197
+ tokenizer = self.info.get_tokenizer()
2198
+
2199
+ new_token_ids, match_result = self._apply_token_matches(
2200
+ token_ids,
2201
+ mm_prompt_updates,
2202
+ )
2203
+
2204
+ # If the search text does not represent a special token,
2205
+ # it may have different token IDs in the prompt, because
2206
+ # the tokens may go across the boundaries of the search text.
2207
+ # ----
2208
+ # e.g. when searching for "foo" in "food", if "food" itself makes
2209
+ # up a token, then the token ID of "foo" will not appear at all
2210
+ # ----
2211
+ # Since it is inefficient to search for all possible tokenizations
2212
+ # of the search text in the prompt, we instead perform string-based
2213
+ # updates on the decoded token IDs, then encode them back.
2214
+ if not all(
2215
+ all(update_idx is not None for update_idx in update_idxs)
2216
+ for update_idxs in match_result.values()
2217
+ ):
2218
+ new_text, match_result = self._apply_text_matches(
2219
+ _seq2text(tokenizer, token_ids, use_cache=False),
2220
+ mm_prompt_updates,
2221
+ )
2222
+
2223
+ new_token_ids = _seq2tokens(tokenizer, new_text, use_cache=False)
2224
+
2225
+ matched_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](list)
2226
+ for modality, update_idxs in match_result.items():
2227
+ for item_idx, update_idx in enumerate(update_idxs):
2228
+ assert update_idx is not None, (
2229
+ "Failed to apply prompt replacement for "
2230
+ f"mm_items[{modality!r}][{item_idx}]"
2231
+ )
2232
+
2233
+ matched_updates[modality].append(
2234
+ [mm_prompt_updates[modality][item_idx][update_idx]]
2235
+ )
2236
+
2237
+ placeholders = self._find_mm_placeholders(
2238
+ new_token_ids,
2239
+ dict(matched_updates),
2240
+ )
2241
+
2242
+ return new_token_ids, placeholders
2243
+
2244
+ def _validate_mm_kwargs(
2245
+ self,
2246
+ mm_kwargs: MultiModalKwargsOptionalItems,
2247
+ mm_item_counts: Mapping[str, int],
2248
+ ) -> None:
2249
+ for modality, item_count in mm_item_counts.items():
2250
+ items = mm_kwargs.get(modality, [])
2251
+
2252
+ if len(items) != item_count:
2253
+ raise RuntimeError(
2254
+ f"Expected there to be {item_count} {modality} items in "
2255
+ f"keyword arguments corresponding to {item_count} "
2256
+ f"{modality} data items, but only found {len(items)}! "
2257
+ "There is likely a problem with your "
2258
+ "implementation of merged multi-modal processor for this "
2259
+ "model (usually arising from an inconsistency between "
2260
+ "`_call_hf_processor` and `_get_mm_fields_config`)."
2261
+ )
2262
+
2263
+ def _validate_mm_updates(
2264
+ self,
2265
+ mm_updates: MultiModalPromptUpdates,
2266
+ mm_item_counts: Mapping[str, int],
2267
+ ) -> None:
2268
+ for modality, item_count in mm_item_counts.items():
2269
+ placeholders = mm_updates.get(modality, [])
2270
+
2271
+ if len(placeholders) != item_count:
2272
+ raise RuntimeError(
2273
+ f"Expected there to be {item_count} prompt updates "
2274
+ f"corresponding to {item_count} {modality} items, but "
2275
+ f"instead found {len(placeholders)} prompt updates! "
2276
+ "This is likely because you forgot to include input "
2277
+ "placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
2278
+ "in the prompt. If the model has a chat template, make "
2279
+ "sure you have applied it before calling `LLM.generate`."
2280
+ )
2281
+
2282
+ def _validate_mm_placeholders(
2283
+ self,
2284
+ mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
2285
+ mm_item_counts: Mapping[str, int],
2286
+ ) -> None:
2287
+ for modality, item_count in mm_item_counts.items():
2288
+ placeholders = mm_placeholders.get(modality, [])
2289
+
2290
+ if len(placeholders) != item_count:
2291
+ raise RuntimeError(
2292
+ f"Expected there to be {item_count} prompt placeholders "
2293
+ f"corresponding to {item_count} {modality} items, but "
2294
+ f"instead found {len(placeholders)} prompt placeholders! "
2295
+ "Make sure the implementation of `_call_hf_processor` and "
2296
+ "`_get_mm_fields_config` are consistent with each other."
2297
+ )
2298
+
2299
+ def _maybe_apply_prompt_updates(
2300
+ self,
2301
+ mm_items: MultiModalDataItems,
2302
+ prompt_ids: list[int],
2303
+ mm_kwargs: MultiModalKwargsOptionalItems,
2304
+ mm_prompt_updates: MultiModalPromptUpdates,
2305
+ is_update_applied: bool,
2306
+ ) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
2307
+ mm_item_counts = mm_items.get_all_counts()
2308
+ self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
2309
+ self._validate_mm_updates(mm_prompt_updates, mm_item_counts)
2310
+
2311
+ if is_update_applied:
2312
+ mm_placeholders = self._find_mm_placeholders(
2313
+ prompt_ids,
2314
+ mm_prompt_updates,
2315
+ )
2316
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
2317
+ else:
2318
+ prompt_ids, mm_placeholders = self._apply_prompt_updates(
2319
+ prompt_ids,
2320
+ mm_prompt_updates,
2321
+ )
2322
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
2323
+
2324
+ return prompt_ids, mm_placeholders
2325
+
2326
+ def apply(
2327
+ self,
2328
+ prompt: str | list[int],
2329
+ mm_data: MultiModalDataDict,
2330
+ hf_processor_mm_kwargs: Mapping[str, object],
2331
+ tokenization_kwargs: Mapping[str, object] | None = None,
2332
+ *,
2333
+ mm_uuids: MultiModalUUIDDict | None = None,
2334
+ ) -> MultiModalInputs:
2335
+ """
2336
+ Process multi-modal inputs to be used in vLLM.
2337
+
2338
+ The main steps are:
2339
+
2340
+ 1. Apply HF Processor on prompt text and multi-modal data together,
2341
+ outputting token IDs and processed tensors.
2342
+ 2. Find and update sequences in the token IDs with placeholder tokens.
2343
+ The number of placeholder tokens equals the feature size of the
2344
+ multi-modal data outputted by the multi-modal encoder.
2345
+ 3. Extract information about the placeholder tokens from the
2346
+ processed token IDs.
2347
+ """
2348
+ request_id = get_current_request_id()
2349
+ if request_id is not None:
2350
+ self.info.ctx.create_timing_stats(request_id)
2351
+
2352
+ mm_items = self._to_mm_items(mm_data)
2353
+
2354
+ if tokenization_kwargs is None:
2355
+ tokenization_kwargs = {}
2356
+
2357
+ (
2358
+ prompt_ids,
2359
+ mm_info,
2360
+ is_update_applied,
2361
+ ) = self._cached_apply_hf_processor(
2362
+ prompt,
2363
+ mm_items,
2364
+ hf_processor_mm_kwargs,
2365
+ tokenization_kwargs=tokenization_kwargs,
2366
+ mm_uuids=mm_uuids,
2367
+ )
2368
+
2369
+ # NOTE: tokenization_kwargs are not required to init processor
2370
+ with _timed_operation(self.info.ctx, "prompt_update"):
2371
+ prompt_ids, mm_placeholders = self._maybe_apply_prompt_updates(
2372
+ mm_items=mm_items,
2373
+ prompt_ids=prompt_ids,
2374
+ mm_kwargs=mm_info.kwargs,
2375
+ mm_prompt_updates=mm_info.prompt_updates,
2376
+ is_update_applied=is_update_applied,
2377
+ )
2378
+
2379
+ mm_placeholder_ranges = {
2380
+ modality: [item.to_range() for item in placeholders]
2381
+ for modality, placeholders in mm_placeholders.items()
2382
+ }
2383
+
2384
+ return MultiModalInputs(
2385
+ type="multimodal",
2386
+ prompt_token_ids=prompt_ids,
2387
+ mm_kwargs=mm_info.kwargs,
2388
+ mm_hashes=mm_info.hashes,
2389
+ mm_placeholders=mm_placeholder_ranges,
2390
+ )
2391
+
2392
+
2393
+ class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
2394
+ @abstractmethod
2395
+ def create_encoder_prompt(
2396
+ self,
2397
+ prompt: str | list[int],
2398
+ mm_data: MultiModalDataDict,
2399
+ ) -> str | list[int]:
2400
+ """
2401
+ Create input prompt for the encoder. HF processor will be applied on
2402
+ this prompt during profiling and generation.
2403
+ """
2404
+ raise NotImplementedError
2405
+
2406
+ @property
2407
+ def pad_dummy_encoder_prompt(self) -> bool:
2408
+ return False
2409
+
2410
+ def create_decoder_prompt(
2411
+ self,
2412
+ prompt: str | list[int],
2413
+ mm_data: MultiModalDataDict,
2414
+ ) -> str | list[int]:
2415
+ """Create input prompt for the decoder."""
2416
+ return prompt
2417
+
2418
+ def _get_enc_dec_inputs(
2419
+ self,
2420
+ prompt: str | list[int],
2421
+ mm_data: MultiModalDataDict,
2422
+ encoder_inputs: MultiModalInputs,
2423
+ ):
2424
+ tokenizer = self.info.get_tokenizer()
2425
+ decoder_prompt_raw = self.create_decoder_prompt(prompt, mm_data)
2426
+ if isinstance(decoder_prompt_raw, str):
2427
+ decoder_prompt_ids = tokenizer.encode(
2428
+ decoder_prompt_raw, add_special_tokens=False
2429
+ )
2430
+ else:
2431
+ decoder_prompt_ids = decoder_prompt_raw
2432
+
2433
+ mm_inputs = MultiModalEncDecInputs(
2434
+ encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
2435
+ **encoder_inputs,
2436
+ )
2437
+ mm_inputs["prompt_token_ids"] = decoder_prompt_ids
2438
+ return mm_inputs
2439
+
2440
+ def apply(
2441
+ self,
2442
+ prompt: str | list[int],
2443
+ mm_data: MultiModalDataDict,
2444
+ hf_processor_mm_kwargs: Mapping[str, object],
2445
+ tokenization_kwargs: Mapping[str, object] | None = None,
2446
+ *,
2447
+ mm_uuids: MultiModalUUIDDict | None = None,
2448
+ ) -> MultiModalEncDecInputs:
2449
+ """
2450
+ Process multi-modal inputs to be used in vLLM.
2451
+ The main processing steps are modified to fit encoder-decoder model:
2452
+ 1. Create encoder prompt from input prompt text.
2453
+ 2. Apply the HF processor on encoder prompt.
2454
+ 3. Copy the input prompt text as decoder prompt inputs.
2455
+ """
2456
+ encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
2457
+ encoder_inputs = super().apply(
2458
+ encoder_prompt,
2459
+ mm_data,
2460
+ hf_processor_mm_kwargs,
2461
+ tokenization_kwargs,
2462
+ mm_uuids=mm_uuids,
2463
+ )
2464
+
2465
+ return self._get_enc_dec_inputs(
2466
+ prompt=prompt,
2467
+ mm_data=mm_data,
2468
+ encoder_inputs=encoder_inputs,
2469
+ )