vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1712) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1511 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3206 -0
  6. vllm/_ipex_ops.py +445 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +62 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/layer.py +913 -0
  15. vllm/attention/utils/__init__.py +0 -0
  16. vllm/attention/utils/kv_sharing_utils.py +33 -0
  17. vllm/attention/utils/kv_transfer_utils.py +60 -0
  18. vllm/beam_search.py +88 -0
  19. vllm/benchmarks/__init__.py +0 -0
  20. vllm/benchmarks/datasets.py +3277 -0
  21. vllm/benchmarks/latency.py +172 -0
  22. vllm/benchmarks/lib/__init__.py +3 -0
  23. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  24. vllm/benchmarks/lib/ready_checker.py +72 -0
  25. vllm/benchmarks/lib/utils.py +79 -0
  26. vllm/benchmarks/mm_processor.py +363 -0
  27. vllm/benchmarks/serve.py +1761 -0
  28. vllm/benchmarks/startup.py +321 -0
  29. vllm/benchmarks/sweep/__init__.py +0 -0
  30. vllm/benchmarks/sweep/cli.py +41 -0
  31. vllm/benchmarks/sweep/param_sweep.py +159 -0
  32. vllm/benchmarks/sweep/plot.py +675 -0
  33. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  34. vllm/benchmarks/sweep/serve.py +450 -0
  35. vllm/benchmarks/sweep/serve_sla.py +459 -0
  36. vllm/benchmarks/sweep/server.py +114 -0
  37. vllm/benchmarks/sweep/sla_sweep.py +138 -0
  38. vllm/benchmarks/sweep/utils.py +4 -0
  39. vllm/benchmarks/throughput.py +946 -0
  40. vllm/collect_env.py +857 -0
  41. vllm/compilation/__init__.py +0 -0
  42. vllm/compilation/activation_quant_fusion.py +214 -0
  43. vllm/compilation/backends.py +840 -0
  44. vllm/compilation/base_static_graph.py +57 -0
  45. vllm/compilation/caching.py +196 -0
  46. vllm/compilation/collective_fusion.py +1224 -0
  47. vllm/compilation/compiler_interface.py +639 -0
  48. vllm/compilation/counter.py +50 -0
  49. vllm/compilation/cuda_graph.py +309 -0
  50. vllm/compilation/decorators.py +662 -0
  51. vllm/compilation/fix_functionalization.py +266 -0
  52. vllm/compilation/fusion.py +570 -0
  53. vllm/compilation/fusion_attn.py +363 -0
  54. vllm/compilation/fx_utils.py +92 -0
  55. vllm/compilation/inductor_pass.py +145 -0
  56. vllm/compilation/matcher_utils.py +454 -0
  57. vllm/compilation/monitor.py +62 -0
  58. vllm/compilation/noop_elimination.py +130 -0
  59. vllm/compilation/partition_rules.py +75 -0
  60. vllm/compilation/pass_manager.py +164 -0
  61. vllm/compilation/piecewise_backend.py +191 -0
  62. vllm/compilation/post_cleanup.py +21 -0
  63. vllm/compilation/qk_norm_rope_fusion.py +244 -0
  64. vllm/compilation/rocm_aiter_fusion.py +401 -0
  65. vllm/compilation/sequence_parallelism.py +368 -0
  66. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  67. vllm/compilation/vllm_inductor_pass.py +180 -0
  68. vllm/compilation/wrapper.py +329 -0
  69. vllm/config/__init__.py +112 -0
  70. vllm/config/attention.py +114 -0
  71. vllm/config/cache.py +233 -0
  72. vllm/config/compilation.py +1149 -0
  73. vllm/config/device.py +75 -0
  74. vllm/config/ec_transfer.py +110 -0
  75. vllm/config/kv_events.py +56 -0
  76. vllm/config/kv_transfer.py +119 -0
  77. vllm/config/load.py +124 -0
  78. vllm/config/lora.py +102 -0
  79. vllm/config/model.py +2026 -0
  80. vllm/config/model_arch.py +57 -0
  81. vllm/config/multimodal.py +247 -0
  82. vllm/config/observability.py +157 -0
  83. vllm/config/parallel.py +703 -0
  84. vllm/config/pooler.py +188 -0
  85. vllm/config/profiler.py +199 -0
  86. vllm/config/scheduler.py +298 -0
  87. vllm/config/speculative.py +656 -0
  88. vllm/config/speech_to_text.py +39 -0
  89. vllm/config/structured_outputs.py +78 -0
  90. vllm/config/utils.py +374 -0
  91. vllm/config/vllm.py +1487 -0
  92. vllm/connections.py +189 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +301 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +43 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +509 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +303 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +346 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  106. vllm/distributed/device_communicators/pynccl.py +386 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  113. vllm/distributed/device_communicators/symm_mem.py +156 -0
  114. vllm/distributed/device_communicators/xpu_communicator.py +98 -0
  115. vllm/distributed/ec_transfer/__init__.py +14 -0
  116. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  117. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  118. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  119. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  120. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  121. vllm/distributed/eplb/__init__.py +3 -0
  122. vllm/distributed/eplb/async_worker.py +115 -0
  123. vllm/distributed/eplb/eplb_state.py +1192 -0
  124. vllm/distributed/eplb/policy/__init__.py +19 -0
  125. vllm/distributed/eplb/policy/abstract.py +43 -0
  126. vllm/distributed/eplb/policy/default.py +376 -0
  127. vllm/distributed/eplb/rebalance_execute.py +699 -0
  128. vllm/distributed/kv_events.py +505 -0
  129. vllm/distributed/kv_transfer/README.md +29 -0
  130. vllm/distributed/kv_transfer/__init__.py +20 -0
  131. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  132. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  133. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  134. vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  142. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  159. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  160. vllm/distributed/parallel_state.py +1809 -0
  161. vllm/distributed/utils.py +545 -0
  162. vllm/engine/__init__.py +0 -0
  163. vllm/engine/arg_utils.py +2137 -0
  164. vllm/engine/async_llm_engine.py +6 -0
  165. vllm/engine/llm_engine.py +6 -0
  166. vllm/engine/protocol.py +194 -0
  167. vllm/entrypoints/__init__.py +0 -0
  168. vllm/entrypoints/anthropic/__init__.py +0 -0
  169. vllm/entrypoints/anthropic/protocol.py +162 -0
  170. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  171. vllm/entrypoints/api_server.py +186 -0
  172. vllm/entrypoints/chat_utils.py +1912 -0
  173. vllm/entrypoints/cli/__init__.py +19 -0
  174. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/base.py +25 -0
  176. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  177. vllm/entrypoints/cli/benchmark/main.py +57 -0
  178. vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  180. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  181. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  182. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  183. vllm/entrypoints/cli/collect_env.py +38 -0
  184. vllm/entrypoints/cli/main.py +79 -0
  185. vllm/entrypoints/cli/openai.py +260 -0
  186. vllm/entrypoints/cli/run_batch.py +68 -0
  187. vllm/entrypoints/cli/serve.py +253 -0
  188. vllm/entrypoints/cli/types.py +29 -0
  189. vllm/entrypoints/constants.py +12 -0
  190. vllm/entrypoints/context.py +898 -0
  191. vllm/entrypoints/grpc_server.py +531 -0
  192. vllm/entrypoints/launcher.py +175 -0
  193. vllm/entrypoints/llm.py +1807 -0
  194. vllm/entrypoints/logger.py +86 -0
  195. vllm/entrypoints/openai/__init__.py +0 -0
  196. vllm/entrypoints/openai/api_server.py +1390 -0
  197. vllm/entrypoints/openai/cli_args.py +320 -0
  198. vllm/entrypoints/openai/orca_metrics.py +120 -0
  199. vllm/entrypoints/openai/parser/__init__.py +0 -0
  200. vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
  201. vllm/entrypoints/openai/parser/responses_parser.py +176 -0
  202. vllm/entrypoints/openai/protocol.py +2566 -0
  203. vllm/entrypoints/openai/run_batch.py +635 -0
  204. vllm/entrypoints/openai/serving_chat.py +1897 -0
  205. vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
  206. vllm/entrypoints/openai/serving_completion.py +740 -0
  207. vllm/entrypoints/openai/serving_engine.py +1612 -0
  208. vllm/entrypoints/openai/serving_models.py +309 -0
  209. vllm/entrypoints/openai/serving_responses.py +2552 -0
  210. vllm/entrypoints/openai/serving_transcription.py +168 -0
  211. vllm/entrypoints/openai/speech_to_text.py +711 -0
  212. vllm/entrypoints/openai/utils.py +49 -0
  213. vllm/entrypoints/pooling/__init__.py +16 -0
  214. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  215. vllm/entrypoints/pooling/classify/api_router.py +48 -0
  216. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  217. vllm/entrypoints/pooling/classify/serving.py +233 -0
  218. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  219. vllm/entrypoints/pooling/embed/api_router.py +65 -0
  220. vllm/entrypoints/pooling/embed/conftest.py +28 -0
  221. vllm/entrypoints/pooling/embed/protocol.py +217 -0
  222. vllm/entrypoints/pooling/embed/serving.py +684 -0
  223. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  224. vllm/entrypoints/pooling/pooling/api_router.py +62 -0
  225. vllm/entrypoints/pooling/pooling/protocol.py +146 -0
  226. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  227. vllm/entrypoints/pooling/score/__init__.py +0 -0
  228. vllm/entrypoints/pooling/score/api_router.py +147 -0
  229. vllm/entrypoints/pooling/score/protocol.py +146 -0
  230. vllm/entrypoints/pooling/score/serving.py +511 -0
  231. vllm/entrypoints/renderer.py +411 -0
  232. vllm/entrypoints/responses_utils.py +218 -0
  233. vllm/entrypoints/sagemaker/__init__.py +4 -0
  234. vllm/entrypoints/sagemaker/routes.py +118 -0
  235. vllm/entrypoints/score_utils.py +271 -0
  236. vllm/entrypoints/serve/__init__.py +94 -0
  237. vllm/entrypoints/serve/cache/__init__.py +0 -0
  238. vllm/entrypoints/serve/cache/api_router.py +61 -0
  239. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  240. vllm/entrypoints/serve/disagg/api_router.py +109 -0
  241. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  242. vllm/entrypoints/serve/disagg/serving.py +285 -0
  243. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  244. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  245. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  246. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  247. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  248. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  249. vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
  250. vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
  251. vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
  252. vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
  253. vllm/entrypoints/serve/lora/__init__.py +0 -0
  254. vllm/entrypoints/serve/lora/api_router.py +70 -0
  255. vllm/entrypoints/serve/profile/__init__.py +0 -0
  256. vllm/entrypoints/serve/profile/api_router.py +46 -0
  257. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  258. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  259. vllm/entrypoints/serve/rpc/__init__.py +0 -0
  260. vllm/entrypoints/serve/rpc/api_router.py +61 -0
  261. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  262. vllm/entrypoints/serve/sleep/api_router.py +56 -0
  263. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  264. vllm/entrypoints/serve/tokenize/api_router.py +112 -0
  265. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +187 -0
  268. vllm/entrypoints/tool_server.py +234 -0
  269. vllm/entrypoints/utils.py +336 -0
  270. vllm/env_override.py +402 -0
  271. vllm/envs.py +1791 -0
  272. vllm/exceptions.py +36 -0
  273. vllm/forward_context.py +375 -0
  274. vllm/grpc/__init__.py +17 -0
  275. vllm/grpc/compile_protos.py +94 -0
  276. vllm/grpc/vllm_engine.proto +195 -0
  277. vllm/grpc/vllm_engine_pb2.py +77 -0
  278. vllm/grpc/vllm_engine_pb2.pyi +213 -0
  279. vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
  280. vllm/inputs/__init__.py +44 -0
  281. vllm/inputs/data.py +359 -0
  282. vllm/inputs/parse.py +147 -0
  283. vllm/inputs/preprocess.py +716 -0
  284. vllm/logger.py +303 -0
  285. vllm/logging_utils/__init__.py +13 -0
  286. vllm/logging_utils/dump_input.py +83 -0
  287. vllm/logging_utils/formatter.py +127 -0
  288. vllm/logging_utils/lazy.py +20 -0
  289. vllm/logging_utils/log_time.py +34 -0
  290. vllm/logits_process.py +121 -0
  291. vllm/logprobs.py +206 -0
  292. vllm/lora/__init__.py +0 -0
  293. vllm/lora/layers/__init__.py +43 -0
  294. vllm/lora/layers/base.py +66 -0
  295. vllm/lora/layers/base_linear.py +172 -0
  296. vllm/lora/layers/column_parallel_linear.py +577 -0
  297. vllm/lora/layers/fused_moe.py +739 -0
  298. vllm/lora/layers/logits_processor.py +203 -0
  299. vllm/lora/layers/replicated_linear.py +70 -0
  300. vllm/lora/layers/row_parallel_linear.py +176 -0
  301. vllm/lora/layers/utils.py +115 -0
  302. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  303. vllm/lora/lora_model.py +221 -0
  304. vllm/lora/lora_weights.py +227 -0
  305. vllm/lora/model_manager.py +858 -0
  306. vllm/lora/ops/__init__.py +0 -0
  307. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  308. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  309. vllm/lora/ops/torch_ops/__init__.py +20 -0
  310. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  311. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  312. vllm/lora/ops/triton_ops/__init__.py +21 -0
  313. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
  314. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  315. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  316. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  317. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  318. vllm/lora/ops/triton_ops/utils.py +313 -0
  319. vllm/lora/peft_helper.py +128 -0
  320. vllm/lora/punica_wrapper/__init__.py +10 -0
  321. vllm/lora/punica_wrapper/punica_base.py +493 -0
  322. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  323. vllm/lora/punica_wrapper/punica_gpu.py +413 -0
  324. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  325. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  326. vllm/lora/punica_wrapper/utils.py +150 -0
  327. vllm/lora/request.py +60 -0
  328. vllm/lora/resolver.py +88 -0
  329. vllm/lora/utils.py +281 -0
  330. vllm/lora/worker_manager.py +278 -0
  331. vllm/model_executor/__init__.py +9 -0
  332. vllm/model_executor/custom_op.py +203 -0
  333. vllm/model_executor/layers/__init__.py +0 -0
  334. vllm/model_executor/layers/activation.py +628 -0
  335. vllm/model_executor/layers/attention/__init__.py +0 -0
  336. vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
  337. vllm/model_executor/layers/attention/cross_attention.py +182 -0
  338. vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
  339. vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
  340. vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
  341. vllm/model_executor/layers/attention_layer_base.py +34 -0
  342. vllm/model_executor/layers/batch_invariant.py +1063 -0
  343. vllm/model_executor/layers/conv.py +262 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +120 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1111 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  645. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  646. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  647. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  648. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  649. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  650. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  651. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
  652. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
  653. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
  654. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  655. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  656. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
  657. vllm/model_executor/layers/fused_moe/fallback.py +127 -0
  658. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
  659. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
  660. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
  661. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  662. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
  663. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
  664. vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
  665. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
  666. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
  667. vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
  668. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
  669. vllm/model_executor/layers/fused_moe/layer.py +2169 -0
  670. vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
  671. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  672. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  673. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  674. vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
  675. vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
  676. vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
  677. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  678. vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
  679. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
  680. vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
  681. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  682. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  683. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  684. vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
  685. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
  686. vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
  687. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
  688. vllm/model_executor/layers/fused_moe/utils.py +382 -0
  689. vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
  690. vllm/model_executor/layers/kda.py +442 -0
  691. vllm/model_executor/layers/layernorm.py +451 -0
  692. vllm/model_executor/layers/lightning_attn.py +735 -0
  693. vllm/model_executor/layers/linear.py +1478 -0
  694. vllm/model_executor/layers/logits_processor.py +109 -0
  695. vllm/model_executor/layers/mamba/__init__.py +0 -0
  696. vllm/model_executor/layers/mamba/abstract.py +68 -0
  697. vllm/model_executor/layers/mamba/linear_attn.py +410 -0
  698. vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
  699. vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
  700. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  701. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  702. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  703. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  704. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  705. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  706. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  707. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  708. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  709. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  710. vllm/model_executor/layers/mamba/short_conv.py +254 -0
  711. vllm/model_executor/layers/mla.py +179 -0
  712. vllm/model_executor/layers/pooler/__init__.py +5 -0
  713. vllm/model_executor/layers/pooler/abstract.py +39 -0
  714. vllm/model_executor/layers/pooler/activations.py +162 -0
  715. vllm/model_executor/layers/pooler/common.py +32 -0
  716. vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
  717. vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
  718. vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
  719. vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
  720. vllm/model_executor/layers/pooler/special.py +128 -0
  721. vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
  722. vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
  723. vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
  724. vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
  725. vllm/model_executor/layers/quantization/__init__.py +195 -0
  726. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  727. vllm/model_executor/layers/quantization/awq.py +277 -0
  728. vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
  729. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  730. vllm/model_executor/layers/quantization/base_config.py +170 -0
  731. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  732. vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
  733. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  734. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
  735. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
  736. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
  737. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  738. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  739. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  740. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
  741. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  742. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  743. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  744. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  745. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  746. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
  747. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  748. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  749. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  750. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  751. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  752. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  753. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  754. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  755. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  756. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  757. vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
  758. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  759. vllm/model_executor/layers/quantization/experts_int8.py +209 -0
  760. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  761. vllm/model_executor/layers/quantization/fp8.py +1224 -0
  762. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  763. vllm/model_executor/layers/quantization/gguf.py +682 -0
  764. vllm/model_executor/layers/quantization/gptq.py +393 -0
  765. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  766. vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
  767. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  768. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  769. vllm/model_executor/layers/quantization/inc.py +65 -0
  770. vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
  771. vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
  772. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  773. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  774. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
  775. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  776. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  777. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  778. vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
  779. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  780. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  781. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
  782. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  783. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  784. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  785. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  786. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
  787. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  788. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  789. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  790. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
  791. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  792. vllm/model_executor/layers/quantization/modelopt.py +1665 -0
  793. vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
  794. vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
  795. vllm/model_executor/layers/quantization/petit.py +319 -0
  796. vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
  797. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  798. vllm/model_executor/layers/quantization/quark/quark.py +570 -0
  799. vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
  800. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  801. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  802. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  803. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  804. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  805. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  806. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  807. vllm/model_executor/layers/quantization/rtn.py +626 -0
  808. vllm/model_executor/layers/quantization/schema.py +90 -0
  809. vllm/model_executor/layers/quantization/torchao.py +380 -0
  810. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  811. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  812. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1002. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1003. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1004. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1005. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1006. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1007. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1008. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1009. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1010. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1011. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1012. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1013. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1014. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1015. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1016. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1017. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1018. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1019. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1020. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1021. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1022. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1023. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1024. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1025. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1026. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1027. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1028. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
  1029. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
  1030. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
  1031. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1032. vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
  1033. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1034. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1035. vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
  1036. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
  1037. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1038. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1039. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1040. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1041. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1042. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1043. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1044. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1045. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1046. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1047. vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
  1048. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1049. vllm/model_executor/layers/resampler.py +283 -0
  1050. vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
  1051. vllm/model_executor/layers/rotary_embedding/base.py +282 -0
  1052. vllm/model_executor/layers/rotary_embedding/common.py +289 -0
  1053. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
  1054. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
  1055. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1056. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1057. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1058. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1059. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1060. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
  1061. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1062. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1063. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1064. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1065. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1066. vllm/model_executor/layers/utils.py +251 -0
  1067. vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
  1068. vllm/model_executor/model_loader/__init__.py +150 -0
  1069. vllm/model_executor/model_loader/base_loader.py +71 -0
  1070. vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
  1071. vllm/model_executor/model_loader/default_loader.py +304 -0
  1072. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1073. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1074. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1075. vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
  1076. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1077. vllm/model_executor/model_loader/tensorizer.py +793 -0
  1078. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1079. vllm/model_executor/model_loader/utils.py +299 -0
  1080. vllm/model_executor/model_loader/weight_utils.py +1183 -0
  1081. vllm/model_executor/models/__init__.py +44 -0
  1082. vllm/model_executor/models/adapters.py +592 -0
  1083. vllm/model_executor/models/afmoe.py +697 -0
  1084. vllm/model_executor/models/aimv2.py +248 -0
  1085. vllm/model_executor/models/apertus.py +567 -0
  1086. vllm/model_executor/models/arcee.py +428 -0
  1087. vllm/model_executor/models/arctic.py +633 -0
  1088. vllm/model_executor/models/aria.py +663 -0
  1089. vllm/model_executor/models/audioflamingo3.py +639 -0
  1090. vllm/model_executor/models/aya_vision.py +448 -0
  1091. vllm/model_executor/models/bagel.py +591 -0
  1092. vllm/model_executor/models/baichuan.py +493 -0
  1093. vllm/model_executor/models/bailing_moe.py +643 -0
  1094. vllm/model_executor/models/bamba.py +511 -0
  1095. vllm/model_executor/models/bee.py +157 -0
  1096. vllm/model_executor/models/bert.py +911 -0
  1097. vllm/model_executor/models/bert_with_rope.py +729 -0
  1098. vllm/model_executor/models/blip.py +350 -0
  1099. vllm/model_executor/models/blip2.py +736 -0
  1100. vllm/model_executor/models/bloom.py +390 -0
  1101. vllm/model_executor/models/chameleon.py +1095 -0
  1102. vllm/model_executor/models/chatglm.py +502 -0
  1103. vllm/model_executor/models/clip.py +1045 -0
  1104. vllm/model_executor/models/cohere2_vision.py +470 -0
  1105. vllm/model_executor/models/commandr.py +469 -0
  1106. vllm/model_executor/models/config.py +571 -0
  1107. vllm/model_executor/models/dbrx.py +484 -0
  1108. vllm/model_executor/models/deepencoder.py +679 -0
  1109. vllm/model_executor/models/deepseek_eagle.py +253 -0
  1110. vllm/model_executor/models/deepseek_mtp.py +447 -0
  1111. vllm/model_executor/models/deepseek_ocr.py +601 -0
  1112. vllm/model_executor/models/deepseek_v2.py +1727 -0
  1113. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1114. vllm/model_executor/models/dots1.py +566 -0
  1115. vllm/model_executor/models/dots_ocr.py +830 -0
  1116. vllm/model_executor/models/ernie45.py +53 -0
  1117. vllm/model_executor/models/ernie45_moe.py +755 -0
  1118. vllm/model_executor/models/ernie45_vl.py +1702 -0
  1119. vllm/model_executor/models/ernie45_vl_moe.py +801 -0
  1120. vllm/model_executor/models/ernie_mtp.py +278 -0
  1121. vllm/model_executor/models/exaone.py +524 -0
  1122. vllm/model_executor/models/exaone4.py +518 -0
  1123. vllm/model_executor/models/exaone_moe.py +579 -0
  1124. vllm/model_executor/models/exaone_moe_mtp.py +255 -0
  1125. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1126. vllm/model_executor/models/falcon.py +543 -0
  1127. vllm/model_executor/models/falcon_h1.py +675 -0
  1128. vllm/model_executor/models/flex_olmo.py +155 -0
  1129. vllm/model_executor/models/fuyu.py +371 -0
  1130. vllm/model_executor/models/gemma.py +425 -0
  1131. vllm/model_executor/models/gemma2.py +435 -0
  1132. vllm/model_executor/models/gemma3.py +520 -0
  1133. vllm/model_executor/models/gemma3_mm.py +664 -0
  1134. vllm/model_executor/models/gemma3n.py +1166 -0
  1135. vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
  1136. vllm/model_executor/models/gemma3n_mm.py +820 -0
  1137. vllm/model_executor/models/glm.py +24 -0
  1138. vllm/model_executor/models/glm4.py +295 -0
  1139. vllm/model_executor/models/glm4_1v.py +1823 -0
  1140. vllm/model_executor/models/glm4_moe.py +725 -0
  1141. vllm/model_executor/models/glm4_moe_mtp.py +365 -0
  1142. vllm/model_executor/models/glm4v.py +783 -0
  1143. vllm/model_executor/models/glmasr.py +1154 -0
  1144. vllm/model_executor/models/glmasr_utils.py +188 -0
  1145. vllm/model_executor/models/gpt2.py +385 -0
  1146. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1147. vllm/model_executor/models/gpt_j.py +346 -0
  1148. vllm/model_executor/models/gpt_neox.py +340 -0
  1149. vllm/model_executor/models/gpt_oss.py +745 -0
  1150. vllm/model_executor/models/granite.py +475 -0
  1151. vllm/model_executor/models/granite_speech.py +919 -0
  1152. vllm/model_executor/models/granitemoe.py +561 -0
  1153. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1154. vllm/model_executor/models/granitemoeshared.py +328 -0
  1155. vllm/model_executor/models/gritlm.py +242 -0
  1156. vllm/model_executor/models/grok1.py +803 -0
  1157. vllm/model_executor/models/h2ovl.py +554 -0
  1158. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1159. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1160. vllm/model_executor/models/hyperclovax_vision.py +1163 -0
  1161. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1162. vllm/model_executor/models/idefics3.py +734 -0
  1163. vllm/model_executor/models/interfaces.py +1180 -0
  1164. vllm/model_executor/models/interfaces_base.py +252 -0
  1165. vllm/model_executor/models/intern_vit.py +454 -0
  1166. vllm/model_executor/models/internlm2.py +451 -0
  1167. vllm/model_executor/models/internlm2_ve.py +139 -0
  1168. vllm/model_executor/models/interns1.py +828 -0
  1169. vllm/model_executor/models/interns1_vit.py +433 -0
  1170. vllm/model_executor/models/internvl.py +1436 -0
  1171. vllm/model_executor/models/iquest_loopcoder.py +595 -0
  1172. vllm/model_executor/models/isaac.py +1503 -0
  1173. vllm/model_executor/models/jais.py +397 -0
  1174. vllm/model_executor/models/jais2.py +508 -0
  1175. vllm/model_executor/models/jamba.py +599 -0
  1176. vllm/model_executor/models/jina_vl.py +145 -0
  1177. vllm/model_executor/models/kanana_v.py +756 -0
  1178. vllm/model_executor/models/keye.py +1709 -0
  1179. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1180. vllm/model_executor/models/kimi_linear.py +659 -0
  1181. vllm/model_executor/models/kimi_vl.py +577 -0
  1182. vllm/model_executor/models/lfm2.py +515 -0
  1183. vllm/model_executor/models/lfm2_moe.py +746 -0
  1184. vllm/model_executor/models/lfm2_vl.py +732 -0
  1185. vllm/model_executor/models/lightonocr.py +197 -0
  1186. vllm/model_executor/models/llama.py +724 -0
  1187. vllm/model_executor/models/llama4.py +860 -0
  1188. vllm/model_executor/models/llama4_eagle.py +225 -0
  1189. vllm/model_executor/models/llama_eagle.py +213 -0
  1190. vllm/model_executor/models/llama_eagle3.py +375 -0
  1191. vllm/model_executor/models/llava.py +879 -0
  1192. vllm/model_executor/models/llava_next.py +583 -0
  1193. vllm/model_executor/models/llava_next_video.py +467 -0
  1194. vllm/model_executor/models/llava_onevision.py +922 -0
  1195. vllm/model_executor/models/longcat_flash.py +767 -0
  1196. vllm/model_executor/models/longcat_flash_mtp.py +348 -0
  1197. vllm/model_executor/models/mamba.py +276 -0
  1198. vllm/model_executor/models/mamba2.py +288 -0
  1199. vllm/model_executor/models/medusa.py +179 -0
  1200. vllm/model_executor/models/midashenglm.py +826 -0
  1201. vllm/model_executor/models/mimo.py +188 -0
  1202. vllm/model_executor/models/mimo_mtp.py +294 -0
  1203. vllm/model_executor/models/mimo_v2_flash.py +718 -0
  1204. vllm/model_executor/models/minicpm.py +660 -0
  1205. vllm/model_executor/models/minicpm3.py +233 -0
  1206. vllm/model_executor/models/minicpm_eagle.py +386 -0
  1207. vllm/model_executor/models/minicpmo.py +768 -0
  1208. vllm/model_executor/models/minicpmv.py +1742 -0
  1209. vllm/model_executor/models/minimax_m2.py +552 -0
  1210. vllm/model_executor/models/minimax_text_01.py +1008 -0
  1211. vllm/model_executor/models/minimax_vl_01.py +395 -0
  1212. vllm/model_executor/models/mistral3.py +638 -0
  1213. vllm/model_executor/models/mistral_large_3.py +63 -0
  1214. vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
  1215. vllm/model_executor/models/mixtral.py +599 -0
  1216. vllm/model_executor/models/mllama4.py +1170 -0
  1217. vllm/model_executor/models/mlp_speculator.py +235 -0
  1218. vllm/model_executor/models/modernbert.py +458 -0
  1219. vllm/model_executor/models/module_mapping.py +74 -0
  1220. vllm/model_executor/models/molmo.py +1592 -0
  1221. vllm/model_executor/models/moonvit.py +601 -0
  1222. vllm/model_executor/models/mpt.py +335 -0
  1223. vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
  1224. vllm/model_executor/models/nemotron.py +499 -0
  1225. vllm/model_executor/models/nemotron_h.py +902 -0
  1226. vllm/model_executor/models/nemotron_nas.py +474 -0
  1227. vllm/model_executor/models/nemotron_parse.py +958 -0
  1228. vllm/model_executor/models/nemotron_vl.py +651 -0
  1229. vllm/model_executor/models/nvlm_d.py +216 -0
  1230. vllm/model_executor/models/olmo.py +412 -0
  1231. vllm/model_executor/models/olmo2.py +454 -0
  1232. vllm/model_executor/models/olmoe.py +498 -0
  1233. vllm/model_executor/models/opencua.py +262 -0
  1234. vllm/model_executor/models/openpangu.py +1378 -0
  1235. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1236. vllm/model_executor/models/opt.py +426 -0
  1237. vllm/model_executor/models/orion.py +365 -0
  1238. vllm/model_executor/models/ouro.py +507 -0
  1239. vllm/model_executor/models/ovis.py +557 -0
  1240. vllm/model_executor/models/ovis2_5.py +661 -0
  1241. vllm/model_executor/models/paddleocr_vl.py +1261 -0
  1242. vllm/model_executor/models/paligemma.py +429 -0
  1243. vllm/model_executor/models/persimmon.py +373 -0
  1244. vllm/model_executor/models/phi.py +363 -0
  1245. vllm/model_executor/models/phi3.py +18 -0
  1246. vllm/model_executor/models/phi3v.py +729 -0
  1247. vllm/model_executor/models/phi4mm.py +1250 -0
  1248. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1249. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1250. vllm/model_executor/models/phimoe.py +671 -0
  1251. vllm/model_executor/models/pixtral.py +1437 -0
  1252. vllm/model_executor/models/plamo2.py +993 -0
  1253. vllm/model_executor/models/plamo3.py +437 -0
  1254. vllm/model_executor/models/qwen.py +377 -0
  1255. vllm/model_executor/models/qwen2.py +600 -0
  1256. vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
  1257. vllm/model_executor/models/qwen2_5_vl.py +1598 -0
  1258. vllm/model_executor/models/qwen2_audio.py +478 -0
  1259. vllm/model_executor/models/qwen2_moe.py +604 -0
  1260. vllm/model_executor/models/qwen2_rm.py +120 -0
  1261. vllm/model_executor/models/qwen2_vl.py +1588 -0
  1262. vllm/model_executor/models/qwen3.py +331 -0
  1263. vllm/model_executor/models/qwen3_moe.py +752 -0
  1264. vllm/model_executor/models/qwen3_next.py +1410 -0
  1265. vllm/model_executor/models/qwen3_next_mtp.py +293 -0
  1266. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
  1267. vllm/model_executor/models/qwen3_vl.py +2120 -0
  1268. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1269. vllm/model_executor/models/qwen_vl.py +821 -0
  1270. vllm/model_executor/models/radio.py +573 -0
  1271. vllm/model_executor/models/registry.py +1218 -0
  1272. vllm/model_executor/models/roberta.py +239 -0
  1273. vllm/model_executor/models/rvl.py +107 -0
  1274. vllm/model_executor/models/seed_oss.py +492 -0
  1275. vllm/model_executor/models/siglip.py +1259 -0
  1276. vllm/model_executor/models/siglip2.py +495 -0
  1277. vllm/model_executor/models/siglip2navit.py +660 -0
  1278. vllm/model_executor/models/skyworkr1v.py +951 -0
  1279. vllm/model_executor/models/smolvlm.py +38 -0
  1280. vllm/model_executor/models/solar.py +484 -0
  1281. vllm/model_executor/models/stablelm.py +354 -0
  1282. vllm/model_executor/models/starcoder2.py +365 -0
  1283. vllm/model_executor/models/step3_text.py +554 -0
  1284. vllm/model_executor/models/step3_vl.py +1147 -0
  1285. vllm/model_executor/models/swin.py +500 -0
  1286. vllm/model_executor/models/tarsier.py +624 -0
  1287. vllm/model_executor/models/telechat2.py +153 -0
  1288. vllm/model_executor/models/teleflm.py +78 -0
  1289. vllm/model_executor/models/terratorch.py +318 -0
  1290. vllm/model_executor/models/transformers/__init__.py +127 -0
  1291. vllm/model_executor/models/transformers/base.py +523 -0
  1292. vllm/model_executor/models/transformers/causal.py +65 -0
  1293. vllm/model_executor/models/transformers/legacy.py +90 -0
  1294. vllm/model_executor/models/transformers/moe.py +329 -0
  1295. vllm/model_executor/models/transformers/multimodal.py +441 -0
  1296. vllm/model_executor/models/transformers/pooling.py +102 -0
  1297. vllm/model_executor/models/transformers/utils.py +253 -0
  1298. vllm/model_executor/models/ultravox.py +786 -0
  1299. vllm/model_executor/models/utils.py +832 -0
  1300. vllm/model_executor/models/vision.py +546 -0
  1301. vllm/model_executor/models/voxtral.py +867 -0
  1302. vllm/model_executor/models/voxtral_streaming.py +304 -0
  1303. vllm/model_executor/models/whisper.py +993 -0
  1304. vllm/model_executor/models/whisper_utils.py +299 -0
  1305. vllm/model_executor/models/zamba2.py +986 -0
  1306. vllm/model_executor/parameter.py +642 -0
  1307. vllm/model_executor/utils.py +113 -0
  1308. vllm/model_executor/warmup/__init__.py +0 -0
  1309. vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
  1310. vllm/model_executor/warmup/kernel_warmup.py +97 -0
  1311. vllm/model_inspection.py +136 -0
  1312. vllm/multimodal/__init__.py +38 -0
  1313. vllm/multimodal/audio.py +287 -0
  1314. vllm/multimodal/base.py +60 -0
  1315. vllm/multimodal/cache.py +829 -0
  1316. vllm/multimodal/evs.py +294 -0
  1317. vllm/multimodal/hasher.py +123 -0
  1318. vllm/multimodal/image.py +155 -0
  1319. vllm/multimodal/inputs.py +1027 -0
  1320. vllm/multimodal/parse.py +674 -0
  1321. vllm/multimodal/processing.py +2469 -0
  1322. vllm/multimodal/profiling.py +351 -0
  1323. vllm/multimodal/registry.py +375 -0
  1324. vllm/multimodal/utils.py +550 -0
  1325. vllm/multimodal/video.py +512 -0
  1326. vllm/outputs.py +347 -0
  1327. vllm/platforms/__init__.py +277 -0
  1328. vllm/platforms/cpu.py +423 -0
  1329. vllm/platforms/cuda.py +618 -0
  1330. vllm/platforms/interface.py +707 -0
  1331. vllm/platforms/rocm.py +586 -0
  1332. vllm/platforms/tpu.py +20 -0
  1333. vllm/platforms/xpu.py +262 -0
  1334. vllm/plugins/__init__.py +81 -0
  1335. vllm/plugins/io_processors/__init__.py +68 -0
  1336. vllm/plugins/io_processors/interface.py +77 -0
  1337. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1338. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1339. vllm/pooling_params.py +229 -0
  1340. vllm/profiler/__init__.py +0 -0
  1341. vllm/profiler/layerwise_profile.py +392 -0
  1342. vllm/profiler/utils.py +151 -0
  1343. vllm/profiler/wrapper.py +241 -0
  1344. vllm/py.typed +2 -0
  1345. vllm/ray/__init__.py +0 -0
  1346. vllm/ray/lazy_utils.py +30 -0
  1347. vllm/ray/ray_env.py +79 -0
  1348. vllm/reasoning/__init__.py +96 -0
  1349. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1350. vllm/reasoning/basic_parsers.py +175 -0
  1351. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1352. vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
  1353. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1354. vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
  1355. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1356. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1357. vllm/reasoning/holo2_reasoning_parser.py +89 -0
  1358. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1359. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1360. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1361. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1362. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1363. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1364. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1365. vllm/reasoning/step3_reasoning_parser.py +113 -0
  1366. vllm/sampling_params.py +629 -0
  1367. vllm/scalar_type.py +355 -0
  1368. vllm/scripts.py +17 -0
  1369. vllm/sequence.py +64 -0
  1370. vllm/tasks.py +13 -0
  1371. vllm/third_party/__init__.py +0 -0
  1372. vllm/third_party/pynvml.py +6140 -0
  1373. vllm/tokenizers/__init__.py +18 -0
  1374. vllm/tokenizers/deepseek_v32.py +187 -0
  1375. vllm/tokenizers/deepseek_v32_encoding.py +463 -0
  1376. vllm/tokenizers/detokenizer_utils.py +198 -0
  1377. vllm/tokenizers/grok2.py +443 -0
  1378. vllm/tokenizers/hf.py +119 -0
  1379. vllm/tokenizers/mistral.py +543 -0
  1380. vllm/tokenizers/protocol.py +123 -0
  1381. vllm/tokenizers/registry.py +238 -0
  1382. vllm/tool_parsers/__init__.py +158 -0
  1383. vllm/tool_parsers/abstract_tool_parser.py +274 -0
  1384. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1385. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1386. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1387. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1388. vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
  1389. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1390. vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
  1391. vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
  1392. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1393. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1394. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1395. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1396. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1397. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1398. vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
  1399. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1400. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1401. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1402. vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
  1403. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1404. vllm/tool_parsers/mistral_tool_parser.py +612 -0
  1405. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1406. vllm/tool_parsers/openai_tool_parser.py +111 -0
  1407. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1408. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1409. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1410. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1411. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1412. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1413. vllm/tool_parsers/utils.py +229 -0
  1414. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1415. vllm/tracing.py +135 -0
  1416. vllm/transformers_utils/__init__.py +26 -0
  1417. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1418. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1419. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1420. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1421. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1422. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1423. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1424. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1425. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1426. vllm/transformers_utils/config.py +1169 -0
  1427. vllm/transformers_utils/config_parser_base.py +20 -0
  1428. vllm/transformers_utils/configs/__init__.py +106 -0
  1429. vllm/transformers_utils/configs/afmoe.py +87 -0
  1430. vllm/transformers_utils/configs/arctic.py +216 -0
  1431. vllm/transformers_utils/configs/bagel.py +53 -0
  1432. vllm/transformers_utils/configs/chatglm.py +75 -0
  1433. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1434. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1435. vllm/transformers_utils/configs/eagle.py +90 -0
  1436. vllm/transformers_utils/configs/falcon.py +89 -0
  1437. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1438. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1439. vllm/transformers_utils/configs/isaac.py +100 -0
  1440. vllm/transformers_utils/configs/jais.py +243 -0
  1441. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1442. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1443. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1444. vllm/transformers_utils/configs/medusa.py +65 -0
  1445. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1446. vllm/transformers_utils/configs/mistral.py +263 -0
  1447. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1448. vllm/transformers_utils/configs/moonvit.py +33 -0
  1449. vllm/transformers_utils/configs/nemotron.py +220 -0
  1450. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1451. vllm/transformers_utils/configs/olmo3.py +83 -0
  1452. vllm/transformers_utils/configs/ovis.py +182 -0
  1453. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1454. vllm/transformers_utils/configs/radio.py +98 -0
  1455. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1456. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1457. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1458. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1459. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1460. vllm/transformers_utils/configs/ultravox.py +120 -0
  1461. vllm/transformers_utils/dynamic_module.py +70 -0
  1462. vllm/transformers_utils/gguf_utils.py +280 -0
  1463. vllm/transformers_utils/model_arch_config_convertor.py +402 -0
  1464. vllm/transformers_utils/processor.py +424 -0
  1465. vllm/transformers_utils/processors/__init__.py +25 -0
  1466. vllm/transformers_utils/processors/bagel.py +78 -0
  1467. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1468. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1469. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1470. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1471. vllm/transformers_utils/processors/ovis.py +453 -0
  1472. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1473. vllm/transformers_utils/repo_utils.py +287 -0
  1474. vllm/transformers_utils/runai_utils.py +102 -0
  1475. vllm/transformers_utils/s3_utils.py +95 -0
  1476. vllm/transformers_utils/tokenizer.py +19 -0
  1477. vllm/transformers_utils/utils.py +112 -0
  1478. vllm/triton_utils/__init__.py +20 -0
  1479. vllm/triton_utils/importing.py +103 -0
  1480. vllm/usage/__init__.py +0 -0
  1481. vllm/usage/usage_lib.py +278 -0
  1482. vllm/utils/__init__.py +36 -0
  1483. vllm/utils/argparse_utils.py +491 -0
  1484. vllm/utils/async_utils.py +310 -0
  1485. vllm/utils/cache.py +214 -0
  1486. vllm/utils/collection_utils.py +112 -0
  1487. vllm/utils/counter.py +45 -0
  1488. vllm/utils/deep_gemm.py +424 -0
  1489. vllm/utils/flashinfer.py +602 -0
  1490. vllm/utils/func_utils.py +236 -0
  1491. vllm/utils/gc_utils.py +151 -0
  1492. vllm/utils/hashing.py +117 -0
  1493. vllm/utils/import_utils.py +438 -0
  1494. vllm/utils/jsontree.py +158 -0
  1495. vllm/utils/math_utils.py +32 -0
  1496. vllm/utils/mem_constants.py +13 -0
  1497. vllm/utils/mem_utils.py +285 -0
  1498. vllm/utils/nccl.py +64 -0
  1499. vllm/utils/network_utils.py +331 -0
  1500. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1501. vllm/utils/platform_utils.py +59 -0
  1502. vllm/utils/profiling.py +56 -0
  1503. vllm/utils/registry.py +51 -0
  1504. vllm/utils/serial_utils.py +214 -0
  1505. vllm/utils/system_utils.py +296 -0
  1506. vllm/utils/tensor_schema.py +255 -0
  1507. vllm/utils/torch_utils.py +781 -0
  1508. vllm/v1/__init__.py +0 -0
  1509. vllm/v1/attention/__init__.py +0 -0
  1510. vllm/v1/attention/backend.py +736 -0
  1511. vllm/v1/attention/backends/__init__.py +0 -0
  1512. vllm/v1/attention/backends/cpu_attn.py +501 -0
  1513. vllm/v1/attention/backends/fa_utils.py +126 -0
  1514. vllm/v1/attention/backends/flash_attn.py +1092 -0
  1515. vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
  1516. vllm/v1/attention/backends/flashinfer.py +1713 -0
  1517. vllm/v1/attention/backends/flex_attention.py +1024 -0
  1518. vllm/v1/attention/backends/gdn_attn.py +382 -0
  1519. vllm/v1/attention/backends/linear_attn.py +77 -0
  1520. vllm/v1/attention/backends/mamba1_attn.py +28 -0
  1521. vllm/v1/attention/backends/mamba2_attn.py +256 -0
  1522. vllm/v1/attention/backends/mamba_attn.py +313 -0
  1523. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1524. vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
  1525. vllm/v1/attention/backends/mla/common.py +2156 -0
  1526. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1527. vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
  1528. vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
  1529. vllm/v1/attention/backends/mla/flashmla.py +321 -0
  1530. vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
  1531. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1532. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
  1533. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
  1534. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1535. vllm/v1/attention/backends/registry.py +258 -0
  1536. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1537. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1538. vllm/v1/attention/backends/rocm_attn.py +405 -0
  1539. vllm/v1/attention/backends/short_conv_attn.py +26 -0
  1540. vllm/v1/attention/backends/tree_attn.py +430 -0
  1541. vllm/v1/attention/backends/triton_attn.py +578 -0
  1542. vllm/v1/attention/backends/utils.py +978 -0
  1543. vllm/v1/attention/ops/__init__.py +0 -0
  1544. vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
  1545. vllm/v1/attention/ops/common.py +469 -0
  1546. vllm/v1/attention/ops/flashmla.py +254 -0
  1547. vllm/v1/attention/ops/merge_attn_states.py +47 -0
  1548. vllm/v1/attention/ops/paged_attn.py +51 -0
  1549. vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
  1550. vllm/v1/attention/ops/prefix_prefill.py +862 -0
  1551. vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  1552. vllm/v1/attention/ops/triton_decode_attention.py +709 -0
  1553. vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
  1554. vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
  1555. vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
  1556. vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
  1557. vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
  1558. vllm/v1/attention/selector.py +145 -0
  1559. vllm/v1/core/__init__.py +0 -0
  1560. vllm/v1/core/block_pool.py +489 -0
  1561. vllm/v1/core/encoder_cache_manager.py +402 -0
  1562. vllm/v1/core/kv_cache_coordinator.py +560 -0
  1563. vllm/v1/core/kv_cache_manager.py +485 -0
  1564. vllm/v1/core/kv_cache_metrics.py +96 -0
  1565. vllm/v1/core/kv_cache_utils.py +1642 -0
  1566. vllm/v1/core/sched/__init__.py +0 -0
  1567. vllm/v1/core/sched/async_scheduler.py +66 -0
  1568. vllm/v1/core/sched/interface.py +205 -0
  1569. vllm/v1/core/sched/output.py +261 -0
  1570. vllm/v1/core/sched/request_queue.py +208 -0
  1571. vllm/v1/core/sched/scheduler.py +1936 -0
  1572. vllm/v1/core/sched/utils.py +64 -0
  1573. vllm/v1/core/single_type_kv_cache_manager.py +926 -0
  1574. vllm/v1/cudagraph_dispatcher.py +183 -0
  1575. vllm/v1/engine/__init__.py +224 -0
  1576. vllm/v1/engine/async_llm.py +874 -0
  1577. vllm/v1/engine/coordinator.py +396 -0
  1578. vllm/v1/engine/core.py +1614 -0
  1579. vllm/v1/engine/core_client.py +1422 -0
  1580. vllm/v1/engine/detokenizer.py +351 -0
  1581. vllm/v1/engine/exceptions.py +18 -0
  1582. vllm/v1/engine/input_processor.py +713 -0
  1583. vllm/v1/engine/llm_engine.py +415 -0
  1584. vllm/v1/engine/logprobs.py +245 -0
  1585. vllm/v1/engine/output_processor.py +715 -0
  1586. vllm/v1/engine/parallel_sampling.py +150 -0
  1587. vllm/v1/engine/utils.py +1086 -0
  1588. vllm/v1/executor/__init__.py +6 -0
  1589. vllm/v1/executor/abstract.py +352 -0
  1590. vllm/v1/executor/multiproc_executor.py +888 -0
  1591. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1592. vllm/v1/executor/ray_executor.py +623 -0
  1593. vllm/v1/executor/ray_utils.py +468 -0
  1594. vllm/v1/executor/uniproc_executor.py +186 -0
  1595. vllm/v1/kv_cache_interface.py +485 -0
  1596. vllm/v1/kv_offload/__init__.py +0 -0
  1597. vllm/v1/kv_offload/abstract.py +161 -0
  1598. vllm/v1/kv_offload/arc_manager.py +237 -0
  1599. vllm/v1/kv_offload/backend.py +97 -0
  1600. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1601. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1602. vllm/v1/kv_offload/cpu.py +109 -0
  1603. vllm/v1/kv_offload/factory.py +58 -0
  1604. vllm/v1/kv_offload/lru_manager.py +139 -0
  1605. vllm/v1/kv_offload/mediums.py +39 -0
  1606. vllm/v1/kv_offload/spec.py +70 -0
  1607. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1608. vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
  1609. vllm/v1/kv_offload/worker/worker.py +163 -0
  1610. vllm/v1/metrics/__init__.py +0 -0
  1611. vllm/v1/metrics/loggers.py +1320 -0
  1612. vllm/v1/metrics/perf.py +1244 -0
  1613. vllm/v1/metrics/prometheus.py +82 -0
  1614. vllm/v1/metrics/ray_wrappers.py +194 -0
  1615. vllm/v1/metrics/reader.py +257 -0
  1616. vllm/v1/metrics/stats.py +440 -0
  1617. vllm/v1/outputs.py +242 -0
  1618. vllm/v1/pool/__init__.py +0 -0
  1619. vllm/v1/pool/metadata.py +124 -0
  1620. vllm/v1/request.py +281 -0
  1621. vllm/v1/sample/__init__.py +0 -0
  1622. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1623. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1624. vllm/v1/sample/logits_processor/interface.py +106 -0
  1625. vllm/v1/sample/logits_processor/state.py +165 -0
  1626. vllm/v1/sample/metadata.py +44 -0
  1627. vllm/v1/sample/ops/__init__.py +0 -0
  1628. vllm/v1/sample/ops/bad_words.py +57 -0
  1629. vllm/v1/sample/ops/logprobs.py +25 -0
  1630. vllm/v1/sample/ops/penalties.py +57 -0
  1631. vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
  1632. vllm/v1/sample/rejection_sampler.py +822 -0
  1633. vllm/v1/sample/sampler.py +319 -0
  1634. vllm/v1/sample/tpu/__init__.py +0 -0
  1635. vllm/v1/sample/tpu/metadata.py +120 -0
  1636. vllm/v1/sample/tpu/sampler.py +215 -0
  1637. vllm/v1/serial_utils.py +514 -0
  1638. vllm/v1/spec_decode/__init__.py +0 -0
  1639. vllm/v1/spec_decode/eagle.py +1346 -0
  1640. vllm/v1/spec_decode/medusa.py +73 -0
  1641. vllm/v1/spec_decode/metadata.py +66 -0
  1642. vllm/v1/spec_decode/metrics.py +225 -0
  1643. vllm/v1/spec_decode/ngram_proposer.py +281 -0
  1644. vllm/v1/spec_decode/suffix_decoding.py +95 -0
  1645. vllm/v1/spec_decode/utils.py +109 -0
  1646. vllm/v1/structured_output/__init__.py +337 -0
  1647. vllm/v1/structured_output/backend_guidance.py +291 -0
  1648. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1649. vllm/v1/structured_output/backend_outlines.py +324 -0
  1650. vllm/v1/structured_output/backend_types.py +136 -0
  1651. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1652. vllm/v1/structured_output/request.py +91 -0
  1653. vllm/v1/structured_output/utils.py +457 -0
  1654. vllm/v1/utils.py +466 -0
  1655. vllm/v1/worker/__init__.py +0 -0
  1656. vllm/v1/worker/block_table.py +343 -0
  1657. vllm/v1/worker/cp_utils.py +42 -0
  1658. vllm/v1/worker/cpu_model_runner.py +122 -0
  1659. vllm/v1/worker/cpu_worker.py +192 -0
  1660. vllm/v1/worker/dp_utils.py +240 -0
  1661. vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
  1662. vllm/v1/worker/gpu/README.md +4 -0
  1663. vllm/v1/worker/gpu/__init__.py +0 -0
  1664. vllm/v1/worker/gpu/async_utils.py +98 -0
  1665. vllm/v1/worker/gpu/attn_utils.py +183 -0
  1666. vllm/v1/worker/gpu/block_table.py +222 -0
  1667. vllm/v1/worker/gpu/buffer_utils.py +224 -0
  1668. vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
  1669. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1670. vllm/v1/worker/gpu/input_batch.py +526 -0
  1671. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1672. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1673. vllm/v1/worker/gpu/mm/__init__.py +0 -0
  1674. vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
  1675. vllm/v1/worker/gpu/model_runner.py +1005 -0
  1676. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1677. vllm/v1/worker/gpu/sample/gumbel.py +106 -0
  1678. vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
  1679. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1680. vllm/v1/worker/gpu/sample/metadata.py +79 -0
  1681. vllm/v1/worker/gpu/sample/min_p.py +58 -0
  1682. vllm/v1/worker/gpu/sample/output.py +14 -0
  1683. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1684. vllm/v1/worker/gpu/sample/sampler.py +88 -0
  1685. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1686. vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
  1687. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1688. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1689. vllm/v1/worker/gpu/states.py +282 -0
  1690. vllm/v1/worker/gpu/structured_outputs.py +100 -0
  1691. vllm/v1/worker/gpu_input_batch.py +1030 -0
  1692. vllm/v1/worker/gpu_model_runner.py +5761 -0
  1693. vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
  1694. vllm/v1/worker/gpu_worker.py +968 -0
  1695. vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
  1696. vllm/v1/worker/lora_model_runner_mixin.py +225 -0
  1697. vllm/v1/worker/tpu_input_batch.py +574 -0
  1698. vllm/v1/worker/tpu_worker.py +18 -0
  1699. vllm/v1/worker/ubatch_utils.py +112 -0
  1700. vllm/v1/worker/ubatching.py +242 -0
  1701. vllm/v1/worker/utils.py +400 -0
  1702. vllm/v1/worker/worker_base.py +372 -0
  1703. vllm/v1/worker/workspace.py +253 -0
  1704. vllm/v1/worker/xpu_model_runner.py +48 -0
  1705. vllm/v1/worker/xpu_worker.py +174 -0
  1706. vllm/version.py +39 -0
  1707. vllm/vllm_flash_attn/.gitkeep +0 -0
  1708. vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
  1709. vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
  1710. vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
  1711. vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
  1712. vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1713 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Attention layer with FlashInfer."""
4
+
5
+ from dataclasses import dataclass
6
+ from typing import ClassVar
7
+
8
+ import numpy as np
9
+ import torch
10
+ from flashinfer import (
11
+ BatchDecodeWithPagedKVCacheWrapper,
12
+ BatchPrefillWithPagedKVCacheWrapper,
13
+ BatchPrefillWithRaggedKVCacheWrapper,
14
+ MultiLevelCascadeAttentionWrapper,
15
+ )
16
+ from flashinfer.decode import _get_range_buf, trtllm_batch_decode_with_kv_cache
17
+ from flashinfer.prefill import trtllm_batch_context_with_kv_cache
18
+ from flashinfer.utils import FP4Tensor
19
+ from typing_extensions import override
20
+
21
+ from vllm import envs
22
+ from vllm.config import CUDAGraphMode, VllmConfig, get_current_vllm_config
23
+ from vllm.config.cache import CacheDType
24
+ from vllm.distributed.parallel_state import get_dcp_group
25
+ from vllm.logger import init_logger
26
+ from vllm.model_executor.layers.batch_invariant import (
27
+ vllm_is_batch_invariant,
28
+ )
29
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
30
+ QuantKey,
31
+ kFp8StaticTensorSym,
32
+ kNvfp4Quant,
33
+ )
34
+ from vllm.platforms import current_platform
35
+ from vllm.platforms.interface import DeviceCapability
36
+ from vllm.triton_utils import tl, triton
37
+ from vllm.utils.flashinfer import (
38
+ can_use_trtllm_attention,
39
+ use_trtllm_attention,
40
+ )
41
+ from vllm.utils.math_utils import cdiv
42
+ from vllm.utils.platform_utils import is_pin_memory_available
43
+ from vllm.utils.torch_utils import is_strictly_contiguous
44
+ from vllm.v1.attention.backend import (
45
+ AttentionBackend,
46
+ AttentionCGSupport,
47
+ AttentionImpl,
48
+ AttentionMetadataBuilder,
49
+ AttentionType,
50
+ CommonAttentionMetadata,
51
+ MultipleOf,
52
+ )
53
+ from vllm.v1.attention.backends.utils import (
54
+ KVCacheLayoutType,
55
+ get_dcp_local_seq_lens,
56
+ get_kv_cache_layout,
57
+ get_per_layer_parameters,
58
+ infer_global_hyperparameters,
59
+ split_decodes_and_prefills,
60
+ )
61
+ from vllm.v1.attention.ops.common import cp_lse_ag_out_rs
62
+ from vllm.v1.attention.ops.merge_attn_states import merge_attn_states
63
+ from vllm.v1.kv_cache_interface import AttentionSpec
64
+ from vllm.v1.utils import CpuGpuBuffer
65
+
66
+ FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT = 2048 * 1024 * 1024
67
+
68
+ FP8_DTYPE = current_platform.fp8_dtype()
69
+ FP4_DTYPE = torch.uint8
70
+
71
+ logger = init_logger(__name__)
72
+
73
+ trtllm_gen_workspace_buffer = None
74
+
75
+
76
+ def _get_trtllm_gen_workspace_buffer():
77
+ global trtllm_gen_workspace_buffer
78
+ if trtllm_gen_workspace_buffer is None:
79
+ trtllm_gen_workspace_buffer = torch.zeros(
80
+ envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device="cuda"
81
+ )
82
+ return trtllm_gen_workspace_buffer
83
+
84
+
85
+ @triton.jit
86
+ def _trtllm_prefill_attn_kvfp8_dequant(
87
+ kv_cache_ptr,
88
+ block_tables_prefill_ptr,
89
+ block_table_stride,
90
+ mock_kv_cache_ptr,
91
+ k_scale_ptr,
92
+ v_scale_ptr,
93
+ K_CACHE_STRIDE: tl.constexpr,
94
+ KV_CACHE_STRIDE: tl.constexpr,
95
+ ):
96
+ batch_idx = tl.program_id(0).to(tl.int64)
97
+ mock_block_table_idx = tl.program_id(1).to(tl.int64)
98
+ orig_page_num = tl.load(
99
+ block_tables_prefill_ptr + batch_idx * block_table_stride + mock_block_table_idx
100
+ ).to(tl.int64)
101
+ if orig_page_num <= 0:
102
+ return
103
+ dequant_dtype = mock_kv_cache_ptr.dtype.element_ty
104
+
105
+ # Dequantize K
106
+ k_scale_val = tl.load(k_scale_ptr)
107
+ offset = orig_page_num * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
108
+ fp8_vals = tl.load(kv_cache_ptr + offset)
109
+ dequantized_vals = fp8_vals.to(tl.float32) * k_scale_val
110
+ mock_cache_offset = (
111
+ batch_idx * block_table_stride + mock_block_table_idx + 1
112
+ ) * KV_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
113
+ dequantized_vals = dequantized_vals.to(dequant_dtype)
114
+ tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)
115
+
116
+ # Dequantize V
117
+ v_scale_val = tl.load(v_scale_ptr)
118
+ offset = (
119
+ orig_page_num * KV_CACHE_STRIDE + K_CACHE_STRIDE + tl.arange(0, K_CACHE_STRIDE)
120
+ )
121
+ fp8_vals = tl.load(kv_cache_ptr + offset)
122
+ dequantized_vals = fp8_vals.to(tl.float32) * v_scale_val
123
+ mock_cache_offset = (
124
+ (batch_idx * block_table_stride + mock_block_table_idx + 1) * KV_CACHE_STRIDE
125
+ + K_CACHE_STRIDE
126
+ + tl.arange(0, K_CACHE_STRIDE)
127
+ )
128
+ dequantized_vals = dequantized_vals.to(dequant_dtype)
129
+ tl.store(mock_kv_cache_ptr + mock_cache_offset, dequantized_vals)
130
+
131
+
132
+ def trtllm_prefill_attn_kvfp8_dequant(
133
+ kv_cache: torch.Tensor,
134
+ block_tables_prefill: torch.Tensor,
135
+ k_scale: torch.Tensor,
136
+ v_scale: torch.Tensor,
137
+ dequant_dtype: torch.dtype,
138
+ ) -> tuple[torch.Tensor, torch.Tensor]:
139
+ batch_size, num_of_page_per_token = block_tables_prefill.shape
140
+ s = kv_cache.shape
141
+ assert s[1] == 2
142
+ assert dequant_dtype in (torch.bfloat16, torch.float16)
143
+ k_cache_stride = s[2] * s[3] * s[4]
144
+ kv_cache_stride = k_cache_stride * s[1]
145
+ new_s = (batch_size * num_of_page_per_token + 1, s[1], s[2], s[3], s[4])
146
+ # mock kv cache contains just the pages needed by this prefill
147
+ mock_kv_cache = torch.empty(new_s, dtype=dequant_dtype, device=kv_cache.device)
148
+ # we simply sequentially index the pages needed by this prefill
149
+ mock_block_table = torch.arange(
150
+ start=1,
151
+ end=batch_size * num_of_page_per_token + 1,
152
+ dtype=torch.int32,
153
+ device=block_tables_prefill.device,
154
+ ).reshape(batch_size, num_of_page_per_token)
155
+ grid = (batch_size, num_of_page_per_token)
156
+ _trtllm_prefill_attn_kvfp8_dequant[grid](
157
+ kv_cache,
158
+ block_tables_prefill,
159
+ num_of_page_per_token,
160
+ mock_kv_cache,
161
+ k_scale,
162
+ v_scale,
163
+ k_cache_stride,
164
+ kv_cache_stride,
165
+ )
166
+ return mock_kv_cache, mock_block_table
167
+
168
+
169
+ class BatchDCPPrefillWrapper:
170
+ def __init__(
171
+ self,
172
+ workspace_buffer: torch.Tensor | None = None,
173
+ ):
174
+ self._context = BatchPrefillWithPagedKVCacheWrapper(
175
+ workspace_buffer, get_kv_cache_layout()
176
+ )
177
+ self._new_tokens = BatchPrefillWithRaggedKVCacheWrapper(
178
+ workspace_buffer, get_kv_cache_layout()
179
+ )
180
+
181
+ def plan(
182
+ self,
183
+ qo_indptr_cpu: torch.Tensor,
184
+ paged_kv_indptr_cpu: torch.Tensor,
185
+ paged_kv_indices: torch.Tensor,
186
+ paged_kv_last_page_len_cpu: torch.Tensor,
187
+ page_size: int,
188
+ num_qo_heads: int,
189
+ dcp_world_size: int,
190
+ num_kv_heads: int,
191
+ head_dim: int,
192
+ sm_scale: float,
193
+ window_left: int,
194
+ logits_soft_cap: float | None,
195
+ q_data_type: torch.dtype,
196
+ kv_cache_dtype: torch.dtype,
197
+ prefill_fixed_split_size: int,
198
+ disable_split_kv: bool,
199
+ ):
200
+ """Plan the prefill operation with given parameters."""
201
+ self._context.plan(
202
+ qo_indptr_cpu,
203
+ paged_kv_indptr_cpu,
204
+ paged_kv_indices,
205
+ paged_kv_last_page_len_cpu,
206
+ num_qo_heads * dcp_world_size,
207
+ num_kv_heads,
208
+ head_dim,
209
+ page_size,
210
+ causal=False, # This is context run
211
+ sm_scale=sm_scale,
212
+ window_left=window_left,
213
+ logits_soft_cap=logits_soft_cap,
214
+ q_data_type=q_data_type,
215
+ kv_data_type=kv_cache_dtype,
216
+ fixed_split_size=prefill_fixed_split_size,
217
+ disable_split_kv=disable_split_kv,
218
+ )
219
+ self._new_tokens.plan(
220
+ qo_indptr=qo_indptr_cpu,
221
+ kv_indptr=qo_indptr_cpu,
222
+ num_qo_heads=num_qo_heads,
223
+ num_kv_heads=num_kv_heads,
224
+ head_dim_qk=head_dim,
225
+ head_dim_vo=head_dim,
226
+ causal=True, # This is newtokens run
227
+ sm_scale=sm_scale,
228
+ window_left=window_left,
229
+ logits_soft_cap=logits_soft_cap,
230
+ q_data_type=q_data_type,
231
+ )
232
+
233
+ def run(
234
+ self,
235
+ layer: torch.nn.Module,
236
+ prefill_query: torch.Tensor,
237
+ kv_cache_permute: torch.Tensor,
238
+ key: torch.Tensor,
239
+ value: torch.Tensor,
240
+ out: torch.Tensor,
241
+ ):
242
+ prefill_query_across_dcp = get_dcp_group().all_gather(
243
+ prefill_query.contiguous(), dim=1
244
+ )
245
+ output_context_tmp, lse_context_tmp = self._context.run(
246
+ prefill_query_across_dcp,
247
+ kv_cache_permute,
248
+ k_scale=layer._k_scale_float,
249
+ v_scale=layer._v_scale_float,
250
+ return_lse=True,
251
+ )
252
+ output_context, lse_context = cp_lse_ag_out_rs(
253
+ output_context_tmp,
254
+ lse_context_tmp,
255
+ get_dcp_group(),
256
+ return_lse=True,
257
+ is_lse_base_on_e=False,
258
+ )
259
+ lse_context = lse_context.transpose(0, 1).contiguous()
260
+
261
+ output_query, lse_query = self._new_tokens.run(
262
+ prefill_query,
263
+ key,
264
+ value,
265
+ return_lse=True,
266
+ )
267
+ lse_query = lse_query.transpose(0, 1).contiguous()
268
+
269
+ merge_attn_states(
270
+ out,
271
+ output_context,
272
+ lse_context,
273
+ output_query,
274
+ lse_query,
275
+ )
276
+ return out
277
+
278
+
279
+ class FlashInferBackend(AttentionBackend):
280
+ accept_output_buffer: bool = True
281
+ supported_dtypes: ClassVar[list[torch.dtype]] = [torch.float16, torch.bfloat16]
282
+ supported_kv_cache_dtypes: ClassVar[list[CacheDType]] = [
283
+ "auto",
284
+ "fp8",
285
+ "fp8_e4m3",
286
+ "fp8_e5m2",
287
+ ]
288
+
289
+ @staticmethod
290
+ def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
291
+ # Note: Not sure for all platforms, but on Blackwell,
292
+ # only support a page size of 16, 32, 64.
293
+ return [16, 32, 64]
294
+
295
+ @staticmethod
296
+ def get_name() -> str:
297
+ return "FLASHINFER"
298
+
299
+ @staticmethod
300
+ def get_impl_cls() -> type["FlashInferImpl"]:
301
+ return FlashInferImpl
302
+
303
+ @staticmethod
304
+ def get_builder_cls() -> type["FlashInferMetadataBuilder"]:
305
+ return FlashInferMetadataBuilder
306
+
307
+ @staticmethod
308
+ def get_kv_cache_shape(
309
+ num_blocks: int,
310
+ block_size: int,
311
+ num_kv_heads: int,
312
+ head_size: int,
313
+ cache_dtype_str: str = "auto",
314
+ ) -> tuple[int, ...]:
315
+ return (num_blocks, 2, block_size, num_kv_heads, head_size)
316
+
317
+ @staticmethod
318
+ def get_kv_cache_stride_order(
319
+ include_num_layers_dimension: bool = False,
320
+ ) -> tuple[int, ...]:
321
+ # `stride_order` indicates the permutation that gets us from
322
+ # `get_kv_cache_shape` to the actual memory layout we want.
323
+ cache_layout = get_kv_cache_layout()
324
+ if cache_layout == "NHD" and include_num_layers_dimension:
325
+ # (num_blocks, num_layers, 2, block_size, num_kv_heads, head_size)
326
+ return (1, 0, 2, 3, 4, 5)
327
+ elif cache_layout == "NHD":
328
+ stride_order = (0, 1, 2, 3, 4)
329
+ elif cache_layout == "HND" and include_num_layers_dimension:
330
+ # (num_blocks, 2, num_kv_heads, num_layers, block_size, head_size)
331
+ return (1, 2, 4, 0, 3, 5)
332
+ elif cache_layout == "HND":
333
+ stride_order = (0, 1, 3, 2, 4)
334
+ else:
335
+ raise ValueError(f"Unknown cache layout format {cache_layout}.")
336
+ return stride_order
337
+
338
+ @staticmethod
339
+ def get_fp8_dtype_for_flashinfer(kv_cache_dtype: str) -> torch.dtype:
340
+ if kv_cache_dtype in ("fp8", "fp8_e4m3"):
341
+ return torch.float8_e4m3fn
342
+ elif kv_cache_dtype == "fp8_e5m2":
343
+ return torch.float8_e5m2
344
+ else:
345
+ raise ValueError(f"Unrecognized FP8 dtype: {kv_cache_dtype}")
346
+
347
+ @classmethod
348
+ def get_supported_head_sizes(cls) -> list[int]:
349
+ # https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
350
+ return [64, 128, 256]
351
+
352
+ @classmethod
353
+ def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
354
+ return capability >= DeviceCapability(7, 5) and capability <= DeviceCapability(
355
+ 12, 1
356
+ )
357
+
358
+ @classmethod
359
+ def supports_sink(cls) -> bool:
360
+ """FlashInfer supports sinks when TRTLLM attention is available (SM100)."""
361
+ from vllm.utils.flashinfer import (
362
+ force_use_trtllm_attention,
363
+ supports_trtllm_attention,
364
+ )
365
+
366
+ # Respect explicit disable flag (e.g.,
367
+ # --attention-config.use_trtllm_attention=0)
368
+ if force_use_trtllm_attention() is False:
369
+ return False
370
+
371
+ # Check if TRTLLM is supported on this platform
372
+ return supports_trtllm_attention()
373
+
374
+ @classmethod
375
+ def get_required_kv_cache_layout(cls) -> KVCacheLayoutType | None:
376
+ from vllm.platforms import current_platform
377
+
378
+ capability = current_platform.get_device_capability()
379
+ if capability is not None and capability.major == 10:
380
+ return "HND"
381
+ return None
382
+
383
+
384
+ @dataclass
385
+ class FIPrefill:
386
+ """Metadata for the native FlashInfer prefill pathway (non-TRTLLM)."""
387
+
388
+ wrapper: BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper
389
+
390
+
391
+ @dataclass
392
+ class FIDecode:
393
+ """Metadata for the native FlashInfer decode pathway (non-TRTLLM)."""
394
+
395
+ wrapper: BatchDecodeWithPagedKVCacheWrapper
396
+
397
+
398
+ @dataclass
399
+ class TRTLLMPrefill:
400
+ """Metadata for the TRTLLM prefill pathway."""
401
+
402
+ block_tables: torch.Tensor
403
+ """
404
+ The slice of the block table tensor corresponding *only* to prefill requests.
405
+ Shape: [num_prefills, max_num_blocks_per_seq]
406
+ """
407
+
408
+ seq_lens: torch.Tensor
409
+ """
410
+ The slice of the sequence lengths tensor corresponding *only* to prefill requests.
411
+ Shape: [num_prefills]
412
+ """
413
+
414
+ cum_seq_lens_q: torch.Tensor
415
+ cum_seq_lens_kv: torch.Tensor
416
+
417
+ max_q_len: int
418
+ """
419
+ The maximum query length *among prefill requests*.
420
+ """
421
+
422
+ max_seq_len: int
423
+ """The maximum sequence length for KV Cache."""
424
+
425
+
426
+ @dataclass
427
+ class TRTLLMDecode:
428
+ """Metadata for the TRTLLM decode pathway."""
429
+
430
+ block_tables: torch.Tensor
431
+ """
432
+ The slice of the block table tensor corresponding *only* to decode requests.
433
+ Shape: [num_decodes, max_num_blocks_per_seq]
434
+ """
435
+
436
+ seq_lens: torch.Tensor
437
+ """
438
+ The slice of the sequence lengths tensor corresponding *only* to decode requests.
439
+ Shape: [num_decodes]
440
+ """
441
+
442
+ max_seq_len: int
443
+ """The maximum sequence length for KV Cache."""
444
+
445
+
446
+ @dataclass
447
+ class FlashInferMetadata:
448
+ num_actual_tokens: int
449
+ """Total number of tokens in the batch (excluding padding)."""
450
+
451
+ slot_mapping: torch.Tensor
452
+ """Tensor for writing K/V to the cache. Shape: [num_actual_tokens]"""
453
+
454
+ q_data_type: torch.dtype
455
+
456
+ num_decodes: int
457
+ num_decode_tokens: int
458
+ num_prefills: int
459
+ num_prefill_tokens: int
460
+
461
+ prefill: FIPrefill | TRTLLMPrefill | None
462
+ """
463
+ Holds the metadata for the prefill portion of the batch.
464
+ Will be `None` if `num_prefill_tokens == 0`.
465
+ """
466
+
467
+ decode: FIDecode | TRTLLMDecode | None
468
+ """
469
+ Holds the metadata for the decode portion of the batch.
470
+ Will be `None` if `num_decode_tokens == 0`.
471
+ """
472
+
473
+ # --- Special Case: Cascade Attention ---
474
+
475
+ use_cascade: bool
476
+ """
477
+ If True, the entire batch is a cascade attention call, and the
478
+ `prefill` and `decode` fields will both be None.
479
+ """
480
+
481
+ cascade_wrapper: MultiLevelCascadeAttentionWrapper | None
482
+
483
+
484
+ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
485
+ reorder_batch_threshold: int = 1
486
+
487
+ def __init__(
488
+ self,
489
+ kv_cache_spec: AttentionSpec,
490
+ layer_names: list[str],
491
+ vllm_config: VllmConfig,
492
+ device: torch.device,
493
+ ):
494
+ super().__init__(kv_cache_spec, layer_names, vllm_config, device)
495
+ self.cache_config = vllm_config.cache_config
496
+ self.model_config = vllm_config.model_config
497
+ self.attention_config = vllm_config.attention_config
498
+ self._workspace_buffer = None
499
+ self._prefill_wrapper: (
500
+ BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper | None
501
+ ) = None # Wrapper for prefill/append
502
+ self._decode_wrapper = None # Wrapper for decode (general shape)
503
+
504
+ if vllm_is_batch_invariant():
505
+ self.decode_fixed_split_size = 2048
506
+ self.prefill_fixed_split_size = 4096
507
+ self.disable_split_kv = True
508
+ else:
509
+ self.decode_fixed_split_size = -1
510
+ self.prefill_fixed_split_size = -1
511
+ self.disable_split_kv = False
512
+
513
+ self.compilation_config = vllm_config.compilation_config
514
+ max_num_pages_per_req = cdiv(
515
+ self.model_config.max_model_len, self.kv_cache_spec.block_size
516
+ )
517
+ max_num_reqs = vllm_config.scheduler_config.max_num_seqs
518
+ max_num_pages = max_num_reqs * max_num_pages_per_req
519
+ speculative_config = vllm_config.speculative_config
520
+ num_spec_tokens = (
521
+ speculative_config.num_speculative_tokens
522
+ if speculative_config is not None
523
+ else 0
524
+ )
525
+ self.enable_cuda_graph = (
526
+ self.compilation_config.cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
527
+ )
528
+ if self.enable_cuda_graph:
529
+ # For full cudagraph capture, one `decode_wrapper` for each batch
530
+ # size is needed for FlashInfer.
531
+ self._decode_wrappers_cudagraph: dict[
532
+ int, BatchDecodeWithPagedKVCacheWrapper
533
+ ] = {}
534
+ self._decode_cudagraph_max_bs = (1 + num_spec_tokens) * max_num_reqs
535
+ if self.compilation_config.max_cudagraph_capture_size is not None:
536
+ self._decode_cudagraph_max_bs = min(
537
+ self._decode_cudagraph_max_bs,
538
+ self.compilation_config.max_cudagraph_capture_size,
539
+ )
540
+ try:
541
+ self.dcp_world_size = get_dcp_group().world_size
542
+ self.dcp_rank = get_dcp_group().rank_in_group
543
+ self.dcp_kv_cache_interleave_size = (
544
+ vllm_config.parallel_config.dcp_kv_cache_interleave_size
545
+ )
546
+ except AssertionError:
547
+ # DCP might not be initialized in testing
548
+ self.dcp_world_size = 1
549
+ self.dcp_rank = 0
550
+ self.dcp_kv_cache_interleave_size = 1
551
+ self.use_dcp = self.dcp_world_size > 1
552
+
553
+ self.num_qo_heads = self.model_config.get_num_attention_heads(
554
+ self.vllm_config.parallel_config
555
+ )
556
+
557
+ self.num_kv_heads = self.kv_cache_spec.num_kv_heads
558
+ self.head_dim = self.kv_cache_spec.head_size
559
+ self.page_size = self.kv_cache_spec.block_size
560
+
561
+ self.cache_dtype = self.cache_config.cache_dtype
562
+ if self.cache_dtype.startswith("fp8"):
563
+ self.kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
564
+ self.cache_dtype
565
+ )
566
+ else:
567
+ assert self.kv_cache_spec.dtype == self.model_config.dtype
568
+ self.kv_cache_dtype = self.kv_cache_spec.dtype
569
+
570
+ # Use model dtype as q dtype when TRTLLM attn is not supported, or
571
+ # --attention-config.disable_flashinfer_q_quantization is set to 1. Otherwise,
572
+ # try to use fp8 q if kv cache is fp8, and will fall back to model dtype
573
+ # if TRTLLM attention kernel is not used when building attn metadata
574
+ can_use_trtllm = can_use_trtllm_attention(self.num_qo_heads, self.num_kv_heads)
575
+ if (
576
+ can_use_trtllm
577
+ and not vllm_config.attention_config.disable_flashinfer_q_quantization
578
+ ):
579
+ self.q_data_type = self.kv_cache_dtype
580
+ else:
581
+ self.q_data_type = self.model_config.dtype
582
+
583
+ # Prefer TRTLLM attention for decoding in all cases.
584
+ # This allows us to use AttentionCGSupport.UNIFORM_BATCH mode.
585
+ self.use_trtllm_decode_attention = can_use_trtllm
586
+ self._init_reorder_batch_threshold(1, supports_spec_as_decode=can_use_trtllm)
587
+
588
+ self._cascade_wrapper = None # Wrapper for cascade attention
589
+
590
+ # Global hyperparameters shared by all attention layers
591
+ # TODO: discard this for trtllm-gen backend
592
+ self.global_hyperparameters = infer_global_hyperparameters(
593
+ get_per_layer_parameters(vllm_config, layer_names, FlashInferImpl)
594
+ )
595
+ self.sm_scale = self.global_hyperparameters.sm_scale
596
+ self.window_left = self.global_hyperparameters.window_left
597
+ self.logits_soft_cap = self.global_hyperparameters.logits_soft_cap
598
+ self.has_sinks = self.global_hyperparameters.has_sinks
599
+ if self.has_sinks and not can_use_trtllm:
600
+ raise NotImplementedError(
601
+ "FlashInfer backend currently does not support attention "
602
+ "sinks, please use trtllm on blackwell or flash attention on "
603
+ "earlier GPUs."
604
+ )
605
+ # Preparing persistent buffers
606
+ self.pin_memory = is_pin_memory_available()
607
+ self.paged_kv_indptr = self._make_buffer(max_num_reqs + 1)
608
+ self.paged_kv_indptr_cpu_buffer = torch.zeros_like(
609
+ self.paged_kv_indptr.cpu, pin_memory=self.pin_memory
610
+ ) # Extra buffer for mutable paged_kv_indptr.cpu in cuda graph mode
611
+ self.paged_kv_indices = self._make_buffer(max_num_pages)
612
+ self.paged_kv_last_page_len = self._make_buffer(max_num_reqs)
613
+
614
+ if self.head_dim == 256 and current_platform.is_device_capability_family(100):
615
+ # https://github.com/flashinfer-ai/flashinfer/issues/1993 reports that
616
+ # head size 256 and block size 16 is not supported on blackwell.
617
+ assert kv_cache_spec.block_size != 16, (
618
+ "There is a bug in FlashInfer "
619
+ "block_size 16 head size 256 support. Please avoid this combination by "
620
+ "passing --block-size 32 or --block-size 64."
621
+ )
622
+
623
+ def _make_buffer(
624
+ self, *size: int | torch.SymInt, dtype: torch.dtype = torch.int32
625
+ ) -> CpuGpuBuffer:
626
+ return CpuGpuBuffer(
627
+ *size,
628
+ dtype=dtype,
629
+ device=self.device,
630
+ pin_memory=self.pin_memory,
631
+ with_numpy=True,
632
+ )
633
+
634
+ @override # type: ignore[misc]
635
+ @classmethod
636
+ def get_cudagraph_support(
637
+ cls: type["FlashInferMetadataBuilder"],
638
+ vllm_config: VllmConfig,
639
+ kv_cache_spec: AttentionSpec,
640
+ ) -> AttentionCGSupport:
641
+ has_trtllm_support = can_use_trtllm_attention(
642
+ num_qo_heads=vllm_config.model_config.get_num_attention_heads(
643
+ vllm_config.parallel_config
644
+ ),
645
+ num_kv_heads=kv_cache_spec.num_kv_heads,
646
+ )
647
+ if has_trtllm_support:
648
+ return AttentionCGSupport.UNIFORM_BATCH
649
+ else:
650
+ return AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
651
+
652
+ def _get_workspace_buffer(self):
653
+ if self._workspace_buffer is None:
654
+ buffer_size = envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE
655
+ if vllm_is_batch_invariant():
656
+ buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT
657
+ self._workspace_buffer = torch.zeros(
658
+ buffer_size, dtype=torch.uint8, device=self.device
659
+ )
660
+ return self._workspace_buffer
661
+
662
+ def set_workspace_buffer(self, workspace_buffer: torch.Tensor):
663
+ self._workspace_buffer = workspace_buffer
664
+
665
+ def _get_prefill_wrapper(
666
+ self,
667
+ ) -> BatchPrefillWithPagedKVCacheWrapper | BatchDCPPrefillWrapper:
668
+ if self._prefill_wrapper is None:
669
+ if self.use_dcp:
670
+ self._prefill_wrapper = BatchDCPPrefillWrapper(
671
+ workspace_buffer=self._get_workspace_buffer(),
672
+ )
673
+ else:
674
+ self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
675
+ self._get_workspace_buffer(), get_kv_cache_layout()
676
+ )
677
+ assert self._prefill_wrapper is not None
678
+ return self._prefill_wrapper
679
+
680
+ def _get_decode_wrapper(self, batch_size: int, use_cudagraph: bool = False):
681
+ if use_cudagraph:
682
+ decode_wrapper = self._decode_wrappers_cudagraph.get(batch_size, None)
683
+ else:
684
+ decode_wrapper = self._decode_wrapper
685
+
686
+ if decode_wrapper is None:
687
+ if use_cudagraph:
688
+ paged_kv_indptr = self.paged_kv_indptr.gpu[: batch_size + 1]
689
+ paged_kv_indices = self.paged_kv_indices.gpu
690
+ paged_kv_last_page_len = self.paged_kv_last_page_len.gpu[:batch_size]
691
+ else:
692
+ paged_kv_indptr = None
693
+ paged_kv_indices = None
694
+ paged_kv_last_page_len = None
695
+ decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
696
+ self._get_workspace_buffer(),
697
+ get_kv_cache_layout(),
698
+ use_cuda_graph=use_cudagraph,
699
+ paged_kv_indptr_buffer=paged_kv_indptr,
700
+ paged_kv_indices_buffer=paged_kv_indices,
701
+ paged_kv_last_page_len_buffer=paged_kv_last_page_len,
702
+ # Tensor cores are enabled by default because the perf would be
703
+ # at least as good as cuda cores for all attention ops in latest
704
+ # gpus.
705
+ use_tensor_cores=True,
706
+ )
707
+
708
+ # save the decode wrapper
709
+ if use_cudagraph:
710
+ self._decode_wrappers_cudagraph[batch_size] = decode_wrapper
711
+ else:
712
+ self._decode_wrapper = decode_wrapper
713
+
714
+ return decode_wrapper
715
+
716
+ def _get_cascade_wrapper(self):
717
+ if self._cascade_wrapper is None:
718
+ self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
719
+ 2, self._get_workspace_buffer(), get_kv_cache_layout()
720
+ )
721
+ return self._cascade_wrapper
722
+
723
+ def _compute_flashinfer_kv_metadata(
724
+ self,
725
+ num_blocks_np: np.ndarray,
726
+ seq_lens_np: np.ndarray,
727
+ block_table_tensor: torch.Tensor,
728
+ num_reqs: int,
729
+ page_size: int,
730
+ ) -> torch.Tensor:
731
+ """
732
+ Compute paged_kv_indptr, paged_kv_indices, paged_kv_last_page_len for FlashInfer
733
+ attention.
734
+
735
+ Results are stored in self.paged_kv_indptr,
736
+ self.paged_kv_indices, self.paged_kv_last_page_len buffers.
737
+
738
+ Returns paged_kv_indices, a GPU tensor with shape [num_actual_pages].
739
+ """
740
+ # write self.paged_kv_indptr_cpu inplace (0-index is always 0)
741
+ np.cumsum(
742
+ num_blocks_np,
743
+ dtype=np.int32,
744
+ out=self.paged_kv_indptr.np[1 : num_reqs + 1],
745
+ )
746
+ # NOTE(woosuk): Because self.paged_kv_indptr_cpu can be modified
747
+ # after this line (e.g., for cuda graphs), we need to copy the data to
748
+ # self.paged_kv_indptr_buffer to avoid race condition.
749
+ self.paged_kv_indptr_cpu_buffer[: num_reqs + 1] = self.paged_kv_indptr.cpu[
750
+ : num_reqs + 1
751
+ ]
752
+ paged_kv_indptr = self.paged_kv_indptr.gpu[: num_reqs + 1]
753
+ paged_kv_indptr.copy_(
754
+ self.paged_kv_indptr_cpu_buffer[: num_reqs + 1], non_blocking=True
755
+ )
756
+
757
+ # write self.paged_kv_indices inplace
758
+ num_actual_pages = self.paged_kv_indptr.np[num_reqs]
759
+ paged_kv_indices = self.paged_kv_indices.gpu[:num_actual_pages]
760
+ _copy_page_indices_kernel[(num_reqs,)](
761
+ paged_kv_indices,
762
+ block_table_tensor,
763
+ block_table_tensor.stride(0),
764
+ paged_kv_indptr,
765
+ BLOCK_SIZE=1024,
766
+ )
767
+
768
+ # write self.paged_kv_last_page_len_cpu inplace
769
+ paged_kv_last_page_len_np = seq_lens_np % page_size
770
+ self.paged_kv_last_page_len.np[:num_reqs] = np.where(
771
+ (paged_kv_last_page_len_np == 0) & (seq_lens_np != 0),
772
+ page_size,
773
+ paged_kv_last_page_len_np,
774
+ )
775
+ return paged_kv_indices
776
+
777
+ def build(
778
+ self,
779
+ common_prefix_len: int,
780
+ common_attn_metadata: CommonAttentionMetadata,
781
+ fast_build: bool = False,
782
+ ) -> FlashInferMetadata:
783
+ num_reqs = common_attn_metadata.num_reqs
784
+ num_actual_tokens = common_attn_metadata.num_actual_tokens
785
+ num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
786
+ split_decodes_and_prefills(
787
+ common_attn_metadata,
788
+ decode_threshold=self.reorder_batch_threshold,
789
+ require_uniform=True,
790
+ )
791
+ )
792
+
793
+ page_size = self.page_size
794
+ max_seq_len = common_attn_metadata.max_seq_len
795
+ seq_lens = common_attn_metadata.seq_lens
796
+ block_table_tensor = common_attn_metadata.block_table_tensor
797
+ qo_indptr = common_attn_metadata.query_start_loc
798
+ qo_indptr_cpu = common_attn_metadata.query_start_loc_cpu
799
+
800
+ # Step 1: Decide which dispatch modes to use:
801
+ # - Cascade attention (distinct mode)
802
+ # - Prefill (FI native or TRTLLM)
803
+ # - Decode (FI native or TRTLLM)
804
+ use_cascade = common_prefix_len > 0
805
+ uses_spec_reorder = self.reorder_batch_threshold > 1
806
+ prefill_use_trtllm = use_trtllm_attention(
807
+ self.num_qo_heads,
808
+ self.num_kv_heads,
809
+ num_prefill_tokens,
810
+ max_seq_len,
811
+ self.dcp_world_size,
812
+ self.cache_dtype,
813
+ self.q_data_type,
814
+ is_prefill=True,
815
+ force_use_trtllm=self.attention_config.use_trtllm_attention,
816
+ has_sinks=self.has_sinks,
817
+ has_spec=uses_spec_reorder,
818
+ )
819
+ decode_use_trtllm = (
820
+ self.use_trtllm_decode_attention and self.dcp_world_size <= 1
821
+ )
822
+
823
+ all_uses_trtllm = (num_prefills == 0 or prefill_use_trtllm) and (
824
+ num_decodes == 0 or decode_use_trtllm
825
+ )
826
+ is_only_trtllm_decode = num_prefills == 0 and (
827
+ num_decodes > 0 and decode_use_trtllm
828
+ )
829
+
830
+ if not all_uses_trtllm:
831
+ if self.has_sinks:
832
+ raise NotImplementedError(
833
+ "FlashInfer backend currently does not support attention "
834
+ "sinks, please use trtllm on blackwell or flash attention "
835
+ "on earlier GPUs."
836
+ )
837
+
838
+ if not self.global_hyperparameters.has_same_window_lefts:
839
+ raise ValueError(
840
+ "Window left is not the same for all layers. "
841
+ "One potential fix is to set disable_sliding_window=True"
842
+ )
843
+
844
+ assert self.global_hyperparameters.has_same_all_params, (
845
+ "FlashInfer backend currently only supports models in which "
846
+ "all layers share the same values for the following "
847
+ "hyperparameters: `window_left`, `logits_soft_cap`, "
848
+ "`sm_scale`."
849
+ )
850
+
851
+ # The q quantization is not supported for non-trtllm attention,
852
+ # fall back to model dtype.
853
+ self.q_data_type = self.model_config.dtype
854
+
855
+ # Step 2: Initialize the output metadata
856
+ # Leave prefill/decode/cascade_wrapper empty, to be populated
857
+ # case by case depending on the batch contents and backend selection.
858
+ attn_metadata = FlashInferMetadata(
859
+ num_actual_tokens=num_actual_tokens,
860
+ slot_mapping=common_attn_metadata.slot_mapping,
861
+ q_data_type=self.q_data_type,
862
+ num_decodes=num_decodes,
863
+ num_decode_tokens=num_decode_tokens,
864
+ num_prefills=num_prefills,
865
+ num_prefill_tokens=num_prefill_tokens,
866
+ use_cascade=use_cascade,
867
+ prefill=None,
868
+ decode=None,
869
+ cascade_wrapper=None,
870
+ )
871
+
872
+ # Guard access to seq_lens_cpu, which may not always be needed
873
+ # and can be expensive to retrieve in async mode.
874
+ needs_seq_lens_cpu = self.use_dcp or use_cascade or not is_only_trtllm_decode
875
+ seq_lens_cpu = (
876
+ common_attn_metadata.seq_lens.cpu() if needs_seq_lens_cpu else None
877
+ )
878
+ seq_lens_np = seq_lens_cpu.numpy() if seq_lens_cpu is not None else None
879
+ num_blocks_np = (
880
+ (seq_lens_np + (page_size - 1)) // page_size
881
+ if seq_lens_np is not None
882
+ else None
883
+ )
884
+
885
+ # Adjust seq_lens_cpu for DCP
886
+ if self.use_dcp:
887
+ assert seq_lens_cpu is not None
888
+ if num_prefills > 0:
889
+ qo_indptr_prefill_cpu = (
890
+ qo_indptr_cpu[num_decodes:] - qo_indptr_cpu[num_decodes]
891
+ )
892
+ query_lens_prefill_cpu = (
893
+ qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
894
+ )
895
+ seq_lens_cpu[num_decodes:] = (
896
+ seq_lens_cpu[num_decodes:] - query_lens_prefill_cpu
897
+ )
898
+
899
+ seq_lens_cpu = get_dcp_local_seq_lens(
900
+ seq_lens_cpu,
901
+ self.dcp_world_size,
902
+ self.dcp_rank,
903
+ self.dcp_kv_cache_interleave_size,
904
+ )
905
+
906
+ # Adjust num_block_np for cascade attention
907
+ if use_cascade:
908
+ assert num_blocks_np is not None
909
+ assert common_prefix_len % page_size == 0
910
+ num_common_kv_blocks = common_prefix_len // page_size
911
+ num_blocks_np -= num_common_kv_blocks
912
+
913
+ # Compute paged_kv_indices if necessary
914
+ needs_paged_kv_indices = use_cascade or not is_only_trtllm_decode
915
+ if needs_paged_kv_indices:
916
+ assert num_blocks_np is not None
917
+ assert seq_lens_np is not None
918
+ paged_kv_indices = self._compute_flashinfer_kv_metadata(
919
+ num_blocks_np,
920
+ seq_lens_np,
921
+ block_table_tensor,
922
+ num_reqs,
923
+ page_size,
924
+ )
925
+ else:
926
+ paged_kv_indices = None
927
+
928
+ # Early-out for cascade attention
929
+ if use_cascade:
930
+ # Grab the blocks of the shared prefix from the first request.
931
+ num_common_kv_blocks = common_prefix_len // page_size
932
+
933
+ # Create CPU versions directly for cascade (no GPU versions needed)
934
+ shared_qo_indptr_cpu = torch.tensor(
935
+ [0, num_actual_tokens], dtype=torch.int32, device="cpu"
936
+ )
937
+ shared_kv_page_indptr_cpu = torch.tensor(
938
+ [0, num_common_kv_blocks], dtype=torch.int32, device="cpu"
939
+ )
940
+ shared_kv_page_indices_cpu = block_table_tensor[0, :num_common_kv_blocks]
941
+ shared_kv_last_page_len_cpu = torch.tensor(
942
+ [page_size], dtype=torch.int32, device="cpu"
943
+ )
944
+
945
+ # Remove the blocks of the shared prefix from all requests.
946
+ block_table_tensor = block_table_tensor[:, num_common_kv_blocks:]
947
+ num_blocks_np -= num_common_kv_blocks
948
+
949
+ assert paged_kv_indices is not None
950
+ paged_kv_indptr_cpu = self.paged_kv_indptr.cpu[: 1 + num_reqs]
951
+ paged_kv_last_page_len_cpu = self.paged_kv_last_page_len.cpu[:num_reqs]
952
+
953
+ attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
954
+ attn_metadata.cascade_wrapper.plan(
955
+ [shared_qo_indptr_cpu, qo_indptr_cpu],
956
+ [shared_kv_page_indptr_cpu, paged_kv_indptr_cpu],
957
+ [shared_kv_page_indices_cpu, paged_kv_indices],
958
+ [shared_kv_last_page_len_cpu, paged_kv_last_page_len_cpu],
959
+ self.num_qo_heads,
960
+ self.num_kv_heads,
961
+ self.head_dim,
962
+ self.page_size,
963
+ causal=True,
964
+ sm_scale=self.sm_scale,
965
+ window_left=self.window_left,
966
+ logits_soft_cap=self.logits_soft_cap,
967
+ q_data_type=self.q_data_type,
968
+ kv_data_type=self.kv_cache_dtype,
969
+ )
970
+ return attn_metadata
971
+
972
+ # Step 3: Handle prefill and decode pathways case by case
973
+ ## PREFILL PATHWAY
974
+ if num_prefills > 0:
975
+ # Slices for shared prefill metadata
976
+ prefill_start = num_decodes
977
+ qo_indptr_prefill_cpu = (
978
+ qo_indptr_cpu[prefill_start:] - qo_indptr_cpu[prefill_start]
979
+ )
980
+ assert qo_indptr_prefill_cpu.shape[0] == num_prefills + 1
981
+
982
+ if prefill_use_trtllm:
983
+ # Create GPU versions
984
+ qo_indptr_prefill_gpu = (
985
+ qo_indptr[prefill_start:] - qo_indptr[prefill_start]
986
+ )
987
+ paged_kv_indptr_prefill_gpu = self.paged_kv_indptr.gpu[
988
+ prefill_start : num_reqs + 1
989
+ ]
990
+ # Compute max_q_len for prefill requests
991
+ query_lens_prefill_cpu = (
992
+ qo_indptr_prefill_cpu[1:] - qo_indptr_prefill_cpu[:-1]
993
+ )
994
+ max_q_len_prefill = int(query_lens_prefill_cpu.max().item())
995
+ attn_metadata.prefill = TRTLLMPrefill(
996
+ block_tables=block_table_tensor[prefill_start:],
997
+ seq_lens=seq_lens[prefill_start:],
998
+ cum_seq_lens_q=qo_indptr_prefill_gpu,
999
+ cum_seq_lens_kv=paged_kv_indptr_prefill_gpu,
1000
+ max_q_len=max_q_len_prefill,
1001
+ max_seq_len=max_seq_len,
1002
+ )
1003
+ else:
1004
+ prefill_wrapper = self._get_prefill_wrapper()
1005
+ # Slicing CPU buffers that are only needed for FI native prefills
1006
+ paged_kv_last_page_len_prefill_cpu = self.paged_kv_last_page_len.cpu[
1007
+ prefill_start:num_reqs
1008
+ ]
1009
+ assert paged_kv_last_page_len_prefill_cpu.shape[0] == num_prefills
1010
+ paged_kv_indptr_prefill_cpu = self.paged_kv_indptr.cpu[
1011
+ prefill_start : num_reqs + 1
1012
+ ]
1013
+ assert paged_kv_indptr_prefill_cpu.shape[0] == num_prefills + 1
1014
+ if self.use_dcp:
1015
+ assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
1016
+ prefill_wrapper.plan(
1017
+ qo_indptr_cpu=qo_indptr_prefill_cpu,
1018
+ paged_kv_indptr_cpu=paged_kv_indptr_prefill_cpu,
1019
+ paged_kv_indices=paged_kv_indices,
1020
+ paged_kv_last_page_len_cpu=paged_kv_last_page_len_prefill_cpu,
1021
+ page_size=self.page_size,
1022
+ num_qo_heads=self.num_qo_heads,
1023
+ dcp_world_size=self.dcp_world_size,
1024
+ num_kv_heads=self.num_kv_heads,
1025
+ head_dim=self.head_dim,
1026
+ sm_scale=self.sm_scale,
1027
+ window_left=self.window_left,
1028
+ logits_soft_cap=self.logits_soft_cap,
1029
+ q_data_type=self.q_data_type,
1030
+ kv_cache_dtype=self.kv_cache_dtype,
1031
+ prefill_fixed_split_size=self.prefill_fixed_split_size,
1032
+ disable_split_kv=self.disable_split_kv,
1033
+ )
1034
+ else:
1035
+ assert isinstance(
1036
+ prefill_wrapper,
1037
+ BatchPrefillWithPagedKVCacheWrapper,
1038
+ )
1039
+ prefill_wrapper.plan(
1040
+ qo_indptr_prefill_cpu,
1041
+ paged_kv_indptr_prefill_cpu,
1042
+ paged_kv_indices,
1043
+ paged_kv_last_page_len_prefill_cpu,
1044
+ self.num_qo_heads,
1045
+ self.num_kv_heads,
1046
+ self.head_dim,
1047
+ self.page_size,
1048
+ causal=True,
1049
+ sm_scale=self.sm_scale,
1050
+ window_left=self.window_left,
1051
+ logits_soft_cap=self.logits_soft_cap,
1052
+ q_data_type=self.q_data_type,
1053
+ kv_data_type=self.kv_cache_dtype,
1054
+ fixed_split_size=self.prefill_fixed_split_size,
1055
+ disable_split_kv=self.disable_split_kv,
1056
+ )
1057
+ attn_metadata.prefill = FIPrefill(wrapper=prefill_wrapper)
1058
+
1059
+ ## DECODE PATHWAY
1060
+ if num_decodes > 0:
1061
+ if decode_use_trtllm:
1062
+ assert num_decode_tokens % num_decodes == 0, (
1063
+ "TRTLLM decode requires uniform query lengths per request."
1064
+ )
1065
+ attn_metadata.decode = TRTLLMDecode(
1066
+ block_tables=block_table_tensor[:num_decodes],
1067
+ seq_lens=seq_lens[:num_decodes],
1068
+ max_seq_len=max_seq_len,
1069
+ )
1070
+ else:
1071
+ pure_decode = num_prefills == 0
1072
+ use_cudagraph = (
1073
+ self.enable_cuda_graph
1074
+ and pure_decode
1075
+ and num_decode_tokens <= self._decode_cudagraph_max_bs
1076
+ )
1077
+ num_input_tokens = num_decode_tokens
1078
+
1079
+ decode_wrapper = self._get_decode_wrapper(
1080
+ num_input_tokens, use_cudagraph
1081
+ )
1082
+ # Use the persistent buffer with padding length,
1083
+ # instead of the same address but chunked version
1084
+ # in atten_metadata when using cudagraph.
1085
+ fast_plan_decode(
1086
+ decode_wrapper,
1087
+ self.paged_kv_indptr.cpu[: num_input_tokens + 1],
1088
+ paged_kv_indices,
1089
+ self.paged_kv_last_page_len.cpu[:num_input_tokens],
1090
+ seq_lens_cpu[:num_input_tokens],
1091
+ self.num_qo_heads * self.dcp_world_size,
1092
+ self.num_kv_heads,
1093
+ self.head_dim,
1094
+ self.page_size,
1095
+ # Disable flashinfer's pos encoding and use vllm's rope.
1096
+ pos_encoding_mode="NONE",
1097
+ sm_scale=self.sm_scale,
1098
+ window_left=self.window_left,
1099
+ logits_soft_cap=self.logits_soft_cap,
1100
+ q_data_type=self.q_data_type,
1101
+ kv_data_type=self.kv_cache_dtype,
1102
+ fixed_split_size=self.decode_fixed_split_size,
1103
+ disable_split_kv=self.disable_split_kv,
1104
+ )
1105
+ attn_metadata.decode = FIDecode(wrapper=decode_wrapper)
1106
+ return attn_metadata
1107
+
1108
+ def use_cascade_attention(self, *args, **kwargs) -> bool:
1109
+ if self.kv_cache_spec.dtype != self.vllm_config.model_config.dtype:
1110
+ # TODO: The cascade wrapper currently does not support setting
1111
+ # kv cache dtype to something different from query dtype.
1112
+ return False
1113
+ # TODO: Cascade attention doesn't work, disable it for now
1114
+ # return use_cascade_attention(*args, **kwargs)
1115
+ return False
1116
+
1117
+
1118
+ class FlashInferImpl(AttentionImpl):
1119
+ can_return_lse_for_decode: bool = True
1120
+
1121
+ def __init__(
1122
+ self,
1123
+ num_heads: int,
1124
+ head_size: int,
1125
+ scale: float,
1126
+ num_kv_heads: int,
1127
+ alibi_slopes: list[float] | None,
1128
+ sliding_window: int | None,
1129
+ kv_cache_dtype: str,
1130
+ logits_soft_cap: float | None = None,
1131
+ attn_type: AttentionType = AttentionType.DECODER,
1132
+ kv_sharing_target_layer_name: int | None = None,
1133
+ sinks: torch.Tensor | None = None,
1134
+ ) -> None:
1135
+ self.num_heads = num_heads
1136
+ self.head_size = head_size
1137
+ self.scale = float(scale)
1138
+ self.num_kv_heads = num_kv_heads
1139
+ if alibi_slopes is not None:
1140
+ alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
1141
+ self.alibi_slopes = alibi_slopes
1142
+ if sliding_window is None:
1143
+ self.sliding_window = (-1, -1)
1144
+ else:
1145
+ self.sliding_window = (sliding_window - 1, 0)
1146
+ self.window_left = (
1147
+ self.sliding_window[0] if self.sliding_window is not None else -1
1148
+ )
1149
+ self.kv_cache_dtype = kv_cache_dtype
1150
+ self.logits_soft_cap = logits_soft_cap
1151
+ self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
1152
+
1153
+ self.num_queries_per_kv = self.num_heads // self.num_kv_heads
1154
+
1155
+ if attn_type != AttentionType.DECODER:
1156
+ raise NotImplementedError(
1157
+ "Encoder self-attention and "
1158
+ "encoder/decoder cross-attention "
1159
+ "are not implemented for "
1160
+ "FlashInferImpl"
1161
+ )
1162
+
1163
+ self.sinks: torch.Tensor | None = None
1164
+ if sinks is not None:
1165
+ if sinks.shape[0] != num_heads:
1166
+ raise ValueError(
1167
+ "Sinks must have the same number of heads as the number of "
1168
+ f"heads in the layer. Expected {num_heads}, but got "
1169
+ f"{sinks.shape[0]}."
1170
+ )
1171
+ self.sinks = sinks
1172
+
1173
+ self.support_trtllm_attn = can_use_trtllm_attention(num_heads, num_kv_heads)
1174
+ vllm_config = get_current_vllm_config()
1175
+ self.supports_quant_query_input = (
1176
+ self.support_trtllm_attn
1177
+ and not vllm_config.attention_config.disable_flashinfer_q_quantization
1178
+ )
1179
+ self.bmm1_scale: float | None = None
1180
+ self.bmm2_scale: float | None = None
1181
+ self.o_sf_scale: float | None = None
1182
+
1183
+ def fused_output_quant_supported(self, quant_key: QuantKey):
1184
+ return (
1185
+ self.support_trtllm_attn
1186
+ and self.kv_cache_dtype.startswith("fp8")
1187
+ and quant_key in (kFp8StaticTensorSym, kNvfp4Quant)
1188
+ )
1189
+
1190
+ # FlashInfer requires attention sinks to be float32
1191
+ def process_weights_after_loading(self, act_dtype: torch.dtype):
1192
+ if self.sinks is not None and self.sinks.dtype != torch.float32:
1193
+ self.sinks = self.sinks.to(torch.float32)
1194
+
1195
+ def forward(
1196
+ self,
1197
+ layer: torch.nn.Module,
1198
+ query: torch.Tensor,
1199
+ key: torch.Tensor,
1200
+ value: torch.Tensor,
1201
+ kv_cache: torch.Tensor,
1202
+ attn_metadata: FlashInferMetadata,
1203
+ output: torch.Tensor | None = None,
1204
+ output_scale: torch.Tensor | None = None,
1205
+ output_block_scale: torch.Tensor | None = None,
1206
+ ) -> torch.Tensor:
1207
+ """Forward pass with FlashInfer.
1208
+
1209
+ Args:
1210
+ query: shape = [num_tokens, num_heads, head_size]
1211
+ key: shape = [num_tokens, num_kv_heads, head_size]
1212
+ value: shape = [num_tokens, num_kv_heads, head_size]
1213
+ kv_cache: KV cache tensor with different possible shapes:
1214
+ - NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
1215
+ - HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
1216
+ attn_metadata: Metadata for attention.
1217
+ Returns:
1218
+ shape = [num_tokens, num_heads * head_size]
1219
+ """
1220
+ assert output is not None, "Output tensor must be provided."
1221
+
1222
+ if attn_metadata is None:
1223
+ # Profiling run.
1224
+ return output.fill_(0)
1225
+
1226
+ # Ensure query dtype matches the expected dtype from attention metadata
1227
+ assert attn_metadata.q_data_type == query.dtype, (
1228
+ f"Query dtype mismatch: expected {attn_metadata.q_data_type}, "
1229
+ f"got {query.dtype}"
1230
+ )
1231
+
1232
+ if self.bmm1_scale is None:
1233
+ self.bmm1_scale = layer._q_scale_float * layer._k_scale_float * self.scale
1234
+
1235
+ if self.bmm2_scale is None:
1236
+ self.bmm2_scale = layer._v_scale_float
1237
+
1238
+ prefill_use_trtllm = isinstance(attn_metadata.prefill, TRTLLMPrefill)
1239
+ decode_use_trtllm = isinstance(attn_metadata.decode, TRTLLMDecode)
1240
+
1241
+ # The attn+quant fusion happens when output_scale is provided.
1242
+ if output_scale is None:
1243
+ assert output_block_scale is None, (
1244
+ "output_block_scale is not supported when fusion has not happened"
1245
+ )
1246
+ else:
1247
+ assert attn_metadata.q_data_type == FP8_DTYPE, (
1248
+ "Query must be FP8 when attn+quant fusion happened."
1249
+ )
1250
+ assert (attn_metadata.num_prefills == 0 or prefill_use_trtllm) and (
1251
+ attn_metadata.num_decodes == 0 or decode_use_trtllm
1252
+ ), "Must use TRT-LLM attn"
1253
+
1254
+ if output.dtype == FP8_DTYPE:
1255
+ assert output_block_scale is None, (
1256
+ "output_block_scale should not be provided for fp8 output"
1257
+ )
1258
+ elif output.dtype == FP4_DTYPE:
1259
+ assert output_block_scale is not None, (
1260
+ "output_block_scale is required for nvfp4 output"
1261
+ )
1262
+ else:
1263
+ raise ValueError(f"Unsupported output dtype: {output.dtype}")
1264
+
1265
+ # TRTLLM attn kernel requires to scale to pass as a host scalar,
1266
+ # store the o scale as a host scalar in warmup run with cuda graph
1267
+ # not enabled
1268
+ if layer._o_scale_float is None:
1269
+ layer._o_scale_float = output_scale.cpu().item()
1270
+ if output.dtype == FP8_DTYPE:
1271
+ self.bmm2_scale = self.bmm2_scale / layer._o_scale_float
1272
+ elif output.dtype == FP4_DTYPE:
1273
+ self.o_sf_scale = layer._o_scale_float
1274
+
1275
+ # IMPORTANT!
1276
+ # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
1277
+ # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
1278
+ # in this method. For example, `view` and `slice` (or `[:n]`) operations
1279
+ # are surprisingly slow even in the case they do not invoke any GPU ops.
1280
+ # Minimize the PyTorch ops in this method as much as possible.
1281
+ # Whenever making a change in this method, please benchmark the
1282
+ # performance to make sure it does not introduce any overhead.
1283
+
1284
+ num_actual_tokens = attn_metadata.num_actual_tokens
1285
+
1286
+ if self.kv_sharing_target_layer_name is None:
1287
+ # Reshape the input keys and values and store them in the cache.
1288
+ # Skip this if sharing KV cache with an earlier attention layer.
1289
+ # NOTE(woosuk): Here, key and value are padded while slot_mapping is
1290
+ # not padded. However, we don't need to do key[:num_actual_tokens]
1291
+ # and value[:num_actual_tokens] because the reshape_and_cache_flash
1292
+ # op uses the slot_mapping's shape to determine the number of
1293
+ # actual tokens.
1294
+ torch.ops._C_cache_ops.reshape_and_cache_flash(
1295
+ key,
1296
+ value,
1297
+ kv_cache[:, 0],
1298
+ kv_cache[:, 1],
1299
+ attn_metadata.slot_mapping,
1300
+ self.kv_cache_dtype,
1301
+ layer._k_scale,
1302
+ layer._v_scale,
1303
+ )
1304
+
1305
+ # The FlashInfer api requires data to be in fp8_e4m3 or fp8_e5m2
1306
+ # to process the cache when the kv_cache_dtype is fp8
1307
+ if self.kv_cache_dtype.startswith("fp8"):
1308
+ torch_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
1309
+ self.kv_cache_dtype
1310
+ )
1311
+ kv_cache = kv_cache.view(torch_dtype)
1312
+
1313
+ # Inputs and outputs may be padded for CUDA graphs
1314
+ query = query[:num_actual_tokens]
1315
+ key = key[:num_actual_tokens]
1316
+ value = value[:num_actual_tokens]
1317
+ output_padded = output
1318
+ output = output[:num_actual_tokens]
1319
+
1320
+ if attn_metadata.use_cascade:
1321
+ # Cascade attention (rare case).
1322
+ assert attn_metadata.cascade_wrapper is not None
1323
+ output.copy_(attn_metadata.cascade_wrapper.run(query, kv_cache))
1324
+ return output
1325
+
1326
+ # When using spec decoding, num_decodes can be < num_decode_tokens
1327
+ # because some decode requests may have more than one query token.
1328
+ num_decode_tokens = attn_metadata.num_decode_tokens
1329
+ num_prefill_tokens = attn_metadata.num_prefill_tokens
1330
+
1331
+ stride_order = FlashInferBackend.get_kv_cache_stride_order()
1332
+ kv_cache_permute = kv_cache.permute(*stride_order)
1333
+
1334
+ use_dcp = self.dcp_world_size > 1
1335
+
1336
+ # Regular attention (common case).
1337
+ # Decodes are at the front and prefills are at the back.
1338
+ if num_prefill_tokens > 0:
1339
+ prefill_query = query[num_decode_tokens:]
1340
+ assert prefill_query.shape[0] == num_prefill_tokens
1341
+
1342
+ if not prefill_use_trtllm:
1343
+ assert isinstance(attn_metadata.prefill, FIPrefill)
1344
+ prefill_wrapper = attn_metadata.prefill.wrapper
1345
+ assert prefill_wrapper is not None
1346
+ if use_dcp:
1347
+ assert isinstance(prefill_wrapper, BatchDCPPrefillWrapper)
1348
+ assert prefill_wrapper._context._window_left == self.window_left
1349
+ assert prefill_wrapper._context._logits_soft_cap == (
1350
+ self.logits_soft_cap or 0.0
1351
+ )
1352
+ assert prefill_wrapper._context._sm_scale == self.scale
1353
+ assert not prefill_wrapper._context._causal
1354
+ assert prefill_wrapper._new_tokens._window_left == self.window_left
1355
+ assert prefill_wrapper._new_tokens._logits_soft_cap == (
1356
+ self.logits_soft_cap or 0.0
1357
+ )
1358
+ assert prefill_wrapper._new_tokens._sm_scale == self.scale
1359
+ assert prefill_wrapper._new_tokens._causal
1360
+
1361
+ prefill_wrapper.run(
1362
+ layer,
1363
+ prefill_query,
1364
+ kv_cache_permute,
1365
+ key[num_decode_tokens:],
1366
+ value[num_decode_tokens:],
1367
+ out=output[num_decode_tokens:],
1368
+ )
1369
+ else:
1370
+ assert isinstance(
1371
+ prefill_wrapper, BatchPrefillWithPagedKVCacheWrapper
1372
+ )
1373
+ assert prefill_wrapper._window_left == self.window_left
1374
+ assert prefill_wrapper._logits_soft_cap == (
1375
+ self.logits_soft_cap or 0.0
1376
+ )
1377
+ assert prefill_wrapper._sm_scale == self.scale
1378
+ assert prefill_wrapper._causal
1379
+ prefill_wrapper.run(
1380
+ prefill_query,
1381
+ kv_cache_permute,
1382
+ k_scale=layer._k_scale_float,
1383
+ v_scale=layer._v_scale_float,
1384
+ out=output[num_decode_tokens:],
1385
+ )
1386
+ else:
1387
+ assert isinstance(attn_metadata.prefill, TRTLLMPrefill)
1388
+ # prefill_query may be non-contiguous
1389
+ prefill_query = prefill_query.contiguous()
1390
+ workspace_buffer = _get_trtllm_gen_workspace_buffer()
1391
+ block_tables_prefill = attn_metadata.prefill.block_tables
1392
+ seq_lens_prefill = attn_metadata.prefill.seq_lens
1393
+
1394
+ # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
1395
+ assert get_kv_cache_layout() == "HND"
1396
+ assert is_strictly_contiguous(prefill_query)
1397
+ assert is_strictly_contiguous(kv_cache_permute)
1398
+ assert is_strictly_contiguous(workspace_buffer)
1399
+ assert is_strictly_contiguous(block_tables_prefill)
1400
+ assert is_strictly_contiguous(seq_lens_prefill)
1401
+
1402
+ if output.dtype == FP4_DTYPE:
1403
+ assert self.o_sf_scale is not None
1404
+ out = FP4Tensor(
1405
+ data=output[num_decode_tokens:],
1406
+ scale=output_block_scale,
1407
+ scale_start_index=num_decode_tokens,
1408
+ original_shape=prefill_query.shape,
1409
+ )
1410
+ else:
1411
+ assert self.o_sf_scale is None
1412
+ out = output[num_decode_tokens:]
1413
+
1414
+ if (
1415
+ attn_metadata.q_data_type != FP8_DTYPE
1416
+ and self.kv_cache_dtype.startswith("fp8")
1417
+ ):
1418
+ # TRTLLM prefill attention does not support BF16 Q
1419
+ # and fp8 kv cache. So to enable prefill attention
1420
+ # with fp8 kv cache, we can construct a mock block
1421
+ # and mock kv cache with BF16 KV involved in the prefill
1422
+ mock_kv_cache, mock_block_table = trtllm_prefill_attn_kvfp8_dequant(
1423
+ kv_cache_permute,
1424
+ block_tables_prefill,
1425
+ layer._k_scale,
1426
+ layer._v_scale,
1427
+ attn_metadata.q_data_type,
1428
+ )
1429
+ else:
1430
+ mock_kv_cache = kv_cache_permute
1431
+ mock_block_table = block_tables_prefill
1432
+
1433
+ trtllm_batch_context_with_kv_cache(
1434
+ query=prefill_query,
1435
+ kv_cache=mock_kv_cache,
1436
+ workspace_buffer=workspace_buffer,
1437
+ block_tables=mock_block_table,
1438
+ seq_lens=seq_lens_prefill,
1439
+ max_q_len=attn_metadata.prefill.max_q_len,
1440
+ max_kv_len=attn_metadata.prefill.max_seq_len,
1441
+ bmm1_scale=self.bmm1_scale,
1442
+ bmm2_scale=self.bmm2_scale,
1443
+ batch_size=attn_metadata.num_prefills,
1444
+ cum_seq_lens_q=attn_metadata.prefill.cum_seq_lens_q,
1445
+ cum_seq_lens_kv=attn_metadata.prefill.cum_seq_lens_kv,
1446
+ window_left=self.window_left,
1447
+ sinks=self.sinks,
1448
+ o_sf_scale=self.o_sf_scale,
1449
+ out=out,
1450
+ )
1451
+
1452
+ if num_decode_tokens > 0:
1453
+ decode_query = query[:num_decode_tokens]
1454
+ assert decode_query.shape[0] == num_decode_tokens
1455
+
1456
+ if not decode_use_trtllm:
1457
+ assert isinstance(attn_metadata.decode, FIDecode)
1458
+ decode_wrapper = attn_metadata.decode.wrapper
1459
+ assert decode_wrapper is not None
1460
+ assert decode_wrapper._window_left == self.window_left
1461
+ assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap or 0.0)
1462
+ assert decode_wrapper._sm_scale == self.scale
1463
+
1464
+ if use_dcp:
1465
+ decode_query = get_dcp_group().all_gather(
1466
+ decode_query.contiguous(), dim=-2
1467
+ )
1468
+ output_tmp = torch.empty_like(decode_query)
1469
+ lse = torch.empty(
1470
+ (decode_query.size(0), decode_query.size(1)),
1471
+ dtype=torch.float32,
1472
+ device=decode_query.device,
1473
+ )
1474
+ decode_wrapper.run(
1475
+ decode_query,
1476
+ kv_cache_permute,
1477
+ k_scale=layer._k_scale_float,
1478
+ v_scale=layer._v_scale_float,
1479
+ out=output_tmp,
1480
+ lse=lse,
1481
+ return_lse=True,
1482
+ )
1483
+ output[:num_decode_tokens] = cp_lse_ag_out_rs(
1484
+ output_tmp,
1485
+ lse,
1486
+ get_dcp_group(),
1487
+ is_lse_base_on_e=False,
1488
+ )
1489
+ else:
1490
+ decode_wrapper.run(
1491
+ decode_query,
1492
+ kv_cache_permute,
1493
+ k_scale=layer._k_scale_float,
1494
+ v_scale=layer._v_scale_float,
1495
+ out=output[:num_decode_tokens],
1496
+ )
1497
+ else:
1498
+ # decode_query may be non-contiguous
1499
+ assert isinstance(attn_metadata.decode, TRTLLMDecode)
1500
+ decode_query = decode_query.contiguous()
1501
+ workspace_buffer = _get_trtllm_gen_workspace_buffer()
1502
+ block_tables_decode = attn_metadata.decode.block_tables
1503
+ seq_lens_decode = attn_metadata.decode.seq_lens
1504
+
1505
+ # This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
1506
+ assert get_kv_cache_layout() == "HND"
1507
+ assert is_strictly_contiguous(decode_query)
1508
+ assert is_strictly_contiguous(kv_cache_permute)
1509
+ assert is_strictly_contiguous(workspace_buffer)
1510
+ assert is_strictly_contiguous(block_tables_decode)
1511
+ assert is_strictly_contiguous(seq_lens_decode)
1512
+
1513
+ if output.dtype == FP4_DTYPE:
1514
+ assert self.o_sf_scale is not None
1515
+ out = FP4Tensor(
1516
+ data=output[:num_decode_tokens],
1517
+ scale=output_block_scale,
1518
+ scale_start_index=0,
1519
+ original_shape=decode_query.shape,
1520
+ )
1521
+ else:
1522
+ assert self.o_sf_scale is None
1523
+ out = output[:num_decode_tokens]
1524
+
1525
+ if num_decode_tokens % attn_metadata.num_decodes != 0:
1526
+ # This gets triggered when the dummy_run forces
1527
+ # attention to be initialized with q_len = 0
1528
+ q_len_per_req = 1
1529
+ else:
1530
+ q_len_per_req = num_decode_tokens // attn_metadata.num_decodes
1531
+
1532
+ trtllm_batch_decode_with_kv_cache(
1533
+ query=decode_query,
1534
+ kv_cache=kv_cache_permute,
1535
+ workspace_buffer=workspace_buffer,
1536
+ block_tables=block_tables_decode,
1537
+ seq_lens=seq_lens_decode,
1538
+ max_seq_len=attn_metadata.decode.max_seq_len,
1539
+ bmm1_scale=self.bmm1_scale,
1540
+ bmm2_scale=self.bmm2_scale,
1541
+ window_left=self.window_left,
1542
+ sinks=self.sinks,
1543
+ o_sf_scale=self.o_sf_scale,
1544
+ out=out,
1545
+ q_len_per_req=q_len_per_req,
1546
+ )
1547
+ return output_padded
1548
+
1549
+
1550
+ def fast_plan_decode(
1551
+ self, # decode wrapper
1552
+ indptr_cpu: torch.Tensor,
1553
+ indices: torch.Tensor,
1554
+ last_page_len_cpu: torch.Tensor,
1555
+ seq_lens_cpu: torch.Tensor,
1556
+ num_qo_heads: int,
1557
+ num_kv_heads: int,
1558
+ head_dim: int,
1559
+ page_size: int,
1560
+ pos_encoding_mode: str = "NONE",
1561
+ window_left: int = -1,
1562
+ logits_soft_cap: float | None = None,
1563
+ q_data_type: str | torch.dtype | None = "float16",
1564
+ kv_data_type: str | torch.dtype | None = None,
1565
+ data_type: str | torch.dtype | None = None,
1566
+ sm_scale: float | None = None,
1567
+ rope_scale: float | None = None,
1568
+ rope_theta: float | None = None,
1569
+ non_blocking: bool = True,
1570
+ fixed_split_size: int = -1,
1571
+ disable_split_kv: bool = False,
1572
+ ) -> None:
1573
+ """
1574
+ A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for
1575
+ cudagraph capture/replay, while the no cudagraph version turns back
1576
+ to the original plan.
1577
+ using original plan after passing host-side buffers:
1578
+ - only host-to-device copy of indptr and last_page_len buffers
1579
+ Modifications for cudagraph:
1580
+ - only host-to-device copy of indptr and last_page_len buffers.
1581
+ - avoid device-to-device copy of indices buffer.
1582
+
1583
+ Part of the code get inspiration from the original plan from FlashInfer repo
1584
+ and the implementation of fast_decode_plan for FlashInfer in SGlang repo.
1585
+ """
1586
+ # Warm up with the original plan if it is first call, and always run the
1587
+ # original plan if we run for dynamic shape. For fixed shape (cudagraph),
1588
+ # this warm up is to generate the _cached_module for the decode wrapper.
1589
+ if not self.is_cuda_graph_enabled or getattr(self, "vllm_first_call", True):
1590
+ self.plan(
1591
+ indptr_cpu,
1592
+ indices,
1593
+ last_page_len_cpu,
1594
+ num_qo_heads,
1595
+ num_kv_heads,
1596
+ head_dim,
1597
+ page_size,
1598
+ pos_encoding_mode,
1599
+ window_left,
1600
+ logits_soft_cap,
1601
+ q_data_type,
1602
+ kv_data_type,
1603
+ data_type,
1604
+ sm_scale,
1605
+ rope_scale,
1606
+ rope_theta,
1607
+ non_blocking,
1608
+ None, # block_tables
1609
+ None, # seq_lens
1610
+ fixed_split_size,
1611
+ disable_split_kv,
1612
+ )
1613
+ self.vllm_first_call = False
1614
+ return
1615
+
1616
+ assert self.is_cuda_graph_enabled, "Should be cudagraph only here"
1617
+
1618
+ batch_size = len(last_page_len_cpu)
1619
+ if logits_soft_cap is None:
1620
+ logits_soft_cap = 0.0
1621
+
1622
+ # Handle data types consistently
1623
+ if data_type is not None:
1624
+ if q_data_type is None:
1625
+ q_data_type = data_type
1626
+ if kv_data_type is None:
1627
+ kv_data_type = data_type
1628
+ elif q_data_type is None:
1629
+ q_data_type = "float16"
1630
+
1631
+ if kv_data_type is None:
1632
+ kv_data_type = q_data_type
1633
+ q_data_type = (
1634
+ getattr(torch, q_data_type) if isinstance(q_data_type, str) else q_data_type
1635
+ )
1636
+ kv_data_type = (
1637
+ getattr(torch, kv_data_type) if isinstance(kv_data_type, str) else kv_data_type
1638
+ )
1639
+
1640
+ if batch_size != self._fixed_batch_size:
1641
+ raise ValueError(
1642
+ "The batch size should be fixed in cudagraph mode, the runtime "
1643
+ "batch size {} mismatches the batch size set during "
1644
+ "initialization {}".format(batch_size, self._fixed_batch_size)
1645
+ )
1646
+ if len(indices) > len(self._paged_kv_indices_buf):
1647
+ raise ValueError(
1648
+ "The size of indices should be less than or equal to the allocated buffer"
1649
+ )
1650
+
1651
+ # host-to-device copy for the indptr buffer
1652
+ self._paged_kv_indptr_buf.copy_(indptr_cpu, non_blocking=True)
1653
+ # host-to-device copy for the last_page_len buffer
1654
+ self._paged_kv_last_page_len_buf.copy_(last_page_len_cpu, non_blocking=True)
1655
+
1656
+ qo_indptr_host = _get_range_buf(batch_size + 1, "cpu")
1657
+
1658
+ try:
1659
+ # Make sure we pass exactly 19 arguments for tensor core version
1660
+ self._plan_info = self._cached_module.plan(
1661
+ self._float_workspace_buffer,
1662
+ self._int_workspace_buffer,
1663
+ self._pin_memory_int_workspace_buffer,
1664
+ qo_indptr_host,
1665
+ indptr_cpu,
1666
+ seq_lens_cpu,
1667
+ batch_size, # total_num_rows
1668
+ batch_size,
1669
+ num_qo_heads,
1670
+ num_kv_heads,
1671
+ page_size,
1672
+ self.is_cuda_graph_enabled,
1673
+ head_dim,
1674
+ head_dim,
1675
+ False, # causal
1676
+ window_left,
1677
+ fixed_split_size,
1678
+ disable_split_kv,
1679
+ 0,
1680
+ )
1681
+ except Exception as e:
1682
+ raise RuntimeError(f"Error in tensor core plan: {e}") from e
1683
+
1684
+ self._pos_encoding_mode = pos_encoding_mode
1685
+ self._window_left = window_left
1686
+ self._logits_soft_cap = logits_soft_cap
1687
+ self._sm_scale = sm_scale
1688
+ self._rope_scale = rope_scale
1689
+ self._rope_theta = rope_theta
1690
+
1691
+
1692
+ @triton.jit
1693
+ def _copy_page_indices_kernel(
1694
+ page_indices,
1695
+ block_table,
1696
+ block_table_stride,
1697
+ cu_num_blocks,
1698
+ BLOCK_SIZE: tl.constexpr,
1699
+ ):
1700
+ req_idx = tl.program_id(0)
1701
+ row_ptr = block_table + req_idx * block_table_stride
1702
+ start_idx = tl.load(cu_num_blocks + req_idx)
1703
+ end_idx = tl.load(cu_num_blocks + req_idx + 1)
1704
+ num_blocks = end_idx - start_idx
1705
+
1706
+ offset = tl.arange(0, BLOCK_SIZE)
1707
+ for i in tl.range(0, num_blocks, BLOCK_SIZE):
1708
+ block_ids = tl.load(row_ptr + i + offset, mask=i + offset < num_blocks)
1709
+ tl.store(
1710
+ page_indices + start_idx + i + offset,
1711
+ block_ids,
1712
+ mask=i + offset < num_blocks,
1713
+ )