vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +1511 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +3206 -0
- vllm/_ipex_ops.py +445 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +62 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/layer.py +913 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3277 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/mm_processor.py +363 -0
- vllm/benchmarks/serve.py +1761 -0
- vllm/benchmarks/startup.py +321 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +159 -0
- vllm/benchmarks/sweep/plot.py +675 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +450 -0
- vllm/benchmarks/sweep/serve_sla.py +459 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +138 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +946 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +214 -0
- vllm/compilation/backends.py +840 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +196 -0
- vllm/compilation/collective_fusion.py +1224 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +50 -0
- vllm/compilation/cuda_graph.py +309 -0
- vllm/compilation/decorators.py +662 -0
- vllm/compilation/fix_functionalization.py +266 -0
- vllm/compilation/fusion.py +570 -0
- vllm/compilation/fusion_attn.py +363 -0
- vllm/compilation/fx_utils.py +92 -0
- vllm/compilation/inductor_pass.py +145 -0
- vllm/compilation/matcher_utils.py +454 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +130 -0
- vllm/compilation/partition_rules.py +75 -0
- vllm/compilation/pass_manager.py +164 -0
- vllm/compilation/piecewise_backend.py +191 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +244 -0
- vllm/compilation/rocm_aiter_fusion.py +401 -0
- vllm/compilation/sequence_parallelism.py +368 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +180 -0
- vllm/compilation/wrapper.py +329 -0
- vllm/config/__init__.py +112 -0
- vllm/config/attention.py +114 -0
- vllm/config/cache.py +233 -0
- vllm/config/compilation.py +1149 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +119 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +102 -0
- vllm/config/model.py +2026 -0
- vllm/config/model_arch.py +57 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +157 -0
- vllm/config/parallel.py +703 -0
- vllm/config/pooler.py +188 -0
- vllm/config/profiler.py +199 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +656 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +78 -0
- vllm/config/utils.py +374 -0
- vllm/config/vllm.py +1487 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +301 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +509 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +303 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +346 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +778 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/xpu_communicator.py +98 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +3 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1192 -0
- vllm/distributed/eplb/policy/__init__.py +19 -0
- vllm/distributed/eplb/policy/abstract.py +43 -0
- vllm/distributed/eplb/policy/default.py +376 -0
- vllm/distributed/eplb/rebalance_execute.py +699 -0
- vllm/distributed/kv_events.py +505 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
- vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1809 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2137 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +194 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +468 -0
- vllm/entrypoints/api_server.py +186 -0
- vllm/entrypoints/chat_utils.py +1912 -0
- vllm/entrypoints/cli/__init__.py +19 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +57 -0
- vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/startup.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +260 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +253 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +12 -0
- vllm/entrypoints/context.py +898 -0
- vllm/entrypoints/grpc_server.py +531 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1807 -0
- vllm/entrypoints/logger.py +86 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1390 -0
- vllm/entrypoints/openai/cli_args.py +320 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/parser/__init__.py +0 -0
- vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
- vllm/entrypoints/openai/parser/responses_parser.py +176 -0
- vllm/entrypoints/openai/protocol.py +2566 -0
- vllm/entrypoints/openai/run_batch.py +635 -0
- vllm/entrypoints/openai/serving_chat.py +1897 -0
- vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
- vllm/entrypoints/openai/serving_completion.py +740 -0
- vllm/entrypoints/openai/serving_engine.py +1612 -0
- vllm/entrypoints/openai/serving_models.py +309 -0
- vllm/entrypoints/openai/serving_responses.py +2552 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +711 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +48 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +233 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +65 -0
- vllm/entrypoints/pooling/embed/conftest.py +28 -0
- vllm/entrypoints/pooling/embed/protocol.py +217 -0
- vllm/entrypoints/pooling/embed/serving.py +684 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +62 -0
- vllm/entrypoints/pooling/pooling/protocol.py +146 -0
- vllm/entrypoints/pooling/pooling/serving.py +354 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +147 -0
- vllm/entrypoints/pooling/score/protocol.py +146 -0
- vllm/entrypoints/pooling/score/serving.py +511 -0
- vllm/entrypoints/renderer.py +411 -0
- vllm/entrypoints/responses_utils.py +218 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +271 -0
- vllm/entrypoints/serve/__init__.py +94 -0
- vllm/entrypoints/serve/cache/__init__.py +0 -0
- vllm/entrypoints/serve/cache/api_router.py +61 -0
- vllm/entrypoints/serve/disagg/__init__.py +0 -0
- vllm/entrypoints/serve/disagg/api_router.py +109 -0
- vllm/entrypoints/serve/disagg/protocol.py +90 -0
- vllm/entrypoints/serve/disagg/serving.py +285 -0
- vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
- vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
- vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
- vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
- vllm/entrypoints/serve/instrumentator/health.py +33 -0
- vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
- vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
- vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
- vllm/entrypoints/serve/lora/__init__.py +0 -0
- vllm/entrypoints/serve/lora/api_router.py +70 -0
- vllm/entrypoints/serve/profile/__init__.py +0 -0
- vllm/entrypoints/serve/profile/api_router.py +46 -0
- vllm/entrypoints/serve/rlhf/__init__.py +0 -0
- vllm/entrypoints/serve/rlhf/api_router.py +102 -0
- vllm/entrypoints/serve/rpc/__init__.py +0 -0
- vllm/entrypoints/serve/rpc/api_router.py +61 -0
- vllm/entrypoints/serve/sleep/__init__.py +0 -0
- vllm/entrypoints/serve/sleep/api_router.py +56 -0
- vllm/entrypoints/serve/tokenize/__init__.py +0 -0
- vllm/entrypoints/serve/tokenize/api_router.py +112 -0
- vllm/entrypoints/serve/tokenize/serving.py +204 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +187 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +336 -0
- vllm/env_override.py +402 -0
- vllm/envs.py +1791 -0
- vllm/exceptions.py +36 -0
- vllm/forward_context.py +375 -0
- vllm/grpc/__init__.py +17 -0
- vllm/grpc/compile_protos.py +94 -0
- vllm/grpc/vllm_engine.proto +195 -0
- vllm/grpc/vllm_engine_pb2.py +77 -0
- vllm/grpc/vllm_engine_pb2.pyi +213 -0
- vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +147 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +303 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +43 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +172 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +739 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +115 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_model.py +221 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/model_manager.py +858 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +313 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +413 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +60 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +281 -0
- vllm/lora/worker_manager.py +278 -0
- vllm/model_executor/__init__.py +9 -0
- vllm/model_executor/custom_op.py +203 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +628 -0
- vllm/model_executor/layers/attention/__init__.py +0 -0
- vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
- vllm/model_executor/layers/attention/cross_attention.py +182 -0
- vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
- vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
- vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
- vllm/model_executor/layers/attention_layer_base.py +34 -0
- vllm/model_executor/layers/batch_invariant.py +1063 -0
- vllm/model_executor/layers/conv.py +262 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +120 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
- vllm/model_executor/layers/fused_moe/config.py +1111 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
- vllm/model_executor/layers/fused_moe/fallback.py +127 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
- vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
- vllm/model_executor/layers/fused_moe/layer.py +2169 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
- vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
- vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
- vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
- vllm/model_executor/layers/fused_moe/utils.py +382 -0
- vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +451 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1478 -0
- vllm/model_executor/layers/logits_processor.py +109 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +410 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +254 -0
- vllm/model_executor/layers/mla.py +179 -0
- vllm/model_executor/layers/pooler/__init__.py +5 -0
- vllm/model_executor/layers/pooler/abstract.py +39 -0
- vllm/model_executor/layers/pooler/activations.py +162 -0
- vllm/model_executor/layers/pooler/common.py +32 -0
- vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
- vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
- vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
- vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
- vllm/model_executor/layers/pooler/special.py +128 -0
- vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
- vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
- vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
- vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
- vllm/model_executor/layers/quantization/__init__.py +195 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +209 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1224 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +682 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
- vllm/model_executor/layers/quantization/kv_cache.py +153 -0
- vllm/model_executor/layers/quantization/modelopt.py +1665 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +570 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +626 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
- vllm/model_executor/layers/rotary_embedding/base.py +282 -0
- vllm/model_executor/layers/rotary_embedding/common.py +289 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +71 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
- vllm/model_executor/model_loader/default_loader.py +304 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +371 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +793 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/utils.py +299 -0
- vllm/model_executor/model_loader/weight_utils.py +1183 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +592 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +567 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +633 -0
- vllm/model_executor/models/aria.py +663 -0
- vllm/model_executor/models/audioflamingo3.py +639 -0
- vllm/model_executor/models/aya_vision.py +448 -0
- vllm/model_executor/models/bagel.py +591 -0
- vllm/model_executor/models/baichuan.py +493 -0
- vllm/model_executor/models/bailing_moe.py +643 -0
- vllm/model_executor/models/bamba.py +511 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +911 -0
- vllm/model_executor/models/bert_with_rope.py +729 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +736 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1095 -0
- vllm/model_executor/models/chatglm.py +502 -0
- vllm/model_executor/models/clip.py +1045 -0
- vllm/model_executor/models/cohere2_vision.py +470 -0
- vllm/model_executor/models/commandr.py +469 -0
- vllm/model_executor/models/config.py +571 -0
- vllm/model_executor/models/dbrx.py +484 -0
- vllm/model_executor/models/deepencoder.py +679 -0
- vllm/model_executor/models/deepseek_eagle.py +253 -0
- vllm/model_executor/models/deepseek_mtp.py +447 -0
- vllm/model_executor/models/deepseek_ocr.py +601 -0
- vllm/model_executor/models/deepseek_v2.py +1727 -0
- vllm/model_executor/models/deepseek_vl2.py +642 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +830 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1702 -0
- vllm/model_executor/models/ernie45_vl_moe.py +801 -0
- vllm/model_executor/models/ernie_mtp.py +278 -0
- vllm/model_executor/models/exaone.py +524 -0
- vllm/model_executor/models/exaone4.py +518 -0
- vllm/model_executor/models/exaone_moe.py +579 -0
- vllm/model_executor/models/exaone_moe_mtp.py +255 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +543 -0
- vllm/model_executor/models/falcon_h1.py +675 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +371 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +435 -0
- vllm/model_executor/models/gemma3.py +520 -0
- vllm/model_executor/models/gemma3_mm.py +664 -0
- vllm/model_executor/models/gemma3n.py +1166 -0
- vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
- vllm/model_executor/models/gemma3n_mm.py +820 -0
- vllm/model_executor/models/glm.py +24 -0
- vllm/model_executor/models/glm4.py +295 -0
- vllm/model_executor/models/glm4_1v.py +1823 -0
- vllm/model_executor/models/glm4_moe.py +725 -0
- vllm/model_executor/models/glm4_moe_mtp.py +365 -0
- vllm/model_executor/models/glm4v.py +783 -0
- vllm/model_executor/models/glmasr.py +1154 -0
- vllm/model_executor/models/glmasr_utils.py +188 -0
- vllm/model_executor/models/gpt2.py +385 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +340 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +475 -0
- vllm/model_executor/models/granite_speech.py +919 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +703 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +242 -0
- vllm/model_executor/models/grok1.py +803 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1034 -0
- vllm/model_executor/models/hyperclovax_vision.py +1163 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +734 -0
- vllm/model_executor/models/interfaces.py +1180 -0
- vllm/model_executor/models/interfaces_base.py +252 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +451 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +828 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1436 -0
- vllm/model_executor/models/iquest_loopcoder.py +595 -0
- vllm/model_executor/models/isaac.py +1503 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jais2.py +508 -0
- vllm/model_executor/models/jamba.py +599 -0
- vllm/model_executor/models/jina_vl.py +145 -0
- vllm/model_executor/models/kanana_v.py +756 -0
- vllm/model_executor/models/keye.py +1709 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +659 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/lfm2.py +515 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lfm2_vl.py +732 -0
- vllm/model_executor/models/lightonocr.py +197 -0
- vllm/model_executor/models/llama.py +724 -0
- vllm/model_executor/models/llama4.py +860 -0
- vllm/model_executor/models/llama4_eagle.py +225 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +879 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +922 -0
- vllm/model_executor/models/longcat_flash.py +767 -0
- vllm/model_executor/models/longcat_flash_mtp.py +348 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +826 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/mimo_v2_flash.py +718 -0
- vllm/model_executor/models/minicpm.py +660 -0
- vllm/model_executor/models/minicpm3.py +233 -0
- vllm/model_executor/models/minicpm_eagle.py +386 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1742 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1008 -0
- vllm/model_executor/models/minimax_vl_01.py +395 -0
- vllm/model_executor/models/mistral3.py +638 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1170 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +458 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1592 -0
- vllm/model_executor/models/moonvit.py +601 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
- vllm/model_executor/models/nemotron.py +499 -0
- vllm/model_executor/models/nemotron_h.py +902 -0
- vllm/model_executor/models/nemotron_nas.py +474 -0
- vllm/model_executor/models/nemotron_parse.py +958 -0
- vllm/model_executor/models/nemotron_vl.py +651 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +412 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/opencua.py +262 -0
- vllm/model_executor/models/openpangu.py +1378 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +365 -0
- vllm/model_executor/models/ouro.py +507 -0
- vllm/model_executor/models/ovis.py +557 -0
- vllm/model_executor/models/ovis2_5.py +661 -0
- vllm/model_executor/models/paddleocr_vl.py +1261 -0
- vllm/model_executor/models/paligemma.py +429 -0
- vllm/model_executor/models/persimmon.py +373 -0
- vllm/model_executor/models/phi.py +363 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +729 -0
- vllm/model_executor/models/phi4mm.py +1250 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +671 -0
- vllm/model_executor/models/pixtral.py +1437 -0
- vllm/model_executor/models/plamo2.py +993 -0
- vllm/model_executor/models/plamo3.py +437 -0
- vllm/model_executor/models/qwen.py +377 -0
- vllm/model_executor/models/qwen2.py +600 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
- vllm/model_executor/models/qwen2_5_vl.py +1598 -0
- vllm/model_executor/models/qwen2_audio.py +478 -0
- vllm/model_executor/models/qwen2_moe.py +604 -0
- vllm/model_executor/models/qwen2_rm.py +120 -0
- vllm/model_executor/models/qwen2_vl.py +1588 -0
- vllm/model_executor/models/qwen3.py +331 -0
- vllm/model_executor/models/qwen3_moe.py +752 -0
- vllm/model_executor/models/qwen3_next.py +1410 -0
- vllm/model_executor/models/qwen3_next_mtp.py +293 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
- vllm/model_executor/models/qwen3_vl.py +2120 -0
- vllm/model_executor/models/qwen3_vl_moe.py +474 -0
- vllm/model_executor/models/qwen_vl.py +821 -0
- vllm/model_executor/models/radio.py +573 -0
- vllm/model_executor/models/registry.py +1218 -0
- vllm/model_executor/models/roberta.py +239 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +492 -0
- vllm/model_executor/models/siglip.py +1259 -0
- vllm/model_executor/models/siglip2.py +495 -0
- vllm/model_executor/models/siglip2navit.py +660 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +484 -0
- vllm/model_executor/models/stablelm.py +354 -0
- vllm/model_executor/models/starcoder2.py +365 -0
- vllm/model_executor/models/step3_text.py +554 -0
- vllm/model_executor/models/step3_vl.py +1147 -0
- vllm/model_executor/models/swin.py +500 -0
- vllm/model_executor/models/tarsier.py +624 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +318 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +523 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +329 -0
- vllm/model_executor/models/transformers/multimodal.py +441 -0
- vllm/model_executor/models/transformers/pooling.py +102 -0
- vllm/model_executor/models/transformers/utils.py +253 -0
- vllm/model_executor/models/ultravox.py +786 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +546 -0
- vllm/model_executor/models/voxtral.py +867 -0
- vllm/model_executor/models/voxtral_streaming.py +304 -0
- vllm/model_executor/models/whisper.py +993 -0
- vllm/model_executor/models/whisper_utils.py +299 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +113 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
- vllm/model_executor/warmup/kernel_warmup.py +97 -0
- vllm/model_inspection.py +136 -0
- vllm/multimodal/__init__.py +38 -0
- vllm/multimodal/audio.py +287 -0
- vllm/multimodal/base.py +60 -0
- vllm/multimodal/cache.py +829 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +123 -0
- vllm/multimodal/image.py +155 -0
- vllm/multimodal/inputs.py +1027 -0
- vllm/multimodal/parse.py +674 -0
- vllm/multimodal/processing.py +2469 -0
- vllm/multimodal/profiling.py +351 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +550 -0
- vllm/multimodal/video.py +512 -0
- vllm/outputs.py +347 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +423 -0
- vllm/platforms/cuda.py +618 -0
- vllm/platforms/interface.py +707 -0
- vllm/platforms/rocm.py +586 -0
- vllm/platforms/tpu.py +20 -0
- vllm/platforms/xpu.py +262 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +229 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/profiler/wrapper.py +241 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +96 -0
- vllm/reasoning/abs_reasoning_parsers.py +318 -0
- vllm/reasoning/basic_parsers.py +175 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/holo2_reasoning_parser.py +89 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +63 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
- vllm/reasoning/mistral_reasoning_parser.py +154 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +113 -0
- vllm/sampling_params.py +629 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +64 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +18 -0
- vllm/tokenizers/deepseek_v32.py +187 -0
- vllm/tokenizers/deepseek_v32_encoding.py +463 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/grok2.py +443 -0
- vllm/tokenizers/hf.py +119 -0
- vllm/tokenizers/mistral.py +543 -0
- vllm/tokenizers/protocol.py +123 -0
- vllm/tokenizers/registry.py +238 -0
- vllm/tool_parsers/__init__.py +158 -0
- vllm/tool_parsers/abstract_tool_parser.py +274 -0
- vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
- vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
- vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
- vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
- vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
- vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
- vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/tool_parsers/granite_tool_parser.py +253 -0
- vllm/tool_parsers/hermes_tool_parser.py +495 -0
- vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
- vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/tool_parsers/llama_tool_parser.py +324 -0
- vllm/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
- vllm/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/tool_parsers/mistral_tool_parser.py +612 -0
- vllm/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/tool_parsers/openai_tool_parser.py +111 -0
- vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/tool_parsers/step3_tool_parser.py +303 -0
- vllm/tool_parsers/utils.py +229 -0
- vllm/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1169 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +106 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/bagel.py +53 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/isaac.py +100 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +263 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +220 -0
- vllm/transformers_utils/configs/nemotron_h.py +284 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +277 -0
- vllm/transformers_utils/configs/radio.py +98 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/tarsier2.py +24 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/dynamic_module.py +70 -0
- vllm/transformers_utils/gguf_utils.py +280 -0
- vllm/transformers_utils/model_arch_config_convertor.py +402 -0
- vllm/transformers_utils/processor.py +424 -0
- vllm/transformers_utils/processors/__init__.py +25 -0
- vllm/transformers_utils/processors/bagel.py +78 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +102 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +19 -0
- vllm/transformers_utils/utils.py +112 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +278 -0
- vllm/utils/__init__.py +36 -0
- vllm/utils/argparse_utils.py +491 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +424 -0
- vllm/utils/flashinfer.py +602 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +117 -0
- vllm/utils/import_utils.py +438 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +285 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/nvtx_pytorch_hooks.py +286 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +214 -0
- vllm/utils/system_utils.py +296 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +781 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backend.py +736 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +501 -0
- vllm/v1/attention/backends/fa_utils.py +126 -0
- vllm/v1/attention/backends/flash_attn.py +1092 -0
- vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
- vllm/v1/attention/backends/flashinfer.py +1713 -0
- vllm/v1/attention/backends/flex_attention.py +1024 -0
- vllm/v1/attention/backends/gdn_attn.py +382 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +28 -0
- vllm/v1/attention/backends/mamba2_attn.py +256 -0
- vllm/v1/attention/backends/mamba_attn.py +313 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
- vllm/v1/attention/backends/mla/common.py +2156 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
- vllm/v1/attention/backends/mla/flashmla.py +321 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
- vllm/v1/attention/backends/mla/indexer.py +345 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/registry.py +258 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +405 -0
- vllm/v1/attention/backends/short_conv_attn.py +26 -0
- vllm/v1/attention/backends/tree_attn.py +430 -0
- vllm/v1/attention/backends/triton_attn.py +578 -0
- vllm/v1/attention/backends/utils.py +978 -0
- vllm/v1/attention/ops/__init__.py +0 -0
- vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
- vllm/v1/attention/ops/common.py +469 -0
- vllm/v1/attention/ops/flashmla.py +254 -0
- vllm/v1/attention/ops/merge_attn_states.py +47 -0
- vllm/v1/attention/ops/paged_attn.py +51 -0
- vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/v1/attention/ops/prefix_prefill.py +862 -0
- vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/v1/attention/ops/triton_decode_attention.py +709 -0
- vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
- vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
- vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
- vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
- vllm/v1/attention/selector.py +145 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +489 -0
- vllm/v1/core/encoder_cache_manager.py +402 -0
- vllm/v1/core/kv_cache_coordinator.py +560 -0
- vllm/v1/core/kv_cache_manager.py +485 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1642 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +66 -0
- vllm/v1/core/sched/interface.py +205 -0
- vllm/v1/core/sched/output.py +261 -0
- vllm/v1/core/sched/request_queue.py +208 -0
- vllm/v1/core/sched/scheduler.py +1936 -0
- vllm/v1/core/sched/utils.py +64 -0
- vllm/v1/core/single_type_kv_cache_manager.py +926 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +224 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +396 -0
- vllm/v1/engine/core.py +1614 -0
- vllm/v1/engine/core_client.py +1422 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +713 -0
- vllm/v1/engine/llm_engine.py +415 -0
- vllm/v1/engine/logprobs.py +245 -0
- vllm/v1/engine/output_processor.py +715 -0
- vllm/v1/engine/parallel_sampling.py +150 -0
- vllm/v1/engine/utils.py +1086 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +623 -0
- vllm/v1/executor/ray_utils.py +468 -0
- vllm/v1/executor/uniproc_executor.py +186 -0
- vllm/v1/kv_cache_interface.py +485 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +109 -0
- vllm/v1/kv_offload/factory.py +58 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +70 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
- vllm/v1/kv_offload/worker/worker.py +163 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1320 -0
- vllm/v1/metrics/perf.py +1244 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +440 -0
- vllm/v1/outputs.py +242 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +124 -0
- vllm/v1/request.py +281 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +57 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
- vllm/v1/sample/rejection_sampler.py +822 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +514 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1346 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +281 -0
- vllm/v1/spec_decode/suffix_decoding.py +95 -0
- vllm/v1/spec_decode/utils.py +109 -0
- vllm/v1/structured_output/__init__.py +337 -0
- vllm/v1/structured_output/backend_guidance.py +291 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +378 -0
- vllm/v1/structured_output/request.py +91 -0
- vllm/v1/structured_output/utils.py +457 -0
- vllm/v1/utils.py +466 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cp_utils.py +42 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +192 -0
- vllm/v1/worker/dp_utils.py +240 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +98 -0
- vllm/v1/worker/gpu/attn_utils.py +183 -0
- vllm/v1/worker/gpu/block_table.py +222 -0
- vllm/v1/worker/gpu/buffer_utils.py +224 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +526 -0
- vllm/v1/worker/gpu/metrics/__init__.py +0 -0
- vllm/v1/worker/gpu/metrics/logits.py +42 -0
- vllm/v1/worker/gpu/mm/__init__.py +0 -0
- vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
- vllm/v1/worker/gpu/model_runner.py +1005 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +106 -0
- vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +79 -0
- vllm/v1/worker/gpu/sample/min_p.py +58 -0
- vllm/v1/worker/gpu/sample/output.py +14 -0
- vllm/v1/worker/gpu/sample/penalties.py +155 -0
- vllm/v1/worker/gpu/sample/sampler.py +88 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
- vllm/v1/worker/gpu/states.py +282 -0
- vllm/v1/worker/gpu/structured_outputs.py +100 -0
- vllm/v1/worker/gpu_input_batch.py +1030 -0
- vllm/v1/worker/gpu_model_runner.py +5761 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
- vllm/v1/worker/gpu_worker.py +968 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
- vllm/v1/worker/lora_model_runner_mixin.py +225 -0
- vllm/v1/worker/tpu_input_batch.py +574 -0
- vllm/v1/worker/tpu_worker.py +18 -0
- vllm/v1/worker/ubatch_utils.py +112 -0
- vllm/v1/worker/ubatching.py +242 -0
- vllm/v1/worker/utils.py +400 -0
- vllm/v1/worker/worker_base.py +372 -0
- vllm/v1/worker/workspace.py +253 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +174 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
vllm/config/vllm.py
ADDED
|
@@ -0,0 +1,1487 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import copy
|
|
5
|
+
import getpass
|
|
6
|
+
import json
|
|
7
|
+
import os
|
|
8
|
+
import tempfile
|
|
9
|
+
import threading
|
|
10
|
+
import time
|
|
11
|
+
from contextlib import contextmanager
|
|
12
|
+
from dataclasses import is_dataclass, replace
|
|
13
|
+
from datetime import datetime
|
|
14
|
+
from enum import IntEnum
|
|
15
|
+
from functools import lru_cache
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
from typing import TYPE_CHECKING, Any, TypeVar, get_args
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from pydantic import ConfigDict, Field, model_validator
|
|
21
|
+
from pydantic.dataclasses import dataclass
|
|
22
|
+
|
|
23
|
+
import vllm.envs as envs
|
|
24
|
+
from vllm.config.speculative import EagleModelTypes
|
|
25
|
+
from vllm.logger import enable_trace_function_call, init_logger
|
|
26
|
+
from vllm.transformers_utils.runai_utils import is_runai_obj_uri
|
|
27
|
+
from vllm.utils import random_uuid
|
|
28
|
+
from vllm.utils.hashing import safe_hash
|
|
29
|
+
|
|
30
|
+
from .attention import AttentionConfig
|
|
31
|
+
from .cache import CacheConfig
|
|
32
|
+
from .compilation import CompilationConfig, CompilationMode, CUDAGraphMode
|
|
33
|
+
from .device import DeviceConfig
|
|
34
|
+
from .ec_transfer import ECTransferConfig
|
|
35
|
+
from .kv_events import KVEventsConfig
|
|
36
|
+
from .kv_transfer import KVTransferConfig
|
|
37
|
+
from .load import LoadConfig
|
|
38
|
+
from .lora import LoRAConfig
|
|
39
|
+
from .model import ModelConfig
|
|
40
|
+
from .observability import ObservabilityConfig
|
|
41
|
+
from .parallel import ParallelConfig
|
|
42
|
+
from .profiler import ProfilerConfig
|
|
43
|
+
from .scheduler import SchedulerConfig
|
|
44
|
+
from .speculative import SpeculativeConfig
|
|
45
|
+
from .structured_outputs import StructuredOutputsConfig
|
|
46
|
+
from .utils import SupportsHash, config
|
|
47
|
+
|
|
48
|
+
if TYPE_CHECKING:
|
|
49
|
+
from transformers import PretrainedConfig
|
|
50
|
+
|
|
51
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
|
52
|
+
from vllm.v1.kv_cache_interface import KVCacheConfig
|
|
53
|
+
else:
|
|
54
|
+
PretrainedConfig = Any
|
|
55
|
+
|
|
56
|
+
QuantizationConfig = Any
|
|
57
|
+
|
|
58
|
+
KVCacheConfig = Any
|
|
59
|
+
|
|
60
|
+
logger = init_logger(__name__)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class OptimizationLevel(IntEnum):
|
|
64
|
+
"""Optimization level enum."""
|
|
65
|
+
|
|
66
|
+
O0 = 0
|
|
67
|
+
"""O0 : No optimization. no compilation, no cudagraphs, no other
|
|
68
|
+
optimization, just starting up immediately"""
|
|
69
|
+
O1 = 1
|
|
70
|
+
"""O1: Quick optimizations. Dynamo+Inductor compilation and Piecewise
|
|
71
|
+
cudagraphs"""
|
|
72
|
+
O2 = 2
|
|
73
|
+
"""O2: Full optimizations. -O1 as well as Full and Piecewise cudagraphs."""
|
|
74
|
+
O3 = 3
|
|
75
|
+
"""O3: Currently the same as -O2s."""
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
IS_QUANTIZED = False
|
|
79
|
+
IS_DENSE = False
|
|
80
|
+
# The optimizations that depend on these properties currently set to False
|
|
81
|
+
# in all cases.
|
|
82
|
+
# if model_config is not None:
|
|
83
|
+
# IS_QUANTIZED = lambda c: c.model_config.is_quantized()
|
|
84
|
+
# IS_DENSE = lambda c: not c.model_config.is_model_moe()
|
|
85
|
+
# See https://github.com/vllm-project/vllm/issues/25689.
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def enable_norm_fusion(cfg: "VllmConfig") -> bool:
|
|
89
|
+
"""Enable if either RMS norm or quant FP8 custom op is active;
|
|
90
|
+
otherwise Inductor handles fusion."""
|
|
91
|
+
|
|
92
|
+
return cfg.compilation_config.is_custom_op_enabled(
|
|
93
|
+
"rms_norm"
|
|
94
|
+
) or cfg.compilation_config.is_custom_op_enabled("quant_fp8")
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def enable_act_fusion(cfg: "VllmConfig") -> bool:
|
|
98
|
+
"""Enable if either SiLU+Mul or quant FP8 custom op is active;
|
|
99
|
+
otherwise Inductor handles fusion."""
|
|
100
|
+
return cfg.compilation_config.is_custom_op_enabled(
|
|
101
|
+
"silu_and_mul"
|
|
102
|
+
) or cfg.compilation_config.is_custom_op_enabled("quant_fp8")
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
OPTIMIZATION_LEVEL_00 = {
|
|
106
|
+
"compilation_config": {
|
|
107
|
+
"pass_config": {
|
|
108
|
+
"eliminate_noops": False,
|
|
109
|
+
"fuse_norm_quant": False,
|
|
110
|
+
"fuse_act_quant": False,
|
|
111
|
+
"fuse_allreduce_rms": False,
|
|
112
|
+
"fuse_attn_quant": False,
|
|
113
|
+
"enable_sp": False,
|
|
114
|
+
"fuse_gemm_comms": False,
|
|
115
|
+
},
|
|
116
|
+
"cudagraph_mode": CUDAGraphMode.NONE,
|
|
117
|
+
"use_inductor_graph_partition": False,
|
|
118
|
+
},
|
|
119
|
+
}
|
|
120
|
+
OPTIMIZATION_LEVEL_01 = {
|
|
121
|
+
"compilation_config": {
|
|
122
|
+
"pass_config": {
|
|
123
|
+
"eliminate_noops": True,
|
|
124
|
+
"fuse_norm_quant": enable_norm_fusion,
|
|
125
|
+
"fuse_act_quant": enable_act_fusion,
|
|
126
|
+
"fuse_allreduce_rms": False,
|
|
127
|
+
"fuse_attn_quant": False,
|
|
128
|
+
"enable_sp": False,
|
|
129
|
+
"fuse_gemm_comms": False,
|
|
130
|
+
},
|
|
131
|
+
"cudagraph_mode": CUDAGraphMode.PIECEWISE,
|
|
132
|
+
"use_inductor_graph_partition": False,
|
|
133
|
+
},
|
|
134
|
+
}
|
|
135
|
+
OPTIMIZATION_LEVEL_02 = {
|
|
136
|
+
"compilation_config": {
|
|
137
|
+
"pass_config": {
|
|
138
|
+
"eliminate_noops": True,
|
|
139
|
+
"fuse_norm_quant": enable_norm_fusion,
|
|
140
|
+
"fuse_act_quant": enable_act_fusion,
|
|
141
|
+
"fuse_allreduce_rms": False,
|
|
142
|
+
"fuse_attn_quant": IS_QUANTIZED,
|
|
143
|
+
"enable_sp": IS_DENSE,
|
|
144
|
+
"fuse_gemm_comms": IS_DENSE,
|
|
145
|
+
},
|
|
146
|
+
"cudagraph_mode": CUDAGraphMode.FULL_AND_PIECEWISE,
|
|
147
|
+
"use_inductor_graph_partition": False,
|
|
148
|
+
},
|
|
149
|
+
}
|
|
150
|
+
OPTIMIZATION_LEVEL_03 = {
|
|
151
|
+
"compilation_config": {
|
|
152
|
+
"pass_config": {
|
|
153
|
+
"eliminate_noops": True,
|
|
154
|
+
"fuse_norm_quant": enable_norm_fusion,
|
|
155
|
+
"fuse_act_quant": enable_act_fusion,
|
|
156
|
+
"fuse_allreduce_rms": False,
|
|
157
|
+
"fuse_attn_quant": IS_QUANTIZED,
|
|
158
|
+
"enable_sp": IS_DENSE,
|
|
159
|
+
"fuse_gemm_comms": IS_DENSE,
|
|
160
|
+
},
|
|
161
|
+
"cudagraph_mode": CUDAGraphMode.FULL_AND_PIECEWISE,
|
|
162
|
+
"use_inductor_graph_partition": False,
|
|
163
|
+
},
|
|
164
|
+
}
|
|
165
|
+
|
|
166
|
+
OPTIMIZATION_LEVEL_TO_CONFIG = {
|
|
167
|
+
OptimizationLevel.O0: OPTIMIZATION_LEVEL_00,
|
|
168
|
+
OptimizationLevel.O1: OPTIMIZATION_LEVEL_01,
|
|
169
|
+
OptimizationLevel.O2: OPTIMIZATION_LEVEL_02,
|
|
170
|
+
OptimizationLevel.O3: OPTIMIZATION_LEVEL_03,
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
@config
|
|
175
|
+
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
|
|
176
|
+
class VllmConfig:
|
|
177
|
+
"""Dataclass which contains all vllm-related configuration. This
|
|
178
|
+
simplifies passing around the distinct configurations in the codebase.
|
|
179
|
+
"""
|
|
180
|
+
|
|
181
|
+
# TODO: use default_factory once default constructing ModelConfig doesn't
|
|
182
|
+
# try to download a model
|
|
183
|
+
model_config: ModelConfig = Field(default=None)
|
|
184
|
+
"""Model configuration."""
|
|
185
|
+
cache_config: CacheConfig = Field(default_factory=CacheConfig)
|
|
186
|
+
"""Cache configuration."""
|
|
187
|
+
parallel_config: ParallelConfig = Field(default_factory=ParallelConfig)
|
|
188
|
+
"""Parallel configuration."""
|
|
189
|
+
scheduler_config: SchedulerConfig = Field(
|
|
190
|
+
default_factory=SchedulerConfig.default_factory,
|
|
191
|
+
)
|
|
192
|
+
"""Scheduler configuration."""
|
|
193
|
+
device_config: DeviceConfig = Field(default_factory=DeviceConfig)
|
|
194
|
+
"""Device configuration."""
|
|
195
|
+
load_config: LoadConfig = Field(default_factory=LoadConfig)
|
|
196
|
+
"""Load configuration."""
|
|
197
|
+
attention_config: AttentionConfig = Field(default_factory=AttentionConfig)
|
|
198
|
+
"""Attention configuration."""
|
|
199
|
+
lora_config: LoRAConfig | None = None
|
|
200
|
+
"""LoRA configuration."""
|
|
201
|
+
speculative_config: SpeculativeConfig | None = None
|
|
202
|
+
"""Speculative decoding configuration."""
|
|
203
|
+
structured_outputs_config: StructuredOutputsConfig = Field(
|
|
204
|
+
default_factory=StructuredOutputsConfig
|
|
205
|
+
)
|
|
206
|
+
"""Structured outputs configuration."""
|
|
207
|
+
observability_config: ObservabilityConfig = Field(
|
|
208
|
+
default_factory=ObservabilityConfig
|
|
209
|
+
)
|
|
210
|
+
"""Observability configuration."""
|
|
211
|
+
quant_config: QuantizationConfig | None = None
|
|
212
|
+
"""Quantization configuration."""
|
|
213
|
+
compilation_config: CompilationConfig = Field(default_factory=CompilationConfig)
|
|
214
|
+
"""`torch.compile` and cudagraph capture configuration for the model.
|
|
215
|
+
|
|
216
|
+
As a shorthand, one can append compilation arguments via
|
|
217
|
+
-cc.parameter=argument such as `-cc.mode=3` (same as `-cc='{"mode":3}'`).
|
|
218
|
+
|
|
219
|
+
You can specify the full compilation config like so:
|
|
220
|
+
`{"mode": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}`
|
|
221
|
+
"""
|
|
222
|
+
profiler_config: ProfilerConfig = Field(default_factory=ProfilerConfig)
|
|
223
|
+
"""Profiling configuration."""
|
|
224
|
+
kv_transfer_config: KVTransferConfig | None = None
|
|
225
|
+
"""The configurations for distributed KV cache transfer."""
|
|
226
|
+
kv_events_config: KVEventsConfig | None = None
|
|
227
|
+
"""The configurations for event publishing."""
|
|
228
|
+
ec_transfer_config: ECTransferConfig | None = None
|
|
229
|
+
"""The configurations for distributed EC cache transfer."""
|
|
230
|
+
# some opaque config, only used to provide additional information
|
|
231
|
+
# for the hash computation, mainly used for testing, debugging or out of
|
|
232
|
+
# tree config registration.
|
|
233
|
+
additional_config: dict | SupportsHash = Field(default_factory=dict)
|
|
234
|
+
"""Additional config for specified platform. Different platforms may
|
|
235
|
+
support different configs. Make sure the configs are valid for the platform
|
|
236
|
+
you are using. Contents must be hashable."""
|
|
237
|
+
instance_id: str = ""
|
|
238
|
+
"""The ID of the vLLM instance."""
|
|
239
|
+
optimization_level: OptimizationLevel = OptimizationLevel.O2
|
|
240
|
+
"""The optimization level. These levels trade startup time cost for
|
|
241
|
+
performance, with -O0 having the best startup time and -O3 having the best
|
|
242
|
+
performance. -02 is used by defult. See OptimizationLevel for full
|
|
243
|
+
description."""
|
|
244
|
+
|
|
245
|
+
def compute_hash(self) -> str:
|
|
246
|
+
"""
|
|
247
|
+
WARNING: Whenever a new field is added to this config,
|
|
248
|
+
ensure that it is included in the factors list if
|
|
249
|
+
it affects the computation graph.
|
|
250
|
+
|
|
251
|
+
Provide a hash that uniquely identifies all the configs
|
|
252
|
+
that affect the structure of the computation
|
|
253
|
+
graph from input ids/embeddings to the final hidden states,
|
|
254
|
+
excluding anything before input ids/embeddings and after
|
|
255
|
+
the final hidden states.
|
|
256
|
+
"""
|
|
257
|
+
factors: list[Any] = []
|
|
258
|
+
|
|
259
|
+
# summarize vllm config
|
|
260
|
+
vllm_factors: list[Any] = []
|
|
261
|
+
from vllm import __version__
|
|
262
|
+
|
|
263
|
+
vllm_factors.append(__version__)
|
|
264
|
+
if self.model_config:
|
|
265
|
+
vllm_factors.append(self.model_config.compute_hash())
|
|
266
|
+
else:
|
|
267
|
+
vllm_factors.append("None")
|
|
268
|
+
if self.cache_config:
|
|
269
|
+
vllm_factors.append(self.cache_config.compute_hash())
|
|
270
|
+
else:
|
|
271
|
+
vllm_factors.append("None")
|
|
272
|
+
if self.parallel_config:
|
|
273
|
+
vllm_factors.append(self.parallel_config.compute_hash())
|
|
274
|
+
else:
|
|
275
|
+
vllm_factors.append("None")
|
|
276
|
+
if self.scheduler_config:
|
|
277
|
+
vllm_factors.append(self.scheduler_config.compute_hash())
|
|
278
|
+
else:
|
|
279
|
+
vllm_factors.append("None")
|
|
280
|
+
if self.device_config:
|
|
281
|
+
vllm_factors.append(self.device_config.compute_hash())
|
|
282
|
+
else:
|
|
283
|
+
vllm_factors.append("None")
|
|
284
|
+
if self.load_config:
|
|
285
|
+
vllm_factors.append(self.load_config.compute_hash())
|
|
286
|
+
else:
|
|
287
|
+
vllm_factors.append("None")
|
|
288
|
+
if self.attention_config:
|
|
289
|
+
vllm_factors.append(self.attention_config.compute_hash())
|
|
290
|
+
else:
|
|
291
|
+
vllm_factors.append("None")
|
|
292
|
+
if self.lora_config:
|
|
293
|
+
vllm_factors.append(self.lora_config.compute_hash())
|
|
294
|
+
else:
|
|
295
|
+
vllm_factors.append("None")
|
|
296
|
+
if self.speculative_config:
|
|
297
|
+
vllm_factors.append(self.speculative_config.compute_hash())
|
|
298
|
+
else:
|
|
299
|
+
vllm_factors.append("None")
|
|
300
|
+
if self.structured_outputs_config:
|
|
301
|
+
vllm_factors.append(self.structured_outputs_config.compute_hash())
|
|
302
|
+
if self.profiler_config:
|
|
303
|
+
vllm_factors.append(self.profiler_config.compute_hash())
|
|
304
|
+
else:
|
|
305
|
+
vllm_factors.append("None")
|
|
306
|
+
vllm_factors.append(self.observability_config.compute_hash())
|
|
307
|
+
if self.quant_config:
|
|
308
|
+
pass # should be captured by model_config.quantization
|
|
309
|
+
if self.compilation_config:
|
|
310
|
+
vllm_factors.append(self.compilation_config.compute_hash())
|
|
311
|
+
else:
|
|
312
|
+
vllm_factors.append("None")
|
|
313
|
+
if self.kv_transfer_config:
|
|
314
|
+
vllm_factors.append(self.kv_transfer_config.compute_hash())
|
|
315
|
+
else:
|
|
316
|
+
vllm_factors.append("None")
|
|
317
|
+
if self.ec_transfer_config:
|
|
318
|
+
vllm_factors.append(self.ec_transfer_config.compute_hash())
|
|
319
|
+
else:
|
|
320
|
+
vllm_factors.append("None")
|
|
321
|
+
if self.additional_config:
|
|
322
|
+
if isinstance(additional_config := self.additional_config, dict):
|
|
323
|
+
additional_config_hash = safe_hash(
|
|
324
|
+
json.dumps(additional_config, sort_keys=True).encode(),
|
|
325
|
+
usedforsecurity=False,
|
|
326
|
+
).hexdigest()
|
|
327
|
+
else:
|
|
328
|
+
additional_config_hash = additional_config.compute_hash()
|
|
329
|
+
vllm_factors.append(additional_config_hash)
|
|
330
|
+
else:
|
|
331
|
+
vllm_factors.append("None")
|
|
332
|
+
factors.append(vllm_factors)
|
|
333
|
+
|
|
334
|
+
hash_str = safe_hash(str(factors).encode(), usedforsecurity=False).hexdigest()[
|
|
335
|
+
:10
|
|
336
|
+
]
|
|
337
|
+
return hash_str
|
|
338
|
+
|
|
339
|
+
def pad_for_cudagraph(self, batch_size: int) -> int:
|
|
340
|
+
# if batch_size > self.compilation_config.max_cudagraph_capture_size,
|
|
341
|
+
# it should raise an IndexError.
|
|
342
|
+
# the caller should make sure the batch_size is within the range,
|
|
343
|
+
# i.e., batch_size <= self.compilation_config.max_cudagraph_capture_size
|
|
344
|
+
return self.compilation_config.bs_to_padded_graph_size[batch_size]
|
|
345
|
+
|
|
346
|
+
@property
|
|
347
|
+
def needs_dp_coordinator(self) -> bool:
|
|
348
|
+
"""
|
|
349
|
+
Determine if the DPCoordinator process is needed.
|
|
350
|
+
|
|
351
|
+
The DPCoordinator is needed in two cases:
|
|
352
|
+
1. For MoE models with DP > 1: to handle wave coordination
|
|
353
|
+
(even in external LB mode, since wave coordination runs in the coordinator)
|
|
354
|
+
2. For non-MoE models in internal/hybrid LB mode: to collect and publish
|
|
355
|
+
queue stats for load balancing across DP ranks
|
|
356
|
+
|
|
357
|
+
Returns:
|
|
358
|
+
True if DPCoordinator process is needed, False otherwise.
|
|
359
|
+
"""
|
|
360
|
+
|
|
361
|
+
# For non-MoE models, only need coordinator in internal/hybrid LB mode
|
|
362
|
+
# (for stats collection).
|
|
363
|
+
return self.parallel_config.data_parallel_size > 1 and (
|
|
364
|
+
self.model_config is None
|
|
365
|
+
or self.model_config.is_moe
|
|
366
|
+
or not self.parallel_config.data_parallel_external_lb
|
|
367
|
+
)
|
|
368
|
+
|
|
369
|
+
def enable_trace_function_call_for_thread(self) -> None:
|
|
370
|
+
"""
|
|
371
|
+
Set up function tracing for the current thread,
|
|
372
|
+
if enabled via the `VLLM_TRACE_FUNCTION` environment variable.
|
|
373
|
+
"""
|
|
374
|
+
if envs.VLLM_TRACE_FUNCTION:
|
|
375
|
+
tmp_dir = tempfile.gettempdir()
|
|
376
|
+
# add username to tmp_dir to avoid permission issues
|
|
377
|
+
tmp_dir = os.path.join(tmp_dir, getpass.getuser())
|
|
378
|
+
filename = (
|
|
379
|
+
f"VLLM_TRACE_FUNCTION_for_process_{os.getpid()}"
|
|
380
|
+
f"_thread_{threading.get_ident()}_at_{datetime.now()}.log"
|
|
381
|
+
).replace(" ", "_")
|
|
382
|
+
log_path = os.path.join(
|
|
383
|
+
tmp_dir,
|
|
384
|
+
"vllm",
|
|
385
|
+
f"vllm-instance-{self.instance_id}",
|
|
386
|
+
filename,
|
|
387
|
+
)
|
|
388
|
+
os.makedirs(os.path.dirname(log_path), exist_ok=True)
|
|
389
|
+
enable_trace_function_call(log_path)
|
|
390
|
+
|
|
391
|
+
@staticmethod
|
|
392
|
+
def _get_quantization_config(
|
|
393
|
+
model_config: ModelConfig, load_config: LoadConfig
|
|
394
|
+
) -> QuantizationConfig | None:
|
|
395
|
+
"""Get the quantization config."""
|
|
396
|
+
from vllm.platforms import current_platform
|
|
397
|
+
|
|
398
|
+
if model_config.quantization is not None:
|
|
399
|
+
from vllm.model_executor.model_loader.weight_utils import get_quant_config
|
|
400
|
+
|
|
401
|
+
quant_config = get_quant_config(model_config, load_config)
|
|
402
|
+
capability_tuple = current_platform.get_device_capability()
|
|
403
|
+
|
|
404
|
+
if capability_tuple is not None:
|
|
405
|
+
capability = capability_tuple.to_int()
|
|
406
|
+
if capability < quant_config.get_min_capability():
|
|
407
|
+
raise ValueError(
|
|
408
|
+
f"The quantization method {model_config.quantization} "
|
|
409
|
+
"is not supported for the current GPU. Minimum "
|
|
410
|
+
f"capability: {quant_config.get_min_capability()}. "
|
|
411
|
+
f"Current capability: {capability}."
|
|
412
|
+
)
|
|
413
|
+
supported_dtypes = quant_config.get_supported_act_dtypes()
|
|
414
|
+
if model_config.dtype not in supported_dtypes:
|
|
415
|
+
raise ValueError(
|
|
416
|
+
f"{model_config.dtype} is not supported for quantization "
|
|
417
|
+
f"method {model_config.quantization}. Supported dtypes: "
|
|
418
|
+
f"{supported_dtypes}"
|
|
419
|
+
)
|
|
420
|
+
quant_config.maybe_update_config(model_config.model)
|
|
421
|
+
return quant_config
|
|
422
|
+
return None
|
|
423
|
+
|
|
424
|
+
@staticmethod
|
|
425
|
+
def get_quantization_config(
|
|
426
|
+
model_config: ModelConfig, load_config: LoadConfig
|
|
427
|
+
) -> QuantizationConfig | None:
|
|
428
|
+
import copy
|
|
429
|
+
|
|
430
|
+
# For some reason, the _ version of this modifies the model_config
|
|
431
|
+
# object, so using deepcopy to avoid this problem.
|
|
432
|
+
return VllmConfig._get_quantization_config(
|
|
433
|
+
copy.deepcopy(model_config), load_config
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
def with_hf_config(
|
|
437
|
+
self,
|
|
438
|
+
hf_config: PretrainedConfig,
|
|
439
|
+
architectures: list[str] | None = None,
|
|
440
|
+
) -> "VllmConfig":
|
|
441
|
+
if architectures is not None:
|
|
442
|
+
hf_config = copy.deepcopy(hf_config)
|
|
443
|
+
hf_config.architectures = architectures
|
|
444
|
+
|
|
445
|
+
model_config = copy.deepcopy(self.model_config)
|
|
446
|
+
model_config.hf_config = hf_config
|
|
447
|
+
model_config.model_arch_config = model_config.get_model_arch_config()
|
|
448
|
+
|
|
449
|
+
return replace(self, model_config=model_config)
|
|
450
|
+
|
|
451
|
+
def _set_config_default(self, config_obj: Any, key: str, value: Any) -> None:
|
|
452
|
+
"""Set config attribute to default if not already set by user.
|
|
453
|
+
|
|
454
|
+
Args:
|
|
455
|
+
config_obj: Configuration object to update.
|
|
456
|
+
key: Attribute name.
|
|
457
|
+
value: Default value (static or callable).
|
|
458
|
+
"""
|
|
459
|
+
if getattr(config_obj, key) is None:
|
|
460
|
+
# Some config values are known before initialization and are
|
|
461
|
+
# hard coded.
|
|
462
|
+
# Other values depend on the user given configuration, so they are
|
|
463
|
+
# implemented with lambda functions and decided at run time.
|
|
464
|
+
setattr(config_obj, key, value(self) if callable(value) else value)
|
|
465
|
+
|
|
466
|
+
def _apply_optimization_level_defaults(self, defaults: dict[str, Any]) -> None:
|
|
467
|
+
"""Apply optimization level defaults using self as root.
|
|
468
|
+
|
|
469
|
+
Recursively applies values from defaults into nested config objects.
|
|
470
|
+
Only fields present in defaults are overwritten.
|
|
471
|
+
|
|
472
|
+
If the user configuration does not specify a value for a default field
|
|
473
|
+
and if the default field is still None after all user selections are
|
|
474
|
+
applied, then default values will be applied to the field. User speciied
|
|
475
|
+
fields will not be overridden by the default.
|
|
476
|
+
|
|
477
|
+
Args:
|
|
478
|
+
defaults: Dictionary of default values to apply.
|
|
479
|
+
"""
|
|
480
|
+
|
|
481
|
+
def apply_recursive(config_obj: Any, config_defaults: dict[str, Any]) -> None:
|
|
482
|
+
"""Recursively apply defaults to config_obj, using self as root."""
|
|
483
|
+
for key, value in config_defaults.items():
|
|
484
|
+
if not hasattr(config_obj, key):
|
|
485
|
+
continue
|
|
486
|
+
|
|
487
|
+
current = getattr(config_obj, key)
|
|
488
|
+
if isinstance(value, dict) and is_dataclass(current):
|
|
489
|
+
apply_recursive(current, value)
|
|
490
|
+
else:
|
|
491
|
+
self._set_config_default(config_obj, key, value)
|
|
492
|
+
|
|
493
|
+
apply_recursive(self, defaults)
|
|
494
|
+
|
|
495
|
+
def _post_init_kv_transfer_config(self) -> None:
|
|
496
|
+
"""Update KVTransferConfig based on top-level configs in VllmConfig.
|
|
497
|
+
|
|
498
|
+
Right now, this function reads the offloading settings from
|
|
499
|
+
CacheConfig and configures the KVTransferConfig accordingly.
|
|
500
|
+
"""
|
|
501
|
+
# KV offloading is only activated when kv_offloading_size is set.
|
|
502
|
+
if (kv_offloading_size := self.cache_config.kv_offloading_size) is None:
|
|
503
|
+
return
|
|
504
|
+
|
|
505
|
+
kv_offloading_backend = self.cache_config.kv_offloading_backend
|
|
506
|
+
|
|
507
|
+
# If no KVTransferConfig is provided, create a default one.
|
|
508
|
+
if self.kv_transfer_config is None:
|
|
509
|
+
self.kv_transfer_config = KVTransferConfig()
|
|
510
|
+
num_kv_ranks = (
|
|
511
|
+
self.parallel_config.tensor_parallel_size
|
|
512
|
+
* self.parallel_config.pipeline_parallel_size
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
if kv_offloading_backend == "native":
|
|
516
|
+
self.kv_transfer_config.kv_connector = "OffloadingConnector"
|
|
517
|
+
self.kv_transfer_config.kv_connector_extra_config.update(
|
|
518
|
+
{"cpu_bytes_to_use": kv_offloading_size * (1 << 30)}
|
|
519
|
+
)
|
|
520
|
+
elif kv_offloading_backend == "lmcache":
|
|
521
|
+
self.kv_transfer_config.kv_connector = "LMCacheConnectorV1"
|
|
522
|
+
kv_gb_per_rank = kv_offloading_size / num_kv_ranks
|
|
523
|
+
self.kv_transfer_config.kv_connector_extra_config = {
|
|
524
|
+
"lmcache.local_cpu": True,
|
|
525
|
+
"lmcache.max_local_cpu_size": kv_gb_per_rank,
|
|
526
|
+
}
|
|
527
|
+
|
|
528
|
+
# This is the same for all backends
|
|
529
|
+
self.kv_transfer_config.kv_role = "kv_both"
|
|
530
|
+
|
|
531
|
+
def __post_init__(self):
|
|
532
|
+
"""Verify configs are valid & consistent with each other."""
|
|
533
|
+
|
|
534
|
+
# To give each torch profile run a unique instance name.
|
|
535
|
+
self.instance_id = f"{time.time_ns()}"
|
|
536
|
+
|
|
537
|
+
self.try_verify_and_update_config()
|
|
538
|
+
|
|
539
|
+
if self.model_config is not None:
|
|
540
|
+
self.model_config.verify_with_parallel_config(self.parallel_config)
|
|
541
|
+
self.model_config.verify_dual_chunk_attention_config(self.load_config)
|
|
542
|
+
|
|
543
|
+
self.parallel_config.is_moe_model = self.model_config.is_moe
|
|
544
|
+
|
|
545
|
+
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
|
546
|
+
|
|
547
|
+
if self.lora_config is not None:
|
|
548
|
+
self.lora_config.verify_with_model_config(self.model_config)
|
|
549
|
+
|
|
550
|
+
if self.quant_config is None and self.model_config is not None:
|
|
551
|
+
self.quant_config = VllmConfig._get_quantization_config(
|
|
552
|
+
self.model_config, self.load_config
|
|
553
|
+
)
|
|
554
|
+
|
|
555
|
+
executor_backend = self.parallel_config.distributed_executor_backend
|
|
556
|
+
executor_supports_async_sched = executor_backend in (
|
|
557
|
+
"mp",
|
|
558
|
+
"uni",
|
|
559
|
+
"external_launcher",
|
|
560
|
+
)
|
|
561
|
+
|
|
562
|
+
if self.scheduler_config.async_scheduling:
|
|
563
|
+
# Async scheduling explicitly enabled, hard fail any incompatibilities.
|
|
564
|
+
if self.parallel_config.pipeline_parallel_size > 1:
|
|
565
|
+
raise ValueError(
|
|
566
|
+
"Async scheduling is not yet compatible with "
|
|
567
|
+
"pipeline_parallel_size > 1."
|
|
568
|
+
)
|
|
569
|
+
# Currently, async scheduling only support eagle speculative
|
|
570
|
+
# decoding.
|
|
571
|
+
if self.speculative_config is not None:
|
|
572
|
+
if self.speculative_config.method not in get_args(EagleModelTypes):
|
|
573
|
+
raise ValueError(
|
|
574
|
+
"Currently, async scheduling is only supported "
|
|
575
|
+
"with EAGLE/MTP kind of speculative decoding."
|
|
576
|
+
)
|
|
577
|
+
if self.speculative_config.disable_padded_drafter_batch:
|
|
578
|
+
raise ValueError(
|
|
579
|
+
"Async scheduling is not compatible with "
|
|
580
|
+
"disable_padded_drafter_batch=True."
|
|
581
|
+
)
|
|
582
|
+
if not executor_supports_async_sched:
|
|
583
|
+
raise ValueError(
|
|
584
|
+
"Currently, async scheduling only supports `mp`, `uni`, or "
|
|
585
|
+
"`external_launcher` distributed executor backend, but you chose "
|
|
586
|
+
f"`{executor_backend}`."
|
|
587
|
+
)
|
|
588
|
+
elif self.scheduler_config.async_scheduling is None:
|
|
589
|
+
# Enable async scheduling unless there is an incompatible option.
|
|
590
|
+
if self.parallel_config.pipeline_parallel_size > 1:
|
|
591
|
+
logger.warning_once(
|
|
592
|
+
"Async scheduling is not yet supported with "
|
|
593
|
+
"pipeline_parallel_size > 1 and will be disabled.",
|
|
594
|
+
scope="local",
|
|
595
|
+
)
|
|
596
|
+
self.scheduler_config.async_scheduling = False
|
|
597
|
+
elif (
|
|
598
|
+
self.speculative_config is not None
|
|
599
|
+
and self.speculative_config.method not in get_args(EagleModelTypes)
|
|
600
|
+
):
|
|
601
|
+
logger.warning_once(
|
|
602
|
+
"Async scheduling not supported with %s-based "
|
|
603
|
+
"speculative decoding and will be disabled.",
|
|
604
|
+
self.speculative_config.method,
|
|
605
|
+
scope="local",
|
|
606
|
+
)
|
|
607
|
+
self.scheduler_config.async_scheduling = False
|
|
608
|
+
elif (
|
|
609
|
+
self.speculative_config is not None
|
|
610
|
+
and self.speculative_config.disable_padded_drafter_batch
|
|
611
|
+
):
|
|
612
|
+
logger.warning_once(
|
|
613
|
+
"Async scheduling is not compatible with "
|
|
614
|
+
"disable_padded_drafter_batch=True and will be disabled.",
|
|
615
|
+
scope="local",
|
|
616
|
+
)
|
|
617
|
+
self.scheduler_config.async_scheduling = False
|
|
618
|
+
elif not executor_supports_async_sched:
|
|
619
|
+
logger.warning_once(
|
|
620
|
+
"Async scheduling will be disabled because it is not supported "
|
|
621
|
+
"with the `%s` distributed executor backend (only `mp`, `uni`, and "
|
|
622
|
+
"`external_launcher` are supported).",
|
|
623
|
+
executor_backend,
|
|
624
|
+
scope="local",
|
|
625
|
+
)
|
|
626
|
+
self.scheduler_config.async_scheduling = False
|
|
627
|
+
else:
|
|
628
|
+
self.scheduler_config.async_scheduling = True
|
|
629
|
+
|
|
630
|
+
logger.info_once(
|
|
631
|
+
"Asynchronous scheduling is %s.",
|
|
632
|
+
"enabled" if self.scheduler_config.async_scheduling else "disabled",
|
|
633
|
+
)
|
|
634
|
+
|
|
635
|
+
if self.parallel_config.disable_nccl_for_dp_synchronization is None:
|
|
636
|
+
if self.scheduler_config.async_scheduling:
|
|
637
|
+
logger.info_once(
|
|
638
|
+
"Disabling NCCL for DP synchronization "
|
|
639
|
+
"when using async scheduling.",
|
|
640
|
+
scope="local",
|
|
641
|
+
)
|
|
642
|
+
self.parallel_config.disable_nccl_for_dp_synchronization = True
|
|
643
|
+
else:
|
|
644
|
+
self.parallel_config.disable_nccl_for_dp_synchronization = False
|
|
645
|
+
|
|
646
|
+
from vllm.platforms import current_platform
|
|
647
|
+
|
|
648
|
+
if (
|
|
649
|
+
self.model_config is not None
|
|
650
|
+
and self.scheduler_config.enable_chunked_prefill
|
|
651
|
+
and self.model_config.dtype == torch.float32
|
|
652
|
+
and current_platform.get_device_capability() == (7, 5)
|
|
653
|
+
):
|
|
654
|
+
logger.warning_once(
|
|
655
|
+
"Turing devices tensor cores do not support float32 matmul. "
|
|
656
|
+
"To workaround this limitation, vLLM will set 'ieee' input "
|
|
657
|
+
"precision for chunked prefill triton kernels."
|
|
658
|
+
)
|
|
659
|
+
|
|
660
|
+
if (
|
|
661
|
+
self.optimization_level > OptimizationLevel.O0
|
|
662
|
+
and self.model_config is not None
|
|
663
|
+
and self.model_config.enforce_eager
|
|
664
|
+
):
|
|
665
|
+
logger.warning("Enforce eager set, overriding optimization level to -O0")
|
|
666
|
+
self.optimization_level = OptimizationLevel.O0
|
|
667
|
+
|
|
668
|
+
if self.compilation_config.backend == "eager" or (
|
|
669
|
+
self.compilation_config.mode is not None
|
|
670
|
+
and self.compilation_config.mode != CompilationMode.VLLM_COMPILE
|
|
671
|
+
):
|
|
672
|
+
logger.warning(
|
|
673
|
+
"Inductor compilation was disabled by user settings, "
|
|
674
|
+
"optimizations settings that are only active during "
|
|
675
|
+
"inductor compilation will be ignored."
|
|
676
|
+
)
|
|
677
|
+
|
|
678
|
+
def has_blocked_weights():
|
|
679
|
+
if self.quant_config is not None:
|
|
680
|
+
if hasattr(self.quant_config, "weight_block_size"):
|
|
681
|
+
return self.quant_config.weight_block_size is not None
|
|
682
|
+
elif hasattr(self.quant_config, "has_blocked_weights"):
|
|
683
|
+
return self.quant_config.has_blocked_weights()
|
|
684
|
+
return False
|
|
685
|
+
|
|
686
|
+
# Enable quant_fp8 CUDA ops (TODO disable in follow up)
|
|
687
|
+
# On H100 the CUDA kernel is faster than
|
|
688
|
+
# native implementation
|
|
689
|
+
# https://github.com/vllm-project/vllm/issues/25094
|
|
690
|
+
if has_blocked_weights():
|
|
691
|
+
custom_ops = self.compilation_config.custom_ops
|
|
692
|
+
if "-quant_fp8" not in custom_ops:
|
|
693
|
+
custom_ops.append("+quant_fp8")
|
|
694
|
+
|
|
695
|
+
if self.compilation_config.mode is None:
|
|
696
|
+
if self.optimization_level > OptimizationLevel.O0:
|
|
697
|
+
self.compilation_config.mode = CompilationMode.VLLM_COMPILE
|
|
698
|
+
else:
|
|
699
|
+
self.compilation_config.mode = CompilationMode.NONE
|
|
700
|
+
|
|
701
|
+
if all(s not in self.compilation_config.custom_ops for s in ("all", "none")):
|
|
702
|
+
if (
|
|
703
|
+
self.compilation_config.backend == "inductor"
|
|
704
|
+
and self.compilation_config.mode != CompilationMode.NONE
|
|
705
|
+
):
|
|
706
|
+
self.compilation_config.custom_ops.append("none")
|
|
707
|
+
else:
|
|
708
|
+
self.compilation_config.custom_ops.append("all")
|
|
709
|
+
|
|
710
|
+
default_config = OPTIMIZATION_LEVEL_TO_CONFIG[self.optimization_level]
|
|
711
|
+
self._apply_optimization_level_defaults(default_config)
|
|
712
|
+
|
|
713
|
+
if (
|
|
714
|
+
self.compilation_config.cudagraph_mode.requires_piecewise_compilation()
|
|
715
|
+
and self.compilation_config.mode != CompilationMode.VLLM_COMPILE
|
|
716
|
+
):
|
|
717
|
+
logger.info(
|
|
718
|
+
"Cudagraph mode %s is not compatible with compilation mode %s."
|
|
719
|
+
"Overriding to NONE.",
|
|
720
|
+
self.compilation_config.cudagraph_mode,
|
|
721
|
+
self.compilation_config.mode,
|
|
722
|
+
)
|
|
723
|
+
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
|
724
|
+
|
|
725
|
+
# async tp is built on top of sequence parallelism
|
|
726
|
+
# and requires it to be enabled.
|
|
727
|
+
if self.compilation_config.pass_config.fuse_gemm_comms:
|
|
728
|
+
self.compilation_config.pass_config.enable_sp = True
|
|
729
|
+
if self.compilation_config.pass_config.enable_sp:
|
|
730
|
+
if "-rms_norm" in self.compilation_config.custom_ops:
|
|
731
|
+
logger.warning(
|
|
732
|
+
"RMS norm force disabled, sequence parallelism might break"
|
|
733
|
+
)
|
|
734
|
+
else:
|
|
735
|
+
self.compilation_config.custom_ops.append("+rms_norm")
|
|
736
|
+
|
|
737
|
+
if current_platform.support_static_graph_mode():
|
|
738
|
+
# if cudagraph_mode has full cudagraphs, we need to check support
|
|
739
|
+
if model_config := self.model_config:
|
|
740
|
+
if (
|
|
741
|
+
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
|
|
742
|
+
and model_config.pooler_config is not None
|
|
743
|
+
):
|
|
744
|
+
logger.warning_once(
|
|
745
|
+
"Pooling models do not support full cudagraphs. "
|
|
746
|
+
"Overriding cudagraph_mode to PIECEWISE."
|
|
747
|
+
)
|
|
748
|
+
self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
|
|
749
|
+
elif (
|
|
750
|
+
model_config.is_encoder_decoder
|
|
751
|
+
and self.compilation_config.cudagraph_mode
|
|
752
|
+
not in (CUDAGraphMode.NONE, CUDAGraphMode.FULL_DECODE_ONLY)
|
|
753
|
+
):
|
|
754
|
+
logger.info_once(
|
|
755
|
+
"Encoder-decoder models do not support %s. "
|
|
756
|
+
"Overriding cudagraph_mode to FULL_DECODE_ONLY.",
|
|
757
|
+
self.compilation_config.cudagraph_mode.name,
|
|
758
|
+
)
|
|
759
|
+
self.compilation_config.cudagraph_mode = (
|
|
760
|
+
CUDAGraphMode.FULL_DECODE_ONLY
|
|
761
|
+
)
|
|
762
|
+
|
|
763
|
+
# disable cudagraph when enforce eager execution
|
|
764
|
+
if self.model_config is not None and self.model_config.enforce_eager:
|
|
765
|
+
logger.info("Cudagraph is disabled under eager mode")
|
|
766
|
+
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
|
767
|
+
# override related settings when enforce eager
|
|
768
|
+
self.compilation_config.max_cudagraph_capture_size = 0
|
|
769
|
+
self.compilation_config.cudagraph_capture_sizes = []
|
|
770
|
+
else:
|
|
771
|
+
self.compilation_config.cudagraph_num_of_warmups = 1
|
|
772
|
+
|
|
773
|
+
self._set_cudagraph_sizes()
|
|
774
|
+
else:
|
|
775
|
+
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
|
|
776
|
+
|
|
777
|
+
if self.cache_config.kv_sharing_fast_prefill:
|
|
778
|
+
if (
|
|
779
|
+
self.speculative_config is not None
|
|
780
|
+
and self.speculative_config.use_eagle()
|
|
781
|
+
):
|
|
782
|
+
raise ValueError(
|
|
783
|
+
"Fast prefill optimization for KV sharing is not "
|
|
784
|
+
"compatible with EAGLE as EAGLE requires correct logits "
|
|
785
|
+
"for all tokens while fast prefill gives incorrect logits "
|
|
786
|
+
"for prompt tokens."
|
|
787
|
+
)
|
|
788
|
+
|
|
789
|
+
logger.warning_once(
|
|
790
|
+
"--kv-sharing-fast-prefill requires changes on model side for "
|
|
791
|
+
"correctness and to realize prefill savings."
|
|
792
|
+
)
|
|
793
|
+
# TODO: Move after https://github.com/vllm-project/vllm/pull/26847 lands
|
|
794
|
+
self._set_compile_ranges()
|
|
795
|
+
|
|
796
|
+
if (
|
|
797
|
+
self.model_config
|
|
798
|
+
and self.model_config.architecture == "WhisperForConditionalGeneration"
|
|
799
|
+
and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") != "spawn"
|
|
800
|
+
):
|
|
801
|
+
logger.warning(
|
|
802
|
+
"Whisper is known to have issues with "
|
|
803
|
+
"forked workers. If startup is hanging, "
|
|
804
|
+
"try setting 'VLLM_WORKER_MULTIPROC_METHOD' "
|
|
805
|
+
"to 'spawn'."
|
|
806
|
+
)
|
|
807
|
+
|
|
808
|
+
if (
|
|
809
|
+
self.kv_events_config is not None
|
|
810
|
+
and self.kv_events_config.enable_kv_cache_events
|
|
811
|
+
and not self.cache_config.enable_prefix_caching
|
|
812
|
+
):
|
|
813
|
+
logger.warning(
|
|
814
|
+
"KV cache events are on, but prefix caching is not enabled. "
|
|
815
|
+
"Use --enable-prefix-caching to enable."
|
|
816
|
+
)
|
|
817
|
+
if (
|
|
818
|
+
self.kv_events_config is not None
|
|
819
|
+
and self.kv_events_config.publisher != "null"
|
|
820
|
+
and not self.kv_events_config.enable_kv_cache_events
|
|
821
|
+
):
|
|
822
|
+
logger.warning(
|
|
823
|
+
"KV cache events are disabled, "
|
|
824
|
+
"but the scheduler is configured to publish them. "
|
|
825
|
+
"Modify KVEventsConfig.enable_kv_cache_events "
|
|
826
|
+
"to True to enable."
|
|
827
|
+
)
|
|
828
|
+
current_platform.check_and_update_config(self)
|
|
829
|
+
|
|
830
|
+
# If DCP, ensure the block size is right.
|
|
831
|
+
if self.parallel_config.decode_context_parallel_size > 1:
|
|
832
|
+
if self.parallel_config.dcp_kv_cache_interleave_size > 1 and (
|
|
833
|
+
self.parallel_config.cp_kv_cache_interleave_size
|
|
834
|
+
!= self.parallel_config.dcp_kv_cache_interleave_size
|
|
835
|
+
):
|
|
836
|
+
self.parallel_config.cp_kv_cache_interleave_size = (
|
|
837
|
+
self.parallel_config.dcp_kv_cache_interleave_size
|
|
838
|
+
)
|
|
839
|
+
logger.warning_once(
|
|
840
|
+
"cp_kv_cache_interleave_size is overridden by dcp_kv_cache"
|
|
841
|
+
"_interleave_size. And dcp-kv-cache-interleave-size will be "
|
|
842
|
+
"deprecated when PCP is fully supported."
|
|
843
|
+
)
|
|
844
|
+
assert (
|
|
845
|
+
self.parallel_config.cp_kv_cache_interleave_size
|
|
846
|
+
<= self.cache_config.block_size
|
|
847
|
+
and self.cache_config.block_size
|
|
848
|
+
% self.parallel_config.cp_kv_cache_interleave_size
|
|
849
|
+
== 0
|
|
850
|
+
), (
|
|
851
|
+
f"Block_size({self.cache_config.block_size}) should be greater "
|
|
852
|
+
"than or equal to and divisible by cp_kv_cache_interleave_size "
|
|
853
|
+
f"({self.parallel_config.cp_kv_cache_interleave_size})."
|
|
854
|
+
)
|
|
855
|
+
|
|
856
|
+
# Do this after all the updates to compilation_config.mode
|
|
857
|
+
effective_dp_size = (
|
|
858
|
+
self.parallel_config.data_parallel_size
|
|
859
|
+
if self.model_config is None or self.model_config.is_moe
|
|
860
|
+
else 1
|
|
861
|
+
)
|
|
862
|
+
self.compilation_config.set_splitting_ops_for_v1(
|
|
863
|
+
all2all_backend=self.parallel_config.all2all_backend,
|
|
864
|
+
data_parallel_size=effective_dp_size,
|
|
865
|
+
)
|
|
866
|
+
|
|
867
|
+
if self.compilation_config.pass_config.enable_sp:
|
|
868
|
+
# With pipeline parallelism or dynamo partitioning,
|
|
869
|
+
# native rms norm tracing errors due to incorrect residual shape.
|
|
870
|
+
# Use custom rms norm to unblock. In the future,
|
|
871
|
+
# the pass will operate on higher-level IR to avoid the issue.
|
|
872
|
+
# TODO: https://github.com/vllm-project/vllm/issues/27894
|
|
873
|
+
if self.compilation_config.mode != CompilationMode.VLLM_COMPILE:
|
|
874
|
+
logger.warning(
|
|
875
|
+
"Sequence parallelism is enabled, but running in wrong "
|
|
876
|
+
"vllm compile mode: %s.",
|
|
877
|
+
self.compilation_config.mode,
|
|
878
|
+
)
|
|
879
|
+
|
|
880
|
+
is_fullgraph = (
|
|
881
|
+
self.compilation_config.use_inductor_graph_partition
|
|
882
|
+
or len(self.compilation_config.splitting_ops) == 0
|
|
883
|
+
)
|
|
884
|
+
if self.parallel_config.pipeline_parallel_size > 1 or not is_fullgraph:
|
|
885
|
+
if "-rms_norm" not in self.compilation_config.custom_ops:
|
|
886
|
+
self.compilation_config.custom_ops.append("+rms_norm")
|
|
887
|
+
else:
|
|
888
|
+
regime = (
|
|
889
|
+
"Dynamo partition"
|
|
890
|
+
if not is_fullgraph
|
|
891
|
+
else "pipeline parallelism"
|
|
892
|
+
)
|
|
893
|
+
logger.warning_once(
|
|
894
|
+
"Sequence parallelism not supported with "
|
|
895
|
+
"native rms_norm when using %s, "
|
|
896
|
+
"this will likely lead to an error.",
|
|
897
|
+
regime,
|
|
898
|
+
)
|
|
899
|
+
|
|
900
|
+
# final check of cudagraph mode after all possible updates
|
|
901
|
+
if current_platform.is_cuda_alike():
|
|
902
|
+
if (
|
|
903
|
+
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
|
|
904
|
+
and self.model_config is not None
|
|
905
|
+
and not self.model_config.disable_cascade_attn
|
|
906
|
+
and not self.compilation_config.cudagraph_mode.has_piecewise_cudagraphs() # noqa: E501
|
|
907
|
+
):
|
|
908
|
+
logger.warning_once(
|
|
909
|
+
"No piecewise cudagraph for executing cascade attention."
|
|
910
|
+
" Will fall back to eager execution if a batch runs "
|
|
911
|
+
"into cascade attentions."
|
|
912
|
+
)
|
|
913
|
+
|
|
914
|
+
if self.compilation_config.cudagraph_mode.requires_piecewise_compilation():
|
|
915
|
+
assert self.compilation_config.mode == CompilationMode.VLLM_COMPILE, (
|
|
916
|
+
"Compilation mode should be CompilationMode.VLLM_COMPILE "
|
|
917
|
+
"when cudagraph_mode piecewise cudagraphs is used, "
|
|
918
|
+
f"cudagraph_mode={self.compilation_config.cudagraph_mode}"
|
|
919
|
+
)
|
|
920
|
+
|
|
921
|
+
if self.parallel_config.use_ubatching:
|
|
922
|
+
a2a_backend = self.parallel_config.all2all_backend
|
|
923
|
+
assert a2a_backend in [
|
|
924
|
+
"deepep_low_latency",
|
|
925
|
+
"deepep_high_throughput",
|
|
926
|
+
], (
|
|
927
|
+
"Microbatching currently only supports the deepep_low_latency and "
|
|
928
|
+
f"deepep_high_throughput all2all backend. {a2a_backend} is not "
|
|
929
|
+
"supported. To fix use --all2all-backend=deepep_low_latency or "
|
|
930
|
+
"--all2all-backend=deepep_high_throughput and install the DeepEP"
|
|
931
|
+
" kernels."
|
|
932
|
+
)
|
|
933
|
+
|
|
934
|
+
if not self.model_config.disable_cascade_attn:
|
|
935
|
+
self.model_config.disable_cascade_attn = True
|
|
936
|
+
logger.warning_once("Disabling cascade attention when DBO is enabled.")
|
|
937
|
+
|
|
938
|
+
if not self.instance_id:
|
|
939
|
+
self.instance_id = random_uuid()[:5]
|
|
940
|
+
|
|
941
|
+
# Hybrid KV cache manager (HMA) runtime rules:
|
|
942
|
+
# - Explicit enable (--no-disable-kv-cache-manager): error if runtime
|
|
943
|
+
# disables it
|
|
944
|
+
# - No preference: auto-disable for unsupported features (e.g. kv connector)
|
|
945
|
+
# - Explicit disable (--disable-kv-cache-manager): always respect it
|
|
946
|
+
need_disable_hybrid_kv_cache_manager = False
|
|
947
|
+
# logger should only print warning message for hybrid models. As we
|
|
948
|
+
# can't know whether the model is hybrid or not now, so we don't log
|
|
949
|
+
# warning message here and will log it later.
|
|
950
|
+
if not current_platform.support_hybrid_kv_cache():
|
|
951
|
+
# Hybrid KV cache manager is not supported on non-GPU platforms.
|
|
952
|
+
need_disable_hybrid_kv_cache_manager = True
|
|
953
|
+
if self.kv_events_config is not None:
|
|
954
|
+
# Hybrid KV cache manager is not compatible with KV events.
|
|
955
|
+
need_disable_hybrid_kv_cache_manager = True
|
|
956
|
+
if (
|
|
957
|
+
self.model_config is not None
|
|
958
|
+
and self.model_config.attention_chunk_size is not None
|
|
959
|
+
):
|
|
960
|
+
if (
|
|
961
|
+
self.speculative_config is not None
|
|
962
|
+
and self.speculative_config.use_eagle()
|
|
963
|
+
):
|
|
964
|
+
# Hybrid KV cache manager is not yet supported with chunked
|
|
965
|
+
# local attention + eagle.
|
|
966
|
+
need_disable_hybrid_kv_cache_manager = True
|
|
967
|
+
elif not envs.VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE:
|
|
968
|
+
logger.warning(
|
|
969
|
+
"There is a latency regression when using chunked local"
|
|
970
|
+
" attention with the hybrid KV cache manager. Disabling"
|
|
971
|
+
" it, by default. To enable it, set the environment "
|
|
972
|
+
"VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE=1."
|
|
973
|
+
)
|
|
974
|
+
# Hybrid KV cache manager is not yet supported with chunked
|
|
975
|
+
# local attention.
|
|
976
|
+
need_disable_hybrid_kv_cache_manager = True
|
|
977
|
+
|
|
978
|
+
if self.scheduler_config.disable_hybrid_kv_cache_manager is None:
|
|
979
|
+
# Default to disable HMA, but only if the user didn't express a preference.
|
|
980
|
+
if self.kv_transfer_config is not None:
|
|
981
|
+
# NOTE(Kuntai): turn HMA off for connector unless specifically enabled.
|
|
982
|
+
need_disable_hybrid_kv_cache_manager = True
|
|
983
|
+
logger.warning(
|
|
984
|
+
"Turning off hybrid kv cache manager because "
|
|
985
|
+
"`--kv-transfer-config` is set. This will reduce the "
|
|
986
|
+
"performance of vLLM on LLMs with sliding window attention "
|
|
987
|
+
"or Mamba attention. If you are a developer of kv connector"
|
|
988
|
+
", please consider supporting hybrid kv cache manager for "
|
|
989
|
+
"your connector by making sure your connector is a subclass"
|
|
990
|
+
" of `SupportsHMA` defined in kv_connector/v1/base.py and"
|
|
991
|
+
" use --no-disable-hybrid-kv-cache-manager to start vLLM."
|
|
992
|
+
)
|
|
993
|
+
self.scheduler_config.disable_hybrid_kv_cache_manager = (
|
|
994
|
+
need_disable_hybrid_kv_cache_manager
|
|
995
|
+
)
|
|
996
|
+
elif (
|
|
997
|
+
self.scheduler_config.disable_hybrid_kv_cache_manager is False
|
|
998
|
+
and need_disable_hybrid_kv_cache_manager
|
|
999
|
+
):
|
|
1000
|
+
raise ValueError(
|
|
1001
|
+
"Hybrid KV cache manager was explicitly enabled but is not "
|
|
1002
|
+
"supported in this configuration. Consider omitting the "
|
|
1003
|
+
"--no-disable-hybrid-kv-cache-manager flag to let vLLM decide"
|
|
1004
|
+
" automatically."
|
|
1005
|
+
)
|
|
1006
|
+
|
|
1007
|
+
if self.scheduler_config.disable_hybrid_kv_cache_manager is None:
|
|
1008
|
+
# Default to enable HMA if not explicitly disabled by user or logic above.
|
|
1009
|
+
self.scheduler_config.disable_hybrid_kv_cache_manager = False
|
|
1010
|
+
|
|
1011
|
+
if self.compilation_config.debug_dump_path:
|
|
1012
|
+
self.compilation_config.debug_dump_path = (
|
|
1013
|
+
self.compilation_config.debug_dump_path.absolute().expanduser()
|
|
1014
|
+
)
|
|
1015
|
+
if envs.VLLM_DEBUG_DUMP_PATH is not None:
|
|
1016
|
+
env_path = Path(envs.VLLM_DEBUG_DUMP_PATH).absolute().expanduser()
|
|
1017
|
+
if self.compilation_config.debug_dump_path:
|
|
1018
|
+
logger.warning(
|
|
1019
|
+
"Config-specified debug dump path is overridden"
|
|
1020
|
+
" by VLLM_DEBUG_DUMP_PATH to %s",
|
|
1021
|
+
env_path,
|
|
1022
|
+
)
|
|
1023
|
+
self.compilation_config.debug_dump_path = env_path
|
|
1024
|
+
|
|
1025
|
+
def has_blocked_weights():
|
|
1026
|
+
if self.quant_config is not None:
|
|
1027
|
+
if hasattr(self.quant_config, "weight_block_size"):
|
|
1028
|
+
return self.quant_config.weight_block_size is not None
|
|
1029
|
+
elif hasattr(self.quant_config, "has_blocked_weights"):
|
|
1030
|
+
return self.quant_config.has_blocked_weights()
|
|
1031
|
+
return False
|
|
1032
|
+
|
|
1033
|
+
# Enable quant_fp8 CUDA ops (TODO disable in follow up)
|
|
1034
|
+
# On H100 the CUDA kernel is faster than
|
|
1035
|
+
# native implementation
|
|
1036
|
+
# https://github.com/vllm-project/vllm/issues/25094
|
|
1037
|
+
if has_blocked_weights():
|
|
1038
|
+
custom_ops = self.compilation_config.custom_ops
|
|
1039
|
+
if "-quant_fp8" not in custom_ops:
|
|
1040
|
+
custom_ops.append("+quant_fp8")
|
|
1041
|
+
|
|
1042
|
+
# Handle the KV connector configs
|
|
1043
|
+
self._post_init_kv_transfer_config()
|
|
1044
|
+
|
|
1045
|
+
def update_sizes_for_sequence_parallelism(self, possible_sizes: list) -> list:
|
|
1046
|
+
# remove the sizes that not multiple of tp_size when
|
|
1047
|
+
# enable sequence parallelism
|
|
1048
|
+
removed_sizes = [
|
|
1049
|
+
size
|
|
1050
|
+
for size in possible_sizes
|
|
1051
|
+
if size % self.parallel_config.tensor_parallel_size != 0
|
|
1052
|
+
]
|
|
1053
|
+
if removed_sizes:
|
|
1054
|
+
logger.warning(
|
|
1055
|
+
"Batch sizes %s are removed because they are not "
|
|
1056
|
+
"multiple of tp_size %d when "
|
|
1057
|
+
"sequence parallelism is enabled",
|
|
1058
|
+
removed_sizes,
|
|
1059
|
+
self.parallel_config.tensor_parallel_size,
|
|
1060
|
+
)
|
|
1061
|
+
|
|
1062
|
+
return [
|
|
1063
|
+
size
|
|
1064
|
+
for size in possible_sizes
|
|
1065
|
+
if size % self.parallel_config.tensor_parallel_size == 0
|
|
1066
|
+
]
|
|
1067
|
+
|
|
1068
|
+
def _set_cudagraph_sizes(self):
|
|
1069
|
+
"""
|
|
1070
|
+
vLLM defines the default candidate list of batch sizes for CUDA graph
|
|
1071
|
+
capture as:
|
|
1072
|
+
|
|
1073
|
+
```python
|
|
1074
|
+
max_graph_size = min(max_num_seqs * 2, 512)
|
|
1075
|
+
# 1, 2, 4, then multiples of 8 up to 256 and then multiples of 16
|
|
1076
|
+
# up to max_graph_size
|
|
1077
|
+
cudagraph_capture_sizes = [1, 2, 4] + list(range(8, 256, 8)) + list(
|
|
1078
|
+
range(256, max_graph_size + 1, 16))
|
|
1079
|
+
|
|
1080
|
+
In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
|
|
1081
|
+
will be the final sizes to capture cudagraph (in ascending order).
|
|
1082
|
+
|
|
1083
|
+
These sizes are used to capture and reuse CUDA graphs for
|
|
1084
|
+
performance-critical paths (e.g., decoding). Capturing enables
|
|
1085
|
+
significantly faster kernel dispatch by avoiding Python overhead. The
|
|
1086
|
+
list is then filtered based on `max_num_batched_tokens` (e.g., 8192 on
|
|
1087
|
+
most GPUs), which controls the total allowed number of tokens in a
|
|
1088
|
+
batch. Since each sequence may have a variable number of tokens, the
|
|
1089
|
+
maximum usable batch size will depend on actual sequence lengths.
|
|
1090
|
+
|
|
1091
|
+
Example:
|
|
1092
|
+
With `max_num_batched_tokens = 8192`, and typical sequences
|
|
1093
|
+
averaging ~32 tokens, most practical batch sizes fall below 256.
|
|
1094
|
+
However, the system will still allow capture sizes up to 512 if
|
|
1095
|
+
shape and memory permit.
|
|
1096
|
+
|
|
1097
|
+
Note:
|
|
1098
|
+
If users explicitly specify cudagraph capture sizes in the
|
|
1099
|
+
compilation config, those will override this default logic.
|
|
1100
|
+
At runtime:
|
|
1101
|
+
|
|
1102
|
+
- If batch size <= one of the `cudagraph_capture_sizes`, the closest
|
|
1103
|
+
padded CUDA graph will be used.
|
|
1104
|
+
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
|
|
1105
|
+
not be used.
|
|
1106
|
+
"""
|
|
1107
|
+
|
|
1108
|
+
if (
|
|
1109
|
+
self.model_config is not None
|
|
1110
|
+
and not self.model_config.enforce_eager
|
|
1111
|
+
and self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
|
|
1112
|
+
):
|
|
1113
|
+
# determine the initial max_cudagraph_capture_size
|
|
1114
|
+
max_cudagraph_capture_size = (
|
|
1115
|
+
self.compilation_config.max_cudagraph_capture_size
|
|
1116
|
+
)
|
|
1117
|
+
if max_cudagraph_capture_size is None:
|
|
1118
|
+
decode_query_len = 1
|
|
1119
|
+
if (
|
|
1120
|
+
self.speculative_config
|
|
1121
|
+
and self.speculative_config.num_speculative_tokens
|
|
1122
|
+
):
|
|
1123
|
+
decode_query_len += self.speculative_config.num_speculative_tokens
|
|
1124
|
+
max_cudagraph_capture_size = min(
|
|
1125
|
+
self.scheduler_config.max_num_seqs * decode_query_len * 2, 512
|
|
1126
|
+
)
|
|
1127
|
+
max_num_tokens = self.scheduler_config.max_num_batched_tokens
|
|
1128
|
+
max_cudagraph_capture_size = min(max_num_tokens, max_cudagraph_capture_size)
|
|
1129
|
+
|
|
1130
|
+
assert max_cudagraph_capture_size >= 1, (
|
|
1131
|
+
"Maximum cudagraph size should be greater than or equal to 1 "
|
|
1132
|
+
"when using cuda graph."
|
|
1133
|
+
)
|
|
1134
|
+
|
|
1135
|
+
# determine the cudagraph_capture_sizes
|
|
1136
|
+
if self.compilation_config.cudagraph_capture_sizes is not None:
|
|
1137
|
+
assert len(self.compilation_config.cudagraph_capture_sizes) > 0, (
|
|
1138
|
+
"cudagraph_capture_sizes should contain at least one element "
|
|
1139
|
+
"when using cuda graph."
|
|
1140
|
+
)
|
|
1141
|
+
# de-duplicate the sizes provided by the config
|
|
1142
|
+
dedup_sizes = list(set(self.compilation_config.cudagraph_capture_sizes))
|
|
1143
|
+
cudagraph_capture_sizes = [
|
|
1144
|
+
i for i in dedup_sizes if i <= max_num_tokens
|
|
1145
|
+
]
|
|
1146
|
+
# sort to make sure the sizes are in ascending order
|
|
1147
|
+
cudagraph_capture_sizes.sort()
|
|
1148
|
+
else:
|
|
1149
|
+
cudagraph_capture_sizes = [
|
|
1150
|
+
i for i in [1, 2, 4] if i <= max_cudagraph_capture_size
|
|
1151
|
+
]
|
|
1152
|
+
if max_cudagraph_capture_size >= 8:
|
|
1153
|
+
# Step size 8 for small batch sizes, up to 256(not included)
|
|
1154
|
+
cudagraph_capture_sizes += list(
|
|
1155
|
+
range(8, min(max_cudagraph_capture_size + 1, 256), 8)
|
|
1156
|
+
)
|
|
1157
|
+
if max_cudagraph_capture_size >= 256:
|
|
1158
|
+
# Step size 16 for larger batch sizes
|
|
1159
|
+
cudagraph_capture_sizes += list(
|
|
1160
|
+
range(256, max_cudagraph_capture_size + 1, 16)
|
|
1161
|
+
)
|
|
1162
|
+
|
|
1163
|
+
if (
|
|
1164
|
+
self.parallel_config.tensor_parallel_size > 1
|
|
1165
|
+
and self.compilation_config.pass_config.enable_sp
|
|
1166
|
+
):
|
|
1167
|
+
cudagraph_capture_sizes = self.update_sizes_for_sequence_parallelism(
|
|
1168
|
+
cudagraph_capture_sizes
|
|
1169
|
+
)
|
|
1170
|
+
|
|
1171
|
+
# user-specific compilation_config.max_cudagraph_capture_size get
|
|
1172
|
+
# truncated to valid_max_size when they are inconsistent.
|
|
1173
|
+
valid_max_size = (
|
|
1174
|
+
cudagraph_capture_sizes[-1] if cudagraph_capture_sizes else 0
|
|
1175
|
+
)
|
|
1176
|
+
if (
|
|
1177
|
+
self.compilation_config.max_cudagraph_capture_size is not None
|
|
1178
|
+
and self.compilation_config.max_cudagraph_capture_size != valid_max_size
|
|
1179
|
+
):
|
|
1180
|
+
# raise error only when both two flags are user-specified
|
|
1181
|
+
# and they are inconsistent with each other
|
|
1182
|
+
if self.compilation_config.cudagraph_capture_sizes is not None:
|
|
1183
|
+
raise ValueError(
|
|
1184
|
+
"customized max_cudagraph_capture_size"
|
|
1185
|
+
f"(={self.compilation_config.max_cudagraph_capture_size}) "
|
|
1186
|
+
"should be consistent with the max value of "
|
|
1187
|
+
f"cudagraph_capture_sizes(={valid_max_size})"
|
|
1188
|
+
)
|
|
1189
|
+
|
|
1190
|
+
logger.warning(
|
|
1191
|
+
"Truncating max_cudagraph_capture_size to %d",
|
|
1192
|
+
valid_max_size,
|
|
1193
|
+
)
|
|
1194
|
+
# always set the final max_cudagraph_capture_size
|
|
1195
|
+
self.compilation_config.max_cudagraph_capture_size = valid_max_size
|
|
1196
|
+
|
|
1197
|
+
if self.compilation_config.cudagraph_capture_sizes is not None and len(
|
|
1198
|
+
cudagraph_capture_sizes
|
|
1199
|
+
) < len(self.compilation_config.cudagraph_capture_sizes):
|
|
1200
|
+
# If users have specified capture sizes, we only need to
|
|
1201
|
+
# compare the lens before and after modification since the modified
|
|
1202
|
+
# list is only the subset of the original list.
|
|
1203
|
+
logger.warning(
|
|
1204
|
+
(
|
|
1205
|
+
"cudagraph_capture_sizes specified in compilation_config"
|
|
1206
|
+
" %s is overridden by config %s"
|
|
1207
|
+
),
|
|
1208
|
+
self.compilation_config.cudagraph_capture_sizes,
|
|
1209
|
+
cudagraph_capture_sizes,
|
|
1210
|
+
)
|
|
1211
|
+
# always write back the final sizes
|
|
1212
|
+
self.compilation_config.cudagraph_capture_sizes = cudagraph_capture_sizes
|
|
1213
|
+
|
|
1214
|
+
else:
|
|
1215
|
+
# no cudagraph in use
|
|
1216
|
+
self.compilation_config.max_cudagraph_capture_size = 0
|
|
1217
|
+
self.compilation_config.cudagraph_capture_sizes = []
|
|
1218
|
+
|
|
1219
|
+
# complete the remaining process.
|
|
1220
|
+
self.compilation_config.post_init_cudagraph_sizes()
|
|
1221
|
+
|
|
1222
|
+
def _set_compile_ranges(self):
|
|
1223
|
+
"""
|
|
1224
|
+
Set the compile ranges for the compilation config.
|
|
1225
|
+
"""
|
|
1226
|
+
compilation_config = self.compilation_config
|
|
1227
|
+
computed_compile_ranges_split_points = []
|
|
1228
|
+
|
|
1229
|
+
# The upper bound of the compile ranges is the max_num_batched_tokens
|
|
1230
|
+
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
|
1231
|
+
if max_num_batched_tokens is not None:
|
|
1232
|
+
computed_compile_ranges_split_points.append(max_num_batched_tokens)
|
|
1233
|
+
|
|
1234
|
+
# Add the compile ranges for flashinfer
|
|
1235
|
+
if compilation_config.pass_config.fuse_allreduce_rms:
|
|
1236
|
+
tp_size = self.parallel_config.tensor_parallel_size
|
|
1237
|
+
max_size = compilation_config.pass_config.flashinfer_max_size(tp_size)
|
|
1238
|
+
if max_size is not None:
|
|
1239
|
+
max_token_num = max_size // (
|
|
1240
|
+
self.model_config.get_hidden_size()
|
|
1241
|
+
* self.model_config.dtype.itemsize
|
|
1242
|
+
)
|
|
1243
|
+
if (
|
|
1244
|
+
max_num_batched_tokens is not None
|
|
1245
|
+
and max_token_num < max_num_batched_tokens
|
|
1246
|
+
):
|
|
1247
|
+
computed_compile_ranges_split_points.append(max_token_num)
|
|
1248
|
+
else:
|
|
1249
|
+
logger.debug(
|
|
1250
|
+
"Max num batched tokens below allreduce-rms fusion threshold, "
|
|
1251
|
+
"allreduce-rms fusion will be enabled for all num_tokens."
|
|
1252
|
+
)
|
|
1253
|
+
|
|
1254
|
+
if compilation_config.compile_ranges_split_points is not None:
|
|
1255
|
+
for x in compilation_config.compile_ranges_split_points:
|
|
1256
|
+
assert isinstance(x, int)
|
|
1257
|
+
assert x > 0, f"Invalid compile range split point: {x}"
|
|
1258
|
+
if (
|
|
1259
|
+
max_num_batched_tokens is not None
|
|
1260
|
+
and x < max_num_batched_tokens
|
|
1261
|
+
and x > 1
|
|
1262
|
+
):
|
|
1263
|
+
computed_compile_ranges_split_points.append(x)
|
|
1264
|
+
compilation_config.compile_ranges_split_points = sorted(
|
|
1265
|
+
computed_compile_ranges_split_points
|
|
1266
|
+
)
|
|
1267
|
+
|
|
1268
|
+
def try_verify_and_update_config(self):
|
|
1269
|
+
if self.model_config is None:
|
|
1270
|
+
return
|
|
1271
|
+
|
|
1272
|
+
# Avoid running try_verify_and_update_config multiple times
|
|
1273
|
+
if getattr(self.model_config, "config_updated", False):
|
|
1274
|
+
return
|
|
1275
|
+
self.model_config.config_updated = True
|
|
1276
|
+
|
|
1277
|
+
architecture = self.model_config.architecture
|
|
1278
|
+
if architecture is None:
|
|
1279
|
+
return
|
|
1280
|
+
|
|
1281
|
+
from vllm.model_executor.models.config import (
|
|
1282
|
+
MODELS_CONFIG_MAP,
|
|
1283
|
+
HybridAttentionMambaModelConfig,
|
|
1284
|
+
)
|
|
1285
|
+
|
|
1286
|
+
cls = MODELS_CONFIG_MAP.get(architecture, None)
|
|
1287
|
+
if cls is not None:
|
|
1288
|
+
cls.verify_and_update_config(self)
|
|
1289
|
+
|
|
1290
|
+
if self.model_config.is_hybrid:
|
|
1291
|
+
HybridAttentionMambaModelConfig.verify_and_update_config(self)
|
|
1292
|
+
|
|
1293
|
+
if self.model_config.convert_type == "classify":
|
|
1294
|
+
# Maybe convert ForCausalLM into ForSequenceClassification model.
|
|
1295
|
+
from vllm.model_executor.models.adapters import SequenceClassificationConfig
|
|
1296
|
+
|
|
1297
|
+
SequenceClassificationConfig.verify_and_update_config(self)
|
|
1298
|
+
|
|
1299
|
+
if hasattr(self.model_config, "model_weights") and is_runai_obj_uri(
|
|
1300
|
+
self.model_config.model_weights
|
|
1301
|
+
):
|
|
1302
|
+
if self.load_config.load_format == "auto":
|
|
1303
|
+
logger.info(
|
|
1304
|
+
"Detected Run:ai model config. "
|
|
1305
|
+
"Overriding `load_format` to 'runai_streamer'"
|
|
1306
|
+
)
|
|
1307
|
+
self.load_config.load_format = "runai_streamer"
|
|
1308
|
+
elif self.load_config.load_format not in (
|
|
1309
|
+
"runai_streamer",
|
|
1310
|
+
"runai_streamer_sharded",
|
|
1311
|
+
):
|
|
1312
|
+
raise ValueError(
|
|
1313
|
+
f"To load a model from S3, 'load_format' "
|
|
1314
|
+
f"must be 'runai_streamer' or 'runai_streamer_sharded', "
|
|
1315
|
+
f"but got '{self.load_config.load_format}'. "
|
|
1316
|
+
f"Model: {self.model_config.model}"
|
|
1317
|
+
)
|
|
1318
|
+
|
|
1319
|
+
def compile_debug_dump_path(self) -> Path | None:
|
|
1320
|
+
"""Returns a rank-aware path for dumping
|
|
1321
|
+
torch.compile debug information.
|
|
1322
|
+
"""
|
|
1323
|
+
if self.compilation_config.debug_dump_path is None:
|
|
1324
|
+
return None
|
|
1325
|
+
tp_rank = self.parallel_config.rank
|
|
1326
|
+
dp_rank = self.parallel_config.data_parallel_index
|
|
1327
|
+
append_path = f"rank_{tp_rank}_dp_{dp_rank}"
|
|
1328
|
+
path = self.compilation_config.debug_dump_path / append_path
|
|
1329
|
+
return path
|
|
1330
|
+
|
|
1331
|
+
def __str__(self):
|
|
1332
|
+
return (
|
|
1333
|
+
f"model={self.model_config.model!r}, "
|
|
1334
|
+
f"speculative_config={self.speculative_config!r}, "
|
|
1335
|
+
f"tokenizer={self.model_config.tokenizer!r}, "
|
|
1336
|
+
f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}, "
|
|
1337
|
+
f"tokenizer_mode={self.model_config.tokenizer_mode}, "
|
|
1338
|
+
f"revision={self.model_config.revision}, "
|
|
1339
|
+
f"tokenizer_revision={self.model_config.tokenizer_revision}, "
|
|
1340
|
+
f"trust_remote_code={self.model_config.trust_remote_code}, "
|
|
1341
|
+
f"dtype={self.model_config.dtype}, "
|
|
1342
|
+
f"max_seq_len={self.model_config.max_model_len}, "
|
|
1343
|
+
f"download_dir={self.load_config.download_dir!r}, "
|
|
1344
|
+
f"load_format={self.load_config.load_format}, "
|
|
1345
|
+
f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}, " # noqa
|
|
1346
|
+
f"pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa
|
|
1347
|
+
f"data_parallel_size={self.parallel_config.data_parallel_size}, " # noqa
|
|
1348
|
+
f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa
|
|
1349
|
+
f"quantization={self.model_config.quantization}, "
|
|
1350
|
+
f"enforce_eager={self.model_config.enforce_eager}, "
|
|
1351
|
+
f"enable_return_routed_experts={self.model_config.enable_return_routed_experts}, " # noqa
|
|
1352
|
+
f"kv_cache_dtype={self.cache_config.cache_dtype}, "
|
|
1353
|
+
f"device_config={self.device_config.device}, "
|
|
1354
|
+
f"structured_outputs_config={self.structured_outputs_config!r}, "
|
|
1355
|
+
f"observability_config={self.observability_config!r}, "
|
|
1356
|
+
f"seed={self.model_config.seed}, "
|
|
1357
|
+
f"served_model_name={self.model_config.served_model_name}, "
|
|
1358
|
+
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
|
|
1359
|
+
f"enable_chunked_prefill={self.scheduler_config.enable_chunked_prefill}, " # noqa
|
|
1360
|
+
f"pooler_config={self.model_config.pooler_config!r}, "
|
|
1361
|
+
f"compilation_config={self.compilation_config!r}"
|
|
1362
|
+
)
|
|
1363
|
+
|
|
1364
|
+
@model_validator(mode="after")
|
|
1365
|
+
def validate_mamba_block_size(self) -> "VllmConfig":
|
|
1366
|
+
if self.model_config is None:
|
|
1367
|
+
return self
|
|
1368
|
+
mamba_block_size_is_set = (
|
|
1369
|
+
self.cache_config.mamba_block_size is not None
|
|
1370
|
+
and self.cache_config.mamba_block_size != self.model_config.max_model_len
|
|
1371
|
+
)
|
|
1372
|
+
if mamba_block_size_is_set and not self.cache_config.enable_prefix_caching:
|
|
1373
|
+
raise ValueError(
|
|
1374
|
+
"--mamba-block-size can only be set with --enable-prefix-caching"
|
|
1375
|
+
)
|
|
1376
|
+
return self
|
|
1377
|
+
|
|
1378
|
+
|
|
1379
|
+
_current_vllm_config: VllmConfig | None = None
|
|
1380
|
+
_current_prefix: str | None = None
|
|
1381
|
+
|
|
1382
|
+
|
|
1383
|
+
@contextmanager
|
|
1384
|
+
def set_current_vllm_config(
|
|
1385
|
+
vllm_config: VllmConfig, check_compile=False, prefix: str | None = None
|
|
1386
|
+
):
|
|
1387
|
+
"""
|
|
1388
|
+
Temporarily set the current vLLM config.
|
|
1389
|
+
Used during model initialization.
|
|
1390
|
+
We save the current vLLM config in a global variable,
|
|
1391
|
+
so that all modules can access it, e.g. custom ops
|
|
1392
|
+
can access the vLLM config to determine how to dispatch.
|
|
1393
|
+
"""
|
|
1394
|
+
global _current_vllm_config, _current_prefix
|
|
1395
|
+
old_vllm_config = _current_vllm_config
|
|
1396
|
+
old_prefix = _current_prefix
|
|
1397
|
+
from vllm.compilation.counter import compilation_counter
|
|
1398
|
+
|
|
1399
|
+
num_models_seen = compilation_counter.num_models_seen
|
|
1400
|
+
try:
|
|
1401
|
+
# Clear the compilation config cache when context changes.
|
|
1402
|
+
# This is needed since the old config may have been accessed
|
|
1403
|
+
# and cached before the new config is set.
|
|
1404
|
+
get_cached_compilation_config.cache_clear()
|
|
1405
|
+
|
|
1406
|
+
_current_vllm_config = vllm_config
|
|
1407
|
+
_current_prefix = prefix
|
|
1408
|
+
yield
|
|
1409
|
+
except Exception:
|
|
1410
|
+
raise
|
|
1411
|
+
else:
|
|
1412
|
+
if check_compile:
|
|
1413
|
+
vllm_config.compilation_config.custom_op_log_check()
|
|
1414
|
+
|
|
1415
|
+
if (
|
|
1416
|
+
check_compile
|
|
1417
|
+
and vllm_config.compilation_config.mode == CompilationMode.VLLM_COMPILE
|
|
1418
|
+
and compilation_counter.num_models_seen == num_models_seen
|
|
1419
|
+
):
|
|
1420
|
+
# If the model supports compilation,
|
|
1421
|
+
# compilation_counter.num_models_seen should be increased
|
|
1422
|
+
# by at least 1.
|
|
1423
|
+
# If it is not increased, it means the model does not support
|
|
1424
|
+
# compilation (does not have @support_torch_compile decorator).
|
|
1425
|
+
logger.warning(
|
|
1426
|
+
"`torch.compile` is turned on, but the model %s"
|
|
1427
|
+
" does not support it. Please open an issue on GitHub"
|
|
1428
|
+
" if you want it to be supported.",
|
|
1429
|
+
vllm_config.model_config.model,
|
|
1430
|
+
)
|
|
1431
|
+
finally:
|
|
1432
|
+
_current_vllm_config = old_vllm_config
|
|
1433
|
+
_current_prefix = old_prefix
|
|
1434
|
+
# Clear the compilation config cache when context changes
|
|
1435
|
+
get_cached_compilation_config.cache_clear()
|
|
1436
|
+
|
|
1437
|
+
|
|
1438
|
+
@lru_cache(maxsize=1)
|
|
1439
|
+
def get_cached_compilation_config():
|
|
1440
|
+
"""Cache config to avoid repeated calls to get_current_vllm_config()"""
|
|
1441
|
+
return get_current_vllm_config().compilation_config
|
|
1442
|
+
|
|
1443
|
+
|
|
1444
|
+
def get_current_vllm_config() -> VllmConfig:
|
|
1445
|
+
if _current_vllm_config is None:
|
|
1446
|
+
raise AssertionError(
|
|
1447
|
+
"Current vLLM config is not set. This typically means "
|
|
1448
|
+
"get_current_vllm_config() was called outside of a "
|
|
1449
|
+
"set_current_vllm_config() context, or a CustomOp was instantiated "
|
|
1450
|
+
"at module import time or model forward time when config is not set. "
|
|
1451
|
+
"For tests that directly test custom ops/modules, use the "
|
|
1452
|
+
"'default_vllm_config' pytest fixture from tests/conftest.py."
|
|
1453
|
+
)
|
|
1454
|
+
return _current_vllm_config
|
|
1455
|
+
|
|
1456
|
+
|
|
1457
|
+
def get_current_vllm_config_or_none() -> VllmConfig | None:
|
|
1458
|
+
return _current_vllm_config
|
|
1459
|
+
|
|
1460
|
+
|
|
1461
|
+
T = TypeVar("T")
|
|
1462
|
+
|
|
1463
|
+
|
|
1464
|
+
def get_layers_from_vllm_config(
|
|
1465
|
+
vllm_config: VllmConfig,
|
|
1466
|
+
layer_type: type[T],
|
|
1467
|
+
layer_names: list[str] | None = None,
|
|
1468
|
+
) -> dict[str, T]:
|
|
1469
|
+
"""
|
|
1470
|
+
Get layers from the vLLM config.
|
|
1471
|
+
|
|
1472
|
+
Args:
|
|
1473
|
+
vllm_config: The vLLM config.
|
|
1474
|
+
layer_type: The type of the layer to get.
|
|
1475
|
+
layer_names: The names of the layers to get. If None, return all layers.
|
|
1476
|
+
"""
|
|
1477
|
+
|
|
1478
|
+
if layer_names is None:
|
|
1479
|
+
layer_names = list(vllm_config.compilation_config.static_forward_context.keys())
|
|
1480
|
+
|
|
1481
|
+
forward_context = vllm_config.compilation_config.static_forward_context
|
|
1482
|
+
|
|
1483
|
+
return {
|
|
1484
|
+
layer_name: forward_context[layer_name]
|
|
1485
|
+
for layer_name in layer_names
|
|
1486
|
+
if isinstance(forward_context[layer_name], layer_type)
|
|
1487
|
+
}
|