vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +1511 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +3206 -0
- vllm/_ipex_ops.py +445 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +62 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/layer.py +913 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3277 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/mm_processor.py +363 -0
- vllm/benchmarks/serve.py +1761 -0
- vllm/benchmarks/startup.py +321 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +159 -0
- vllm/benchmarks/sweep/plot.py +675 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +450 -0
- vllm/benchmarks/sweep/serve_sla.py +459 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +138 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +946 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +214 -0
- vllm/compilation/backends.py +840 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +196 -0
- vllm/compilation/collective_fusion.py +1224 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +50 -0
- vllm/compilation/cuda_graph.py +309 -0
- vllm/compilation/decorators.py +662 -0
- vllm/compilation/fix_functionalization.py +266 -0
- vllm/compilation/fusion.py +570 -0
- vllm/compilation/fusion_attn.py +363 -0
- vllm/compilation/fx_utils.py +92 -0
- vllm/compilation/inductor_pass.py +145 -0
- vllm/compilation/matcher_utils.py +454 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +130 -0
- vllm/compilation/partition_rules.py +75 -0
- vllm/compilation/pass_manager.py +164 -0
- vllm/compilation/piecewise_backend.py +191 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +244 -0
- vllm/compilation/rocm_aiter_fusion.py +401 -0
- vllm/compilation/sequence_parallelism.py +368 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +180 -0
- vllm/compilation/wrapper.py +329 -0
- vllm/config/__init__.py +112 -0
- vllm/config/attention.py +114 -0
- vllm/config/cache.py +233 -0
- vllm/config/compilation.py +1149 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +119 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +102 -0
- vllm/config/model.py +2026 -0
- vllm/config/model_arch.py +57 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +157 -0
- vllm/config/parallel.py +703 -0
- vllm/config/pooler.py +188 -0
- vllm/config/profiler.py +199 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +656 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +78 -0
- vllm/config/utils.py +374 -0
- vllm/config/vllm.py +1487 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +301 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +509 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +303 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +346 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +778 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/xpu_communicator.py +98 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +3 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1192 -0
- vllm/distributed/eplb/policy/__init__.py +19 -0
- vllm/distributed/eplb/policy/abstract.py +43 -0
- vllm/distributed/eplb/policy/default.py +376 -0
- vllm/distributed/eplb/rebalance_execute.py +699 -0
- vllm/distributed/kv_events.py +505 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
- vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1809 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2137 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +194 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +468 -0
- vllm/entrypoints/api_server.py +186 -0
- vllm/entrypoints/chat_utils.py +1912 -0
- vllm/entrypoints/cli/__init__.py +19 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +57 -0
- vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/startup.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +260 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +253 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +12 -0
- vllm/entrypoints/context.py +898 -0
- vllm/entrypoints/grpc_server.py +531 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1807 -0
- vllm/entrypoints/logger.py +86 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1390 -0
- vllm/entrypoints/openai/cli_args.py +320 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/parser/__init__.py +0 -0
- vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
- vllm/entrypoints/openai/parser/responses_parser.py +176 -0
- vllm/entrypoints/openai/protocol.py +2566 -0
- vllm/entrypoints/openai/run_batch.py +635 -0
- vllm/entrypoints/openai/serving_chat.py +1897 -0
- vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
- vllm/entrypoints/openai/serving_completion.py +740 -0
- vllm/entrypoints/openai/serving_engine.py +1612 -0
- vllm/entrypoints/openai/serving_models.py +309 -0
- vllm/entrypoints/openai/serving_responses.py +2552 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +711 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +48 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +233 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +65 -0
- vllm/entrypoints/pooling/embed/conftest.py +28 -0
- vllm/entrypoints/pooling/embed/protocol.py +217 -0
- vllm/entrypoints/pooling/embed/serving.py +684 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +62 -0
- vllm/entrypoints/pooling/pooling/protocol.py +146 -0
- vllm/entrypoints/pooling/pooling/serving.py +354 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +147 -0
- vllm/entrypoints/pooling/score/protocol.py +146 -0
- vllm/entrypoints/pooling/score/serving.py +511 -0
- vllm/entrypoints/renderer.py +411 -0
- vllm/entrypoints/responses_utils.py +218 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +271 -0
- vllm/entrypoints/serve/__init__.py +94 -0
- vllm/entrypoints/serve/cache/__init__.py +0 -0
- vllm/entrypoints/serve/cache/api_router.py +61 -0
- vllm/entrypoints/serve/disagg/__init__.py +0 -0
- vllm/entrypoints/serve/disagg/api_router.py +109 -0
- vllm/entrypoints/serve/disagg/protocol.py +90 -0
- vllm/entrypoints/serve/disagg/serving.py +285 -0
- vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
- vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
- vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
- vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
- vllm/entrypoints/serve/instrumentator/health.py +33 -0
- vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
- vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
- vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
- vllm/entrypoints/serve/lora/__init__.py +0 -0
- vllm/entrypoints/serve/lora/api_router.py +70 -0
- vllm/entrypoints/serve/profile/__init__.py +0 -0
- vllm/entrypoints/serve/profile/api_router.py +46 -0
- vllm/entrypoints/serve/rlhf/__init__.py +0 -0
- vllm/entrypoints/serve/rlhf/api_router.py +102 -0
- vllm/entrypoints/serve/rpc/__init__.py +0 -0
- vllm/entrypoints/serve/rpc/api_router.py +61 -0
- vllm/entrypoints/serve/sleep/__init__.py +0 -0
- vllm/entrypoints/serve/sleep/api_router.py +56 -0
- vllm/entrypoints/serve/tokenize/__init__.py +0 -0
- vllm/entrypoints/serve/tokenize/api_router.py +112 -0
- vllm/entrypoints/serve/tokenize/serving.py +204 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +187 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +336 -0
- vllm/env_override.py +402 -0
- vllm/envs.py +1791 -0
- vllm/exceptions.py +36 -0
- vllm/forward_context.py +375 -0
- vllm/grpc/__init__.py +17 -0
- vllm/grpc/compile_protos.py +94 -0
- vllm/grpc/vllm_engine.proto +195 -0
- vllm/grpc/vllm_engine_pb2.py +77 -0
- vllm/grpc/vllm_engine_pb2.pyi +213 -0
- vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +147 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +303 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +43 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +172 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +739 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +115 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_model.py +221 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/model_manager.py +858 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +313 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +413 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +60 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +281 -0
- vllm/lora/worker_manager.py +278 -0
- vllm/model_executor/__init__.py +9 -0
- vllm/model_executor/custom_op.py +203 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +628 -0
- vllm/model_executor/layers/attention/__init__.py +0 -0
- vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
- vllm/model_executor/layers/attention/cross_attention.py +182 -0
- vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
- vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
- vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
- vllm/model_executor/layers/attention_layer_base.py +34 -0
- vllm/model_executor/layers/batch_invariant.py +1063 -0
- vllm/model_executor/layers/conv.py +262 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +120 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
- vllm/model_executor/layers/fused_moe/config.py +1111 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
- vllm/model_executor/layers/fused_moe/fallback.py +127 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
- vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
- vllm/model_executor/layers/fused_moe/layer.py +2169 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
- vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
- vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
- vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
- vllm/model_executor/layers/fused_moe/utils.py +382 -0
- vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +451 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1478 -0
- vllm/model_executor/layers/logits_processor.py +109 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +410 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +254 -0
- vllm/model_executor/layers/mla.py +179 -0
- vllm/model_executor/layers/pooler/__init__.py +5 -0
- vllm/model_executor/layers/pooler/abstract.py +39 -0
- vllm/model_executor/layers/pooler/activations.py +162 -0
- vllm/model_executor/layers/pooler/common.py +32 -0
- vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
- vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
- vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
- vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
- vllm/model_executor/layers/pooler/special.py +128 -0
- vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
- vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
- vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
- vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
- vllm/model_executor/layers/quantization/__init__.py +195 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +209 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1224 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +682 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
- vllm/model_executor/layers/quantization/kv_cache.py +153 -0
- vllm/model_executor/layers/quantization/modelopt.py +1665 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +570 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +626 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
- vllm/model_executor/layers/rotary_embedding/base.py +282 -0
- vllm/model_executor/layers/rotary_embedding/common.py +289 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +71 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
- vllm/model_executor/model_loader/default_loader.py +304 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +371 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +793 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/utils.py +299 -0
- vllm/model_executor/model_loader/weight_utils.py +1183 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +592 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +567 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +633 -0
- vllm/model_executor/models/aria.py +663 -0
- vllm/model_executor/models/audioflamingo3.py +639 -0
- vllm/model_executor/models/aya_vision.py +448 -0
- vllm/model_executor/models/bagel.py +591 -0
- vllm/model_executor/models/baichuan.py +493 -0
- vllm/model_executor/models/bailing_moe.py +643 -0
- vllm/model_executor/models/bamba.py +511 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +911 -0
- vllm/model_executor/models/bert_with_rope.py +729 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +736 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1095 -0
- vllm/model_executor/models/chatglm.py +502 -0
- vllm/model_executor/models/clip.py +1045 -0
- vllm/model_executor/models/cohere2_vision.py +470 -0
- vllm/model_executor/models/commandr.py +469 -0
- vllm/model_executor/models/config.py +571 -0
- vllm/model_executor/models/dbrx.py +484 -0
- vllm/model_executor/models/deepencoder.py +679 -0
- vllm/model_executor/models/deepseek_eagle.py +253 -0
- vllm/model_executor/models/deepseek_mtp.py +447 -0
- vllm/model_executor/models/deepseek_ocr.py +601 -0
- vllm/model_executor/models/deepseek_v2.py +1727 -0
- vllm/model_executor/models/deepseek_vl2.py +642 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +830 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1702 -0
- vllm/model_executor/models/ernie45_vl_moe.py +801 -0
- vllm/model_executor/models/ernie_mtp.py +278 -0
- vllm/model_executor/models/exaone.py +524 -0
- vllm/model_executor/models/exaone4.py +518 -0
- vllm/model_executor/models/exaone_moe.py +579 -0
- vllm/model_executor/models/exaone_moe_mtp.py +255 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +543 -0
- vllm/model_executor/models/falcon_h1.py +675 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +371 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +435 -0
- vllm/model_executor/models/gemma3.py +520 -0
- vllm/model_executor/models/gemma3_mm.py +664 -0
- vllm/model_executor/models/gemma3n.py +1166 -0
- vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
- vllm/model_executor/models/gemma3n_mm.py +820 -0
- vllm/model_executor/models/glm.py +24 -0
- vllm/model_executor/models/glm4.py +295 -0
- vllm/model_executor/models/glm4_1v.py +1823 -0
- vllm/model_executor/models/glm4_moe.py +725 -0
- vllm/model_executor/models/glm4_moe_mtp.py +365 -0
- vllm/model_executor/models/glm4v.py +783 -0
- vllm/model_executor/models/glmasr.py +1154 -0
- vllm/model_executor/models/glmasr_utils.py +188 -0
- vllm/model_executor/models/gpt2.py +385 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +340 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +475 -0
- vllm/model_executor/models/granite_speech.py +919 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +703 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +242 -0
- vllm/model_executor/models/grok1.py +803 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1034 -0
- vllm/model_executor/models/hyperclovax_vision.py +1163 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +734 -0
- vllm/model_executor/models/interfaces.py +1180 -0
- vllm/model_executor/models/interfaces_base.py +252 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +451 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +828 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1436 -0
- vllm/model_executor/models/iquest_loopcoder.py +595 -0
- vllm/model_executor/models/isaac.py +1503 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jais2.py +508 -0
- vllm/model_executor/models/jamba.py +599 -0
- vllm/model_executor/models/jina_vl.py +145 -0
- vllm/model_executor/models/kanana_v.py +756 -0
- vllm/model_executor/models/keye.py +1709 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +659 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/lfm2.py +515 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lfm2_vl.py +732 -0
- vllm/model_executor/models/lightonocr.py +197 -0
- vllm/model_executor/models/llama.py +724 -0
- vllm/model_executor/models/llama4.py +860 -0
- vllm/model_executor/models/llama4_eagle.py +225 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +879 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +922 -0
- vllm/model_executor/models/longcat_flash.py +767 -0
- vllm/model_executor/models/longcat_flash_mtp.py +348 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +826 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/mimo_v2_flash.py +718 -0
- vllm/model_executor/models/minicpm.py +660 -0
- vllm/model_executor/models/minicpm3.py +233 -0
- vllm/model_executor/models/minicpm_eagle.py +386 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1742 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1008 -0
- vllm/model_executor/models/minimax_vl_01.py +395 -0
- vllm/model_executor/models/mistral3.py +638 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1170 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +458 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1592 -0
- vllm/model_executor/models/moonvit.py +601 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
- vllm/model_executor/models/nemotron.py +499 -0
- vllm/model_executor/models/nemotron_h.py +902 -0
- vllm/model_executor/models/nemotron_nas.py +474 -0
- vllm/model_executor/models/nemotron_parse.py +958 -0
- vllm/model_executor/models/nemotron_vl.py +651 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +412 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/opencua.py +262 -0
- vllm/model_executor/models/openpangu.py +1378 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +365 -0
- vllm/model_executor/models/ouro.py +507 -0
- vllm/model_executor/models/ovis.py +557 -0
- vllm/model_executor/models/ovis2_5.py +661 -0
- vllm/model_executor/models/paddleocr_vl.py +1261 -0
- vllm/model_executor/models/paligemma.py +429 -0
- vllm/model_executor/models/persimmon.py +373 -0
- vllm/model_executor/models/phi.py +363 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +729 -0
- vllm/model_executor/models/phi4mm.py +1250 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +671 -0
- vllm/model_executor/models/pixtral.py +1437 -0
- vllm/model_executor/models/plamo2.py +993 -0
- vllm/model_executor/models/plamo3.py +437 -0
- vllm/model_executor/models/qwen.py +377 -0
- vllm/model_executor/models/qwen2.py +600 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
- vllm/model_executor/models/qwen2_5_vl.py +1598 -0
- vllm/model_executor/models/qwen2_audio.py +478 -0
- vllm/model_executor/models/qwen2_moe.py +604 -0
- vllm/model_executor/models/qwen2_rm.py +120 -0
- vllm/model_executor/models/qwen2_vl.py +1588 -0
- vllm/model_executor/models/qwen3.py +331 -0
- vllm/model_executor/models/qwen3_moe.py +752 -0
- vllm/model_executor/models/qwen3_next.py +1410 -0
- vllm/model_executor/models/qwen3_next_mtp.py +293 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
- vllm/model_executor/models/qwen3_vl.py +2120 -0
- vllm/model_executor/models/qwen3_vl_moe.py +474 -0
- vllm/model_executor/models/qwen_vl.py +821 -0
- vllm/model_executor/models/radio.py +573 -0
- vllm/model_executor/models/registry.py +1218 -0
- vllm/model_executor/models/roberta.py +239 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +492 -0
- vllm/model_executor/models/siglip.py +1259 -0
- vllm/model_executor/models/siglip2.py +495 -0
- vllm/model_executor/models/siglip2navit.py +660 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +484 -0
- vllm/model_executor/models/stablelm.py +354 -0
- vllm/model_executor/models/starcoder2.py +365 -0
- vllm/model_executor/models/step3_text.py +554 -0
- vllm/model_executor/models/step3_vl.py +1147 -0
- vllm/model_executor/models/swin.py +500 -0
- vllm/model_executor/models/tarsier.py +624 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +318 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +523 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +329 -0
- vllm/model_executor/models/transformers/multimodal.py +441 -0
- vllm/model_executor/models/transformers/pooling.py +102 -0
- vllm/model_executor/models/transformers/utils.py +253 -0
- vllm/model_executor/models/ultravox.py +786 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +546 -0
- vllm/model_executor/models/voxtral.py +867 -0
- vllm/model_executor/models/voxtral_streaming.py +304 -0
- vllm/model_executor/models/whisper.py +993 -0
- vllm/model_executor/models/whisper_utils.py +299 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +113 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
- vllm/model_executor/warmup/kernel_warmup.py +97 -0
- vllm/model_inspection.py +136 -0
- vllm/multimodal/__init__.py +38 -0
- vllm/multimodal/audio.py +287 -0
- vllm/multimodal/base.py +60 -0
- vllm/multimodal/cache.py +829 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +123 -0
- vllm/multimodal/image.py +155 -0
- vllm/multimodal/inputs.py +1027 -0
- vllm/multimodal/parse.py +674 -0
- vllm/multimodal/processing.py +2469 -0
- vllm/multimodal/profiling.py +351 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +550 -0
- vllm/multimodal/video.py +512 -0
- vllm/outputs.py +347 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +423 -0
- vllm/platforms/cuda.py +618 -0
- vllm/platforms/interface.py +707 -0
- vllm/platforms/rocm.py +586 -0
- vllm/platforms/tpu.py +20 -0
- vllm/platforms/xpu.py +262 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +229 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/profiler/wrapper.py +241 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +96 -0
- vllm/reasoning/abs_reasoning_parsers.py +318 -0
- vllm/reasoning/basic_parsers.py +175 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/holo2_reasoning_parser.py +89 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +63 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
- vllm/reasoning/mistral_reasoning_parser.py +154 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +113 -0
- vllm/sampling_params.py +629 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +64 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +18 -0
- vllm/tokenizers/deepseek_v32.py +187 -0
- vllm/tokenizers/deepseek_v32_encoding.py +463 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/grok2.py +443 -0
- vllm/tokenizers/hf.py +119 -0
- vllm/tokenizers/mistral.py +543 -0
- vllm/tokenizers/protocol.py +123 -0
- vllm/tokenizers/registry.py +238 -0
- vllm/tool_parsers/__init__.py +158 -0
- vllm/tool_parsers/abstract_tool_parser.py +274 -0
- vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
- vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
- vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
- vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
- vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
- vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
- vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/tool_parsers/granite_tool_parser.py +253 -0
- vllm/tool_parsers/hermes_tool_parser.py +495 -0
- vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
- vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/tool_parsers/llama_tool_parser.py +324 -0
- vllm/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
- vllm/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/tool_parsers/mistral_tool_parser.py +612 -0
- vllm/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/tool_parsers/openai_tool_parser.py +111 -0
- vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/tool_parsers/step3_tool_parser.py +303 -0
- vllm/tool_parsers/utils.py +229 -0
- vllm/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1169 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +106 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/bagel.py +53 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/isaac.py +100 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +263 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +220 -0
- vllm/transformers_utils/configs/nemotron_h.py +284 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +277 -0
- vllm/transformers_utils/configs/radio.py +98 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/tarsier2.py +24 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/dynamic_module.py +70 -0
- vllm/transformers_utils/gguf_utils.py +280 -0
- vllm/transformers_utils/model_arch_config_convertor.py +402 -0
- vllm/transformers_utils/processor.py +424 -0
- vllm/transformers_utils/processors/__init__.py +25 -0
- vllm/transformers_utils/processors/bagel.py +78 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +102 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +19 -0
- vllm/transformers_utils/utils.py +112 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +278 -0
- vllm/utils/__init__.py +36 -0
- vllm/utils/argparse_utils.py +491 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +424 -0
- vllm/utils/flashinfer.py +602 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +117 -0
- vllm/utils/import_utils.py +438 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +285 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/nvtx_pytorch_hooks.py +286 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +214 -0
- vllm/utils/system_utils.py +296 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +781 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backend.py +736 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +501 -0
- vllm/v1/attention/backends/fa_utils.py +126 -0
- vllm/v1/attention/backends/flash_attn.py +1092 -0
- vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
- vllm/v1/attention/backends/flashinfer.py +1713 -0
- vllm/v1/attention/backends/flex_attention.py +1024 -0
- vllm/v1/attention/backends/gdn_attn.py +382 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +28 -0
- vllm/v1/attention/backends/mamba2_attn.py +256 -0
- vllm/v1/attention/backends/mamba_attn.py +313 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
- vllm/v1/attention/backends/mla/common.py +2156 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
- vllm/v1/attention/backends/mla/flashmla.py +321 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
- vllm/v1/attention/backends/mla/indexer.py +345 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/registry.py +258 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +405 -0
- vllm/v1/attention/backends/short_conv_attn.py +26 -0
- vllm/v1/attention/backends/tree_attn.py +430 -0
- vllm/v1/attention/backends/triton_attn.py +578 -0
- vllm/v1/attention/backends/utils.py +978 -0
- vllm/v1/attention/ops/__init__.py +0 -0
- vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
- vllm/v1/attention/ops/common.py +469 -0
- vllm/v1/attention/ops/flashmla.py +254 -0
- vllm/v1/attention/ops/merge_attn_states.py +47 -0
- vllm/v1/attention/ops/paged_attn.py +51 -0
- vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/v1/attention/ops/prefix_prefill.py +862 -0
- vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/v1/attention/ops/triton_decode_attention.py +709 -0
- vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
- vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
- vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
- vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
- vllm/v1/attention/selector.py +145 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +489 -0
- vllm/v1/core/encoder_cache_manager.py +402 -0
- vllm/v1/core/kv_cache_coordinator.py +560 -0
- vllm/v1/core/kv_cache_manager.py +485 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1642 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +66 -0
- vllm/v1/core/sched/interface.py +205 -0
- vllm/v1/core/sched/output.py +261 -0
- vllm/v1/core/sched/request_queue.py +208 -0
- vllm/v1/core/sched/scheduler.py +1936 -0
- vllm/v1/core/sched/utils.py +64 -0
- vllm/v1/core/single_type_kv_cache_manager.py +926 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +224 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +396 -0
- vllm/v1/engine/core.py +1614 -0
- vllm/v1/engine/core_client.py +1422 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +713 -0
- vllm/v1/engine/llm_engine.py +415 -0
- vllm/v1/engine/logprobs.py +245 -0
- vllm/v1/engine/output_processor.py +715 -0
- vllm/v1/engine/parallel_sampling.py +150 -0
- vllm/v1/engine/utils.py +1086 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +623 -0
- vllm/v1/executor/ray_utils.py +468 -0
- vllm/v1/executor/uniproc_executor.py +186 -0
- vllm/v1/kv_cache_interface.py +485 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +109 -0
- vllm/v1/kv_offload/factory.py +58 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +70 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
- vllm/v1/kv_offload/worker/worker.py +163 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1320 -0
- vllm/v1/metrics/perf.py +1244 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +440 -0
- vllm/v1/outputs.py +242 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +124 -0
- vllm/v1/request.py +281 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +57 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
- vllm/v1/sample/rejection_sampler.py +822 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +514 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1346 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +281 -0
- vllm/v1/spec_decode/suffix_decoding.py +95 -0
- vllm/v1/spec_decode/utils.py +109 -0
- vllm/v1/structured_output/__init__.py +337 -0
- vllm/v1/structured_output/backend_guidance.py +291 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +378 -0
- vllm/v1/structured_output/request.py +91 -0
- vllm/v1/structured_output/utils.py +457 -0
- vllm/v1/utils.py +466 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cp_utils.py +42 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +192 -0
- vllm/v1/worker/dp_utils.py +240 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +98 -0
- vllm/v1/worker/gpu/attn_utils.py +183 -0
- vllm/v1/worker/gpu/block_table.py +222 -0
- vllm/v1/worker/gpu/buffer_utils.py +224 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +526 -0
- vllm/v1/worker/gpu/metrics/__init__.py +0 -0
- vllm/v1/worker/gpu/metrics/logits.py +42 -0
- vllm/v1/worker/gpu/mm/__init__.py +0 -0
- vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
- vllm/v1/worker/gpu/model_runner.py +1005 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +106 -0
- vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +79 -0
- vllm/v1/worker/gpu/sample/min_p.py +58 -0
- vllm/v1/worker/gpu/sample/output.py +14 -0
- vllm/v1/worker/gpu/sample/penalties.py +155 -0
- vllm/v1/worker/gpu/sample/sampler.py +88 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
- vllm/v1/worker/gpu/states.py +282 -0
- vllm/v1/worker/gpu/structured_outputs.py +100 -0
- vllm/v1/worker/gpu_input_batch.py +1030 -0
- vllm/v1/worker/gpu_model_runner.py +5761 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
- vllm/v1/worker/gpu_worker.py +968 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
- vllm/v1/worker/lora_model_runner_mixin.py +225 -0
- vllm/v1/worker/tpu_input_batch.py +574 -0
- vllm/v1/worker/tpu_worker.py +18 -0
- vllm/v1/worker/ubatch_utils.py +112 -0
- vllm/v1/worker/ubatching.py +242 -0
- vllm/v1/worker/utils.py +400 -0
- vllm/v1/worker/worker_base.py +372 -0
- vllm/v1/worker/workspace.py +253 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +174 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1503 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import math
|
|
6
|
+
from collections.abc import Iterable, Iterator, Mapping, Sequence
|
|
7
|
+
from typing import Annotated, Any
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
import PIL.Image
|
|
11
|
+
import torch
|
|
12
|
+
import torch.nn as nn
|
|
13
|
+
import torch.nn.functional as F
|
|
14
|
+
from einops import rearrange
|
|
15
|
+
from transformers.image_processing_utils import BatchFeature
|
|
16
|
+
from transformers.tokenization_utils import TensorType
|
|
17
|
+
from typing_extensions import TypedDict, Unpack
|
|
18
|
+
|
|
19
|
+
from vllm.config import MultiModalConfig, VllmConfig
|
|
20
|
+
from vllm.config.model import ModelConfig
|
|
21
|
+
from vllm.distributed import parallel_state
|
|
22
|
+
from vllm.distributed import utils as dist_utils
|
|
23
|
+
from vllm.model_executor.layers.attention.mm_encoder_attention import MMEncoderAttention
|
|
24
|
+
from vllm.model_executor.layers.linear import (
|
|
25
|
+
ColumnParallelLinear,
|
|
26
|
+
QKVParallelLinear,
|
|
27
|
+
ReplicatedLinear,
|
|
28
|
+
RowParallelLinear,
|
|
29
|
+
)
|
|
30
|
+
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
31
|
+
from vllm.model_executor.model_loader.weight_utils import (
|
|
32
|
+
default_weight_loader,
|
|
33
|
+
)
|
|
34
|
+
from vllm.model_executor.models.interfaces import (
|
|
35
|
+
MultiModalEmbeddings,
|
|
36
|
+
SupportsLoRA,
|
|
37
|
+
SupportsMRoPE,
|
|
38
|
+
SupportsMultiModal,
|
|
39
|
+
SupportsPP,
|
|
40
|
+
)
|
|
41
|
+
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
42
|
+
from vllm.model_executor.models.siglip import SiglipMLP
|
|
43
|
+
from vllm.model_executor.models.utils import (
|
|
44
|
+
AutoWeightsLoader,
|
|
45
|
+
WeightsMapper,
|
|
46
|
+
init_vllm_registered_model,
|
|
47
|
+
maybe_prefix,
|
|
48
|
+
)
|
|
49
|
+
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
50
|
+
from vllm.multimodal.inputs import (
|
|
51
|
+
MultiModalDataDict,
|
|
52
|
+
MultiModalFeatureSpec,
|
|
53
|
+
MultiModalFieldConfig,
|
|
54
|
+
MultiModalKwargsItems,
|
|
55
|
+
)
|
|
56
|
+
from vllm.multimodal.parse import ImageSize, MultiModalDataItems
|
|
57
|
+
from vllm.multimodal.processing import (
|
|
58
|
+
BaseMultiModalProcessor,
|
|
59
|
+
BaseProcessingInfo,
|
|
60
|
+
PromptReplacement,
|
|
61
|
+
PromptUpdate,
|
|
62
|
+
PromptUpdateDetails,
|
|
63
|
+
)
|
|
64
|
+
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
65
|
+
from vllm.sequence import IntermediateTensors
|
|
66
|
+
from vllm.tokenizers import get_tokenizer
|
|
67
|
+
from vllm.tokenizers.hf import get_cached_tokenizer
|
|
68
|
+
from vllm.transformers_utils.config import patch_rope_parameters
|
|
69
|
+
from vllm.transformers_utils.configs import (
|
|
70
|
+
IsaacConfig,
|
|
71
|
+
PixelShuffleSiglip2VisionConfig,
|
|
72
|
+
)
|
|
73
|
+
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def create_cumulative_seq_lengths(
|
|
77
|
+
seq_sizes: torch.Tensor, device: torch.device
|
|
78
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
79
|
+
"""Create cumulative sequence lengths for variable-length attention."""
|
|
80
|
+
cu_seqlens = torch.zeros(len(seq_sizes) + 1, dtype=torch.int32, device=device)
|
|
81
|
+
cu_seqlens[1:] = seq_sizes.cumsum(0)
|
|
82
|
+
max_seqlen = (
|
|
83
|
+
seq_sizes.max()
|
|
84
|
+
if len(seq_sizes) > 0
|
|
85
|
+
else torch.tensor(0, dtype=torch.int32, device=device)
|
|
86
|
+
)
|
|
87
|
+
return cu_seqlens, max_seqlen
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class Siglip2VariableSequenceEmbeddings(nn.Module):
|
|
91
|
+
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
|
|
92
|
+
super().__init__()
|
|
93
|
+
self.config = config
|
|
94
|
+
self.embed_dim = config.hidden_size
|
|
95
|
+
self.patch_size = config.patch_size
|
|
96
|
+
|
|
97
|
+
self.patch_embedding = ReplicatedLinear(
|
|
98
|
+
input_size=config.num_channels * self.patch_size * self.patch_size,
|
|
99
|
+
output_size=self.embed_dim,
|
|
100
|
+
return_bias=False,
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
self.num_patches = config.num_patches
|
|
104
|
+
self.position_embedding_size = int(self.num_patches**0.5)
|
|
105
|
+
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
|
|
106
|
+
|
|
107
|
+
def positional_embeddings(
|
|
108
|
+
self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
|
109
|
+
) -> torch.Tensor:
|
|
110
|
+
# Prepare positional embeddings grid: (1, embed_dim, h, w)
|
|
111
|
+
positional_embeddings = (
|
|
112
|
+
self.position_embedding.weight.reshape(
|
|
113
|
+
self.position_embedding_size, self.position_embedding_size, -1
|
|
114
|
+
)
|
|
115
|
+
.permute(2, 0, 1)
|
|
116
|
+
.unsqueeze(0)
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
_seq_patches, _seq_sizes, spatial_shapes = packed_seq_patches
|
|
120
|
+
pos_embeds_list = []
|
|
121
|
+
mode = "bilinear"
|
|
122
|
+
align_corners = False
|
|
123
|
+
antialias = True
|
|
124
|
+
for spatial_shape in spatial_shapes:
|
|
125
|
+
height, width = int(spatial_shape[0]), int(spatial_shape[1])
|
|
126
|
+
# Guard to ensure height and width are positive for torch.compile
|
|
127
|
+
if height > 0 and width > 0:
|
|
128
|
+
resized_pos_embed = F.interpolate(
|
|
129
|
+
positional_embeddings,
|
|
130
|
+
size=(height, width),
|
|
131
|
+
mode=mode,
|
|
132
|
+
align_corners=align_corners,
|
|
133
|
+
antialias=antialias,
|
|
134
|
+
)
|
|
135
|
+
# Reshape from (1, embed_dim, height, width) to
|
|
136
|
+
# (height*width, embed_dim)
|
|
137
|
+
resized_pos_embed = resized_pos_embed.reshape(
|
|
138
|
+
self.embed_dim, height * width
|
|
139
|
+
).transpose(0, 1)
|
|
140
|
+
else:
|
|
141
|
+
# Fallback - should never happen in practice
|
|
142
|
+
resized_pos_embed = positional_embeddings.reshape(
|
|
143
|
+
self.embed_dim,
|
|
144
|
+
self.position_embedding_size * self.position_embedding_size,
|
|
145
|
+
).transpose(0, 1)[: height * width]
|
|
146
|
+
pos_embeds_list.append(resized_pos_embed)
|
|
147
|
+
|
|
148
|
+
# Concatenate all positional embeddings along the sequence dimension
|
|
149
|
+
pos_embeds = torch.cat(pos_embeds_list, dim=0)
|
|
150
|
+
return pos_embeds
|
|
151
|
+
|
|
152
|
+
def forward(
|
|
153
|
+
self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
|
154
|
+
):
|
|
155
|
+
seq_patches, _seq_sizes, _spatial_shapes = packed_seq_patches
|
|
156
|
+
|
|
157
|
+
target_weight = self.patch_embedding.weight
|
|
158
|
+
seq_patches = seq_patches.to(
|
|
159
|
+
device=target_weight.device, dtype=target_weight.dtype
|
|
160
|
+
)
|
|
161
|
+
patch_embeds = self.patch_embedding(seq_patches)
|
|
162
|
+
pos_embeds = self.positional_embeddings(packed_seq_patches)
|
|
163
|
+
|
|
164
|
+
# Flatten patch embeddings to match positional embeddings format
|
|
165
|
+
if patch_embeds.dim() == 3:
|
|
166
|
+
patch_embeds = patch_embeds.view(-1, patch_embeds.size(-1))
|
|
167
|
+
|
|
168
|
+
# Add positional embeddings to patch embeddings
|
|
169
|
+
embeddings = patch_embeds + pos_embeds
|
|
170
|
+
return embeddings
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def create_pixel_shuffle_index_map(
|
|
174
|
+
seq_sizes: torch.Tensor,
|
|
175
|
+
token_grids: torch.Tensor,
|
|
176
|
+
scale_factor: int = 1,
|
|
177
|
+
device: torch.device | None = None,
|
|
178
|
+
) -> torch.Tensor:
|
|
179
|
+
"""
|
|
180
|
+
Build a gather-index map that tells us, for every *output* token after
|
|
181
|
+
pixel-shuffle, which `scale_factor**2` *input* tokens are being merged.
|
|
182
|
+
|
|
183
|
+
Args
|
|
184
|
+
----
|
|
185
|
+
seq_sizes : (num_images,) - #patches in each image (row-major order)
|
|
186
|
+
token_grids : (num_images,2) - (height, width) for every image
|
|
187
|
+
scale_factor : spatial down-scale factor (≥2)
|
|
188
|
+
device : (optional) overrides `seq_sizes.device`
|
|
189
|
+
|
|
190
|
+
Returns
|
|
191
|
+
-------
|
|
192
|
+
gather_idx : (new_total_seq_len, scale_factor**2) int64 tensor.
|
|
193
|
+
gather_idx[i, j] is the *flat* index into the *original*
|
|
194
|
+
packed sequence for the j-th sub-patch that forms the
|
|
195
|
+
i-th output token.
|
|
196
|
+
"""
|
|
197
|
+
if device is None:
|
|
198
|
+
device = seq_sizes.device
|
|
199
|
+
|
|
200
|
+
r = int(scale_factor)
|
|
201
|
+
if r < 2:
|
|
202
|
+
raise ValueError("`scale_factor` must be ≥ 2")
|
|
203
|
+
|
|
204
|
+
# Safety: all spatial dims must be divisible by r
|
|
205
|
+
# Cannot run under torch compile fullgraph mode hence
|
|
206
|
+
if not torch.compiler.is_compiling() and not (
|
|
207
|
+
(token_grids[:, 0] % r == 0).all() and (token_grids[:, 1] % r == 0).all()
|
|
208
|
+
):
|
|
209
|
+
raise AssertionError(
|
|
210
|
+
"Every (H,W) in `token_grids` must be divisible by "
|
|
211
|
+
f"scale_factor={r}, got {token_grids.tolist()}"
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
gather_chunks: list[torch.Tensor] = []
|
|
215
|
+
tok_offset = 0
|
|
216
|
+
|
|
217
|
+
for seq_len, (h, w) in zip(seq_sizes.tolist(), token_grids.tolist(), strict=False):
|
|
218
|
+
# Build the (H, W) grid of flat indices for this image
|
|
219
|
+
grid = torch.arange(seq_len, device=device, dtype=torch.int64) + tok_offset
|
|
220
|
+
grid = grid.view(h, w) # (H, W)
|
|
221
|
+
|
|
222
|
+
# -------- identical ordering to your fixed-res routine --------
|
|
223
|
+
# Step 1: split width into blocks of r
|
|
224
|
+
grid = grid.view(h, w // r, r) # (H, W/r, r)
|
|
225
|
+
# Step 2: now split height into blocks of r
|
|
226
|
+
grid = grid.view(h // r, r, w // r, r) # (H/r, r, W/r, r)
|
|
227
|
+
# Step 3: final permutation to (H/r, W/r, r, r)
|
|
228
|
+
grid = grid.permute(0, 2, 1, 3).contiguous() # (H/r, W/r, r, r)
|
|
229
|
+
# Step 4: each (r, r) block forms one output token
|
|
230
|
+
gather_chunks.append(grid.reshape(-1, r * r)) # (H*W / r², r²)
|
|
231
|
+
|
|
232
|
+
tok_offset += seq_len
|
|
233
|
+
|
|
234
|
+
# Concatenate over all images in the packed batch
|
|
235
|
+
gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/r², r²)
|
|
236
|
+
return gather_idx
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
def pixel_shuffle_varlen(
|
|
240
|
+
x: torch.Tensor,
|
|
241
|
+
token_grids: torch.Tensor,
|
|
242
|
+
scale_factor: int = 1,
|
|
243
|
+
) -> torch.Tensor:
|
|
244
|
+
r"""Apply pixel shuffle to a packed vision sequence without unpacking per image.
|
|
245
|
+
|
|
246
|
+
Args:
|
|
247
|
+
x (`torch.Tensor`):
|
|
248
|
+
Concatenated vision embeddings. Accepts `(seq_len, hidden_size)` or
|
|
249
|
+
`(1, seq_len, hidden_size)` shapes produced by stacking image
|
|
250
|
+
patches.
|
|
251
|
+
token_grids (`torch.Tensor`):
|
|
252
|
+
Integer tensor of shape `(num_images, 2)` whose rows give the
|
|
253
|
+
`(height, width)` patch grid sizes corresponding to each image
|
|
254
|
+
segment inside `x`.
|
|
255
|
+
scale_factor (`int`, *optional*, defaults to 1):
|
|
256
|
+
Spatial down-sampling factor specific to pixel shuffle. Values
|
|
257
|
+
greater than one merge `scale_factor**2` neighboring patches into a
|
|
258
|
+
single embedding channel-group.
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
`torch.Tensor`: Pixel-shuffled embeddings with shape matching the input
|
|
262
|
+
convention: `(seq_len, hidden_size * scale_factor**2)` when the input
|
|
263
|
+
was 2D, or `(1, seq_len, hidden_size * scale_factor**2)` if the
|
|
264
|
+
singleton batch dimension was present.
|
|
265
|
+
|
|
266
|
+
Raises:
|
|
267
|
+
ValueError: If more than one batch item is provided.
|
|
268
|
+
"""
|
|
269
|
+
keep_batch_dim = x.dim() == 3
|
|
270
|
+
if keep_batch_dim:
|
|
271
|
+
if x.size(0) != 1:
|
|
272
|
+
raise AssertionError("Packed sequence is expected to have batch_size == 1")
|
|
273
|
+
x_ = x.squeeze(0) # (seq, embed)
|
|
274
|
+
else:
|
|
275
|
+
x_ = x # (seq, embed)
|
|
276
|
+
|
|
277
|
+
embed_dim = x_.size(-1)
|
|
278
|
+
r = int(scale_factor)
|
|
279
|
+
|
|
280
|
+
# Calculate seq_sizes from token_grids
|
|
281
|
+
seq_sizes = torch.prod(token_grids, dim=-1)
|
|
282
|
+
|
|
283
|
+
# Build index map and gather in one go
|
|
284
|
+
gather_idx = create_pixel_shuffle_index_map(
|
|
285
|
+
seq_sizes=seq_sizes,
|
|
286
|
+
token_grids=token_grids,
|
|
287
|
+
scale_factor=r,
|
|
288
|
+
device=x_.device,
|
|
289
|
+
) # (new_seq, r²)
|
|
290
|
+
|
|
291
|
+
# Gather → (new_seq, r², embed_dim)
|
|
292
|
+
gathered = x_[gather_idx] # fancy indexing keeps gradient
|
|
293
|
+
|
|
294
|
+
# Merge the r² group dimension into channels to finish the shuffle
|
|
295
|
+
out = gathered.reshape(gathered.size(0), embed_dim * r * r)
|
|
296
|
+
|
|
297
|
+
# Restore batch dimension if needed
|
|
298
|
+
if keep_batch_dim:
|
|
299
|
+
out = out.unsqueeze(0)
|
|
300
|
+
return out
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
# ============================================================================
|
|
304
|
+
# Configuration
|
|
305
|
+
# ============================================================================
|
|
306
|
+
|
|
307
|
+
MAX_PIXELS = 60_000_000 # 60-megapixel ceiling ≈ 8200 × 7300 px
|
|
308
|
+
|
|
309
|
+
# Vision preprocessing constants
|
|
310
|
+
VISION_MEAN = (0.5, 0.5, 0.5)
|
|
311
|
+
VISION_STD = (0.5, 0.5, 0.5)
|
|
312
|
+
VISION_SCALE = 1 / 255
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
def _make_writeable(arr: np.ndarray) -> np.ndarray:
|
|
316
|
+
"""Return *arr* itself if it is already writeable, otherwise try to flip the
|
|
317
|
+
write flag in-place and finally fall back to `arr.copy()`.
|
|
318
|
+
This guarantees the buffer handed to `torch.from_numpy()` is always
|
|
319
|
+
writeable, silencing the PyTorch warning about undefined behaviour.
|
|
320
|
+
"""
|
|
321
|
+
if arr.flags.writeable:
|
|
322
|
+
return arr
|
|
323
|
+
|
|
324
|
+
# First, try the cheap path — in-place flag toggle (works for mmap'd arrays
|
|
325
|
+
# and some shared memory buffers):
|
|
326
|
+
try:
|
|
327
|
+
arr.setflags(write=True)
|
|
328
|
+
return arr # success: no data copy
|
|
329
|
+
except ValueError:
|
|
330
|
+
# Buffer is inherently read-only (e.g. backed by PyAV / PIL): make copy
|
|
331
|
+
return arr.copy()
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def extract_image_pil(image: PIL.Image.Image) -> torch.Tensor | None:
|
|
335
|
+
if image.width * image.height > MAX_PIXELS:
|
|
336
|
+
raise ValueError(
|
|
337
|
+
f"Image (w={image.width}, h={image.height}) > MAX=`{MAX_PIXELS}`"
|
|
338
|
+
)
|
|
339
|
+
img = image if image.mode == "RGB" else image.convert("RGB")
|
|
340
|
+
arr = np.asarray(img)
|
|
341
|
+
arr = _make_writeable(arr)
|
|
342
|
+
return torch.from_numpy(arr)
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
def get_image_size_for_max_num_patches(
|
|
346
|
+
image_height: int,
|
|
347
|
+
image_width: int,
|
|
348
|
+
patch_size: int,
|
|
349
|
+
max_num_patches: int,
|
|
350
|
+
min_num_patches: int | None = None,
|
|
351
|
+
eps: float = 1e-5,
|
|
352
|
+
pixel_shuffle_scale: int = 1,
|
|
353
|
+
) -> tuple[int, int]:
|
|
354
|
+
r"""Compute a target resolution whose patch grid satisfies patching parametrization.
|
|
355
|
+
|
|
356
|
+
Args:
|
|
357
|
+
image_height (`int`):
|
|
358
|
+
Height in pixels of the source image prior to any resizing.
|
|
359
|
+
image_width (`int`):
|
|
360
|
+
Width in pixels of the source image prior to any resizing.
|
|
361
|
+
patch_size (`int`):
|
|
362
|
+
Size of the square patch used by the vision encoder.
|
|
363
|
+
max_num_patches (`int`):
|
|
364
|
+
Upper bound on `(height / patch_size) * (width / patch_size)` after
|
|
365
|
+
resizing.
|
|
366
|
+
min_num_patches (`int`, *optional*):
|
|
367
|
+
Lower bound on the number of patches. When provided the image will
|
|
368
|
+
be scaled up if necessary.
|
|
369
|
+
eps (`float`, *optional*, defaults to 1e-5):
|
|
370
|
+
Convergence tolerance for the internal binary search to determine
|
|
371
|
+
the target dimensions.
|
|
372
|
+
pixel_shuffle_scale (`int`, *optional*, defaults to 1):
|
|
373
|
+
Additional stride multiplier applied when pixel shuffle later
|
|
374
|
+
reduces spatial resolution.
|
|
375
|
+
|
|
376
|
+
Returns:
|
|
377
|
+
`tuple[int, int]`: Height and width (in pixels) that are multiples of
|
|
378
|
+
`patch_size * pixel_shuffle_scale` and respect both the maximum and
|
|
379
|
+
optional minimum patch-count constraints.
|
|
380
|
+
"""
|
|
381
|
+
|
|
382
|
+
def get_scaled_image_size(scale, original_size, patch_size, pixel_shuffle_scale):
|
|
383
|
+
scaled_size = scale * original_size
|
|
384
|
+
divisor = patch_size * pixel_shuffle_scale
|
|
385
|
+
scaled_size = math.ceil(scaled_size / divisor) * divisor
|
|
386
|
+
scaled_size = max(divisor, scaled_size)
|
|
387
|
+
return int(scaled_size)
|
|
388
|
+
|
|
389
|
+
# Ensure divisibility
|
|
390
|
+
divisor = patch_size * pixel_shuffle_scale
|
|
391
|
+
adjusted_height = math.ceil(image_height / divisor) * divisor
|
|
392
|
+
adjusted_height = max(divisor, adjusted_height)
|
|
393
|
+
adjusted_width = math.ceil(image_width / divisor) * divisor
|
|
394
|
+
adjusted_width = max(divisor, adjusted_width)
|
|
395
|
+
|
|
396
|
+
num_patches = (adjusted_height / patch_size) * (adjusted_width / patch_size)
|
|
397
|
+
|
|
398
|
+
if min_num_patches is not None and num_patches < min_num_patches:
|
|
399
|
+
# Scale up
|
|
400
|
+
scale_min, scale_max = 1.0, 100.0
|
|
401
|
+
while (scale_max - scale_min) >= eps:
|
|
402
|
+
scale = (scale_min + scale_max) / 2
|
|
403
|
+
target_height = get_scaled_image_size(
|
|
404
|
+
scale, image_height, patch_size, pixel_shuffle_scale
|
|
405
|
+
)
|
|
406
|
+
target_width = get_scaled_image_size(
|
|
407
|
+
scale, image_width, patch_size, pixel_shuffle_scale
|
|
408
|
+
)
|
|
409
|
+
num_patches = (target_height / patch_size) * (target_width / patch_size)
|
|
410
|
+
if num_patches >= min_num_patches:
|
|
411
|
+
scale_max = scale
|
|
412
|
+
else:
|
|
413
|
+
scale_min = scale
|
|
414
|
+
scale = scale_max
|
|
415
|
+
target_height = get_scaled_image_size(
|
|
416
|
+
scale, image_height, patch_size, pixel_shuffle_scale
|
|
417
|
+
)
|
|
418
|
+
target_width = get_scaled_image_size(
|
|
419
|
+
scale, image_width, patch_size, pixel_shuffle_scale
|
|
420
|
+
)
|
|
421
|
+
return target_height, target_width
|
|
422
|
+
elif num_patches <= max_num_patches:
|
|
423
|
+
return adjusted_height, adjusted_width
|
|
424
|
+
else:
|
|
425
|
+
# Scale down
|
|
426
|
+
scale_min, scale_max = eps / 10, 1.0
|
|
427
|
+
while (scale_max - scale_min) >= eps:
|
|
428
|
+
scale = (scale_min + scale_max) / 2
|
|
429
|
+
target_height = get_scaled_image_size(
|
|
430
|
+
scale, image_height, patch_size, pixel_shuffle_scale
|
|
431
|
+
)
|
|
432
|
+
target_width = get_scaled_image_size(
|
|
433
|
+
scale, image_width, patch_size, pixel_shuffle_scale
|
|
434
|
+
)
|
|
435
|
+
num_patches = (target_height / patch_size) * (target_width / patch_size)
|
|
436
|
+
if num_patches <= max_num_patches:
|
|
437
|
+
scale_min = scale
|
|
438
|
+
else:
|
|
439
|
+
scale_max = scale
|
|
440
|
+
scale = scale_min
|
|
441
|
+
target_height = get_scaled_image_size(
|
|
442
|
+
scale, image_height, patch_size, pixel_shuffle_scale
|
|
443
|
+
)
|
|
444
|
+
target_width = get_scaled_image_size(
|
|
445
|
+
scale, image_width, patch_size, pixel_shuffle_scale
|
|
446
|
+
)
|
|
447
|
+
return target_height, target_width
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
_MEAN_TENSOR = torch.tensor(VISION_MEAN, dtype=torch.float32).view(1, 1, 1, -1)
|
|
451
|
+
_STD_TENSOR = torch.tensor(VISION_STD, dtype=torch.float32).view(1, 1, 1, -1)
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
def _resolve_vision_token_id(model_config: ModelConfig, vision_token: str) -> int:
|
|
455
|
+
tokenizer_name = model_config.tokenizer or model_config.model
|
|
456
|
+
tokenizer = get_cached_tokenizer(
|
|
457
|
+
get_tokenizer(
|
|
458
|
+
tokenizer_name,
|
|
459
|
+
tokenizer_mode=model_config.tokenizer_mode,
|
|
460
|
+
trust_remote_code=model_config.trust_remote_code,
|
|
461
|
+
revision=model_config.tokenizer_revision or model_config.revision,
|
|
462
|
+
)
|
|
463
|
+
)
|
|
464
|
+
return tokenizer.encode(vision_token, add_special_tokens=False)[0]
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
def prepare_image_tensor(
|
|
468
|
+
image: torch.Tensor,
|
|
469
|
+
scale: float = VISION_SCALE,
|
|
470
|
+
) -> torch.Tensor:
|
|
471
|
+
r"""Standardize RGB images prior to patch extraction via rescaling and whitening.
|
|
472
|
+
|
|
473
|
+
Args:
|
|
474
|
+
image (`torch.Tensor`):
|
|
475
|
+
Tensor with shape `(..., height, width, 3)` containing RGB values.
|
|
476
|
+
The tensor is converted to floating point if needed.
|
|
477
|
+
scale (`float`, *optional*, defaults to `VISION_SCALE`):
|
|
478
|
+
Scalar multiplier applied before normalization.
|
|
479
|
+
Returns:
|
|
480
|
+
`torch.Tensor`: Normalized tensor with the same shape as the input and
|
|
481
|
+
dtype `torch.float32`.
|
|
482
|
+
"""
|
|
483
|
+
if not torch.is_floating_point(image):
|
|
484
|
+
image = image.float()
|
|
485
|
+
rescaled = image * scale
|
|
486
|
+
|
|
487
|
+
# Use precomputed tensors and move to the correct device if needed
|
|
488
|
+
mean_tensor = _MEAN_TENSOR.to(image.device)
|
|
489
|
+
std_tensor = _STD_TENSOR.to(image.device)
|
|
490
|
+
|
|
491
|
+
normalized = (rescaled - mean_tensor) / std_tensor
|
|
492
|
+
return normalized
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor:
|
|
496
|
+
r"""Convert normalized images into flattened ViT-style patches.
|
|
497
|
+
|
|
498
|
+
Args:
|
|
499
|
+
image (`torch.Tensor`):
|
|
500
|
+
Tensor of shape `(num_images, height, width, channels)`.
|
|
501
|
+
patch_size (`int`):
|
|
502
|
+
Edge length of the square patches
|
|
503
|
+
|
|
504
|
+
Returns:
|
|
505
|
+
`torch.Tensor`:
|
|
506
|
+
Patch tensor where each position stores the flattened pixels
|
|
507
|
+
belonging to that patch.
|
|
508
|
+
|
|
509
|
+
Raises:
|
|
510
|
+
ValueError: If `height` or `width` is not divisible by `patch_size`.
|
|
511
|
+
"""
|
|
512
|
+
num_images, height, width, channels = image.shape
|
|
513
|
+
if height % patch_size or width % patch_size:
|
|
514
|
+
raise ValueError(
|
|
515
|
+
"Dimensions of images "
|
|
516
|
+
f"{image.shape} are not divisible by patch_size={patch_size}."
|
|
517
|
+
)
|
|
518
|
+
patches = image.reshape(
|
|
519
|
+
num_images,
|
|
520
|
+
height // patch_size,
|
|
521
|
+
patch_size,
|
|
522
|
+
width // patch_size,
|
|
523
|
+
patch_size,
|
|
524
|
+
channels,
|
|
525
|
+
)
|
|
526
|
+
patches = patches.permute(0, 1, 3, 2, 4, 5)
|
|
527
|
+
patches = patches.reshape(
|
|
528
|
+
num_images,
|
|
529
|
+
height // patch_size,
|
|
530
|
+
width // patch_size,
|
|
531
|
+
channels * patch_size * patch_size,
|
|
532
|
+
)
|
|
533
|
+
return patches
|
|
534
|
+
|
|
535
|
+
|
|
536
|
+
def process_vision_for_patches(
|
|
537
|
+
images: torch.Tensor,
|
|
538
|
+
patch_size: int,
|
|
539
|
+
max_num_patches: int,
|
|
540
|
+
min_num_patches: int | None = None,
|
|
541
|
+
pixel_shuffle_scale: int = 1,
|
|
542
|
+
) -> tuple[torch.Tensor, list[int]]:
|
|
543
|
+
r"""Resize, normalize, and patchify RGB images for the vision encoder.
|
|
544
|
+
|
|
545
|
+
Args:
|
|
546
|
+
images (`torch.Tensor`):
|
|
547
|
+
Either `(height, width, channels)` for a single image or
|
|
548
|
+
`(num_images, height, width, channels)` for a batch. Channels are
|
|
549
|
+
expected to be RGB.
|
|
550
|
+
patch_size (`int`):
|
|
551
|
+
Edge length of square patches; implictly controls resize grid granularity.
|
|
552
|
+
max_num_patches (`int`):
|
|
553
|
+
Maximum number of patches allowed after resizing.
|
|
554
|
+
min_num_patches (`int`, *optional*):
|
|
555
|
+
Minimum number of patches. If provided, the routine upsamples images
|
|
556
|
+
as needed to satisfy the lower bound.
|
|
557
|
+
pixel_shuffle_scale (`int`, *optional*, defaults to 1):
|
|
558
|
+
Pixel shuffle scale factor; influences the target grid that the
|
|
559
|
+
function produces.
|
|
560
|
+
|
|
561
|
+
Returns:
|
|
562
|
+
`tuple[torch.Tensor, list[int]]`: A pair `(patches, dims_virtual)`
|
|
563
|
+
where `patches` has shape `(num_images, target_h / patch_size, target_w
|
|
564
|
+
/ patch_size, channels * patch_size**2)` and `dims_virtual` encodes
|
|
565
|
+
effective `(images, height, width)` dimensions after optional pixel
|
|
566
|
+
shuffling.
|
|
567
|
+
"""
|
|
568
|
+
# Add batch dim if single image
|
|
569
|
+
if images.dim() == 3:
|
|
570
|
+
images = images.unsqueeze(0)
|
|
571
|
+
|
|
572
|
+
# Permute to channel first for resize
|
|
573
|
+
images = images.permute(0, 3, 1, 2)
|
|
574
|
+
|
|
575
|
+
# Get target dimensions
|
|
576
|
+
_, _, orig_height, orig_width = images.shape
|
|
577
|
+
target_height, target_width = get_image_size_for_max_num_patches(
|
|
578
|
+
orig_height,
|
|
579
|
+
orig_width,
|
|
580
|
+
patch_size,
|
|
581
|
+
max_num_patches,
|
|
582
|
+
min_num_patches=min_num_patches,
|
|
583
|
+
pixel_shuffle_scale=pixel_shuffle_scale,
|
|
584
|
+
)
|
|
585
|
+
|
|
586
|
+
# Resize
|
|
587
|
+
images = F.interpolate(
|
|
588
|
+
images,
|
|
589
|
+
size=(target_height, target_width),
|
|
590
|
+
mode="bilinear",
|
|
591
|
+
align_corners=False,
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
# Back to channel last
|
|
595
|
+
images = images.permute(0, 2, 3, 1)
|
|
596
|
+
|
|
597
|
+
# Normalize
|
|
598
|
+
images = prepare_image_tensor(images)
|
|
599
|
+
|
|
600
|
+
# Patchify
|
|
601
|
+
patches = patchify_vision(images, patch_size=patch_size)
|
|
602
|
+
|
|
603
|
+
# Calculate dimensions for the patches
|
|
604
|
+
n_images, h_patches, w_patches, _ = patches.shape
|
|
605
|
+
dims_virtual = (
|
|
606
|
+
[1, h_patches, w_patches]
|
|
607
|
+
if pixel_shuffle_scale == 1
|
|
608
|
+
else [1, h_patches // pixel_shuffle_scale, w_patches // pixel_shuffle_scale]
|
|
609
|
+
)
|
|
610
|
+
|
|
611
|
+
return patches, dims_virtual
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
class IsaacImageProcessorKwargs(TypedDict, total=False):
|
|
615
|
+
patch_size: int
|
|
616
|
+
max_num_patches: int
|
|
617
|
+
min_num_patches: int
|
|
618
|
+
pixel_shuffle_scale: int
|
|
619
|
+
|
|
620
|
+
|
|
621
|
+
class IsaacImageProcessor:
|
|
622
|
+
patch_size = 16
|
|
623
|
+
max_num_patches = 6144
|
|
624
|
+
min_num_patches = 256
|
|
625
|
+
pixel_shuffle_scale = 2
|
|
626
|
+
|
|
627
|
+
valid_kwargs = IsaacImageProcessorKwargs
|
|
628
|
+
model_input_names = ["pixel_values", "image_grid_thw"]
|
|
629
|
+
|
|
630
|
+
def __init__(self, kwargs):
|
|
631
|
+
self.patch_size = kwargs.pop("patch_size", self.patch_size)
|
|
632
|
+
self.vision_max_num_patches = kwargs.pop(
|
|
633
|
+
"vision_max_num_patches", self.max_num_patches
|
|
634
|
+
)
|
|
635
|
+
self.vision_min_num_patches = kwargs.pop(
|
|
636
|
+
"vision_min_num_patches", self.min_num_patches
|
|
637
|
+
)
|
|
638
|
+
self.pixel_shuffle_scale = kwargs.pop("pixel_shuffle_scale", 2)
|
|
639
|
+
|
|
640
|
+
def preprocess(
|
|
641
|
+
self,
|
|
642
|
+
images: list[torch.Tensor],
|
|
643
|
+
return_tensors: str | TensorType | None,
|
|
644
|
+
**kwargs: Unpack[IsaacImageProcessorKwargs],
|
|
645
|
+
) -> BatchFeature:
|
|
646
|
+
"""Preprocess images into format compatibile with vLLM input processing."""
|
|
647
|
+
|
|
648
|
+
all_pixel_values: list[torch.Tensor] = []
|
|
649
|
+
all_image_grids: list[torch.Tensor] = []
|
|
650
|
+
|
|
651
|
+
for image in images:
|
|
652
|
+
image_tensor = extract_image_pil(image)
|
|
653
|
+
|
|
654
|
+
patches, dims_virtual = process_vision_for_patches(
|
|
655
|
+
image_tensor,
|
|
656
|
+
patch_size=self.patch_size,
|
|
657
|
+
max_num_patches=self.vision_max_num_patches,
|
|
658
|
+
min_num_patches=self.vision_min_num_patches,
|
|
659
|
+
pixel_shuffle_scale=self.pixel_shuffle_scale,
|
|
660
|
+
)
|
|
661
|
+
|
|
662
|
+
# Isaac packs a dummy temporal dim for images
|
|
663
|
+
patches = patches.unsqueeze(1) # [N, T=1, Hp, Wp, D]
|
|
664
|
+
|
|
665
|
+
hp, wp, dim = patches.shape[-3], patches.shape[-2], patches.shape[-1]
|
|
666
|
+
current_num_patches = hp * wp
|
|
667
|
+
pixel_values = patches.reshape(current_num_patches, dim) # [N_tokens, D]
|
|
668
|
+
|
|
669
|
+
# Use real patch dimensions for image_grid_thw, not virtual dimensions
|
|
670
|
+
# This ensures the vision model receives correct grid info for pixel shuffle
|
|
671
|
+
dims_real = [1, hp, wp] # Real patch dimensions
|
|
672
|
+
image_grid_thw = torch.tensor(dims_real).unsqueeze(0)
|
|
673
|
+
|
|
674
|
+
all_pixel_values.append(pixel_values)
|
|
675
|
+
all_image_grids.append(image_grid_thw)
|
|
676
|
+
|
|
677
|
+
if all_pixel_values:
|
|
678
|
+
final_pixel_values = torch.cat(all_pixel_values, dim=0)
|
|
679
|
+
final_image_grids = torch.cat(all_image_grids, dim=0)
|
|
680
|
+
else:
|
|
681
|
+
final_pixel_values = torch.empty(0, 0)
|
|
682
|
+
final_image_grids = torch.empty(0, 3)
|
|
683
|
+
|
|
684
|
+
return BatchFeature(
|
|
685
|
+
data={
|
|
686
|
+
"pixel_values": final_pixel_values,
|
|
687
|
+
"image_grid_thw": final_image_grids,
|
|
688
|
+
},
|
|
689
|
+
tensor_type=return_tensors,
|
|
690
|
+
)
|
|
691
|
+
|
|
692
|
+
|
|
693
|
+
class IsaacProcessor:
|
|
694
|
+
"""Processor wrapper (tokenizer + IsaacImageProcessor)."""
|
|
695
|
+
|
|
696
|
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
|
697
|
+
self.image_token = kwargs.pop("image_token", "<image>")
|
|
698
|
+
self.image_processor = image_processor or IsaacImageProcessor(kwargs)
|
|
699
|
+
self.tokenizer = tokenizer
|
|
700
|
+
|
|
701
|
+
def __call__(self, text=None, images=None, **kwargs) -> BatchFeature:
|
|
702
|
+
result = {}
|
|
703
|
+
|
|
704
|
+
if images is not None:
|
|
705
|
+
image_inputs = self.image_processor.preprocess(images, **kwargs)
|
|
706
|
+
image_grid_thw = image_inputs["image_grid_thw"]
|
|
707
|
+
result.update(image_inputs)
|
|
708
|
+
|
|
709
|
+
if text is not None:
|
|
710
|
+
if not isinstance(text, list):
|
|
711
|
+
text = [text]
|
|
712
|
+
|
|
713
|
+
text = text.copy() # below lines change text in-place
|
|
714
|
+
merge_length = self.image_processor.pixel_shuffle_scale**2
|
|
715
|
+
index = 0
|
|
716
|
+
for i in range(len(text)):
|
|
717
|
+
while self.image_token in text[i]:
|
|
718
|
+
num_image_tokens = image_grid_thw[index].prod() // merge_length
|
|
719
|
+
text[i] = text[i].replace(
|
|
720
|
+
self.image_token, "<|placeholder|>" * num_image_tokens, 1
|
|
721
|
+
)
|
|
722
|
+
index += 1
|
|
723
|
+
text[i] = text[i].replace("<|placeholder|>", "<|image_pad|>")
|
|
724
|
+
|
|
725
|
+
if text is not None:
|
|
726
|
+
result.update(self.tokenizer(text, **kwargs))
|
|
727
|
+
|
|
728
|
+
return BatchFeature(result)
|
|
729
|
+
|
|
730
|
+
def apply_chat_template(
|
|
731
|
+
self,
|
|
732
|
+
messages: list[dict[str, Any]],
|
|
733
|
+
tokenize: bool = False,
|
|
734
|
+
add_generation_prompt: bool = False,
|
|
735
|
+
**kwargs,
|
|
736
|
+
) -> Any:
|
|
737
|
+
# Convert mixed content messages to simple text format
|
|
738
|
+
processed_messages = []
|
|
739
|
+
|
|
740
|
+
for message in messages:
|
|
741
|
+
if "content" in message and isinstance(message["content"], list):
|
|
742
|
+
# Handle mixed content (text + image)
|
|
743
|
+
text_parts = []
|
|
744
|
+
for content_item in message["content"]:
|
|
745
|
+
if content_item.get("type") == "text":
|
|
746
|
+
text_parts.append(content_item.get("text", ""))
|
|
747
|
+
elif content_item.get("type") == "image":
|
|
748
|
+
# Replace image with vision token
|
|
749
|
+
text_parts.append(self.image_token)
|
|
750
|
+
|
|
751
|
+
processed_message = {
|
|
752
|
+
"role": message.get("role", "user"),
|
|
753
|
+
"content": "".join(text_parts),
|
|
754
|
+
}
|
|
755
|
+
processed_messages.append(processed_message)
|
|
756
|
+
else:
|
|
757
|
+
# Regular text message
|
|
758
|
+
processed_messages.append(message)
|
|
759
|
+
|
|
760
|
+
return self.tokenizer.apply_chat_template(
|
|
761
|
+
processed_messages,
|
|
762
|
+
tokenize=tokenize,
|
|
763
|
+
add_generation_prompt=add_generation_prompt,
|
|
764
|
+
**kwargs,
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
|
|
768
|
+
class IsaacProcessingInfo(BaseProcessingInfo):
|
|
769
|
+
def get_hf_config(self) -> IsaacConfig:
|
|
770
|
+
if hasattr(self.ctx, "get_hf_config"):
|
|
771
|
+
original_config = self.ctx.get_hf_config()
|
|
772
|
+
# Map HF config parameters to our vLLM config parameters
|
|
773
|
+
return IsaacConfig(
|
|
774
|
+
# Vision parameters - map from HF names
|
|
775
|
+
vision_config=getattr(original_config, "vision_config", None),
|
|
776
|
+
vision_patch_size=getattr(original_config, "video_patch_size", 16),
|
|
777
|
+
vision_max_num_patches=getattr(
|
|
778
|
+
original_config, "vision_max_num_patches", 256
|
|
779
|
+
),
|
|
780
|
+
vision_min_num_patches=getattr(
|
|
781
|
+
original_config, "vision_min_num_patches", None
|
|
782
|
+
),
|
|
783
|
+
pixel_shuffle_scale=getattr(original_config, "pixel_shuffle_scale", 1),
|
|
784
|
+
max_sequence_length=getattr(
|
|
785
|
+
original_config, "max_sequence_length", 16384
|
|
786
|
+
),
|
|
787
|
+
vision_token=getattr(original_config, "vision_token", "<image>"),
|
|
788
|
+
vision_attn_implementation=getattr(
|
|
789
|
+
original_config, "vision_attn_implementation", None
|
|
790
|
+
),
|
|
791
|
+
)
|
|
792
|
+
return IsaacConfig()
|
|
793
|
+
|
|
794
|
+
def get_hf_processor(self, **kwargs) -> IsaacProcessor:
|
|
795
|
+
hf_config = self.get_hf_config()
|
|
796
|
+
processor_kwargs = {
|
|
797
|
+
"image_token": hf_config.vision_token,
|
|
798
|
+
}
|
|
799
|
+
processor_kwargs.update(kwargs)
|
|
800
|
+
return self.ctx.get_hf_processor(IsaacProcessor, **processor_kwargs)
|
|
801
|
+
|
|
802
|
+
def get_tokenizer(self):
|
|
803
|
+
return self.ctx.tokenizer
|
|
804
|
+
|
|
805
|
+
def get_image_size_with_most_features(self) -> ImageSize:
|
|
806
|
+
hf_config = self.get_hf_config()
|
|
807
|
+
# Get target dimensions
|
|
808
|
+
target_height, target_width = get_image_size_for_max_num_patches(
|
|
809
|
+
9999999,
|
|
810
|
+
9999999,
|
|
811
|
+
hf_config.video_patch_size,
|
|
812
|
+
hf_config.vision_max_num_patches,
|
|
813
|
+
min_num_patches=hf_config.vision_min_num_patches,
|
|
814
|
+
pixel_shuffle_scale=hf_config.pixel_shuffle_scale,
|
|
815
|
+
)
|
|
816
|
+
return ImageSize(width=target_width, height=target_height)
|
|
817
|
+
|
|
818
|
+
def get_image_processor(self, **kwargs) -> IsaacImageProcessor:
|
|
819
|
+
return self.get_hf_processor(**kwargs).image_processor
|
|
820
|
+
|
|
821
|
+
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
822
|
+
return {"image": None}
|
|
823
|
+
|
|
824
|
+
def get_mm_max_tokens_per_item(
|
|
825
|
+
self,
|
|
826
|
+
seq_len: int,
|
|
827
|
+
mm_counts: Mapping[str, int],
|
|
828
|
+
) -> Mapping[str, int]:
|
|
829
|
+
hf_config = self.get_hf_config()
|
|
830
|
+
num_vision_tokens = hf_config.vision_max_num_patches // (
|
|
831
|
+
hf_config.pixel_shuffle_scale**2
|
|
832
|
+
)
|
|
833
|
+
return {"image": num_vision_tokens}
|
|
834
|
+
|
|
835
|
+
|
|
836
|
+
class IsaacDummyInputsBuilder(BaseDummyInputsBuilder[IsaacProcessingInfo]):
|
|
837
|
+
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
838
|
+
num_images = mm_counts.get("image", 0)
|
|
839
|
+
|
|
840
|
+
hf_processor = self.info.get_hf_processor()
|
|
841
|
+
image_token: str = hf_processor.image_token
|
|
842
|
+
|
|
843
|
+
return image_token * num_images
|
|
844
|
+
|
|
845
|
+
def get_dummy_mm_data(
|
|
846
|
+
self,
|
|
847
|
+
seq_len: int,
|
|
848
|
+
mm_counts: Mapping[str, int],
|
|
849
|
+
mm_options: Mapping[str] | None = None,
|
|
850
|
+
) -> MultiModalDataDict:
|
|
851
|
+
num_images = mm_counts.get("image", 0)
|
|
852
|
+
|
|
853
|
+
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
854
|
+
image_overrides = mm_options.get("image") if mm_options else None
|
|
855
|
+
|
|
856
|
+
return {
|
|
857
|
+
"image": self._get_dummy_images(
|
|
858
|
+
width=target_width,
|
|
859
|
+
height=target_height,
|
|
860
|
+
num_images=num_images,
|
|
861
|
+
overrides=image_overrides,
|
|
862
|
+
),
|
|
863
|
+
}
|
|
864
|
+
|
|
865
|
+
|
|
866
|
+
class IsaacImagePixelInputs(TensorSchema):
|
|
867
|
+
"""
|
|
868
|
+
Schema for validating Isaac image inputs.
|
|
869
|
+
|
|
870
|
+
Dimensions:
|
|
871
|
+
- np: Number of patches
|
|
872
|
+
- d: Patch dimension
|
|
873
|
+
- ni: Number of images
|
|
874
|
+
|
|
875
|
+
The schema enforces:
|
|
876
|
+
- pixel_values must be 2D: (num_patches, patch_dim)
|
|
877
|
+
- image_grid_thw must be 2D: (num_images, 3)
|
|
878
|
+
where 3 represents [T, H, W]
|
|
879
|
+
"""
|
|
880
|
+
|
|
881
|
+
pixel_values: Annotated[
|
|
882
|
+
torch.Tensor,
|
|
883
|
+
TensorShape("np", "d"),
|
|
884
|
+
]
|
|
885
|
+
|
|
886
|
+
image_grid_thw: Annotated[
|
|
887
|
+
torch.Tensor,
|
|
888
|
+
TensorShape("ni", 3),
|
|
889
|
+
]
|
|
890
|
+
|
|
891
|
+
|
|
892
|
+
class IsaacMultiModalProcessor(BaseMultiModalProcessor):
|
|
893
|
+
def _get_mm_fields_config(
|
|
894
|
+
self,
|
|
895
|
+
hf_inputs: BatchFeature,
|
|
896
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
897
|
+
) -> Mapping[str, MultiModalFieldConfig]:
|
|
898
|
+
# Configure multimodal fields for Isaac model
|
|
899
|
+
image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
|
|
900
|
+
image_grid_sizes = image_grid_thw.prod(-1)
|
|
901
|
+
|
|
902
|
+
return {
|
|
903
|
+
"pixel_values": MultiModalFieldConfig.flat_from_sizes(
|
|
904
|
+
"image", image_grid_sizes
|
|
905
|
+
),
|
|
906
|
+
"image_grid_thw": MultiModalFieldConfig.batched("image"),
|
|
907
|
+
}
|
|
908
|
+
|
|
909
|
+
def _get_prompt_updates(
|
|
910
|
+
self,
|
|
911
|
+
mm_items: MultiModalDataItems,
|
|
912
|
+
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
913
|
+
out_mm_kwargs: MultiModalKwargsItems,
|
|
914
|
+
) -> Sequence[PromptUpdate]:
|
|
915
|
+
image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
|
|
916
|
+
|
|
917
|
+
pixel_shuffle_scale = getattr(image_processor, "pixel_shuffle_scale", 2)
|
|
918
|
+
merge_length = pixel_shuffle_scale**2
|
|
919
|
+
|
|
920
|
+
def get_replacement_isaac(item_idx: int):
|
|
921
|
+
out_item = out_mm_kwargs["image"][item_idx]
|
|
922
|
+
grid_thw = out_item["image_grid_thw"].data
|
|
923
|
+
assert isinstance(grid_thw, torch.Tensor)
|
|
924
|
+
|
|
925
|
+
feature_size = int(grid_thw.prod()) // merge_length
|
|
926
|
+
repl_full = "<|image_pad|>" * feature_size
|
|
927
|
+
return PromptUpdateDetails.select_text(repl_full, "<|image_pad|>")
|
|
928
|
+
|
|
929
|
+
return [
|
|
930
|
+
PromptReplacement(
|
|
931
|
+
modality="image",
|
|
932
|
+
target="<image>",
|
|
933
|
+
replacement=get_replacement_isaac,
|
|
934
|
+
)
|
|
935
|
+
]
|
|
936
|
+
|
|
937
|
+
|
|
938
|
+
class Siglip2VisionAttention(nn.Module):
|
|
939
|
+
def __init__(
|
|
940
|
+
self,
|
|
941
|
+
config: PixelShuffleSiglip2VisionConfig,
|
|
942
|
+
quant_config: QuantizationConfig | None = None,
|
|
943
|
+
*,
|
|
944
|
+
prefix: str = "",
|
|
945
|
+
multimodal_config: MultiModalConfig | None = None,
|
|
946
|
+
) -> None:
|
|
947
|
+
super().__init__()
|
|
948
|
+
|
|
949
|
+
use_data_parallel = (
|
|
950
|
+
multimodal_config.mm_encoder_tp_mode == "data"
|
|
951
|
+
if multimodal_config
|
|
952
|
+
else False
|
|
953
|
+
)
|
|
954
|
+
self.tp_size = (
|
|
955
|
+
1
|
|
956
|
+
if use_data_parallel
|
|
957
|
+
else parallel_state.get_tensor_model_parallel_world_size()
|
|
958
|
+
)
|
|
959
|
+
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
|
|
960
|
+
self.hidden_size_per_attention_head = dist_utils.divide(
|
|
961
|
+
config.hidden_size, config.num_attention_heads
|
|
962
|
+
)
|
|
963
|
+
self.num_attention_heads_per_partition = dist_utils.divide(
|
|
964
|
+
config.num_attention_heads, self.tp_size
|
|
965
|
+
)
|
|
966
|
+
|
|
967
|
+
self.qkv_proj = QKVParallelLinear(
|
|
968
|
+
hidden_size=config.hidden_size,
|
|
969
|
+
head_size=self.hidden_size_per_attention_head,
|
|
970
|
+
total_num_heads=config.num_attention_heads,
|
|
971
|
+
total_num_kv_heads=config.num_attention_heads,
|
|
972
|
+
bias=True,
|
|
973
|
+
quant_config=quant_config,
|
|
974
|
+
prefix=f"{prefix}.qkv_proj",
|
|
975
|
+
disable_tp=use_data_parallel,
|
|
976
|
+
)
|
|
977
|
+
self.out_proj = RowParallelLinear(
|
|
978
|
+
input_size=config.hidden_size,
|
|
979
|
+
output_size=config.hidden_size,
|
|
980
|
+
quant_config=quant_config,
|
|
981
|
+
prefix=f"{prefix}.out_proj",
|
|
982
|
+
disable_tp=use_data_parallel,
|
|
983
|
+
)
|
|
984
|
+
|
|
985
|
+
self.attn = MMEncoderAttention(
|
|
986
|
+
num_heads=self.num_attention_heads_per_partition,
|
|
987
|
+
head_size=self.hidden_size_per_attention_head,
|
|
988
|
+
scale=self.hidden_size_per_attention_head**-0.5,
|
|
989
|
+
prefix=f"{prefix}.attn",
|
|
990
|
+
multimodal_config=multimodal_config,
|
|
991
|
+
)
|
|
992
|
+
|
|
993
|
+
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
|
|
994
|
+
seq_len, bs, _ = qkv.shape
|
|
995
|
+
q, k, v = qkv.chunk(3, dim=2)
|
|
996
|
+
new_shape = (
|
|
997
|
+
seq_len,
|
|
998
|
+
bs,
|
|
999
|
+
self.num_attention_heads_per_partition,
|
|
1000
|
+
self.hidden_size_per_attention_head,
|
|
1001
|
+
)
|
|
1002
|
+
q, k, v = (x.view(*new_shape) for x in (q, k, v))
|
|
1003
|
+
return q, k, v
|
|
1004
|
+
|
|
1005
|
+
def forward(
|
|
1006
|
+
self,
|
|
1007
|
+
hidden_states: torch.Tensor,
|
|
1008
|
+
*,
|
|
1009
|
+
cu_seqlens: torch.Tensor,
|
|
1010
|
+
max_seqlen: torch.Tensor | None,
|
|
1011
|
+
) -> torch.Tensor:
|
|
1012
|
+
batch_size, _, _ = hidden_states.shape
|
|
1013
|
+
if batch_size != 1:
|
|
1014
|
+
raise ValueError("packed variable-length attention expects batch_size=1")
|
|
1015
|
+
x = rearrange(hidden_states, "b s d -> s b d")
|
|
1016
|
+
x, _ = self.qkv_proj(x)
|
|
1017
|
+
q, k, v = self.split_qkv(x)
|
|
1018
|
+
q, k, v = (rearrange(t, "s b h d -> b s h d") for t in (q, k, v))
|
|
1019
|
+
|
|
1020
|
+
context_layer = self.attn(
|
|
1021
|
+
query=q,
|
|
1022
|
+
key=k,
|
|
1023
|
+
value=v,
|
|
1024
|
+
cu_seqlens=cu_seqlens,
|
|
1025
|
+
max_seqlen=max_seqlen,
|
|
1026
|
+
)
|
|
1027
|
+
context_layer = rearrange(context_layer, "b s h d -> s b (h d)").contiguous()
|
|
1028
|
+
|
|
1029
|
+
output, _ = self.out_proj(context_layer)
|
|
1030
|
+
output = rearrange(output, "s b d -> b s d")
|
|
1031
|
+
return output
|
|
1032
|
+
|
|
1033
|
+
|
|
1034
|
+
class Siglip2EncoderLayer(nn.Module):
|
|
1035
|
+
def __init__(
|
|
1036
|
+
self,
|
|
1037
|
+
config: PixelShuffleSiglip2VisionConfig,
|
|
1038
|
+
quant_config: QuantizationConfig | None = None,
|
|
1039
|
+
*,
|
|
1040
|
+
prefix: str = "",
|
|
1041
|
+
multimodal_config: MultiModalConfig | None = None,
|
|
1042
|
+
) -> None:
|
|
1043
|
+
super().__init__()
|
|
1044
|
+
self.embed_dim = config.hidden_size
|
|
1045
|
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
1046
|
+
self.self_attn = Siglip2VisionAttention(
|
|
1047
|
+
config,
|
|
1048
|
+
quant_config=quant_config,
|
|
1049
|
+
prefix=f"{prefix}.self_attn",
|
|
1050
|
+
multimodal_config=multimodal_config,
|
|
1051
|
+
)
|
|
1052
|
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
1053
|
+
self.mlp = SiglipMLP(
|
|
1054
|
+
config,
|
|
1055
|
+
quant_config=quant_config,
|
|
1056
|
+
prefix=f"{prefix}.mlp",
|
|
1057
|
+
)
|
|
1058
|
+
|
|
1059
|
+
def forward(
|
|
1060
|
+
self,
|
|
1061
|
+
hidden_states: torch.Tensor,
|
|
1062
|
+
*,
|
|
1063
|
+
cu_seqlens: torch.Tensor,
|
|
1064
|
+
max_seqlen: torch.Tensor | None,
|
|
1065
|
+
) -> torch.Tensor:
|
|
1066
|
+
residual = hidden_states
|
|
1067
|
+
|
|
1068
|
+
hidden_states = self.layer_norm1(hidden_states)
|
|
1069
|
+
hidden_states = self.self_attn(
|
|
1070
|
+
hidden_states=hidden_states,
|
|
1071
|
+
cu_seqlens=cu_seqlens,
|
|
1072
|
+
max_seqlen=max_seqlen,
|
|
1073
|
+
)
|
|
1074
|
+
hidden_states = residual + hidden_states
|
|
1075
|
+
|
|
1076
|
+
residual = hidden_states
|
|
1077
|
+
hidden_states = self.layer_norm2(hidden_states)
|
|
1078
|
+
hidden_states = self.mlp(hidden_states)
|
|
1079
|
+
hidden_states = residual + hidden_states
|
|
1080
|
+
|
|
1081
|
+
return hidden_states
|
|
1082
|
+
|
|
1083
|
+
|
|
1084
|
+
class Siglip2Encoder(nn.Module):
|
|
1085
|
+
def __init__(
|
|
1086
|
+
self,
|
|
1087
|
+
config: PixelShuffleSiglip2VisionConfig,
|
|
1088
|
+
quant_config: QuantizationConfig | None = None,
|
|
1089
|
+
*,
|
|
1090
|
+
prefix: str = "",
|
|
1091
|
+
multimodal_config: MultiModalConfig | None = None,
|
|
1092
|
+
) -> None:
|
|
1093
|
+
super().__init__()
|
|
1094
|
+
self.config = config
|
|
1095
|
+
self.layers = nn.ModuleList(
|
|
1096
|
+
[
|
|
1097
|
+
Siglip2EncoderLayer(
|
|
1098
|
+
config,
|
|
1099
|
+
quant_config=quant_config,
|
|
1100
|
+
prefix=f"{prefix}.layers.{layer_idx}",
|
|
1101
|
+
multimodal_config=multimodal_config,
|
|
1102
|
+
)
|
|
1103
|
+
for layer_idx in range(config.num_hidden_layers)
|
|
1104
|
+
]
|
|
1105
|
+
)
|
|
1106
|
+
|
|
1107
|
+
def forward(
|
|
1108
|
+
self,
|
|
1109
|
+
inputs_embeds: torch.Tensor,
|
|
1110
|
+
*,
|
|
1111
|
+
cu_seqlens: torch.Tensor | None = None,
|
|
1112
|
+
max_seqlen: torch.Tensor | None = None,
|
|
1113
|
+
) -> torch.Tensor:
|
|
1114
|
+
hidden_states = inputs_embeds
|
|
1115
|
+
for encoder_layer in self.layers:
|
|
1116
|
+
hidden_states = encoder_layer(
|
|
1117
|
+
hidden_states,
|
|
1118
|
+
cu_seqlens=cu_seqlens,
|
|
1119
|
+
max_seqlen=max_seqlen,
|
|
1120
|
+
)
|
|
1121
|
+
return hidden_states
|
|
1122
|
+
|
|
1123
|
+
|
|
1124
|
+
class Siglip2VisionTransformer(nn.Module):
|
|
1125
|
+
def __init__(
|
|
1126
|
+
self,
|
|
1127
|
+
config: PixelShuffleSiglip2VisionConfig,
|
|
1128
|
+
quant_config: QuantizationConfig | None = None,
|
|
1129
|
+
prefix: str = "",
|
|
1130
|
+
multimodal_config: MultiModalConfig | None = None,
|
|
1131
|
+
):
|
|
1132
|
+
super().__init__()
|
|
1133
|
+
self.config = config
|
|
1134
|
+
self.quant_config = quant_config
|
|
1135
|
+
embed_dim = config.hidden_size
|
|
1136
|
+
|
|
1137
|
+
self.embeddings = Siglip2VariableSequenceEmbeddings(config)
|
|
1138
|
+
self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor
|
|
1139
|
+
self.encoder = Siglip2Encoder(
|
|
1140
|
+
config,
|
|
1141
|
+
quant_config=quant_config,
|
|
1142
|
+
prefix=f"{prefix}.encoder",
|
|
1143
|
+
multimodal_config=multimodal_config,
|
|
1144
|
+
)
|
|
1145
|
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
1146
|
+
|
|
1147
|
+
def forward(
|
|
1148
|
+
self,
|
|
1149
|
+
packed_seq_patches: tuple[torch.Tensor, torch.Tensor],
|
|
1150
|
+
) -> torch.Tensor:
|
|
1151
|
+
r"""
|
|
1152
|
+
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
|
|
1153
|
+
Tensor containing the spatial dimensions (height, width)
|
|
1154
|
+
of the input images.
|
|
1155
|
+
"""
|
|
1156
|
+
|
|
1157
|
+
seq_patches, token_grids = packed_seq_patches
|
|
1158
|
+
seq_sizes = torch.prod(token_grids, dim=-1)
|
|
1159
|
+
|
|
1160
|
+
# Get embeddings from packed sequence
|
|
1161
|
+
hidden_states = self.embeddings((seq_patches, seq_sizes, token_grids))
|
|
1162
|
+
|
|
1163
|
+
# Add a pseudo batch dimension for the encoder
|
|
1164
|
+
hidden_states = hidden_states.unsqueeze(0)
|
|
1165
|
+
|
|
1166
|
+
cu_seqlens, max_seqlen = create_cumulative_seq_lengths(
|
|
1167
|
+
seq_sizes, hidden_states.device
|
|
1168
|
+
)
|
|
1169
|
+
|
|
1170
|
+
hidden_states = self.encoder(
|
|
1171
|
+
inputs_embeds=hidden_states,
|
|
1172
|
+
cu_seqlens=cu_seqlens,
|
|
1173
|
+
max_seqlen=max_seqlen,
|
|
1174
|
+
)
|
|
1175
|
+
hidden_states = self.post_layernorm(hidden_states)
|
|
1176
|
+
|
|
1177
|
+
if self.pixel_shuffle_scale_factor > 1:
|
|
1178
|
+
hidden_states = pixel_shuffle_varlen(
|
|
1179
|
+
x=hidden_states,
|
|
1180
|
+
token_grids=token_grids,
|
|
1181
|
+
scale_factor=self.pixel_shuffle_scale_factor,
|
|
1182
|
+
)
|
|
1183
|
+
# Remove the pseudo batch dimension we added earlier
|
|
1184
|
+
hidden_states = hidden_states.squeeze(0)
|
|
1185
|
+
|
|
1186
|
+
# return last_hidden_state
|
|
1187
|
+
return hidden_states
|
|
1188
|
+
|
|
1189
|
+
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
1190
|
+
stacked_params_mapping = [
|
|
1191
|
+
# (param_name, shard_name, shard_id)
|
|
1192
|
+
("qkv_proj", "q_proj", "q"),
|
|
1193
|
+
("qkv_proj", "k_proj", "k"),
|
|
1194
|
+
("qkv_proj", "v_proj", "v"),
|
|
1195
|
+
]
|
|
1196
|
+
params_dict = dict(self.named_parameters())
|
|
1197
|
+
loaded_params: set[str] = set()
|
|
1198
|
+
|
|
1199
|
+
for name, loaded_weight in weights:
|
|
1200
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
1201
|
+
if weight_name not in name:
|
|
1202
|
+
continue
|
|
1203
|
+
name = name.replace(weight_name, param_name)
|
|
1204
|
+
|
|
1205
|
+
param = params_dict[name]
|
|
1206
|
+
weight_loader = param.weight_loader
|
|
1207
|
+
weight_loader(param, loaded_weight, shard_id)
|
|
1208
|
+
break
|
|
1209
|
+
else:
|
|
1210
|
+
param = params_dict[name]
|
|
1211
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
1212
|
+
weight_loader(param, loaded_weight)
|
|
1213
|
+
loaded_params.add(name)
|
|
1214
|
+
return loaded_params
|
|
1215
|
+
|
|
1216
|
+
|
|
1217
|
+
class IsaacVisionEmbedding(nn.Module):
|
|
1218
|
+
def __init__(
|
|
1219
|
+
self,
|
|
1220
|
+
vision_cfg: PixelShuffleSiglip2VisionConfig,
|
|
1221
|
+
hidden_dim: int,
|
|
1222
|
+
output_dim: int,
|
|
1223
|
+
quant_config: QuantizationConfig | None = None,
|
|
1224
|
+
multimodal_config: MultiModalConfig | None = None,
|
|
1225
|
+
prefix: str = "",
|
|
1226
|
+
):
|
|
1227
|
+
super().__init__()
|
|
1228
|
+
self.transformer = Siglip2VisionTransformer(
|
|
1229
|
+
vision_cfg,
|
|
1230
|
+
quant_config=quant_config,
|
|
1231
|
+
multimodal_config=multimodal_config,
|
|
1232
|
+
prefix=maybe_prefix(prefix, "0"),
|
|
1233
|
+
)
|
|
1234
|
+
self.linear_fc1 = ColumnParallelLinear(
|
|
1235
|
+
hidden_dim,
|
|
1236
|
+
4 * hidden_dim,
|
|
1237
|
+
bias=False,
|
|
1238
|
+
quant_config=quant_config,
|
|
1239
|
+
prefix=maybe_prefix(prefix, "1"),
|
|
1240
|
+
return_bias=False,
|
|
1241
|
+
)
|
|
1242
|
+
self.act = nn.SiLU()
|
|
1243
|
+
self.linear_fc2 = RowParallelLinear(
|
|
1244
|
+
4 * hidden_dim,
|
|
1245
|
+
output_dim,
|
|
1246
|
+
bias=False,
|
|
1247
|
+
quant_config=quant_config,
|
|
1248
|
+
prefix=maybe_prefix(prefix, "3"),
|
|
1249
|
+
return_bias=False,
|
|
1250
|
+
)
|
|
1251
|
+
|
|
1252
|
+
def forward(
|
|
1253
|
+
self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor]
|
|
1254
|
+
) -> torch.Tensor:
|
|
1255
|
+
hidden_states = self.transformer(packed_seq_patches)
|
|
1256
|
+
hidden_states = self.linear_fc1(hidden_states)
|
|
1257
|
+
hidden_states = self.act(hidden_states)
|
|
1258
|
+
hidden_states = self.linear_fc2(hidden_states)
|
|
1259
|
+
return hidden_states
|
|
1260
|
+
|
|
1261
|
+
|
|
1262
|
+
@MULTIMODAL_REGISTRY.register_processor(
|
|
1263
|
+
IsaacMultiModalProcessor,
|
|
1264
|
+
info=IsaacProcessingInfo,
|
|
1265
|
+
dummy_inputs=IsaacDummyInputsBuilder,
|
|
1266
|
+
)
|
|
1267
|
+
class IsaacForConditionalGeneration(
|
|
1268
|
+
nn.Module, SupportsMultiModal, SupportsLoRA, SupportsPP, SupportsMRoPE
|
|
1269
|
+
):
|
|
1270
|
+
packed_modules_mapping = {
|
|
1271
|
+
"qkv_proj": [
|
|
1272
|
+
"q_proj",
|
|
1273
|
+
"k_proj",
|
|
1274
|
+
"v_proj",
|
|
1275
|
+
],
|
|
1276
|
+
"gate_up_proj": [
|
|
1277
|
+
"gate_proj",
|
|
1278
|
+
"up_proj",
|
|
1279
|
+
],
|
|
1280
|
+
}
|
|
1281
|
+
|
|
1282
|
+
supports_encoder_tp_data = True
|
|
1283
|
+
|
|
1284
|
+
# To ensure correct weight loading and mapping.
|
|
1285
|
+
hf_to_vllm_mapper = WeightsMapper(
|
|
1286
|
+
orig_to_new_prefix={
|
|
1287
|
+
"lm_head.": "language_model.lm_head.",
|
|
1288
|
+
"model.text_model.lm_head.": "language_model.lm_head.",
|
|
1289
|
+
"model.text_model.": "language_model.model.",
|
|
1290
|
+
"model.vision_embedding.0": "vision_embedding.transformer",
|
|
1291
|
+
"model.vision_embedding.1": "vision_embedding.linear_fc1",
|
|
1292
|
+
"model.vision_embedding.2": "vision_embedding.act",
|
|
1293
|
+
"model.vision_embedding.3": "vision_embedding.linear_fc2",
|
|
1294
|
+
"model.vision_embedding.": "vision_embedding.",
|
|
1295
|
+
"model.lm_head.": "language_model.lm_head.",
|
|
1296
|
+
"model.": "language_model.model.",
|
|
1297
|
+
}
|
|
1298
|
+
)
|
|
1299
|
+
|
|
1300
|
+
@classmethod
|
|
1301
|
+
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
1302
|
+
if modality.startswith("image"):
|
|
1303
|
+
return "<image>"
|
|
1304
|
+
|
|
1305
|
+
raise ValueError("Only image modality is supported")
|
|
1306
|
+
|
|
1307
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "model"):
|
|
1308
|
+
super().__init__()
|
|
1309
|
+
config: IsaacConfig = vllm_config.model_config.hf_config
|
|
1310
|
+
quant_config = vllm_config.quant_config
|
|
1311
|
+
self.config = config
|
|
1312
|
+
self.multimodal_config = vllm_config.model_config.multimodal_config
|
|
1313
|
+
|
|
1314
|
+
head_dim = config.head_dim
|
|
1315
|
+
calculated_mrope_section = [
|
|
1316
|
+
head_dim // 4, # 2x more for temporal dim
|
|
1317
|
+
head_dim // 8,
|
|
1318
|
+
head_dim // 8,
|
|
1319
|
+
]
|
|
1320
|
+
|
|
1321
|
+
self.vision_token_id = _resolve_vision_token_id(
|
|
1322
|
+
vllm_config.model_config, config.vision_token
|
|
1323
|
+
)
|
|
1324
|
+
config.image_token_id = self.vision_token_id
|
|
1325
|
+
|
|
1326
|
+
text_cfg = getattr(config, "text_config", None)
|
|
1327
|
+
target_cfg = (
|
|
1328
|
+
text_cfg
|
|
1329
|
+
if text_cfg is not None and not isinstance(text_cfg, dict)
|
|
1330
|
+
else config
|
|
1331
|
+
)
|
|
1332
|
+
|
|
1333
|
+
rope_scaling = getattr(target_cfg, "rope_scaling", None)
|
|
1334
|
+
if rope_scaling is None and target_cfg is config:
|
|
1335
|
+
rope_scaling = getattr(config, "_rope_scaling", None)
|
|
1336
|
+
|
|
1337
|
+
patch_rope_parameters(target_cfg)
|
|
1338
|
+
rope_parameters = target_cfg.rope_parameters
|
|
1339
|
+
rope_parameters["mrope_section"] = calculated_mrope_section
|
|
1340
|
+
if rope_scaling is not None and "mrope_interleaved" in rope_scaling:
|
|
1341
|
+
rope_parameters.setdefault(
|
|
1342
|
+
"mrope_interleaved", rope_scaling["mrope_interleaved"]
|
|
1343
|
+
)
|
|
1344
|
+
target_cfg.rope_parameters = rope_parameters
|
|
1345
|
+
self.language_model = init_vllm_registered_model(
|
|
1346
|
+
vllm_config=vllm_config,
|
|
1347
|
+
architectures=["Qwen3ForCausalLM"],
|
|
1348
|
+
prefix=maybe_prefix(prefix, "language_model"),
|
|
1349
|
+
)
|
|
1350
|
+
self.make_empty_intermediate_tensors = (
|
|
1351
|
+
self.language_model.make_empty_intermediate_tensors
|
|
1352
|
+
)
|
|
1353
|
+
|
|
1354
|
+
vision_cfg = config.vision_config
|
|
1355
|
+
if vision_cfg is None:
|
|
1356
|
+
raise ValueError("IsaacConfig should always have vision_config")
|
|
1357
|
+
attn_impl = (
|
|
1358
|
+
config.vision_attn_implementation
|
|
1359
|
+
if config.vision_attn_implementation is not None
|
|
1360
|
+
else getattr(config, "_attn_implementation", None)
|
|
1361
|
+
)
|
|
1362
|
+
if attn_impl is not None:
|
|
1363
|
+
vision_cfg._attn_implementation = attn_impl
|
|
1364
|
+
|
|
1365
|
+
hidden_dim = vision_cfg.hidden_size * (vision_cfg.pixel_shuffle_scale_factor**2)
|
|
1366
|
+
self.vision_embedding = IsaacVisionEmbedding(
|
|
1367
|
+
vision_cfg=vision_cfg,
|
|
1368
|
+
hidden_dim=hidden_dim,
|
|
1369
|
+
output_dim=config.hidden_size,
|
|
1370
|
+
quant_config=quant_config,
|
|
1371
|
+
multimodal_config=self.multimodal_config,
|
|
1372
|
+
prefix=maybe_prefix(prefix, "vision_embedding"),
|
|
1373
|
+
)
|
|
1374
|
+
|
|
1375
|
+
def iter_mm_grid_hw(
|
|
1376
|
+
self, input_tokens: list[int], mm_features: list[MultiModalFeatureSpec]
|
|
1377
|
+
) -> Iterator[tuple[int, int, int]]:
|
|
1378
|
+
spatial_merge_size = self.config.vision_config.pixel_shuffle_scale_factor
|
|
1379
|
+
for mm_feature in sorted(mm_features, key=lambda f: f.mm_position.offset):
|
|
1380
|
+
offset = mm_feature.mm_position.offset
|
|
1381
|
+
if mm_feature.modality == "image":
|
|
1382
|
+
t, h, w = mm_feature.data["image_grid_thw"].data.tolist()
|
|
1383
|
+
assert t == 1, f"Image must have 1 frame, got {t}"
|
|
1384
|
+
yield offset, h // spatial_merge_size, w // spatial_merge_size
|
|
1385
|
+
else:
|
|
1386
|
+
raise ValueError(f"Unsupported modality: {mm_feature.modality}")
|
|
1387
|
+
|
|
1388
|
+
def get_mrope_input_positions(
|
|
1389
|
+
self,
|
|
1390
|
+
input_tokens: list[int],
|
|
1391
|
+
mm_features: list[MultiModalFeatureSpec],
|
|
1392
|
+
) -> tuple[torch.Tensor, int]:
|
|
1393
|
+
llm_pos_ids_list = []
|
|
1394
|
+
st = 0
|
|
1395
|
+
for offset, llm_grid_h, llm_grid_w in self.iter_mm_grid_hw(
|
|
1396
|
+
input_tokens, mm_features
|
|
1397
|
+
):
|
|
1398
|
+
text_len = offset - st
|
|
1399
|
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
1400
|
+
llm_pos_ids_list.append(
|
|
1401
|
+
np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
|
|
1402
|
+
)
|
|
1403
|
+
|
|
1404
|
+
grid_indices = np.indices((1, llm_grid_h, llm_grid_w)).reshape(3, -1)
|
|
1405
|
+
grid_indices[0, :] = grid_indices[0, :] + text_len + st_idx
|
|
1406
|
+
llm_pos_ids_list.append(grid_indices)
|
|
1407
|
+
st = offset + llm_grid_h * llm_grid_w
|
|
1408
|
+
|
|
1409
|
+
if st < len(input_tokens):
|
|
1410
|
+
st_idx = llm_pos_ids_list[-1][0, -1] + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
1411
|
+
text_len = len(input_tokens) - st
|
|
1412
|
+
llm_pos_ids_list.append(
|
|
1413
|
+
np.broadcast_to(np.arange(text_len), (3, text_len)) + st_idx
|
|
1414
|
+
)
|
|
1415
|
+
|
|
1416
|
+
llm_positions = np.concatenate(llm_pos_ids_list, axis=1).reshape(3, -1)
|
|
1417
|
+
mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
|
|
1418
|
+
|
|
1419
|
+
return torch.from_numpy(llm_positions), mrope_position_delta
|
|
1420
|
+
|
|
1421
|
+
def _parse_and_validate_image_input(
|
|
1422
|
+
self, **kwargs: object
|
|
1423
|
+
) -> IsaacImagePixelInputs | None:
|
|
1424
|
+
pixel_values = kwargs.get("pixel_values")
|
|
1425
|
+
image_grid_thw = kwargs.get("image_grid_thw")
|
|
1426
|
+
if pixel_values is None or image_grid_thw is None:
|
|
1427
|
+
return None
|
|
1428
|
+
|
|
1429
|
+
# TensorSchema will automatically validate shapes on initialization
|
|
1430
|
+
return IsaacImagePixelInputs(
|
|
1431
|
+
pixel_values=pixel_values,
|
|
1432
|
+
image_grid_thw=image_grid_thw,
|
|
1433
|
+
)
|
|
1434
|
+
|
|
1435
|
+
def _process_image_input(
|
|
1436
|
+
self,
|
|
1437
|
+
image_input: IsaacImagePixelInputs,
|
|
1438
|
+
) -> tuple[torch.Tensor, ...]:
|
|
1439
|
+
pixel_values = image_input["pixel_values"]
|
|
1440
|
+
image_grid_thw = image_input["image_grid_thw"]
|
|
1441
|
+
if pixel_values.numel() == 0:
|
|
1442
|
+
return ()
|
|
1443
|
+
|
|
1444
|
+
device = next(self.language_model.parameters()).device
|
|
1445
|
+
dtype = self.vision_embedding.linear_fc1.weight.dtype
|
|
1446
|
+
pixel_values = pixel_values.to(device=device, dtype=dtype)
|
|
1447
|
+
spatial_grids = image_grid_thw[:, 1:3].to(device, dtype=torch.int32)
|
|
1448
|
+
|
|
1449
|
+
vision_embeddings = self.vision_embedding((pixel_values, spatial_grids))
|
|
1450
|
+
merge_size = self.config.vision_config.pixel_shuffle_scale_factor
|
|
1451
|
+
sizes = spatial_grids.prod(-1) // (merge_size * merge_size)
|
|
1452
|
+
return tuple(vision_embeddings.split(sizes.tolist()))
|
|
1453
|
+
|
|
1454
|
+
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings | None:
|
|
1455
|
+
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
1456
|
+
if image_input is None:
|
|
1457
|
+
return ()
|
|
1458
|
+
return self._process_image_input(image_input)
|
|
1459
|
+
|
|
1460
|
+
def get_multimodal_embeddings(
|
|
1461
|
+
self, **kwargs: object
|
|
1462
|
+
) -> MultiModalEmbeddings | None:
|
|
1463
|
+
# Backward compatibility for older runners.
|
|
1464
|
+
embeddings = self.embed_multimodal(**kwargs)
|
|
1465
|
+
if not embeddings:
|
|
1466
|
+
return []
|
|
1467
|
+
return embeddings
|
|
1468
|
+
|
|
1469
|
+
def get_language_model(self) -> torch.nn.Module:
|
|
1470
|
+
return self.language_model
|
|
1471
|
+
|
|
1472
|
+
def forward(
|
|
1473
|
+
self,
|
|
1474
|
+
input_ids: torch.Tensor,
|
|
1475
|
+
positions: torch.Tensor,
|
|
1476
|
+
intermediate_tensors: IntermediateTensors | None = None,
|
|
1477
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
1478
|
+
**kwargs: object,
|
|
1479
|
+
) -> torch.Tensor | IntermediateTensors:
|
|
1480
|
+
return self.language_model(
|
|
1481
|
+
input_ids=input_ids,
|
|
1482
|
+
positions=positions,
|
|
1483
|
+
intermediate_tensors=intermediate_tensors,
|
|
1484
|
+
inputs_embeds=inputs_embeds,
|
|
1485
|
+
**kwargs,
|
|
1486
|
+
)
|
|
1487
|
+
|
|
1488
|
+
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor | None:
|
|
1489
|
+
return self.language_model.compute_logits(hidden_states)
|
|
1490
|
+
|
|
1491
|
+
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
1492
|
+
loader = AutoWeightsLoader(self)
|
|
1493
|
+
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
1494
|
+
|
|
1495
|
+
def get_mm_mapping(self) -> MultiModelKeys:
|
|
1496
|
+
"""
|
|
1497
|
+
Get the module prefix in multimodal models
|
|
1498
|
+
"""
|
|
1499
|
+
return MultiModelKeys.from_string_field(
|
|
1500
|
+
language_model="language_model",
|
|
1501
|
+
connector="vision_embedding.linear_fc2", # The final linear layer
|
|
1502
|
+
tower_model="vision_embedding",
|
|
1503
|
+
)
|