vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1712) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1511 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3206 -0
  6. vllm/_ipex_ops.py +445 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +62 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/layer.py +913 -0
  15. vllm/attention/utils/__init__.py +0 -0
  16. vllm/attention/utils/kv_sharing_utils.py +33 -0
  17. vllm/attention/utils/kv_transfer_utils.py +60 -0
  18. vllm/beam_search.py +88 -0
  19. vllm/benchmarks/__init__.py +0 -0
  20. vllm/benchmarks/datasets.py +3277 -0
  21. vllm/benchmarks/latency.py +172 -0
  22. vllm/benchmarks/lib/__init__.py +3 -0
  23. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  24. vllm/benchmarks/lib/ready_checker.py +72 -0
  25. vllm/benchmarks/lib/utils.py +79 -0
  26. vllm/benchmarks/mm_processor.py +363 -0
  27. vllm/benchmarks/serve.py +1761 -0
  28. vllm/benchmarks/startup.py +321 -0
  29. vllm/benchmarks/sweep/__init__.py +0 -0
  30. vllm/benchmarks/sweep/cli.py +41 -0
  31. vllm/benchmarks/sweep/param_sweep.py +159 -0
  32. vllm/benchmarks/sweep/plot.py +675 -0
  33. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  34. vllm/benchmarks/sweep/serve.py +450 -0
  35. vllm/benchmarks/sweep/serve_sla.py +459 -0
  36. vllm/benchmarks/sweep/server.py +114 -0
  37. vllm/benchmarks/sweep/sla_sweep.py +138 -0
  38. vllm/benchmarks/sweep/utils.py +4 -0
  39. vllm/benchmarks/throughput.py +946 -0
  40. vllm/collect_env.py +857 -0
  41. vllm/compilation/__init__.py +0 -0
  42. vllm/compilation/activation_quant_fusion.py +214 -0
  43. vllm/compilation/backends.py +840 -0
  44. vllm/compilation/base_static_graph.py +57 -0
  45. vllm/compilation/caching.py +196 -0
  46. vllm/compilation/collective_fusion.py +1224 -0
  47. vllm/compilation/compiler_interface.py +639 -0
  48. vllm/compilation/counter.py +50 -0
  49. vllm/compilation/cuda_graph.py +309 -0
  50. vllm/compilation/decorators.py +662 -0
  51. vllm/compilation/fix_functionalization.py +266 -0
  52. vllm/compilation/fusion.py +570 -0
  53. vllm/compilation/fusion_attn.py +363 -0
  54. vllm/compilation/fx_utils.py +92 -0
  55. vllm/compilation/inductor_pass.py +145 -0
  56. vllm/compilation/matcher_utils.py +454 -0
  57. vllm/compilation/monitor.py +62 -0
  58. vllm/compilation/noop_elimination.py +130 -0
  59. vllm/compilation/partition_rules.py +75 -0
  60. vllm/compilation/pass_manager.py +164 -0
  61. vllm/compilation/piecewise_backend.py +191 -0
  62. vllm/compilation/post_cleanup.py +21 -0
  63. vllm/compilation/qk_norm_rope_fusion.py +244 -0
  64. vllm/compilation/rocm_aiter_fusion.py +401 -0
  65. vllm/compilation/sequence_parallelism.py +368 -0
  66. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  67. vllm/compilation/vllm_inductor_pass.py +180 -0
  68. vllm/compilation/wrapper.py +329 -0
  69. vllm/config/__init__.py +112 -0
  70. vllm/config/attention.py +114 -0
  71. vllm/config/cache.py +233 -0
  72. vllm/config/compilation.py +1149 -0
  73. vllm/config/device.py +75 -0
  74. vllm/config/ec_transfer.py +110 -0
  75. vllm/config/kv_events.py +56 -0
  76. vllm/config/kv_transfer.py +119 -0
  77. vllm/config/load.py +124 -0
  78. vllm/config/lora.py +102 -0
  79. vllm/config/model.py +2026 -0
  80. vllm/config/model_arch.py +57 -0
  81. vllm/config/multimodal.py +247 -0
  82. vllm/config/observability.py +157 -0
  83. vllm/config/parallel.py +703 -0
  84. vllm/config/pooler.py +188 -0
  85. vllm/config/profiler.py +199 -0
  86. vllm/config/scheduler.py +298 -0
  87. vllm/config/speculative.py +656 -0
  88. vllm/config/speech_to_text.py +39 -0
  89. vllm/config/structured_outputs.py +78 -0
  90. vllm/config/utils.py +374 -0
  91. vllm/config/vllm.py +1487 -0
  92. vllm/connections.py +189 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +301 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +43 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +509 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +303 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +346 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  106. vllm/distributed/device_communicators/pynccl.py +386 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  113. vllm/distributed/device_communicators/symm_mem.py +156 -0
  114. vllm/distributed/device_communicators/xpu_communicator.py +98 -0
  115. vllm/distributed/ec_transfer/__init__.py +14 -0
  116. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  117. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  118. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  119. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  120. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  121. vllm/distributed/eplb/__init__.py +3 -0
  122. vllm/distributed/eplb/async_worker.py +115 -0
  123. vllm/distributed/eplb/eplb_state.py +1192 -0
  124. vllm/distributed/eplb/policy/__init__.py +19 -0
  125. vllm/distributed/eplb/policy/abstract.py +43 -0
  126. vllm/distributed/eplb/policy/default.py +376 -0
  127. vllm/distributed/eplb/rebalance_execute.py +699 -0
  128. vllm/distributed/kv_events.py +505 -0
  129. vllm/distributed/kv_transfer/README.md +29 -0
  130. vllm/distributed/kv_transfer/__init__.py +20 -0
  131. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  132. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  133. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  134. vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  142. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  159. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  160. vllm/distributed/parallel_state.py +1809 -0
  161. vllm/distributed/utils.py +545 -0
  162. vllm/engine/__init__.py +0 -0
  163. vllm/engine/arg_utils.py +2137 -0
  164. vllm/engine/async_llm_engine.py +6 -0
  165. vllm/engine/llm_engine.py +6 -0
  166. vllm/engine/protocol.py +194 -0
  167. vllm/entrypoints/__init__.py +0 -0
  168. vllm/entrypoints/anthropic/__init__.py +0 -0
  169. vllm/entrypoints/anthropic/protocol.py +162 -0
  170. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  171. vllm/entrypoints/api_server.py +186 -0
  172. vllm/entrypoints/chat_utils.py +1912 -0
  173. vllm/entrypoints/cli/__init__.py +19 -0
  174. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/base.py +25 -0
  176. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  177. vllm/entrypoints/cli/benchmark/main.py +57 -0
  178. vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  180. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  181. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  182. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  183. vllm/entrypoints/cli/collect_env.py +38 -0
  184. vllm/entrypoints/cli/main.py +79 -0
  185. vllm/entrypoints/cli/openai.py +260 -0
  186. vllm/entrypoints/cli/run_batch.py +68 -0
  187. vllm/entrypoints/cli/serve.py +253 -0
  188. vllm/entrypoints/cli/types.py +29 -0
  189. vllm/entrypoints/constants.py +12 -0
  190. vllm/entrypoints/context.py +898 -0
  191. vllm/entrypoints/grpc_server.py +531 -0
  192. vllm/entrypoints/launcher.py +175 -0
  193. vllm/entrypoints/llm.py +1807 -0
  194. vllm/entrypoints/logger.py +86 -0
  195. vllm/entrypoints/openai/__init__.py +0 -0
  196. vllm/entrypoints/openai/api_server.py +1390 -0
  197. vllm/entrypoints/openai/cli_args.py +320 -0
  198. vllm/entrypoints/openai/orca_metrics.py +120 -0
  199. vllm/entrypoints/openai/parser/__init__.py +0 -0
  200. vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
  201. vllm/entrypoints/openai/parser/responses_parser.py +176 -0
  202. vllm/entrypoints/openai/protocol.py +2566 -0
  203. vllm/entrypoints/openai/run_batch.py +635 -0
  204. vllm/entrypoints/openai/serving_chat.py +1897 -0
  205. vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
  206. vllm/entrypoints/openai/serving_completion.py +740 -0
  207. vllm/entrypoints/openai/serving_engine.py +1612 -0
  208. vllm/entrypoints/openai/serving_models.py +309 -0
  209. vllm/entrypoints/openai/serving_responses.py +2552 -0
  210. vllm/entrypoints/openai/serving_transcription.py +168 -0
  211. vllm/entrypoints/openai/speech_to_text.py +711 -0
  212. vllm/entrypoints/openai/utils.py +49 -0
  213. vllm/entrypoints/pooling/__init__.py +16 -0
  214. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  215. vllm/entrypoints/pooling/classify/api_router.py +48 -0
  216. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  217. vllm/entrypoints/pooling/classify/serving.py +233 -0
  218. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  219. vllm/entrypoints/pooling/embed/api_router.py +65 -0
  220. vllm/entrypoints/pooling/embed/conftest.py +28 -0
  221. vllm/entrypoints/pooling/embed/protocol.py +217 -0
  222. vllm/entrypoints/pooling/embed/serving.py +684 -0
  223. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  224. vllm/entrypoints/pooling/pooling/api_router.py +62 -0
  225. vllm/entrypoints/pooling/pooling/protocol.py +146 -0
  226. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  227. vllm/entrypoints/pooling/score/__init__.py +0 -0
  228. vllm/entrypoints/pooling/score/api_router.py +147 -0
  229. vllm/entrypoints/pooling/score/protocol.py +146 -0
  230. vllm/entrypoints/pooling/score/serving.py +511 -0
  231. vllm/entrypoints/renderer.py +411 -0
  232. vllm/entrypoints/responses_utils.py +218 -0
  233. vllm/entrypoints/sagemaker/__init__.py +4 -0
  234. vllm/entrypoints/sagemaker/routes.py +118 -0
  235. vllm/entrypoints/score_utils.py +271 -0
  236. vllm/entrypoints/serve/__init__.py +94 -0
  237. vllm/entrypoints/serve/cache/__init__.py +0 -0
  238. vllm/entrypoints/serve/cache/api_router.py +61 -0
  239. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  240. vllm/entrypoints/serve/disagg/api_router.py +109 -0
  241. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  242. vllm/entrypoints/serve/disagg/serving.py +285 -0
  243. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  244. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  245. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  246. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  247. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  248. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  249. vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
  250. vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
  251. vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
  252. vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
  253. vllm/entrypoints/serve/lora/__init__.py +0 -0
  254. vllm/entrypoints/serve/lora/api_router.py +70 -0
  255. vllm/entrypoints/serve/profile/__init__.py +0 -0
  256. vllm/entrypoints/serve/profile/api_router.py +46 -0
  257. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  258. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  259. vllm/entrypoints/serve/rpc/__init__.py +0 -0
  260. vllm/entrypoints/serve/rpc/api_router.py +61 -0
  261. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  262. vllm/entrypoints/serve/sleep/api_router.py +56 -0
  263. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  264. vllm/entrypoints/serve/tokenize/api_router.py +112 -0
  265. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +187 -0
  268. vllm/entrypoints/tool_server.py +234 -0
  269. vllm/entrypoints/utils.py +336 -0
  270. vllm/env_override.py +402 -0
  271. vllm/envs.py +1791 -0
  272. vllm/exceptions.py +36 -0
  273. vllm/forward_context.py +375 -0
  274. vllm/grpc/__init__.py +17 -0
  275. vllm/grpc/compile_protos.py +94 -0
  276. vllm/grpc/vllm_engine.proto +195 -0
  277. vllm/grpc/vllm_engine_pb2.py +77 -0
  278. vllm/grpc/vllm_engine_pb2.pyi +213 -0
  279. vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
  280. vllm/inputs/__init__.py +44 -0
  281. vllm/inputs/data.py +359 -0
  282. vllm/inputs/parse.py +147 -0
  283. vllm/inputs/preprocess.py +716 -0
  284. vllm/logger.py +303 -0
  285. vllm/logging_utils/__init__.py +13 -0
  286. vllm/logging_utils/dump_input.py +83 -0
  287. vllm/logging_utils/formatter.py +127 -0
  288. vllm/logging_utils/lazy.py +20 -0
  289. vllm/logging_utils/log_time.py +34 -0
  290. vllm/logits_process.py +121 -0
  291. vllm/logprobs.py +206 -0
  292. vllm/lora/__init__.py +0 -0
  293. vllm/lora/layers/__init__.py +43 -0
  294. vllm/lora/layers/base.py +66 -0
  295. vllm/lora/layers/base_linear.py +172 -0
  296. vllm/lora/layers/column_parallel_linear.py +577 -0
  297. vllm/lora/layers/fused_moe.py +739 -0
  298. vllm/lora/layers/logits_processor.py +203 -0
  299. vllm/lora/layers/replicated_linear.py +70 -0
  300. vllm/lora/layers/row_parallel_linear.py +176 -0
  301. vllm/lora/layers/utils.py +115 -0
  302. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  303. vllm/lora/lora_model.py +221 -0
  304. vllm/lora/lora_weights.py +227 -0
  305. vllm/lora/model_manager.py +858 -0
  306. vllm/lora/ops/__init__.py +0 -0
  307. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  308. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  309. vllm/lora/ops/torch_ops/__init__.py +20 -0
  310. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  311. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  312. vllm/lora/ops/triton_ops/__init__.py +21 -0
  313. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
  314. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  315. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  316. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  317. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  318. vllm/lora/ops/triton_ops/utils.py +313 -0
  319. vllm/lora/peft_helper.py +128 -0
  320. vllm/lora/punica_wrapper/__init__.py +10 -0
  321. vllm/lora/punica_wrapper/punica_base.py +493 -0
  322. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  323. vllm/lora/punica_wrapper/punica_gpu.py +413 -0
  324. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  325. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  326. vllm/lora/punica_wrapper/utils.py +150 -0
  327. vllm/lora/request.py +60 -0
  328. vllm/lora/resolver.py +88 -0
  329. vllm/lora/utils.py +281 -0
  330. vllm/lora/worker_manager.py +278 -0
  331. vllm/model_executor/__init__.py +9 -0
  332. vllm/model_executor/custom_op.py +203 -0
  333. vllm/model_executor/layers/__init__.py +0 -0
  334. vllm/model_executor/layers/activation.py +628 -0
  335. vllm/model_executor/layers/attention/__init__.py +0 -0
  336. vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
  337. vllm/model_executor/layers/attention/cross_attention.py +182 -0
  338. vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
  339. vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
  340. vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
  341. vllm/model_executor/layers/attention_layer_base.py +34 -0
  342. vllm/model_executor/layers/batch_invariant.py +1063 -0
  343. vllm/model_executor/layers/conv.py +262 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +120 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1111 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  645. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  646. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  647. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  648. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  649. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  650. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  651. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
  652. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
  653. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
  654. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  655. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  656. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
  657. vllm/model_executor/layers/fused_moe/fallback.py +127 -0
  658. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
  659. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
  660. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
  661. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  662. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
  663. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
  664. vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
  665. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
  666. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
  667. vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
  668. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
  669. vllm/model_executor/layers/fused_moe/layer.py +2169 -0
  670. vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
  671. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  672. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  673. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  674. vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
  675. vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
  676. vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
  677. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  678. vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
  679. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
  680. vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
  681. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  682. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  683. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  684. vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
  685. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
  686. vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
  687. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
  688. vllm/model_executor/layers/fused_moe/utils.py +382 -0
  689. vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
  690. vllm/model_executor/layers/kda.py +442 -0
  691. vllm/model_executor/layers/layernorm.py +451 -0
  692. vllm/model_executor/layers/lightning_attn.py +735 -0
  693. vllm/model_executor/layers/linear.py +1478 -0
  694. vllm/model_executor/layers/logits_processor.py +109 -0
  695. vllm/model_executor/layers/mamba/__init__.py +0 -0
  696. vllm/model_executor/layers/mamba/abstract.py +68 -0
  697. vllm/model_executor/layers/mamba/linear_attn.py +410 -0
  698. vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
  699. vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
  700. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  701. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  702. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  703. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  704. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  705. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  706. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  707. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  708. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  709. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  710. vllm/model_executor/layers/mamba/short_conv.py +254 -0
  711. vllm/model_executor/layers/mla.py +179 -0
  712. vllm/model_executor/layers/pooler/__init__.py +5 -0
  713. vllm/model_executor/layers/pooler/abstract.py +39 -0
  714. vllm/model_executor/layers/pooler/activations.py +162 -0
  715. vllm/model_executor/layers/pooler/common.py +32 -0
  716. vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
  717. vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
  718. vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
  719. vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
  720. vllm/model_executor/layers/pooler/special.py +128 -0
  721. vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
  722. vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
  723. vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
  724. vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
  725. vllm/model_executor/layers/quantization/__init__.py +195 -0
  726. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  727. vllm/model_executor/layers/quantization/awq.py +277 -0
  728. vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
  729. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  730. vllm/model_executor/layers/quantization/base_config.py +170 -0
  731. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  732. vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
  733. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  734. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
  735. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
  736. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
  737. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  738. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  739. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  740. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
  741. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  742. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  743. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  744. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  745. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  746. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
  747. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  748. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  749. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  750. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  751. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  752. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  753. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  754. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  755. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  756. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  757. vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
  758. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  759. vllm/model_executor/layers/quantization/experts_int8.py +209 -0
  760. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  761. vllm/model_executor/layers/quantization/fp8.py +1224 -0
  762. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  763. vllm/model_executor/layers/quantization/gguf.py +682 -0
  764. vllm/model_executor/layers/quantization/gptq.py +393 -0
  765. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  766. vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
  767. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  768. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  769. vllm/model_executor/layers/quantization/inc.py +65 -0
  770. vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
  771. vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
  772. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  773. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  774. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
  775. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  776. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  777. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  778. vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
  779. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  780. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  781. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
  782. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  783. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  784. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  785. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  786. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
  787. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  788. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  789. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  790. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
  791. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  792. vllm/model_executor/layers/quantization/modelopt.py +1665 -0
  793. vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
  794. vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
  795. vllm/model_executor/layers/quantization/petit.py +319 -0
  796. vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
  797. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  798. vllm/model_executor/layers/quantization/quark/quark.py +570 -0
  799. vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
  800. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  801. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  802. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  803. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  804. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  805. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  806. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  807. vllm/model_executor/layers/quantization/rtn.py +626 -0
  808. vllm/model_executor/layers/quantization/schema.py +90 -0
  809. vllm/model_executor/layers/quantization/torchao.py +380 -0
  810. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  811. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  812. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1002. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1003. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1004. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1005. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1006. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1007. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1008. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1009. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1010. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1011. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1012. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1013. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1014. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1015. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1016. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1017. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1018. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1019. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1020. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1021. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1022. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1023. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1024. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1025. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1026. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1027. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1028. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
  1029. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
  1030. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
  1031. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1032. vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
  1033. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1034. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1035. vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
  1036. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
  1037. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1038. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1039. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1040. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1041. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1042. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1043. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1044. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1045. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1046. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1047. vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
  1048. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1049. vllm/model_executor/layers/resampler.py +283 -0
  1050. vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
  1051. vllm/model_executor/layers/rotary_embedding/base.py +282 -0
  1052. vllm/model_executor/layers/rotary_embedding/common.py +289 -0
  1053. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
  1054. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
  1055. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1056. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1057. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1058. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1059. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1060. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
  1061. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1062. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1063. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1064. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1065. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1066. vllm/model_executor/layers/utils.py +251 -0
  1067. vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
  1068. vllm/model_executor/model_loader/__init__.py +150 -0
  1069. vllm/model_executor/model_loader/base_loader.py +71 -0
  1070. vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
  1071. vllm/model_executor/model_loader/default_loader.py +304 -0
  1072. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1073. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1074. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1075. vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
  1076. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1077. vllm/model_executor/model_loader/tensorizer.py +793 -0
  1078. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1079. vllm/model_executor/model_loader/utils.py +299 -0
  1080. vllm/model_executor/model_loader/weight_utils.py +1183 -0
  1081. vllm/model_executor/models/__init__.py +44 -0
  1082. vllm/model_executor/models/adapters.py +592 -0
  1083. vllm/model_executor/models/afmoe.py +697 -0
  1084. vllm/model_executor/models/aimv2.py +248 -0
  1085. vllm/model_executor/models/apertus.py +567 -0
  1086. vllm/model_executor/models/arcee.py +428 -0
  1087. vllm/model_executor/models/arctic.py +633 -0
  1088. vllm/model_executor/models/aria.py +663 -0
  1089. vllm/model_executor/models/audioflamingo3.py +639 -0
  1090. vllm/model_executor/models/aya_vision.py +448 -0
  1091. vllm/model_executor/models/bagel.py +591 -0
  1092. vllm/model_executor/models/baichuan.py +493 -0
  1093. vllm/model_executor/models/bailing_moe.py +643 -0
  1094. vllm/model_executor/models/bamba.py +511 -0
  1095. vllm/model_executor/models/bee.py +157 -0
  1096. vllm/model_executor/models/bert.py +911 -0
  1097. vllm/model_executor/models/bert_with_rope.py +729 -0
  1098. vllm/model_executor/models/blip.py +350 -0
  1099. vllm/model_executor/models/blip2.py +736 -0
  1100. vllm/model_executor/models/bloom.py +390 -0
  1101. vllm/model_executor/models/chameleon.py +1095 -0
  1102. vllm/model_executor/models/chatglm.py +502 -0
  1103. vllm/model_executor/models/clip.py +1045 -0
  1104. vllm/model_executor/models/cohere2_vision.py +470 -0
  1105. vllm/model_executor/models/commandr.py +469 -0
  1106. vllm/model_executor/models/config.py +571 -0
  1107. vllm/model_executor/models/dbrx.py +484 -0
  1108. vllm/model_executor/models/deepencoder.py +679 -0
  1109. vllm/model_executor/models/deepseek_eagle.py +253 -0
  1110. vllm/model_executor/models/deepseek_mtp.py +447 -0
  1111. vllm/model_executor/models/deepseek_ocr.py +601 -0
  1112. vllm/model_executor/models/deepseek_v2.py +1727 -0
  1113. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1114. vllm/model_executor/models/dots1.py +566 -0
  1115. vllm/model_executor/models/dots_ocr.py +830 -0
  1116. vllm/model_executor/models/ernie45.py +53 -0
  1117. vllm/model_executor/models/ernie45_moe.py +755 -0
  1118. vllm/model_executor/models/ernie45_vl.py +1702 -0
  1119. vllm/model_executor/models/ernie45_vl_moe.py +801 -0
  1120. vllm/model_executor/models/ernie_mtp.py +278 -0
  1121. vllm/model_executor/models/exaone.py +524 -0
  1122. vllm/model_executor/models/exaone4.py +518 -0
  1123. vllm/model_executor/models/exaone_moe.py +579 -0
  1124. vllm/model_executor/models/exaone_moe_mtp.py +255 -0
  1125. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1126. vllm/model_executor/models/falcon.py +543 -0
  1127. vllm/model_executor/models/falcon_h1.py +675 -0
  1128. vllm/model_executor/models/flex_olmo.py +155 -0
  1129. vllm/model_executor/models/fuyu.py +371 -0
  1130. vllm/model_executor/models/gemma.py +425 -0
  1131. vllm/model_executor/models/gemma2.py +435 -0
  1132. vllm/model_executor/models/gemma3.py +520 -0
  1133. vllm/model_executor/models/gemma3_mm.py +664 -0
  1134. vllm/model_executor/models/gemma3n.py +1166 -0
  1135. vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
  1136. vllm/model_executor/models/gemma3n_mm.py +820 -0
  1137. vllm/model_executor/models/glm.py +24 -0
  1138. vllm/model_executor/models/glm4.py +295 -0
  1139. vllm/model_executor/models/glm4_1v.py +1823 -0
  1140. vllm/model_executor/models/glm4_moe.py +725 -0
  1141. vllm/model_executor/models/glm4_moe_mtp.py +365 -0
  1142. vllm/model_executor/models/glm4v.py +783 -0
  1143. vllm/model_executor/models/glmasr.py +1154 -0
  1144. vllm/model_executor/models/glmasr_utils.py +188 -0
  1145. vllm/model_executor/models/gpt2.py +385 -0
  1146. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1147. vllm/model_executor/models/gpt_j.py +346 -0
  1148. vllm/model_executor/models/gpt_neox.py +340 -0
  1149. vllm/model_executor/models/gpt_oss.py +745 -0
  1150. vllm/model_executor/models/granite.py +475 -0
  1151. vllm/model_executor/models/granite_speech.py +919 -0
  1152. vllm/model_executor/models/granitemoe.py +561 -0
  1153. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1154. vllm/model_executor/models/granitemoeshared.py +328 -0
  1155. vllm/model_executor/models/gritlm.py +242 -0
  1156. vllm/model_executor/models/grok1.py +803 -0
  1157. vllm/model_executor/models/h2ovl.py +554 -0
  1158. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1159. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1160. vllm/model_executor/models/hyperclovax_vision.py +1163 -0
  1161. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1162. vllm/model_executor/models/idefics3.py +734 -0
  1163. vllm/model_executor/models/interfaces.py +1180 -0
  1164. vllm/model_executor/models/interfaces_base.py +252 -0
  1165. vllm/model_executor/models/intern_vit.py +454 -0
  1166. vllm/model_executor/models/internlm2.py +451 -0
  1167. vllm/model_executor/models/internlm2_ve.py +139 -0
  1168. vllm/model_executor/models/interns1.py +828 -0
  1169. vllm/model_executor/models/interns1_vit.py +433 -0
  1170. vllm/model_executor/models/internvl.py +1436 -0
  1171. vllm/model_executor/models/iquest_loopcoder.py +595 -0
  1172. vllm/model_executor/models/isaac.py +1503 -0
  1173. vllm/model_executor/models/jais.py +397 -0
  1174. vllm/model_executor/models/jais2.py +508 -0
  1175. vllm/model_executor/models/jamba.py +599 -0
  1176. vllm/model_executor/models/jina_vl.py +145 -0
  1177. vllm/model_executor/models/kanana_v.py +756 -0
  1178. vllm/model_executor/models/keye.py +1709 -0
  1179. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1180. vllm/model_executor/models/kimi_linear.py +659 -0
  1181. vllm/model_executor/models/kimi_vl.py +577 -0
  1182. vllm/model_executor/models/lfm2.py +515 -0
  1183. vllm/model_executor/models/lfm2_moe.py +746 -0
  1184. vllm/model_executor/models/lfm2_vl.py +732 -0
  1185. vllm/model_executor/models/lightonocr.py +197 -0
  1186. vllm/model_executor/models/llama.py +724 -0
  1187. vllm/model_executor/models/llama4.py +860 -0
  1188. vllm/model_executor/models/llama4_eagle.py +225 -0
  1189. vllm/model_executor/models/llama_eagle.py +213 -0
  1190. vllm/model_executor/models/llama_eagle3.py +375 -0
  1191. vllm/model_executor/models/llava.py +879 -0
  1192. vllm/model_executor/models/llava_next.py +583 -0
  1193. vllm/model_executor/models/llava_next_video.py +467 -0
  1194. vllm/model_executor/models/llava_onevision.py +922 -0
  1195. vllm/model_executor/models/longcat_flash.py +767 -0
  1196. vllm/model_executor/models/longcat_flash_mtp.py +348 -0
  1197. vllm/model_executor/models/mamba.py +276 -0
  1198. vllm/model_executor/models/mamba2.py +288 -0
  1199. vllm/model_executor/models/medusa.py +179 -0
  1200. vllm/model_executor/models/midashenglm.py +826 -0
  1201. vllm/model_executor/models/mimo.py +188 -0
  1202. vllm/model_executor/models/mimo_mtp.py +294 -0
  1203. vllm/model_executor/models/mimo_v2_flash.py +718 -0
  1204. vllm/model_executor/models/minicpm.py +660 -0
  1205. vllm/model_executor/models/minicpm3.py +233 -0
  1206. vllm/model_executor/models/minicpm_eagle.py +386 -0
  1207. vllm/model_executor/models/minicpmo.py +768 -0
  1208. vllm/model_executor/models/minicpmv.py +1742 -0
  1209. vllm/model_executor/models/minimax_m2.py +552 -0
  1210. vllm/model_executor/models/minimax_text_01.py +1008 -0
  1211. vllm/model_executor/models/minimax_vl_01.py +395 -0
  1212. vllm/model_executor/models/mistral3.py +638 -0
  1213. vllm/model_executor/models/mistral_large_3.py +63 -0
  1214. vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
  1215. vllm/model_executor/models/mixtral.py +599 -0
  1216. vllm/model_executor/models/mllama4.py +1170 -0
  1217. vllm/model_executor/models/mlp_speculator.py +235 -0
  1218. vllm/model_executor/models/modernbert.py +458 -0
  1219. vllm/model_executor/models/module_mapping.py +74 -0
  1220. vllm/model_executor/models/molmo.py +1592 -0
  1221. vllm/model_executor/models/moonvit.py +601 -0
  1222. vllm/model_executor/models/mpt.py +335 -0
  1223. vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
  1224. vllm/model_executor/models/nemotron.py +499 -0
  1225. vllm/model_executor/models/nemotron_h.py +902 -0
  1226. vllm/model_executor/models/nemotron_nas.py +474 -0
  1227. vllm/model_executor/models/nemotron_parse.py +958 -0
  1228. vllm/model_executor/models/nemotron_vl.py +651 -0
  1229. vllm/model_executor/models/nvlm_d.py +216 -0
  1230. vllm/model_executor/models/olmo.py +412 -0
  1231. vllm/model_executor/models/olmo2.py +454 -0
  1232. vllm/model_executor/models/olmoe.py +498 -0
  1233. vllm/model_executor/models/opencua.py +262 -0
  1234. vllm/model_executor/models/openpangu.py +1378 -0
  1235. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1236. vllm/model_executor/models/opt.py +426 -0
  1237. vllm/model_executor/models/orion.py +365 -0
  1238. vllm/model_executor/models/ouro.py +507 -0
  1239. vllm/model_executor/models/ovis.py +557 -0
  1240. vllm/model_executor/models/ovis2_5.py +661 -0
  1241. vllm/model_executor/models/paddleocr_vl.py +1261 -0
  1242. vllm/model_executor/models/paligemma.py +429 -0
  1243. vllm/model_executor/models/persimmon.py +373 -0
  1244. vllm/model_executor/models/phi.py +363 -0
  1245. vllm/model_executor/models/phi3.py +18 -0
  1246. vllm/model_executor/models/phi3v.py +729 -0
  1247. vllm/model_executor/models/phi4mm.py +1250 -0
  1248. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1249. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1250. vllm/model_executor/models/phimoe.py +671 -0
  1251. vllm/model_executor/models/pixtral.py +1437 -0
  1252. vllm/model_executor/models/plamo2.py +993 -0
  1253. vllm/model_executor/models/plamo3.py +437 -0
  1254. vllm/model_executor/models/qwen.py +377 -0
  1255. vllm/model_executor/models/qwen2.py +600 -0
  1256. vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
  1257. vllm/model_executor/models/qwen2_5_vl.py +1598 -0
  1258. vllm/model_executor/models/qwen2_audio.py +478 -0
  1259. vllm/model_executor/models/qwen2_moe.py +604 -0
  1260. vllm/model_executor/models/qwen2_rm.py +120 -0
  1261. vllm/model_executor/models/qwen2_vl.py +1588 -0
  1262. vllm/model_executor/models/qwen3.py +331 -0
  1263. vllm/model_executor/models/qwen3_moe.py +752 -0
  1264. vllm/model_executor/models/qwen3_next.py +1410 -0
  1265. vllm/model_executor/models/qwen3_next_mtp.py +293 -0
  1266. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
  1267. vllm/model_executor/models/qwen3_vl.py +2120 -0
  1268. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1269. vllm/model_executor/models/qwen_vl.py +821 -0
  1270. vllm/model_executor/models/radio.py +573 -0
  1271. vllm/model_executor/models/registry.py +1218 -0
  1272. vllm/model_executor/models/roberta.py +239 -0
  1273. vllm/model_executor/models/rvl.py +107 -0
  1274. vllm/model_executor/models/seed_oss.py +492 -0
  1275. vllm/model_executor/models/siglip.py +1259 -0
  1276. vllm/model_executor/models/siglip2.py +495 -0
  1277. vllm/model_executor/models/siglip2navit.py +660 -0
  1278. vllm/model_executor/models/skyworkr1v.py +951 -0
  1279. vllm/model_executor/models/smolvlm.py +38 -0
  1280. vllm/model_executor/models/solar.py +484 -0
  1281. vllm/model_executor/models/stablelm.py +354 -0
  1282. vllm/model_executor/models/starcoder2.py +365 -0
  1283. vllm/model_executor/models/step3_text.py +554 -0
  1284. vllm/model_executor/models/step3_vl.py +1147 -0
  1285. vllm/model_executor/models/swin.py +500 -0
  1286. vllm/model_executor/models/tarsier.py +624 -0
  1287. vllm/model_executor/models/telechat2.py +153 -0
  1288. vllm/model_executor/models/teleflm.py +78 -0
  1289. vllm/model_executor/models/terratorch.py +318 -0
  1290. vllm/model_executor/models/transformers/__init__.py +127 -0
  1291. vllm/model_executor/models/transformers/base.py +523 -0
  1292. vllm/model_executor/models/transformers/causal.py +65 -0
  1293. vllm/model_executor/models/transformers/legacy.py +90 -0
  1294. vllm/model_executor/models/transformers/moe.py +329 -0
  1295. vllm/model_executor/models/transformers/multimodal.py +441 -0
  1296. vllm/model_executor/models/transformers/pooling.py +102 -0
  1297. vllm/model_executor/models/transformers/utils.py +253 -0
  1298. vllm/model_executor/models/ultravox.py +786 -0
  1299. vllm/model_executor/models/utils.py +832 -0
  1300. vllm/model_executor/models/vision.py +546 -0
  1301. vllm/model_executor/models/voxtral.py +867 -0
  1302. vllm/model_executor/models/voxtral_streaming.py +304 -0
  1303. vllm/model_executor/models/whisper.py +993 -0
  1304. vllm/model_executor/models/whisper_utils.py +299 -0
  1305. vllm/model_executor/models/zamba2.py +986 -0
  1306. vllm/model_executor/parameter.py +642 -0
  1307. vllm/model_executor/utils.py +113 -0
  1308. vllm/model_executor/warmup/__init__.py +0 -0
  1309. vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
  1310. vllm/model_executor/warmup/kernel_warmup.py +97 -0
  1311. vllm/model_inspection.py +136 -0
  1312. vllm/multimodal/__init__.py +38 -0
  1313. vllm/multimodal/audio.py +287 -0
  1314. vllm/multimodal/base.py +60 -0
  1315. vllm/multimodal/cache.py +829 -0
  1316. vllm/multimodal/evs.py +294 -0
  1317. vllm/multimodal/hasher.py +123 -0
  1318. vllm/multimodal/image.py +155 -0
  1319. vllm/multimodal/inputs.py +1027 -0
  1320. vllm/multimodal/parse.py +674 -0
  1321. vllm/multimodal/processing.py +2469 -0
  1322. vllm/multimodal/profiling.py +351 -0
  1323. vllm/multimodal/registry.py +375 -0
  1324. vllm/multimodal/utils.py +550 -0
  1325. vllm/multimodal/video.py +512 -0
  1326. vllm/outputs.py +347 -0
  1327. vllm/platforms/__init__.py +277 -0
  1328. vllm/platforms/cpu.py +423 -0
  1329. vllm/platforms/cuda.py +618 -0
  1330. vllm/platforms/interface.py +707 -0
  1331. vllm/platforms/rocm.py +586 -0
  1332. vllm/platforms/tpu.py +20 -0
  1333. vllm/platforms/xpu.py +262 -0
  1334. vllm/plugins/__init__.py +81 -0
  1335. vllm/plugins/io_processors/__init__.py +68 -0
  1336. vllm/plugins/io_processors/interface.py +77 -0
  1337. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1338. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1339. vllm/pooling_params.py +229 -0
  1340. vllm/profiler/__init__.py +0 -0
  1341. vllm/profiler/layerwise_profile.py +392 -0
  1342. vllm/profiler/utils.py +151 -0
  1343. vllm/profiler/wrapper.py +241 -0
  1344. vllm/py.typed +2 -0
  1345. vllm/ray/__init__.py +0 -0
  1346. vllm/ray/lazy_utils.py +30 -0
  1347. vllm/ray/ray_env.py +79 -0
  1348. vllm/reasoning/__init__.py +96 -0
  1349. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1350. vllm/reasoning/basic_parsers.py +175 -0
  1351. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1352. vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
  1353. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1354. vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
  1355. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1356. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1357. vllm/reasoning/holo2_reasoning_parser.py +89 -0
  1358. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1359. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1360. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1361. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1362. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1363. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1364. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1365. vllm/reasoning/step3_reasoning_parser.py +113 -0
  1366. vllm/sampling_params.py +629 -0
  1367. vllm/scalar_type.py +355 -0
  1368. vllm/scripts.py +17 -0
  1369. vllm/sequence.py +64 -0
  1370. vllm/tasks.py +13 -0
  1371. vllm/third_party/__init__.py +0 -0
  1372. vllm/third_party/pynvml.py +6140 -0
  1373. vllm/tokenizers/__init__.py +18 -0
  1374. vllm/tokenizers/deepseek_v32.py +187 -0
  1375. vllm/tokenizers/deepseek_v32_encoding.py +463 -0
  1376. vllm/tokenizers/detokenizer_utils.py +198 -0
  1377. vllm/tokenizers/grok2.py +443 -0
  1378. vllm/tokenizers/hf.py +119 -0
  1379. vllm/tokenizers/mistral.py +543 -0
  1380. vllm/tokenizers/protocol.py +123 -0
  1381. vllm/tokenizers/registry.py +238 -0
  1382. vllm/tool_parsers/__init__.py +158 -0
  1383. vllm/tool_parsers/abstract_tool_parser.py +274 -0
  1384. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1385. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1386. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1387. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1388. vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
  1389. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1390. vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
  1391. vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
  1392. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1393. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1394. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1395. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1396. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1397. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1398. vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
  1399. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1400. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1401. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1402. vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
  1403. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1404. vllm/tool_parsers/mistral_tool_parser.py +612 -0
  1405. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1406. vllm/tool_parsers/openai_tool_parser.py +111 -0
  1407. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1408. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1409. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1410. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1411. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1412. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1413. vllm/tool_parsers/utils.py +229 -0
  1414. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1415. vllm/tracing.py +135 -0
  1416. vllm/transformers_utils/__init__.py +26 -0
  1417. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1418. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1419. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1420. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1421. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1422. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1423. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1424. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1425. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1426. vllm/transformers_utils/config.py +1169 -0
  1427. vllm/transformers_utils/config_parser_base.py +20 -0
  1428. vllm/transformers_utils/configs/__init__.py +106 -0
  1429. vllm/transformers_utils/configs/afmoe.py +87 -0
  1430. vllm/transformers_utils/configs/arctic.py +216 -0
  1431. vllm/transformers_utils/configs/bagel.py +53 -0
  1432. vllm/transformers_utils/configs/chatglm.py +75 -0
  1433. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1434. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1435. vllm/transformers_utils/configs/eagle.py +90 -0
  1436. vllm/transformers_utils/configs/falcon.py +89 -0
  1437. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1438. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1439. vllm/transformers_utils/configs/isaac.py +100 -0
  1440. vllm/transformers_utils/configs/jais.py +243 -0
  1441. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1442. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1443. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1444. vllm/transformers_utils/configs/medusa.py +65 -0
  1445. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1446. vllm/transformers_utils/configs/mistral.py +263 -0
  1447. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1448. vllm/transformers_utils/configs/moonvit.py +33 -0
  1449. vllm/transformers_utils/configs/nemotron.py +220 -0
  1450. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1451. vllm/transformers_utils/configs/olmo3.py +83 -0
  1452. vllm/transformers_utils/configs/ovis.py +182 -0
  1453. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1454. vllm/transformers_utils/configs/radio.py +98 -0
  1455. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1456. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1457. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1458. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1459. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1460. vllm/transformers_utils/configs/ultravox.py +120 -0
  1461. vllm/transformers_utils/dynamic_module.py +70 -0
  1462. vllm/transformers_utils/gguf_utils.py +280 -0
  1463. vllm/transformers_utils/model_arch_config_convertor.py +402 -0
  1464. vllm/transformers_utils/processor.py +424 -0
  1465. vllm/transformers_utils/processors/__init__.py +25 -0
  1466. vllm/transformers_utils/processors/bagel.py +78 -0
  1467. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1468. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1469. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1470. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1471. vllm/transformers_utils/processors/ovis.py +453 -0
  1472. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1473. vllm/transformers_utils/repo_utils.py +287 -0
  1474. vllm/transformers_utils/runai_utils.py +102 -0
  1475. vllm/transformers_utils/s3_utils.py +95 -0
  1476. vllm/transformers_utils/tokenizer.py +19 -0
  1477. vllm/transformers_utils/utils.py +112 -0
  1478. vllm/triton_utils/__init__.py +20 -0
  1479. vllm/triton_utils/importing.py +103 -0
  1480. vllm/usage/__init__.py +0 -0
  1481. vllm/usage/usage_lib.py +278 -0
  1482. vllm/utils/__init__.py +36 -0
  1483. vllm/utils/argparse_utils.py +491 -0
  1484. vllm/utils/async_utils.py +310 -0
  1485. vllm/utils/cache.py +214 -0
  1486. vllm/utils/collection_utils.py +112 -0
  1487. vllm/utils/counter.py +45 -0
  1488. vllm/utils/deep_gemm.py +424 -0
  1489. vllm/utils/flashinfer.py +602 -0
  1490. vllm/utils/func_utils.py +236 -0
  1491. vllm/utils/gc_utils.py +151 -0
  1492. vllm/utils/hashing.py +117 -0
  1493. vllm/utils/import_utils.py +438 -0
  1494. vllm/utils/jsontree.py +158 -0
  1495. vllm/utils/math_utils.py +32 -0
  1496. vllm/utils/mem_constants.py +13 -0
  1497. vllm/utils/mem_utils.py +285 -0
  1498. vllm/utils/nccl.py +64 -0
  1499. vllm/utils/network_utils.py +331 -0
  1500. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1501. vllm/utils/platform_utils.py +59 -0
  1502. vllm/utils/profiling.py +56 -0
  1503. vllm/utils/registry.py +51 -0
  1504. vllm/utils/serial_utils.py +214 -0
  1505. vllm/utils/system_utils.py +296 -0
  1506. vllm/utils/tensor_schema.py +255 -0
  1507. vllm/utils/torch_utils.py +781 -0
  1508. vllm/v1/__init__.py +0 -0
  1509. vllm/v1/attention/__init__.py +0 -0
  1510. vllm/v1/attention/backend.py +736 -0
  1511. vllm/v1/attention/backends/__init__.py +0 -0
  1512. vllm/v1/attention/backends/cpu_attn.py +501 -0
  1513. vllm/v1/attention/backends/fa_utils.py +126 -0
  1514. vllm/v1/attention/backends/flash_attn.py +1092 -0
  1515. vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
  1516. vllm/v1/attention/backends/flashinfer.py +1713 -0
  1517. vllm/v1/attention/backends/flex_attention.py +1024 -0
  1518. vllm/v1/attention/backends/gdn_attn.py +382 -0
  1519. vllm/v1/attention/backends/linear_attn.py +77 -0
  1520. vllm/v1/attention/backends/mamba1_attn.py +28 -0
  1521. vllm/v1/attention/backends/mamba2_attn.py +256 -0
  1522. vllm/v1/attention/backends/mamba_attn.py +313 -0
  1523. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1524. vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
  1525. vllm/v1/attention/backends/mla/common.py +2156 -0
  1526. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1527. vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
  1528. vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
  1529. vllm/v1/attention/backends/mla/flashmla.py +321 -0
  1530. vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
  1531. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1532. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
  1533. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
  1534. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1535. vllm/v1/attention/backends/registry.py +258 -0
  1536. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1537. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1538. vllm/v1/attention/backends/rocm_attn.py +405 -0
  1539. vllm/v1/attention/backends/short_conv_attn.py +26 -0
  1540. vllm/v1/attention/backends/tree_attn.py +430 -0
  1541. vllm/v1/attention/backends/triton_attn.py +578 -0
  1542. vllm/v1/attention/backends/utils.py +978 -0
  1543. vllm/v1/attention/ops/__init__.py +0 -0
  1544. vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
  1545. vllm/v1/attention/ops/common.py +469 -0
  1546. vllm/v1/attention/ops/flashmla.py +254 -0
  1547. vllm/v1/attention/ops/merge_attn_states.py +47 -0
  1548. vllm/v1/attention/ops/paged_attn.py +51 -0
  1549. vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
  1550. vllm/v1/attention/ops/prefix_prefill.py +862 -0
  1551. vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  1552. vllm/v1/attention/ops/triton_decode_attention.py +709 -0
  1553. vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
  1554. vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
  1555. vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
  1556. vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
  1557. vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
  1558. vllm/v1/attention/selector.py +145 -0
  1559. vllm/v1/core/__init__.py +0 -0
  1560. vllm/v1/core/block_pool.py +489 -0
  1561. vllm/v1/core/encoder_cache_manager.py +402 -0
  1562. vllm/v1/core/kv_cache_coordinator.py +560 -0
  1563. vllm/v1/core/kv_cache_manager.py +485 -0
  1564. vllm/v1/core/kv_cache_metrics.py +96 -0
  1565. vllm/v1/core/kv_cache_utils.py +1642 -0
  1566. vllm/v1/core/sched/__init__.py +0 -0
  1567. vllm/v1/core/sched/async_scheduler.py +66 -0
  1568. vllm/v1/core/sched/interface.py +205 -0
  1569. vllm/v1/core/sched/output.py +261 -0
  1570. vllm/v1/core/sched/request_queue.py +208 -0
  1571. vllm/v1/core/sched/scheduler.py +1936 -0
  1572. vllm/v1/core/sched/utils.py +64 -0
  1573. vllm/v1/core/single_type_kv_cache_manager.py +926 -0
  1574. vllm/v1/cudagraph_dispatcher.py +183 -0
  1575. vllm/v1/engine/__init__.py +224 -0
  1576. vllm/v1/engine/async_llm.py +874 -0
  1577. vllm/v1/engine/coordinator.py +396 -0
  1578. vllm/v1/engine/core.py +1614 -0
  1579. vllm/v1/engine/core_client.py +1422 -0
  1580. vllm/v1/engine/detokenizer.py +351 -0
  1581. vllm/v1/engine/exceptions.py +18 -0
  1582. vllm/v1/engine/input_processor.py +713 -0
  1583. vllm/v1/engine/llm_engine.py +415 -0
  1584. vllm/v1/engine/logprobs.py +245 -0
  1585. vllm/v1/engine/output_processor.py +715 -0
  1586. vllm/v1/engine/parallel_sampling.py +150 -0
  1587. vllm/v1/engine/utils.py +1086 -0
  1588. vllm/v1/executor/__init__.py +6 -0
  1589. vllm/v1/executor/abstract.py +352 -0
  1590. vllm/v1/executor/multiproc_executor.py +888 -0
  1591. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1592. vllm/v1/executor/ray_executor.py +623 -0
  1593. vllm/v1/executor/ray_utils.py +468 -0
  1594. vllm/v1/executor/uniproc_executor.py +186 -0
  1595. vllm/v1/kv_cache_interface.py +485 -0
  1596. vllm/v1/kv_offload/__init__.py +0 -0
  1597. vllm/v1/kv_offload/abstract.py +161 -0
  1598. vllm/v1/kv_offload/arc_manager.py +237 -0
  1599. vllm/v1/kv_offload/backend.py +97 -0
  1600. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1601. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1602. vllm/v1/kv_offload/cpu.py +109 -0
  1603. vllm/v1/kv_offload/factory.py +58 -0
  1604. vllm/v1/kv_offload/lru_manager.py +139 -0
  1605. vllm/v1/kv_offload/mediums.py +39 -0
  1606. vllm/v1/kv_offload/spec.py +70 -0
  1607. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1608. vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
  1609. vllm/v1/kv_offload/worker/worker.py +163 -0
  1610. vllm/v1/metrics/__init__.py +0 -0
  1611. vllm/v1/metrics/loggers.py +1320 -0
  1612. vllm/v1/metrics/perf.py +1244 -0
  1613. vllm/v1/metrics/prometheus.py +82 -0
  1614. vllm/v1/metrics/ray_wrappers.py +194 -0
  1615. vllm/v1/metrics/reader.py +257 -0
  1616. vllm/v1/metrics/stats.py +440 -0
  1617. vllm/v1/outputs.py +242 -0
  1618. vllm/v1/pool/__init__.py +0 -0
  1619. vllm/v1/pool/metadata.py +124 -0
  1620. vllm/v1/request.py +281 -0
  1621. vllm/v1/sample/__init__.py +0 -0
  1622. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1623. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1624. vllm/v1/sample/logits_processor/interface.py +106 -0
  1625. vllm/v1/sample/logits_processor/state.py +165 -0
  1626. vllm/v1/sample/metadata.py +44 -0
  1627. vllm/v1/sample/ops/__init__.py +0 -0
  1628. vllm/v1/sample/ops/bad_words.py +57 -0
  1629. vllm/v1/sample/ops/logprobs.py +25 -0
  1630. vllm/v1/sample/ops/penalties.py +57 -0
  1631. vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
  1632. vllm/v1/sample/rejection_sampler.py +822 -0
  1633. vllm/v1/sample/sampler.py +319 -0
  1634. vllm/v1/sample/tpu/__init__.py +0 -0
  1635. vllm/v1/sample/tpu/metadata.py +120 -0
  1636. vllm/v1/sample/tpu/sampler.py +215 -0
  1637. vllm/v1/serial_utils.py +514 -0
  1638. vllm/v1/spec_decode/__init__.py +0 -0
  1639. vllm/v1/spec_decode/eagle.py +1346 -0
  1640. vllm/v1/spec_decode/medusa.py +73 -0
  1641. vllm/v1/spec_decode/metadata.py +66 -0
  1642. vllm/v1/spec_decode/metrics.py +225 -0
  1643. vllm/v1/spec_decode/ngram_proposer.py +281 -0
  1644. vllm/v1/spec_decode/suffix_decoding.py +95 -0
  1645. vllm/v1/spec_decode/utils.py +109 -0
  1646. vllm/v1/structured_output/__init__.py +337 -0
  1647. vllm/v1/structured_output/backend_guidance.py +291 -0
  1648. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1649. vllm/v1/structured_output/backend_outlines.py +324 -0
  1650. vllm/v1/structured_output/backend_types.py +136 -0
  1651. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1652. vllm/v1/structured_output/request.py +91 -0
  1653. vllm/v1/structured_output/utils.py +457 -0
  1654. vllm/v1/utils.py +466 -0
  1655. vllm/v1/worker/__init__.py +0 -0
  1656. vllm/v1/worker/block_table.py +343 -0
  1657. vllm/v1/worker/cp_utils.py +42 -0
  1658. vllm/v1/worker/cpu_model_runner.py +122 -0
  1659. vllm/v1/worker/cpu_worker.py +192 -0
  1660. vllm/v1/worker/dp_utils.py +240 -0
  1661. vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
  1662. vllm/v1/worker/gpu/README.md +4 -0
  1663. vllm/v1/worker/gpu/__init__.py +0 -0
  1664. vllm/v1/worker/gpu/async_utils.py +98 -0
  1665. vllm/v1/worker/gpu/attn_utils.py +183 -0
  1666. vllm/v1/worker/gpu/block_table.py +222 -0
  1667. vllm/v1/worker/gpu/buffer_utils.py +224 -0
  1668. vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
  1669. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1670. vllm/v1/worker/gpu/input_batch.py +526 -0
  1671. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1672. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1673. vllm/v1/worker/gpu/mm/__init__.py +0 -0
  1674. vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
  1675. vllm/v1/worker/gpu/model_runner.py +1005 -0
  1676. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1677. vllm/v1/worker/gpu/sample/gumbel.py +106 -0
  1678. vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
  1679. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1680. vllm/v1/worker/gpu/sample/metadata.py +79 -0
  1681. vllm/v1/worker/gpu/sample/min_p.py +58 -0
  1682. vllm/v1/worker/gpu/sample/output.py +14 -0
  1683. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1684. vllm/v1/worker/gpu/sample/sampler.py +88 -0
  1685. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1686. vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
  1687. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1688. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1689. vllm/v1/worker/gpu/states.py +282 -0
  1690. vllm/v1/worker/gpu/structured_outputs.py +100 -0
  1691. vllm/v1/worker/gpu_input_batch.py +1030 -0
  1692. vllm/v1/worker/gpu_model_runner.py +5761 -0
  1693. vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
  1694. vllm/v1/worker/gpu_worker.py +968 -0
  1695. vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
  1696. vllm/v1/worker/lora_model_runner_mixin.py +225 -0
  1697. vllm/v1/worker/tpu_input_batch.py +574 -0
  1698. vllm/v1/worker/tpu_worker.py +18 -0
  1699. vllm/v1/worker/ubatch_utils.py +112 -0
  1700. vllm/v1/worker/ubatching.py +242 -0
  1701. vllm/v1/worker/utils.py +400 -0
  1702. vllm/v1/worker/worker_base.py +372 -0
  1703. vllm/v1/worker/workspace.py +253 -0
  1704. vllm/v1/worker/xpu_model_runner.py +48 -0
  1705. vllm/v1/worker/xpu_worker.py +174 -0
  1706. vllm/version.py +39 -0
  1707. vllm/vllm_flash_attn/.gitkeep +0 -0
  1708. vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
  1709. vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
  1710. vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
  1711. vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
  1712. vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1725 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ # --------------------------------------------------------
4
+ # Adapted from
5
+ # https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/internvl.py
6
+ # under Apache-2.0 License
7
+ # LICENSE is in root directory.
8
+ # --------------------------------------------------------
9
+
10
+ import copy
11
+ import warnings
12
+ from abc import ABC, abstractmethod
13
+ from collections.abc import Iterable, Mapping, Sequence
14
+ from typing import Annotated, Any, Literal, TypeAlias, TypeVar
15
+
16
+ import numpy.typing as npt
17
+ import regex as re
18
+ import torch
19
+ import torch.nn as nn
20
+ import torchvision.transforms as T
21
+ from PIL import Image
22
+ from transformers import BatchFeature, PretrainedConfig, TensorType
23
+
24
+ from vllm.config import VllmConfig
25
+ from vllm.config.multimodal import BaseDummyOptions, VideoDummyOptions
26
+ from vllm.model_executor.layers.activation import ReLUSquaredActivation
27
+ from vllm.model_executor.layers.layernorm import RMSNorm
28
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
29
+ from vllm.model_executor.models.interfaces import (
30
+ HasInnerState,
31
+ IsHybrid,
32
+ MultiModalEmbeddings,
33
+ SupportsMultiModal,
34
+ SupportsMultiModalPruning,
35
+ )
36
+ from vllm.model_executor.models.internvl import (
37
+ calculate_internvl_targets,
38
+ get_internvl_target_ratios,
39
+ )
40
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
41
+ from vllm.model_executor.models.nemotron_h import NemotronHForCausalLM
42
+ from vllm.model_executor.models.radio import RadioModel
43
+ from vllm.model_executor.models.utils import (
44
+ init_vllm_registered_model,
45
+ maybe_prefix,
46
+ )
47
+ from vllm.multimodal import MULTIMODAL_REGISTRY
48
+ from vllm.multimodal.evs import (
49
+ compute_retained_tokens_count,
50
+ compute_retention_mask,
51
+ )
52
+ from vllm.multimodal.inputs import (
53
+ MultiModalDataDict,
54
+ MultiModalFieldConfig,
55
+ MultiModalKwargsItems,
56
+ VideoItem,
57
+ )
58
+ from vllm.multimodal.parse import (
59
+ ImageEmbeddingItems,
60
+ ImageProcessorItems,
61
+ ImageSize,
62
+ MultiModalDataItems,
63
+ MultiModalDataParser,
64
+ )
65
+ from vllm.multimodal.processing import (
66
+ BaseMultiModalProcessor,
67
+ BaseProcessingInfo,
68
+ PromptReplacement,
69
+ PromptUpdate,
70
+ PromptUpdateDetails,
71
+ _seq2tokens,
72
+ )
73
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
74
+ from vllm.sequence import IntermediateTensors
75
+ from vllm.tokenizers import TokenizerLike, cached_tokenizer_from_config
76
+ from vllm.transformers_utils.configs.radio import RadioConfig
77
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
78
+
79
+ from .utils import _merge_multimodal_embeddings
80
+
81
+ # Configure PIL to handle large images without warnings
82
+ # This prevents DecompressionBombWarning for legitimate large images
83
+ Image.MAX_IMAGE_PIXELS = None # Disable the limit entirely
84
+ # Alternative: Set a specific higher limit
85
+ # Image.MAX_IMAGE_PIXELS = 300000000 # ~300M pixels
86
+
87
+ IMG_START = "<img>"
88
+ IMG_END = "</img>"
89
+ IMG_CONTEXT = "<image>"
90
+
91
+ # Profiling
92
+ # MAX_FRAMES = 16
93
+ DEFAULT_NUM_TILES = 12
94
+
95
+
96
+ class NanoNemotronVLImagePixelInputs(TensorSchema):
97
+ """
98
+ Dimensions:
99
+ - bn: Batch size * number of images
100
+ - bnp: Batch size * number of images * (1 + num_patches)
101
+ - c: Number of channels (3)
102
+ - h: Height of each image patch
103
+ - w: Width of each image patch
104
+ """
105
+
106
+ type: Literal["pixel_values"]
107
+ pixel_values_flat: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w")]
108
+ num_patches: Annotated[torch.Tensor, TensorShape("bn")]
109
+
110
+
111
+ class NanoNemotronVLImageEmbeddingInputs(TensorSchema):
112
+ """
113
+ Dimensions:
114
+ - n: Number of images
115
+ - f: Total image feature size
116
+ - h: Hidden size (must match the hidden size of language model backbone)
117
+ """
118
+
119
+ type: Literal["image_embeds"]
120
+ data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("n", "f", "h")]
121
+
122
+
123
+ NanoNemotronVLImageInputs: TypeAlias = (
124
+ NanoNemotronVLImagePixelInputs | NanoNemotronVLImageEmbeddingInputs
125
+ )
126
+
127
+
128
+ class NanoNemotronVLVideoPixelInputs(TensorSchema):
129
+ """
130
+ Dimensions:
131
+ - bvf: Batch size * number of videos * num_frames
132
+ - bn: Batch size * number of videos
133
+ - f: Number of frames
134
+ - c: Number of channels (3)
135
+ - h: Height of each video frame
136
+ - w: Width of each video frame
137
+ """
138
+
139
+ type: Literal["pixel_values_videos"]
140
+ pixel_values_flat: Annotated[torch.Tensor, TensorShape("bvf", 3, "h", "w")]
141
+ num_patches: Annotated[torch.Tensor, TensorShape("bn")]
142
+ frames_indices: Annotated[torch.Tensor, TensorShape("bvf")]
143
+ frame_duration_ms: Annotated[torch.Tensor, TensorShape("bn")]
144
+
145
+
146
+ class NanoNemotronVLVideoEmbeddingInputs(TensorSchema):
147
+ """
148
+ Dimensions:
149
+ - n: Number of videos
150
+ - f: Total video feature size
151
+ - h: Hidden size (must match the hidden size of language model backbone)
152
+ """
153
+
154
+ type: Literal["video_embeds"]
155
+ data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("n", "f", "h")]
156
+
157
+
158
+ NanoNemotronVLVideoInputs: TypeAlias = (
159
+ NanoNemotronVLVideoPixelInputs | NanoNemotronVLVideoEmbeddingInputs
160
+ )
161
+
162
+
163
+ def dynamic_preprocess(
164
+ image, *, image_size=512, max_num_tiles=12, use_thumbnail=True, idx=0
165
+ ):
166
+ orig_width, orig_height = image.size
167
+
168
+ target_ratios = get_internvl_target_ratios(1, max_num_tiles)
169
+
170
+ blocks, target_width, target_height = calculate_internvl_targets(
171
+ orig_width=orig_width,
172
+ orig_height=orig_height,
173
+ target_ratios=target_ratios,
174
+ image_size=image_size,
175
+ use_thumbnail=False,
176
+ )
177
+ # resize the image
178
+ resized_img = image.resize((target_width, target_height))
179
+ processed_images = []
180
+ for i in range(blocks):
181
+ box = (
182
+ (i % (target_width // image_size)) * image_size,
183
+ (i // (target_width // image_size)) * image_size,
184
+ ((i % (target_width // image_size)) + 1) * image_size,
185
+ ((i // (target_width // image_size)) + 1) * image_size,
186
+ )
187
+ # split the image
188
+ split_img = resized_img.crop(box)
189
+ processed_images.append(split_img)
190
+ assert len(processed_images) == blocks
191
+ if use_thumbnail and len(processed_images) != 1:
192
+ thumbnail_img = image.resize((image_size, image_size))
193
+ processed_images.append(thumbnail_img)
194
+
195
+ processed_images = [
196
+ img.convert("RGB") if img.mode != "RGB" else img for img in processed_images
197
+ ]
198
+ processed_images = [
199
+ T.Resize((image_size, image_size), interpolation=T.InterpolationMode.BICUBIC)(
200
+ img
201
+ )
202
+ for img in processed_images
203
+ ]
204
+ processed_images = [T.ToTensor()(img) for img in processed_images]
205
+ return processed_images
206
+
207
+
208
+ def image_to_pixel_values(
209
+ image: Image.Image,
210
+ *,
211
+ input_size: int,
212
+ max_num: int,
213
+ use_thumbnail: bool,
214
+ idx: int,
215
+ ) -> torch.Tensor:
216
+ images = dynamic_preprocess(
217
+ image,
218
+ image_size=input_size,
219
+ max_num_tiles=max_num,
220
+ use_thumbnail=use_thumbnail,
221
+ idx=idx,
222
+ )
223
+
224
+ pixel_values = torch.stack(images)
225
+ return pixel_values
226
+
227
+
228
+ def video_to_pixel_values(
229
+ video: npt.NDArray,
230
+ *,
231
+ input_size: int,
232
+ max_num_tiles: int = 1,
233
+ use_thumbnail: bool,
234
+ ) -> torch.Tensor:
235
+ assert max_num_tiles == 1, "Video modality always uses one tile"
236
+
237
+ # Convert each frame to a single resized tile tensor consistent
238
+ # with image path
239
+ frames_tensors: list[torch.Tensor] = []
240
+ for frame in video:
241
+ pil_frame = dynamic_preprocess(
242
+ Image.fromarray(frame, mode="RGB"),
243
+ image_size=input_size,
244
+ max_num_tiles=max_num_tiles,
245
+ use_thumbnail=use_thumbnail,
246
+ idx=0,
247
+ )
248
+ # dynamic_preprocess returns tensors already; take the single tile
249
+ assert len(pil_frame) >= 1
250
+ frames_tensors.append(pil_frame[-1])
251
+
252
+ return torch.stack(frames_tensors)
253
+
254
+
255
+ def input_conditioner(x, norm_mean, norm_std):
256
+ return (x - norm_mean) / norm_std
257
+
258
+
259
+ def calculate_timestamps(
260
+ indices: list[int] | torch.Tensor,
261
+ frame_duration_ms: int,
262
+ ):
263
+ if not isinstance(indices, list):
264
+ indices = indices.tolist()
265
+
266
+ timestamps = [int(i) * frame_duration_ms / 1000.0 for i in indices]
267
+ return timestamps
268
+
269
+
270
+ class BaseNanoNemotronVLProcessor(ABC):
271
+ """
272
+ This model doesn't define its own HF processor,
273
+ so we implement our own one here.
274
+
275
+ The code to insert image tokens is based on:
276
+ https://huggingface.co/OpenGVLab/InternVL2-1B/blob/main/modeling_internvl_chat.py#L252
277
+ """
278
+
279
+ def __init__(
280
+ self,
281
+ config: PretrainedConfig,
282
+ tokenizer: TokenizerLike,
283
+ *args,
284
+ max_num_tiles: int | None = None,
285
+ **kwargs,
286
+ ) -> None:
287
+ super().__init__()
288
+
289
+ self.config = config
290
+ self.tokenizer = tokenizer
291
+
292
+ self.max_num_tiles = max_num_tiles or DEFAULT_NUM_TILES
293
+ image_size: int = config.force_image_size
294
+ patch_size: int = config.patch_size
295
+
296
+ self.num_image_token = int(
297
+ (image_size // patch_size) ** 2 * (config.downsample_ratio**2)
298
+ )
299
+ self.image_size = image_size
300
+ self.use_thumbnail: bool = config.use_thumbnail
301
+ self.norm_mean = torch.Tensor(config.norm_mean).reshape(1, 3, 1, 1)
302
+ self.norm_std = torch.Tensor(config.norm_std).reshape(1, 3, 1, 1)
303
+
304
+ @property
305
+ @abstractmethod
306
+ def image_token_id(self) -> int:
307
+ raise NotImplementedError
308
+
309
+ @abstractmethod
310
+ def get_image_repl(
311
+ self,
312
+ feature_size: int,
313
+ num_patches: int | None,
314
+ ) -> PromptUpdateDetails[str]:
315
+ raise NotImplementedError
316
+
317
+ def get_num_image_tokens(
318
+ self,
319
+ *,
320
+ image_width: int,
321
+ image_height: int,
322
+ max_num_tiles: int,
323
+ ) -> int:
324
+ target_ratios = get_internvl_target_ratios(1, max_num_tiles)
325
+
326
+ num_patches, _, _ = calculate_internvl_targets(
327
+ orig_width=image_width,
328
+ orig_height=image_height,
329
+ target_ratios=target_ratios,
330
+ image_size=self.image_size,
331
+ use_thumbnail=self.use_thumbnail,
332
+ )
333
+
334
+ return num_patches * self.num_image_token
335
+
336
+ def _images_to_pixel_values_lst(
337
+ self,
338
+ images: list[Image.Image],
339
+ max_num_tiles: int,
340
+ ) -> list[torch.Tensor]:
341
+ return [
342
+ image_to_pixel_values(
343
+ image,
344
+ input_size=self.image_size,
345
+ max_num=max_num_tiles,
346
+ use_thumbnail=self.use_thumbnail,
347
+ idx=idx,
348
+ )
349
+ for idx, image in enumerate(images)
350
+ ]
351
+
352
+ def _preprocess_image(
353
+ self,
354
+ text: list[str],
355
+ images: list[Image.Image],
356
+ max_num_tiles: int,
357
+ ) -> tuple[list[str], dict[str, torch.Tensor]]:
358
+ if len(images) == 0:
359
+ image_inputs = {}
360
+ else:
361
+ pixel_values_lst = self._images_to_pixel_values_lst(images, max_num_tiles)
362
+ image_inputs = {
363
+ "pixel_values_flat": input_conditioner(
364
+ torch.cat(pixel_values_lst), self.norm_mean, self.norm_std
365
+ ),
366
+ "image_num_patches": torch.tensor(
367
+ [len(item) for item in pixel_values_lst]
368
+ ),
369
+ }
370
+
371
+ assert len(text) == 1, (
372
+ "hf_processor is called on the output of get_dummy_text, "
373
+ "which should be a single string"
374
+ )
375
+ parts = [x for x in re.split(r"(<image>)", text[0]) if x]
376
+ assert parts.count("<image>") == len(pixel_values_lst), (
377
+ "the number of <image> tokens in the text should be the "
378
+ "same as the number of images"
379
+ )
380
+
381
+ for i, pixel_values in enumerate(pixel_values_lst):
382
+ num_patches = pixel_values.shape[0]
383
+ feature_size = num_patches * self.num_image_token
384
+ image_repl = self.get_image_repl(feature_size, num_patches)
385
+ parts[i] = parts[i].replace("<image>", image_repl.full)
386
+ text = ["".join(parts)]
387
+ return text, image_inputs
388
+
389
+ def _make_batch_input(self, input_item: Any | list[Any] | None = None):
390
+ if input_item is None:
391
+ input_item = []
392
+ if not isinstance(input_item, list):
393
+ input_item = [input_item]
394
+ return input_item
395
+
396
+ def __call__(
397
+ self,
398
+ text: str | list[str] | None = None,
399
+ images: Image.Image | list[Image.Image] | None = None,
400
+ return_tensors: str | TensorType | None = None,
401
+ max_num_tiles: int | None = None,
402
+ ) -> BatchFeature:
403
+ # Use default if not provided
404
+ if max_num_tiles is None:
405
+ max_num_tiles = self.max_num_tiles
406
+
407
+ text, images = [self._make_batch_input(x) for x in (text, images)]
408
+
409
+ text, image_inputs = self._preprocess_image(
410
+ text=text,
411
+ images=images,
412
+ max_num_tiles=max_num_tiles,
413
+ )
414
+
415
+ text_inputs = self.tokenizer(text, add_special_tokens=False)
416
+
417
+ combined_outputs = {**text_inputs, **image_inputs}
418
+
419
+ return BatchFeature(combined_outputs, tensor_type=return_tensors)
420
+
421
+
422
+ class NanoNemotronVLProcessor(BaseNanoNemotronVLProcessor):
423
+ """
424
+ HF Processor with extended video processing logic.
425
+ Code for video processing is adapted from video example:
426
+ https://huggingface.co/OpenGVLab/InternVL3-1B#inference-with-transformers
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ config: PretrainedConfig,
432
+ tokenizer: TokenizerLike,
433
+ *,
434
+ max_num_tiles: int | None = None,
435
+ min_dynamic_patch: int | None = None,
436
+ max_dynamic_patch: int | None = None,
437
+ dynamic_image_size: bool | None = None,
438
+ video_token: str | None = None,
439
+ video_pruning_rate: float | None = None,
440
+ ) -> None:
441
+ super().__init__(
442
+ config=config,
443
+ tokenizer=tokenizer,
444
+ max_num_tiles=max_num_tiles,
445
+ min_dynamic_patch=min_dynamic_patch,
446
+ max_dynamic_patch=max_dynamic_patch,
447
+ dynamic_image_size=dynamic_image_size,
448
+ )
449
+ # add extra video token for video processing
450
+ self.video_token = video_token
451
+ self.video_pruning_rate = video_pruning_rate
452
+
453
+ # Pre-tokenize special tokens for video processing
454
+ # to avoid repeated tokenization
455
+ self._img_start_token_ids = tokenizer.encode(
456
+ IMG_START, add_special_tokens=False
457
+ )
458
+ self._img_end_token_ids = tokenizer.encode(IMG_END, add_special_tokens=False)
459
+ self._img_context_token_ids = tokenizer.encode(
460
+ IMG_CONTEXT, add_special_tokens=False
461
+ )
462
+
463
+ @property
464
+ def supports_video(self) -> bool:
465
+ return self.video_token_id is not None
466
+
467
+ @property
468
+ def video_token_id(self) -> int | None:
469
+ if self.video_token is None:
470
+ return None
471
+ return self.tokenizer.get_vocab().get(self.video_token, None)
472
+
473
+ @property
474
+ def image_token_id(self) -> int:
475
+ return self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT)
476
+
477
+ def _videos_to_pixel_values_lst(
478
+ self,
479
+ videos: list[npt.NDArray],
480
+ max_num_tiles: int,
481
+ dynamic_image_size: bool | None = None,
482
+ ) -> list[torch.Tensor]:
483
+ return [
484
+ video_to_pixel_values(
485
+ video,
486
+ input_size=self.image_size,
487
+ max_num_tiles=max_num_tiles,
488
+ use_thumbnail=self.use_thumbnail,
489
+ )
490
+ for video in videos
491
+ ]
492
+
493
+ def _preprocess_video(
494
+ self,
495
+ text: list[str],
496
+ videos: list[tuple[npt.NDArray, dict[str, Any]]],
497
+ max_num_tiles: int,
498
+ dynamic_image_size: bool | None = None,
499
+ ):
500
+ if len(videos) == 0 or not self.supports_video:
501
+ video_inputs = {}
502
+ else:
503
+ videos_lst = [v[0] for v in videos]
504
+ video_metadata_lst = [v[1] for v in videos]
505
+ pixel_values_lst_video = self._videos_to_pixel_values_lst(
506
+ videos_lst,
507
+ max_num_tiles=max_num_tiles,
508
+ dynamic_image_size=dynamic_image_size,
509
+ )
510
+
511
+ # We use frame duration in milliseconds (as integer) to ensure
512
+ # we have consistent timestamps calculation. At preprocessing
513
+ # fps parameter is given in fp32, while at inference it is bf16
514
+ # which leads to inaccurate timestamp calculation and causes
515
+ # timestamp values to differ.In rare cases this causes
516
+ # mismatching number of output tokens for tokenized frame prefixes
517
+ frame_duration_ms_lst = [
518
+ int(1000.0 / metadata["fps"]) for metadata in video_metadata_lst
519
+ ]
520
+ frames_indices_lst = [
521
+ metadata["frames_indices"] for metadata in video_metadata_lst
522
+ ]
523
+
524
+ video_inputs = {
525
+ "pixel_values_flat_video": input_conditioner(
526
+ torch.cat(pixel_values_lst_video), self.norm_mean, self.norm_std
527
+ ),
528
+ "video_num_patches": torch.tensor(
529
+ [len(item) for item in pixel_values_lst_video]
530
+ ),
531
+ "frames_indices": frames_indices_lst,
532
+ "frame_duration_ms": torch.tensor(frame_duration_ms_lst),
533
+ }
534
+
535
+ image_size: int = self.config.force_image_size
536
+ patch_size: int = self.config.patch_size
537
+ downsample_ratio = self.config.downsample_ratio
538
+ tokens_in_single_frame = int(
539
+ (image_size * image_size // patch_size**2) * (downsample_ratio**2)
540
+ )
541
+
542
+ for pixel_values, video_metadata, frames_indices, frame_duration_ms in zip(
543
+ pixel_values_lst_video,
544
+ video_metadata_lst,
545
+ frames_indices_lst,
546
+ frame_duration_ms_lst,
547
+ ):
548
+ num_frames = pixel_values.shape[0]
549
+
550
+ if (
551
+ self.video_pruning_rate is not None
552
+ and self.video_pruning_rate > 0.0
553
+ ):
554
+ # Start of EVS-specific code
555
+ num_tokens = compute_retained_tokens_count(
556
+ tokens_per_frame=tokens_in_single_frame,
557
+ num_frames=num_frames,
558
+ q=self.video_pruning_rate,
559
+ )
560
+
561
+ # Here we just need placeholders that won't actually be replaced -
562
+ # we just need to make sure the total number of tokens is correct
563
+ # assign all tokens to the first frame
564
+ tokens_per_frame = [num_tokens] + [0] * (num_frames - 1)
565
+
566
+ # End of EVS-specific code
567
+ else:
568
+ tokens_per_frame = [tokens_in_single_frame] * num_frames
569
+
570
+ video_repl = self.get_video_repl(
571
+ tokens_per_frame=tokens_per_frame,
572
+ frames_indices=frames_indices,
573
+ frame_duration_ms=frame_duration_ms,
574
+ tokenizer=self.tokenizer,
575
+ img_start_token_ids=self._img_start_token_ids,
576
+ img_end_token_ids=self._img_end_token_ids,
577
+ img_context_token_ids=self._img_context_token_ids,
578
+ )
579
+
580
+ # video_repl.full is a list of token IDs
581
+ # Convert token IDs back to text for the HF processor flow
582
+ video_repl_text = self.tokenizer.decode(
583
+ video_repl.full, skip_special_tokens=False
584
+ )
585
+ text = [t.replace("<video>", video_repl_text, 1) for t in text]
586
+ return text, video_inputs
587
+
588
+ def __call__(
589
+ self,
590
+ text: str | list[str] | None = None,
591
+ images: Image.Image | list[Image.Image] | None = None,
592
+ videos: list[tuple[npt.NDArray, dict[str, Any]]] | None = None,
593
+ return_tensors: str | TensorType | None = None,
594
+ max_num_tiles: int | None = None,
595
+ dynamic_image_size: bool | None = None,
596
+ ) -> BatchFeature:
597
+ # Use default if not provided
598
+ if max_num_tiles is None:
599
+ max_num_tiles = self.max_num_tiles
600
+
601
+ text, images, videos = [
602
+ self._make_batch_input(x) for x in (text, images, videos)
603
+ ]
604
+
605
+ text, image_inputs = self._preprocess_image(
606
+ text=text,
607
+ images=images,
608
+ max_num_tiles=max_num_tiles,
609
+ )
610
+
611
+ text, video_inputs = self._preprocess_video(
612
+ text=text,
613
+ videos=videos,
614
+ max_num_tiles=1,
615
+ dynamic_image_size=dynamic_image_size,
616
+ )
617
+
618
+ text_inputs = self.tokenizer(text, add_special_tokens=False)
619
+
620
+ combined_outputs = {**text_inputs, **image_inputs, **video_inputs}
621
+
622
+ return BatchFeature(combined_outputs, tensor_type=return_tensors)
623
+
624
+ def get_image_repl(
625
+ self,
626
+ feature_size: int,
627
+ num_patches: int | None,
628
+ ) -> PromptUpdateDetails[str]:
629
+ repl_features = IMG_CONTEXT * feature_size
630
+ repl_full = IMG_START + repl_features + IMG_END
631
+
632
+ return PromptUpdateDetails.select_text(repl_full, IMG_CONTEXT)
633
+
634
+ @classmethod
635
+ def get_video_repl(
636
+ cls,
637
+ *,
638
+ tokens_per_frame: list[int],
639
+ frames_indices: list[int],
640
+ frame_duration_ms: int,
641
+ tokenizer: TokenizerLike,
642
+ img_start_token_ids: list[int],
643
+ img_end_token_ids: list[int],
644
+ img_context_token_ids: list[int],
645
+ ) -> PromptUpdateDetails[list[int]]:
646
+ """
647
+ Build prompt replacement for a video.
648
+ The replacement returned is not actually used to replace the placeholder
649
+ tokens - it's just used to make sure we allocate the correct number
650
+ of tokens.
651
+ Actual replacement is done in embed_multimodal of
652
+ NemotronH_Nano_VL_V2
653
+ (specifically in _process_video_input -> _create_final_video_embeddings).
654
+ There, we create the final embeddings with text embeddings for indicator tokens
655
+ and video embeddings for video tokens.
656
+ This is a single function that handles all cases - non EVS, EVS dummy, EVS real.
657
+ The differentiation is done via tokens_per_frame parameter.
658
+ - non EVS case - constant value same value across all frames
659
+ - EVS dummy - Doesn't matter how tokens are distributed between frames - just
660
+ make sure the total number of tokens is correct.
661
+ - EVS real (called from get_real_video_repl_for_evs) - different value per frame
662
+ Args:
663
+ tokens_per_frame (list[int]): number of tokens per frame
664
+ frames_indices (list[int]): frame indices
665
+ frame_duration_ms (int): duration of each frame in milliseconds
666
+ tokenizer (TokenizerLike): tokenizer to use for tokenizing frame separators
667
+ img_start_token_ids (list[int]): pre-tokenized IMG_START tokens
668
+ img_end_token_ids (list[int]): pre-tokenized IMG_END tokens
669
+ img_context_token_ids (list[int]): pre-tokenized IMG_CONTEXT tokens
670
+ """
671
+ # TODO: Add support of frame_duration_ms to be None
672
+ # At preprocessing step we should allow absent / metadata without
673
+ # frames_indices field.
674
+ timestamps_enabled = frame_duration_ms is not None
675
+
676
+ if timestamps_enabled:
677
+ timestamps = calculate_timestamps(frames_indices, frame_duration_ms)
678
+
679
+ assert len(timestamps) == len(tokens_per_frame), (
680
+ "timestamps and tokens_per_frame must have the same length"
681
+ )
682
+ frame_separators = [
683
+ f"Frame {i + 1} sampled at {timestamp:.2f} seconds: "
684
+ for i, timestamp in enumerate(timestamps)
685
+ ]
686
+ else:
687
+ frame_separators = [
688
+ f"Frame {i + 1}: " for i, _ in enumerate(tokens_per_frame)
689
+ ]
690
+
691
+ # Tokenize frame separator independently
692
+ frame_separators_tokenized = [
693
+ _seq2tokens(tokenizer, sep) for sep in frame_separators
694
+ ]
695
+
696
+ # Tokenize each component independently to avoid tokenizer merging tokens
697
+ # across boundaries. This ensures consistent tokenization regardless of
698
+ # num_tokens_per_frame values.
699
+ all_token_ids = []
700
+ for i, num_tokens in enumerate(tokens_per_frame):
701
+ frame_sep_token_ids = frame_separators_tokenized[i]
702
+ all_token_ids.extend(frame_sep_token_ids)
703
+
704
+ # Add pre-tokenized special tokens
705
+ all_token_ids.extend(img_start_token_ids)
706
+ all_token_ids.extend(img_context_token_ids * num_tokens)
707
+ all_token_ids.extend(img_end_token_ids)
708
+
709
+ return PromptUpdateDetails.from_seq(all_token_ids)
710
+
711
+
712
+ class BaseNanoNemotronVLProcessingInfo(BaseProcessingInfo):
713
+ """Basic image-only ProcessingInfo for InternVL-style models."""
714
+
715
+ @abstractmethod
716
+ def get_hf_processor(
717
+ self,
718
+ **kwargs: object,
719
+ ) -> BaseNanoNemotronVLProcessor:
720
+ raise NotImplementedError
721
+
722
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
723
+ return {"image": None}
724
+
725
+ def get_num_image_tokens(
726
+ self,
727
+ *,
728
+ image_width: int,
729
+ image_height: int,
730
+ max_num_tiles: int,
731
+ processor: BaseNanoNemotronVLProcessor | None,
732
+ ) -> int:
733
+ if processor is None:
734
+ processor = self.get_hf_processor()
735
+
736
+ return processor.get_num_image_tokens(
737
+ image_width=image_width,
738
+ image_height=image_height,
739
+ max_num_tiles=max_num_tiles,
740
+ )
741
+
742
+ def get_image_size_with_most_features(self, max_num_tiles: int) -> ImageSize:
743
+ processor = self.get_hf_processor()
744
+
745
+ base_size = processor.image_size
746
+ target_ratios = get_internvl_target_ratios(1, max_num_tiles)
747
+
748
+ largest_feature_size, largest_feature_pinpoint = 0, None
749
+ for wr, hr in target_ratios:
750
+ width, height = base_size * wr, base_size * hr
751
+
752
+ feat_size = self.get_num_image_tokens(
753
+ image_width=width,
754
+ image_height=height,
755
+ max_num_tiles=max_num_tiles,
756
+ processor=processor,
757
+ )
758
+ if feat_size > largest_feature_size:
759
+ largest_feature_size = feat_size
760
+ largest_feature_pinpoint = ImageSize(width=width, height=height)
761
+
762
+ if largest_feature_size == 0 or largest_feature_pinpoint is None:
763
+ raise ValueError("Cannot have a largest feature size of 0!")
764
+
765
+ return largest_feature_pinpoint
766
+
767
+ def get_max_image_tokens(self) -> int:
768
+ processor = self.get_hf_processor()
769
+ # Use default max_num_tiles for max tokens calculation
770
+ max_num_tiles = processor.max_num_tiles
771
+ target_width, target_height = self.get_image_size_with_most_features(
772
+ max_num_tiles
773
+ )
774
+
775
+ return self.get_num_image_tokens(
776
+ image_width=target_width,
777
+ image_height=target_height,
778
+ max_num_tiles=max_num_tiles,
779
+ processor=processor,
780
+ )
781
+
782
+
783
+ _I = TypeVar("_I", bound=BaseNanoNemotronVLProcessingInfo)
784
+
785
+
786
+ class NanoNemotronVLProcessingInfo(BaseNanoNemotronVLProcessingInfo):
787
+ """ProcessingInfo extended for video processing"""
788
+
789
+ @property
790
+ def supports_video(self):
791
+ return self.get_hf_processor().supports_video
792
+
793
+ def get_supported_mm_limits(self):
794
+ video_limit = {"video": None} if self.supports_video else {}
795
+ return {**super().get_supported_mm_limits(), **video_limit}
796
+
797
+ def get_video_token(self) -> str | None:
798
+ return IMG_CONTEXT
799
+
800
+ def get_video_pruning_rate(self) -> float | None:
801
+ return self.ctx.get_mm_config().video_pruning_rate
802
+
803
+ def get_num_frames_with_most_features(
804
+ self,
805
+ seq_len: int,
806
+ mm_counts: Mapping[str, int],
807
+ ) -> int:
808
+ max_images = mm_counts.get("image", 0)
809
+ max_videos = mm_counts.get("video", 0)
810
+
811
+ processor = self.get_hf_processor() # we get the CustomProcessor here
812
+
813
+ max_image_tokens = self.get_max_image_tokens() * max_images
814
+ max_total_frames = (seq_len - max_image_tokens) // processor.num_image_token
815
+ max_frames_per_video = max_total_frames // max(max_videos, 1)
816
+ return max(max_frames_per_video, 1)
817
+
818
+ def get_hf_processor(self, **kwargs: object) -> NanoNemotronVLProcessor:
819
+ return self.ctx.init_processor(
820
+ NanoNemotronVLProcessor,
821
+ config=self.get_hf_config(),
822
+ tokenizer=self.get_tokenizer(),
823
+ video_token=self.get_video_token(),
824
+ video_pruning_rate=self.get_video_pruning_rate(),
825
+ **kwargs,
826
+ )
827
+
828
+
829
+ class NanoNemotronBaseVLMultiModalProcessor(BaseMultiModalProcessor[_I]):
830
+ """Basic image-only MultiModalProcessor for InternVL-style models."""
831
+
832
+ def _get_mm_fields_config(
833
+ self,
834
+ hf_inputs: BatchFeature,
835
+ hf_processor_mm_kwargs: Mapping[str, object],
836
+ ) -> Mapping[str, MultiModalFieldConfig]:
837
+ image_num_patches = hf_inputs.get("image_num_patches", torch.empty(0))
838
+
839
+ return dict(
840
+ pixel_values_flat=MultiModalFieldConfig.flat_from_sizes(
841
+ "image", image_num_patches
842
+ ),
843
+ image_num_patches=MultiModalFieldConfig.batched("image"),
844
+ image_embeds=MultiModalFieldConfig.batched("image"),
845
+ )
846
+
847
+ def _get_prompt_updates(
848
+ self,
849
+ mm_items: MultiModalDataItems,
850
+ hf_processor_mm_kwargs: Mapping[str, object],
851
+ out_mm_kwargs: MultiModalKwargsItems,
852
+ ) -> Sequence[PromptUpdate]:
853
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
854
+
855
+ out_mm_data = out_mm_kwargs.get_data()
856
+ if "image_num_patches" in out_mm_data:
857
+ image_num_patches = out_mm_data["image_num_patches"]
858
+ assert isinstance(image_num_patches, torch.Tensor)
859
+ image_num_patches = image_num_patches.tolist()
860
+ elif "image_embeds" in out_mm_data:
861
+ # to compute num_patches (similar to Qwen2-VL)
862
+ image_num_patches = [None] * len(out_mm_data["image_embeds"])
863
+ else:
864
+ image_num_patches = []
865
+
866
+ def get_replacement_custom(item_idx: int):
867
+ images = mm_items.get_items(
868
+ "image", (ImageEmbeddingItems, ImageProcessorItems)
869
+ )
870
+
871
+ if isinstance(images, ImageEmbeddingItems):
872
+ feature_size = images.get_feature_size(item_idx)
873
+ else:
874
+ image_size = images.get_image_size(item_idx)
875
+ # Extract max_num_tiles from kwargs, default to 12
876
+ max_num_tiles = hf_processor_mm_kwargs.get(
877
+ "max_num_tiles", hf_processor.max_num_tiles
878
+ )
879
+ feature_size = self.info.get_num_image_tokens(
880
+ image_width=image_size.width,
881
+ image_height=image_size.height,
882
+ max_num_tiles=max_num_tiles,
883
+ processor=hf_processor,
884
+ )
885
+
886
+ num_patches = None
887
+ local_image_num_patches = image_num_patches
888
+ if isinstance(local_image_num_patches, torch.Tensor):
889
+ local_image_num_patches = local_image_num_patches.tolist()
890
+ if isinstance(local_image_num_patches, (list, tuple)) and item_idx < len(
891
+ local_image_num_patches
892
+ ):
893
+ num_patches = int(local_image_num_patches[item_idx])
894
+
895
+ return hf_processor.get_image_repl(feature_size, num_patches)
896
+
897
+ return [
898
+ PromptReplacement(
899
+ modality="image",
900
+ target="<image>",
901
+ replacement=get_replacement_custom,
902
+ )
903
+ ]
904
+
905
+
906
+ class NanoNemotronVLMultiModalProcessor(
907
+ NanoNemotronBaseVLMultiModalProcessor[NanoNemotronVLProcessingInfo]
908
+ ):
909
+ """MultiModalProcessor extended for video support"""
910
+
911
+ def _get_data_parser(self) -> MultiModalDataParser:
912
+ return MultiModalDataParser(video_needs_metadata=True)
913
+
914
+ def _get_mm_fields_config(
915
+ self,
916
+ hf_inputs: BatchFeature,
917
+ hf_processor_mm_kwargs: Mapping[str, object],
918
+ ) -> Mapping[str, MultiModalFieldConfig]:
919
+ image_fields = super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs)
920
+ if self.info.supports_video:
921
+ video_num_patches = hf_inputs.get("video_num_patches", torch.empty(0))
922
+
923
+ video_fields = dict(
924
+ pixel_values_flat_video=MultiModalFieldConfig.flat_from_sizes(
925
+ "video", video_num_patches
926
+ ),
927
+ video_num_patches=MultiModalFieldConfig.batched("video"),
928
+ frames_indices=MultiModalFieldConfig.batched("video"),
929
+ frame_duration_ms=MultiModalFieldConfig.batched("video"),
930
+ )
931
+ else:
932
+ video_fields = {}
933
+
934
+ return image_fields | video_fields
935
+
936
+ def _get_prompt_updates(
937
+ self,
938
+ mm_items: MultiModalDataItems,
939
+ hf_processor_mm_kwargs: Mapping[str, object],
940
+ out_mm_kwargs: MultiModalKwargsItems,
941
+ ) -> Sequence[PromptUpdate]:
942
+ prompt_repl = super()._get_prompt_updates(
943
+ mm_items=mm_items,
944
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
945
+ out_mm_kwargs=out_mm_kwargs,
946
+ )
947
+
948
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
949
+
950
+ out_mm_data = out_mm_kwargs.get_data()
951
+ if "video_num_patches" in out_mm_data:
952
+ video_num_patches = out_mm_data["video_num_patches"]
953
+ assert isinstance(video_num_patches, torch.Tensor)
954
+ video_num_patches = video_num_patches.tolist()
955
+ else:
956
+ video_num_patches = []
957
+
958
+ def get_video_replacement_internvl(item_idx: int):
959
+ feature_size = hf_processor.num_image_token
960
+ video, metadata = mm_items["video"][item_idx]
961
+ num_patches = video_num_patches[item_idx]
962
+ if num_patches is not None:
963
+ assert isinstance(num_patches, int)
964
+
965
+ video_pruning_rate = self.info.ctx.get_mm_config().video_pruning_rate
966
+ if video_pruning_rate is not None and video_pruning_rate > 0.0:
967
+ # Start of EVS-specific code
968
+ num_tokens = compute_retained_tokens_count(
969
+ tokens_per_frame=feature_size,
970
+ num_frames=num_patches,
971
+ q=video_pruning_rate,
972
+ )
973
+ # Here we just need placeholders that won't actually be replaced -
974
+ # we just need to make sure the total number of tokens is correct
975
+ # assign all tokens to the first frame
976
+ tokens_per_frame = [num_tokens] + [0] * (num_patches - 1)
977
+
978
+ # End of EVS-specific code
979
+ else:
980
+ tokens_per_frame = [feature_size] * num_patches
981
+
982
+ frame_duration_ms = int(1000 / metadata["fps"])
983
+ return hf_processor.get_video_repl(
984
+ tokens_per_frame=tokens_per_frame,
985
+ frames_indices=metadata["frames_indices"],
986
+ frame_duration_ms=frame_duration_ms,
987
+ tokenizer=hf_processor.tokenizer,
988
+ img_start_token_ids=hf_processor._img_start_token_ids,
989
+ img_end_token_ids=hf_processor._img_end_token_ids,
990
+ img_context_token_ids=hf_processor._img_context_token_ids,
991
+ )
992
+
993
+ if self.info.supports_video:
994
+ prompt_repl = [
995
+ *prompt_repl,
996
+ PromptReplacement(
997
+ modality="video",
998
+ target="<video>",
999
+ replacement=get_video_replacement_internvl,
1000
+ ),
1001
+ ]
1002
+
1003
+ return prompt_repl
1004
+
1005
+
1006
+ class NanoNemotronVLDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
1007
+ """Basic image-only DummyInputsBuilder for InternVL-style models."""
1008
+
1009
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1010
+ num_images = mm_counts.get("image", 0)
1011
+
1012
+ return "<image>" * num_images
1013
+
1014
+ def get_dummy_mm_data(
1015
+ self,
1016
+ seq_len: int,
1017
+ mm_counts: Mapping[str, int],
1018
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
1019
+ ) -> MultiModalDataDict:
1020
+ # Use default max_num_tiles for dummy data generation
1021
+ max_num_tiles = 12
1022
+ target_width, target_height = self.info.get_image_size_with_most_features(
1023
+ max_num_tiles
1024
+ )
1025
+ num_images = mm_counts.get("image", 0)
1026
+
1027
+ image_overrides = mm_options.get("image") if mm_options else None
1028
+
1029
+ return {
1030
+ "image": self._get_dummy_images(
1031
+ width=target_width,
1032
+ height=target_height,
1033
+ num_images=num_images,
1034
+ overrides=image_overrides,
1035
+ )
1036
+ }
1037
+
1038
+
1039
+ class NanoNemotronVLDummyInputsBuilder(
1040
+ NanoNemotronVLDummyInputsBuilder[NanoNemotronVLProcessingInfo]
1041
+ ):
1042
+ """DummyInputsBuilder extended for video support"""
1043
+
1044
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1045
+ num_videos = mm_counts.get("video", 0)
1046
+
1047
+ return super().get_dummy_text(mm_counts) + "<video>" * num_videos
1048
+
1049
+ def _get_dummy_videos(
1050
+ self,
1051
+ *,
1052
+ width: int,
1053
+ height: int,
1054
+ num_frames: int,
1055
+ num_videos: int,
1056
+ overrides: VideoDummyOptions | None = None,
1057
+ ) -> list[VideoItem]:
1058
+ video = super()._get_dummy_videos(
1059
+ width=width,
1060
+ height=height,
1061
+ num_frames=num_frames,
1062
+ num_videos=1,
1063
+ overrides=overrides,
1064
+ )[0]
1065
+ video_items = []
1066
+ for _ in range(num_videos):
1067
+ video_metadata = {
1068
+ "total_num_frames": num_frames,
1069
+ "fps": 2,
1070
+ "duration": num_frames / 2.0,
1071
+ "video_backend": "opencv_dynamic",
1072
+ "frames_indices": [i for i in range(num_frames)],
1073
+ "do_sample_frames": False,
1074
+ }
1075
+ video_item = (video.copy(), video_metadata)
1076
+ video_items.append(video_item)
1077
+
1078
+ return video_items
1079
+
1080
+ def get_dummy_mm_data(
1081
+ self,
1082
+ seq_len: int,
1083
+ mm_counts: Mapping[str, int],
1084
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
1085
+ ) -> MultiModalDataDict:
1086
+ dummy_image = super().get_dummy_mm_data(
1087
+ seq_len=seq_len, mm_counts=mm_counts, mm_options=mm_options
1088
+ )
1089
+ if self.info.supports_video:
1090
+ config = self.info.get_hf_config()
1091
+ image_size: int = config.force_image_size
1092
+ target_num_frames = self.info.get_num_frames_with_most_features(
1093
+ seq_len, mm_counts
1094
+ )
1095
+ num_videos = mm_counts.get("video", 0)
1096
+ video_overrides = mm_options.get("video") if mm_options else None
1097
+ dummy_video = {
1098
+ "video": self._get_dummy_videos(
1099
+ width=image_size,
1100
+ height=image_size,
1101
+ num_frames=target_num_frames,
1102
+ num_videos=num_videos,
1103
+ overrides=video_overrides,
1104
+ )
1105
+ }
1106
+ else:
1107
+ dummy_video = {}
1108
+ return {**dummy_image, **dummy_video}
1109
+
1110
+
1111
+ @MULTIMODAL_REGISTRY.register_processor(
1112
+ NanoNemotronVLMultiModalProcessor,
1113
+ info=NanoNemotronVLProcessingInfo,
1114
+ dummy_inputs=NanoNemotronVLDummyInputsBuilder,
1115
+ )
1116
+ class NemotronH_Nano_VL_V2(
1117
+ nn.Module, HasInnerState, IsHybrid, SupportsMultiModal, SupportsMultiModalPruning
1118
+ ):
1119
+ @classmethod
1120
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
1121
+ if modality.startswith("image"):
1122
+ return "<image>"
1123
+ if modality.startswith("video"):
1124
+ return "<video>"
1125
+ return None
1126
+
1127
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1128
+ super().__init__()
1129
+ config = vllm_config.model_config.hf_config
1130
+ multimodal_config = vllm_config.model_config.multimodal_config
1131
+ image_size = config.force_image_size
1132
+ patch_size = config.patch_size
1133
+ self.patch_size = patch_size
1134
+ self.template = config.template
1135
+ self.num_image_token = int(
1136
+ (image_size // patch_size) ** 2 * (config.downsample_ratio**2)
1137
+ )
1138
+ self.downsample_ratio = config.downsample_ratio
1139
+ self.ps_version = config.ps_version
1140
+ self.image_tag_type = config.image_tag_type
1141
+ self.video_pruning_rate = multimodal_config.video_pruning_rate
1142
+ self.language_model = init_vllm_registered_model(
1143
+ vllm_config=vllm_config,
1144
+ hf_config=config.text_config,
1145
+ prefix=maybe_prefix(prefix, "language_model"),
1146
+ )
1147
+ self.vision_model = self.get_vit_model_from_radio_config(config).to(
1148
+ self.language_model.config.dtype
1149
+ )
1150
+
1151
+ # Construct the vision projection.
1152
+ vit_hidden_size = config.vit_hidden_size
1153
+ vision_projection_hidden_size = config.projector_hidden_size
1154
+ llm_hidden_size = config.text_config.hidden_size
1155
+
1156
+ self.mlp1 = nn.Sequential(
1157
+ RMSNorm(
1158
+ hidden_size=vit_hidden_size * int(1 / self.downsample_ratio) ** 2,
1159
+ eps=1e-5,
1160
+ ),
1161
+ nn.Linear(
1162
+ vit_hidden_size * int(1 / self.downsample_ratio) ** 2,
1163
+ vision_projection_hidden_size,
1164
+ bias=False,
1165
+ ),
1166
+ ReLUSquaredActivation(),
1167
+ nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False),
1168
+ )
1169
+ self.mlp1 = self.mlp1.to(self.language_model.config.dtype)
1170
+
1171
+ self.config = config
1172
+ self.model_config = vllm_config.model_config
1173
+
1174
+ # Pre-tokenize special tokens for video processing
1175
+ # to avoid repeated tokenization
1176
+ tokenizer = cached_tokenizer_from_config(vllm_config.model_config)
1177
+ self._img_start_token_ids = tokenizer.encode(
1178
+ IMG_START, add_special_tokens=False
1179
+ )
1180
+ self._img_end_token_ids = tokenizer.encode(IMG_END, add_special_tokens=False)
1181
+ self._img_context_token_ids = tokenizer.encode(
1182
+ IMG_CONTEXT, add_special_tokens=False
1183
+ )
1184
+
1185
+ def pixel_shuffle(self, x, scale_factor=0.5):
1186
+ n, w, h, c = x.size()
1187
+ # N, W, H, C --> N, W, H * scale, C // scale
1188
+ x = x.view(
1189
+ n,
1190
+ w,
1191
+ int(h * scale_factor),
1192
+ int(c / scale_factor),
1193
+ )
1194
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
1195
+ x = x.permute(0, 2, 1, 3).contiguous()
1196
+ # N, H * scale, W, C // scale -->
1197
+ # N, H * scale, W * scale, C // (scale ** 2)
1198
+ x = x.view(
1199
+ n,
1200
+ int(h * scale_factor),
1201
+ int(w * scale_factor),
1202
+ int(c / (scale_factor * scale_factor)),
1203
+ )
1204
+ if self.ps_version == "v1":
1205
+ warnings.warn(
1206
+ "In ps_version 'v1', the height and width have not "
1207
+ "been swapped back, which results in a transposed image.",
1208
+ stacklevel=2,
1209
+ )
1210
+ else:
1211
+ x = x.permute(0, 2, 1, 3).contiguous()
1212
+ return x
1213
+
1214
+ def extract_feature(self, pixel_values):
1215
+ # Process images in a micro-batch of at most 128 frames per call
1216
+ # This is done on purpose to ensure peak GPU ram usage of huge batch
1217
+ # (namely for really long videos with EVS ON) won't cause any problems
1218
+ # as we don't support chunked prefill for video media
1219
+ micro_batch_size = 128
1220
+ n = pixel_values.shape[0]
1221
+ vit_embeds_list = []
1222
+ for i in range(0, n, micro_batch_size):
1223
+ _, vit_embeds = self.vision_model(pixel_values[i : i + micro_batch_size])
1224
+ vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
1225
+ h = w = int(vit_embeds.shape[1] ** 0.5)
1226
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
1227
+ vit_embeds = self.pixel_shuffle(
1228
+ vit_embeds, scale_factor=self.downsample_ratio
1229
+ )
1230
+ vit_embeds = vit_embeds.reshape(
1231
+ vit_embeds.shape[0], -1, vit_embeds.shape[-1]
1232
+ )
1233
+ vit_embeds = self.mlp1(vit_embeds)
1234
+ vit_embeds_list.append(vit_embeds)
1235
+
1236
+ vit_embeds = torch.cat(vit_embeds_list, dim=0)
1237
+ return vit_embeds
1238
+
1239
+ def _parse_and_validate_image_input(
1240
+ self, **kwargs: object
1241
+ ) -> NanoNemotronVLImageInputs | None:
1242
+ pixel_values_flat = kwargs.pop("pixel_values_flat", None)
1243
+ image_num_patches = kwargs.pop("image_num_patches", None)
1244
+ image_embeds = kwargs.pop("image_embeds", None)
1245
+
1246
+ if pixel_values_flat is None and image_embeds is None:
1247
+ return None
1248
+
1249
+ if image_embeds is not None:
1250
+ return NanoNemotronVLImageEmbeddingInputs(
1251
+ type="image_embeds",
1252
+ data=image_embeds,
1253
+ )
1254
+
1255
+ if pixel_values_flat is not None:
1256
+ return NanoNemotronVLImagePixelInputs(
1257
+ type="pixel_values",
1258
+ pixel_values_flat=pixel_values_flat,
1259
+ num_patches=image_num_patches,
1260
+ )
1261
+
1262
+ raise AssertionError("This line should be unreachable.")
1263
+
1264
+ def _process_image_input(
1265
+ self, image_input: NanoNemotronVLImageInputs
1266
+ ) -> tuple[torch.Tensor, ...]:
1267
+ if image_input["type"] == "image_embeds":
1268
+ return image_input["data"]
1269
+
1270
+ assert self.vision_model is not None
1271
+
1272
+ image_embeds = self.extract_feature(image_input["pixel_values_flat"])
1273
+ num_patches = image_input["num_patches"]
1274
+
1275
+ # Only one image in the current batch
1276
+ if len(num_patches) == 1:
1277
+ return (image_embeds.view(-1, self.config.text_config.hidden_size),)
1278
+
1279
+ # NOTE: Image embeddings are split into separate tensors for each image
1280
+ # by the size of each embedding.
1281
+ feature_size = image_embeds.shape[1]
1282
+ image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size)
1283
+ image_feature_sizes = [
1284
+ num_patches * feature_size for num_patches in num_patches
1285
+ ]
1286
+ return image_embeds.split(image_feature_sizes)
1287
+
1288
+ def _process_video_input(
1289
+ self, video_input: NanoNemotronVLVideoPixelInputs
1290
+ ) -> tuple[torch.Tensor, ...]:
1291
+ """Process video input and create final embeddings with video content
1292
+ and indicator tokens."""
1293
+ # Get video embeddings using the same processing as images
1294
+ video_embeddings = self._process_image_input(video_input)
1295
+
1296
+ final_video_embeddings: tuple[torch.Tensor, ...] = ()
1297
+
1298
+ image_rows = image_cols = self.config.force_image_size
1299
+ downsample_ratio = self.config.downsample_ratio
1300
+ patch_size = self.config.patch_size
1301
+ rows = int(image_rows * downsample_ratio // patch_size)
1302
+ cols = int(image_cols * downsample_ratio // patch_size)
1303
+ video_pruning_rate = self.video_pruning_rate
1304
+ video_num_frames = video_input["num_patches"].tolist()
1305
+ video_frames_indices = video_input["frames_indices"].split(video_num_frames)
1306
+ # Calculate video feature dimensions (number of frames and
1307
+ # their feature size (AKA tokens per frame))
1308
+ # TODO: Maybe this can be optimized to avoid the loop?
1309
+ for i, single_video_embeddings in enumerate(video_embeddings):
1310
+ num_frames = video_num_frames[i]
1311
+ frames_indices = video_frames_indices[i].tolist()
1312
+ frame_duration_ms = video_input["frame_duration_ms"][i].item()
1313
+ assert single_video_embeddings.shape[0] % num_frames == 0
1314
+
1315
+ if video_pruning_rate is not None and video_pruning_rate > 0.0:
1316
+ # Start of EVS-specific code
1317
+ retention_mask = compute_retention_mask(
1318
+ single_video_embeddings,
1319
+ video_size_thw=(num_frames, rows, cols),
1320
+ spatial_merge_size=1,
1321
+ q=video_pruning_rate,
1322
+ )
1323
+
1324
+ # apply retention mask
1325
+ single_video_embeddings = single_video_embeddings[retention_mask]
1326
+
1327
+ # calculate the actual number of retained tokens per frame
1328
+ retention_mask_thw = retention_mask.reshape(num_frames, rows, cols)
1329
+ num_tokens_per_frame = (
1330
+ retention_mask_thw.sum(dim=(1, 2)).long().tolist()
1331
+ )
1332
+ # End of EVS-specific code
1333
+ else:
1334
+ feature_size = single_video_embeddings.shape[0] // num_frames
1335
+ num_tokens_per_frame = [feature_size] * num_frames
1336
+
1337
+ final_video_embeddings += (
1338
+ self._create_final_video_embeddings(
1339
+ single_video_embeddings,
1340
+ num_tokens_per_frame,
1341
+ frames_indices,
1342
+ frame_duration_ms,
1343
+ ),
1344
+ )
1345
+
1346
+ return final_video_embeddings
1347
+
1348
+ def _create_final_video_embeddings(
1349
+ self,
1350
+ video_embeddings: torch.Tensor,
1351
+ num_tokens_per_frame: list[int],
1352
+ frames_indices: list[int],
1353
+ frame_duration_ms: int,
1354
+ ) -> torch.Tensor:
1355
+ """Create final embeddings that combine video embeddings with
1356
+ text embeddings of indicator tokens.
1357
+
1358
+ These final embeddings contain:
1359
+ - Actual video embeddings in positions corresponding to video content
1360
+ - Text embeddings for indicator tokens (<img>, </img>, and
1361
+ frame separation text) in their respective positions
1362
+
1363
+ These embeddings will replace the placeholder embeddings to create
1364
+ input_embeds for the LLM.
1365
+ """
1366
+ device = video_embeddings.device
1367
+ tokenizer = cached_tokenizer_from_config(self.model_config)
1368
+
1369
+ # Generate video replacement token IDs using get_video_repl
1370
+ # This tokenizes each frame separator independently, then uses pre-tokenized
1371
+ # special tokens to ensure consistent tokenization regardless of
1372
+ # num_tokens_per_frame values.
1373
+ video_repl = NanoNemotronVLProcessor.get_video_repl(
1374
+ tokens_per_frame=num_tokens_per_frame,
1375
+ frames_indices=frames_indices,
1376
+ frame_duration_ms=frame_duration_ms,
1377
+ tokenizer=tokenizer,
1378
+ img_start_token_ids=self._img_start_token_ids,
1379
+ img_end_token_ids=self._img_end_token_ids,
1380
+ img_context_token_ids=self._img_context_token_ids,
1381
+ )
1382
+
1383
+ # video_repl.full is a list of token IDs
1384
+ repl_token_ids = torch.tensor(video_repl.full, device=device)
1385
+
1386
+ # Get embedding token IDs for image context (use pre-tokenized version)
1387
+ embed_token_ids = torch.tensor(self._img_context_token_ids, device=device)
1388
+
1389
+ # Create mask for video embedding positions
1390
+ is_video_embed = torch.isin(repl_token_ids, embed_token_ids)
1391
+
1392
+ # Create final video embeddings, merging text embeddings for indicator
1393
+ # tokens with video embeddings
1394
+ text_embeddings = self.get_language_model().embed_input_ids(repl_token_ids)
1395
+ final_video_embeddings = _merge_multimodal_embeddings(
1396
+ inputs_embeds=text_embeddings,
1397
+ multimodal_embeddings=video_embeddings,
1398
+ is_multimodal=is_video_embed,
1399
+ )
1400
+
1401
+ return final_video_embeddings
1402
+
1403
+ def _parse_and_validate_video_input(
1404
+ self, **kwargs: object
1405
+ ) -> NanoNemotronVLVideoPixelInputs | None:
1406
+ pixel_values_flat_video = kwargs.pop("pixel_values_flat_video", None)
1407
+ video_num_patches = kwargs.pop("video_num_patches", None)
1408
+ video_embeds = kwargs.pop("video_embeds", None)
1409
+ frames_indices = kwargs.pop("frames_indices", None)
1410
+ frame_duration_ms = kwargs.pop("frame_duration_ms", None)
1411
+
1412
+ if pixel_values_flat_video is None and video_embeds is None:
1413
+ return None
1414
+
1415
+ if video_embeds is not None:
1416
+ return NanoNemotronVLVideoEmbeddingInputs(
1417
+ type="video_embeds",
1418
+ data=video_embeds,
1419
+ )
1420
+
1421
+ if pixel_values_flat_video is not None:
1422
+ if torch.is_tensor(frames_indices):
1423
+ frames_indices = frames_indices.flatten()
1424
+ else:
1425
+ frames_indices = torch.cat([f.flatten() for f in frames_indices], dim=0)
1426
+
1427
+ frame_duration_ms = frame_duration_ms.flatten()
1428
+ expected_h = expected_w = self.config.force_image_size
1429
+ num_frames = video_num_patches[0].item()
1430
+ resolve_bindings = {"h": expected_h, "w": expected_w, "f": num_frames}
1431
+
1432
+ return NanoNemotronVLVideoPixelInputs(
1433
+ type="pixel_values_videos",
1434
+ pixel_values_flat=pixel_values_flat_video,
1435
+ num_patches=video_num_patches,
1436
+ frames_indices=frames_indices,
1437
+ frame_duration_ms=frame_duration_ms,
1438
+ resolve_bindings=resolve_bindings,
1439
+ )
1440
+
1441
+ raise AssertionError("This line should be unreachable.")
1442
+
1443
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1444
+ modalities = {}
1445
+ # Preserve the order of modalities if there are multiple of them
1446
+ # from the order of kwargs.
1447
+ for input_key in kwargs:
1448
+ if (
1449
+ input_key in ("pixel_values_flat", "image_embeds")
1450
+ and "images" not in modalities
1451
+ ):
1452
+ modalities["images"] = self._parse_and_validate_image_input(**kwargs)
1453
+ if input_key in ("pixel_values_flat_video",) and "videos" not in modalities:
1454
+ modalities["videos"] = self._parse_and_validate_video_input(**kwargs)
1455
+
1456
+ return modalities
1457
+
1458
+ def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
1459
+ # Validate the multimodal input keyword arguments
1460
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1461
+ if modalities is None:
1462
+ return []
1463
+
1464
+ # # The result multimodal_embeddings is tuple of tensors, with each
1465
+ # tensor corresponding to a multimodal data item (image or video).
1466
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1467
+
1468
+ # NOTE: It is important to iterate over the keys in this dictionary
1469
+ # to preserve the order of the modalities.
1470
+ for modality in modalities:
1471
+ if modality == "images":
1472
+ image_input = modalities["images"]
1473
+ image_embeddings = self._process_image_input(image_input)
1474
+ multimodal_embeddings += tuple(image_embeddings)
1475
+ if modality == "videos":
1476
+ video_input = modalities["videos"]
1477
+ video_embeddings = self._process_video_input(video_input)
1478
+ multimodal_embeddings += tuple(video_embeddings)
1479
+
1480
+ return multimodal_embeddings
1481
+
1482
+ def get_language_model(self) -> torch.nn.Module:
1483
+ return self.language_model
1484
+
1485
+ def forward(
1486
+ self,
1487
+ input_ids: torch.Tensor,
1488
+ positions: torch.Tensor,
1489
+ intermediate_tensors: IntermediateTensors | None = None,
1490
+ inputs_embeds: torch.Tensor | None = None,
1491
+ **kwargs: object,
1492
+ ) -> torch.Tensor | IntermediateTensors:
1493
+ if intermediate_tensors is not None:
1494
+ input_ids = None
1495
+ inputs_embeds = None
1496
+
1497
+ hidden_states = self.language_model(
1498
+ input_ids=input_ids,
1499
+ positions=positions,
1500
+ intermediate_tensors=intermediate_tensors,
1501
+ inputs_embeds=inputs_embeds,
1502
+ **kwargs,
1503
+ )
1504
+
1505
+ return hidden_states
1506
+
1507
+ def get_mm_mapping(self) -> MultiModelKeys:
1508
+ """
1509
+ Get the module prefix in multimodal models
1510
+ """
1511
+ return MultiModelKeys.from_string_field(
1512
+ language_model="language_model",
1513
+ connector="mlp1",
1514
+ tower_model="vision_model",
1515
+ )
1516
+
1517
+ def compute_logits(
1518
+ self,
1519
+ hidden_states: torch.Tensor,
1520
+ ) -> torch.Tensor | None:
1521
+ return self.language_model.compute_logits(hidden_states)
1522
+
1523
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
1524
+ adapter_dict = dict(self.mlp1.named_parameters())
1525
+
1526
+ def is_llm(name: str) -> bool:
1527
+ return name.startswith("language_model")
1528
+
1529
+ def is_adapter_weights(weight: tuple[str, torch.Tensor]):
1530
+ return weight[0].startswith("mlp1")
1531
+
1532
+ def is_vision_weights(name: str) -> bool:
1533
+ return name.startswith("vision_model.radio_model.")
1534
+
1535
+ # Separate weights by component
1536
+ llm_weights = []
1537
+ vision_weights = []
1538
+
1539
+ for name, w in weights:
1540
+ if is_llm(name):
1541
+ # Strip 'language_model.' prefix for LLM weights
1542
+ llm_weights.append((".".join(name.split(".")[1:]), w))
1543
+ elif is_adapter_weights((name, w)):
1544
+ # Load vision-language adapter weights directly
1545
+ trimmed_name = ".".join(name.split(".")[1:])
1546
+ param = adapter_dict[trimmed_name]
1547
+ with torch.no_grad():
1548
+ default_weight_loader(param, w)
1549
+ elif is_vision_weights(name):
1550
+ # Convert: vision_model.radio_model.* → radio_model.*
1551
+ hf_key = name[len("vision_model.") :] # Remove "vision_model." prefix
1552
+ vision_weights.append((hf_key, w))
1553
+
1554
+ self.language_model.load_weights(llm_weights)
1555
+ self.vision_model.load_weights(vision_weights)
1556
+
1557
+ def print_architecture(self, detailed: bool = True, save_to_file: str = None):
1558
+ """
1559
+ Print model architecture with parameter names, shapes, and sizes.
1560
+
1561
+ Args:
1562
+ detailed: If True, show detailed parameter breakdown
1563
+ save_to_file: If provided, save output to this file path
1564
+ """
1565
+ import sys
1566
+ from io import StringIO
1567
+
1568
+ # Capture output if saving to file
1569
+ original_stdout = sys.stdout
1570
+ if save_to_file:
1571
+ sys.stdout = StringIO()
1572
+
1573
+ try:
1574
+ print("=" * 100)
1575
+ print("NemotronH_Nano_VL_V2 Model Architecture")
1576
+ print("=" * 100)
1577
+
1578
+ total_params = 0
1579
+ param_groups = {
1580
+ "language_model": [],
1581
+ "vision_model": [],
1582
+ "mlp1": [],
1583
+ "other": [],
1584
+ }
1585
+
1586
+ for name, param in self.named_parameters():
1587
+ param_size = param.numel()
1588
+ total_params += param_size
1589
+
1590
+ # Group parameters by main component
1591
+ if name.startswith("language_model"):
1592
+ param_groups["language_model"].append(
1593
+ (name, param.shape, param_size, param.dtype)
1594
+ )
1595
+ elif name.startswith("vision_model"):
1596
+ param_groups["vision_model"].append(
1597
+ (name, param.shape, param_size, param.dtype)
1598
+ )
1599
+ elif name.startswith("mlp1"):
1600
+ param_groups["mlp1"].append(
1601
+ (name, param.shape, param_size, param.dtype)
1602
+ )
1603
+ else:
1604
+ param_groups["other"].append(
1605
+ (name, param.shape, param_size, param.dtype)
1606
+ )
1607
+
1608
+ if detailed:
1609
+ print(
1610
+ f"{name:<70} | Shape: {str(param.shape):<25} | "
1611
+ f"Size: {param_size:>12,} | Dtype: {param.dtype}"
1612
+ )
1613
+
1614
+ print("=" * 100)
1615
+ print("Summary by Component:")
1616
+ print("-" * 60)
1617
+
1618
+ for component, params in param_groups.items():
1619
+ if params: # Only show components that have parameters
1620
+ component_total = sum(size for _, _, size, _ in params)
1621
+ percentage = (
1622
+ (component_total / total_params) * 100
1623
+ if total_params > 0
1624
+ else 0
1625
+ )
1626
+ print(
1627
+ f"{component:<20} | Parameters: {len(params):>4} | "
1628
+ f"Total Size: {component_total:>15,} | "
1629
+ f"{percentage:>6.2f}%"
1630
+ )
1631
+
1632
+ print("-" * 60)
1633
+ print(f"{'Total Parameters':<20} | {total_params:>15,}")
1634
+
1635
+ # Estimate memory usage (assuming bfloat16 = 2 bytes per parameter)
1636
+ memory_mb = total_params * 2 / (1024**2)
1637
+ memory_gb = memory_mb / 1024
1638
+ print(f"{'Est. Memory (MB)':<20} | {memory_mb:>15.2f}")
1639
+ print(f"{'Est. Memory (GB)':<20} | {memory_gb:>15.2f}")
1640
+ print("=" * 100)
1641
+
1642
+ # Save to file if requested
1643
+ if save_to_file:
1644
+ output = sys.stdout.getvalue()
1645
+ sys.stdout = original_stdout
1646
+ with open(save_to_file, "w") as f:
1647
+ f.write(output)
1648
+ print(f"Architecture saved to: {save_to_file}")
1649
+ print(output) # Also print to console
1650
+
1651
+ finally:
1652
+ if save_to_file and sys.stdout != original_stdout:
1653
+ sys.stdout = original_stdout
1654
+
1655
+ def get_model_info(self):
1656
+ """
1657
+ Get basic model information as a dictionary.
1658
+ """
1659
+ total_params = sum(p.numel() for p in self.parameters())
1660
+
1661
+ component_info = {}
1662
+ for name, param in self.named_parameters():
1663
+ component = name.split(".")[0]
1664
+ if component not in component_info:
1665
+ component_info[component] = {"params": 0, "size": 0}
1666
+ component_info[component]["params"] += 1
1667
+ component_info[component]["size"] += param.numel()
1668
+
1669
+ return {
1670
+ "model_name": "NemotronH_Nano_VL_V2",
1671
+ "total_parameters": total_params,
1672
+ "memory_estimate_mb": total_params * 2 / (1024**2), # bfloat16
1673
+ "components": component_info,
1674
+ "config": {
1675
+ "image_size": getattr(self.config, "force_image_size", None),
1676
+ "patch_size": getattr(self.config, "patch_size", None),
1677
+ "num_image_token": self.num_image_token,
1678
+ "downsample_ratio": self.downsample_ratio,
1679
+ },
1680
+ }
1681
+
1682
+ def get_vit_model_from_radio_config(self, hf_config):
1683
+ hf_config_vision = hf_config.vision_config
1684
+ model_name = hf_config_vision.args.get("model")
1685
+ if model_name is None:
1686
+ raise ValueError(f"Unsupported vit model type: {model_name}")
1687
+
1688
+ preferred_resolution = getattr(hf_config_vision, "preferred_resolution", None)
1689
+ image_size = preferred_resolution[0] if preferred_resolution else 224
1690
+ patch_size = getattr(hf_config_vision, "patch_size", 16)
1691
+
1692
+ radio_config = RadioConfig(
1693
+ model_name=model_name,
1694
+ image_size=image_size,
1695
+ patch_size=patch_size,
1696
+ norm_mean=hf_config.norm_mean,
1697
+ norm_std=hf_config.norm_std,
1698
+ **hf_config_vision.args,
1699
+ )
1700
+
1701
+ return RadioModel(config=radio_config)
1702
+
1703
+ def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
1704
+ return self.language_model.mamba_cache.copy_inputs_before_cuda_graphs(
1705
+ input_buffers, **kwargs
1706
+ )
1707
+
1708
+ def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
1709
+ return self.language_model.mamba_cache.get_seqlen_agnostic_capture_inputs(
1710
+ batch_size
1711
+ )
1712
+
1713
+ @classmethod
1714
+ def get_mamba_state_shape_from_config(cls, vllm_config: "VllmConfig"):
1715
+ text_config = vllm_config.model_config.hf_config.text_config
1716
+ temp_vllm_config = copy.deepcopy(vllm_config)
1717
+ temp_vllm_config.model_config.hf_config = text_config
1718
+ return NemotronHForCausalLM.get_mamba_state_shape_from_config(temp_vllm_config)
1719
+
1720
+ @classmethod
1721
+ def get_mamba_state_dtype_from_config(cls, vllm_config: "VllmConfig"):
1722
+ text_config = vllm_config.model_config.hf_config.text_config
1723
+ temp_vllm_config = copy.deepcopy(vllm_config)
1724
+ temp_vllm_config.model_config.hf_config = text_config
1725
+ return NemotronHForCausalLM.get_mamba_state_dtype_from_config(temp_vllm_config)