vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +1511 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +3206 -0
- vllm/_ipex_ops.py +445 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +62 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/layer.py +913 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3277 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/mm_processor.py +363 -0
- vllm/benchmarks/serve.py +1761 -0
- vllm/benchmarks/startup.py +321 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +159 -0
- vllm/benchmarks/sweep/plot.py +675 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +450 -0
- vllm/benchmarks/sweep/serve_sla.py +459 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +138 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +946 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +214 -0
- vllm/compilation/backends.py +840 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +196 -0
- vllm/compilation/collective_fusion.py +1224 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +50 -0
- vllm/compilation/cuda_graph.py +309 -0
- vllm/compilation/decorators.py +662 -0
- vllm/compilation/fix_functionalization.py +266 -0
- vllm/compilation/fusion.py +570 -0
- vllm/compilation/fusion_attn.py +363 -0
- vllm/compilation/fx_utils.py +92 -0
- vllm/compilation/inductor_pass.py +145 -0
- vllm/compilation/matcher_utils.py +454 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +130 -0
- vllm/compilation/partition_rules.py +75 -0
- vllm/compilation/pass_manager.py +164 -0
- vllm/compilation/piecewise_backend.py +191 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +244 -0
- vllm/compilation/rocm_aiter_fusion.py +401 -0
- vllm/compilation/sequence_parallelism.py +368 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +180 -0
- vllm/compilation/wrapper.py +329 -0
- vllm/config/__init__.py +112 -0
- vllm/config/attention.py +114 -0
- vllm/config/cache.py +233 -0
- vllm/config/compilation.py +1149 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +119 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +102 -0
- vllm/config/model.py +2026 -0
- vllm/config/model_arch.py +57 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +157 -0
- vllm/config/parallel.py +703 -0
- vllm/config/pooler.py +188 -0
- vllm/config/profiler.py +199 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +656 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +78 -0
- vllm/config/utils.py +374 -0
- vllm/config/vllm.py +1487 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +301 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +509 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +303 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +346 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +778 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/xpu_communicator.py +98 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +3 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1192 -0
- vllm/distributed/eplb/policy/__init__.py +19 -0
- vllm/distributed/eplb/policy/abstract.py +43 -0
- vllm/distributed/eplb/policy/default.py +376 -0
- vllm/distributed/eplb/rebalance_execute.py +699 -0
- vllm/distributed/kv_events.py +505 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
- vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1809 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2137 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +194 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +468 -0
- vllm/entrypoints/api_server.py +186 -0
- vllm/entrypoints/chat_utils.py +1912 -0
- vllm/entrypoints/cli/__init__.py +19 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +57 -0
- vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/startup.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +260 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +253 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +12 -0
- vllm/entrypoints/context.py +898 -0
- vllm/entrypoints/grpc_server.py +531 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1807 -0
- vllm/entrypoints/logger.py +86 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1390 -0
- vllm/entrypoints/openai/cli_args.py +320 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/parser/__init__.py +0 -0
- vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
- vllm/entrypoints/openai/parser/responses_parser.py +176 -0
- vllm/entrypoints/openai/protocol.py +2566 -0
- vllm/entrypoints/openai/run_batch.py +635 -0
- vllm/entrypoints/openai/serving_chat.py +1897 -0
- vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
- vllm/entrypoints/openai/serving_completion.py +740 -0
- vllm/entrypoints/openai/serving_engine.py +1612 -0
- vllm/entrypoints/openai/serving_models.py +309 -0
- vllm/entrypoints/openai/serving_responses.py +2552 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +711 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +48 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +233 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +65 -0
- vllm/entrypoints/pooling/embed/conftest.py +28 -0
- vllm/entrypoints/pooling/embed/protocol.py +217 -0
- vllm/entrypoints/pooling/embed/serving.py +684 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +62 -0
- vllm/entrypoints/pooling/pooling/protocol.py +146 -0
- vllm/entrypoints/pooling/pooling/serving.py +354 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +147 -0
- vllm/entrypoints/pooling/score/protocol.py +146 -0
- vllm/entrypoints/pooling/score/serving.py +511 -0
- vllm/entrypoints/renderer.py +411 -0
- vllm/entrypoints/responses_utils.py +218 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +271 -0
- vllm/entrypoints/serve/__init__.py +94 -0
- vllm/entrypoints/serve/cache/__init__.py +0 -0
- vllm/entrypoints/serve/cache/api_router.py +61 -0
- vllm/entrypoints/serve/disagg/__init__.py +0 -0
- vllm/entrypoints/serve/disagg/api_router.py +109 -0
- vllm/entrypoints/serve/disagg/protocol.py +90 -0
- vllm/entrypoints/serve/disagg/serving.py +285 -0
- vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
- vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
- vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
- vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
- vllm/entrypoints/serve/instrumentator/health.py +33 -0
- vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
- vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
- vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
- vllm/entrypoints/serve/lora/__init__.py +0 -0
- vllm/entrypoints/serve/lora/api_router.py +70 -0
- vllm/entrypoints/serve/profile/__init__.py +0 -0
- vllm/entrypoints/serve/profile/api_router.py +46 -0
- vllm/entrypoints/serve/rlhf/__init__.py +0 -0
- vllm/entrypoints/serve/rlhf/api_router.py +102 -0
- vllm/entrypoints/serve/rpc/__init__.py +0 -0
- vllm/entrypoints/serve/rpc/api_router.py +61 -0
- vllm/entrypoints/serve/sleep/__init__.py +0 -0
- vllm/entrypoints/serve/sleep/api_router.py +56 -0
- vllm/entrypoints/serve/tokenize/__init__.py +0 -0
- vllm/entrypoints/serve/tokenize/api_router.py +112 -0
- vllm/entrypoints/serve/tokenize/serving.py +204 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +187 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +336 -0
- vllm/env_override.py +402 -0
- vllm/envs.py +1791 -0
- vllm/exceptions.py +36 -0
- vllm/forward_context.py +375 -0
- vllm/grpc/__init__.py +17 -0
- vllm/grpc/compile_protos.py +94 -0
- vllm/grpc/vllm_engine.proto +195 -0
- vllm/grpc/vllm_engine_pb2.py +77 -0
- vllm/grpc/vllm_engine_pb2.pyi +213 -0
- vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +147 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +303 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +43 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +172 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +739 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +115 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_model.py +221 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/model_manager.py +858 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +313 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +413 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +60 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +281 -0
- vllm/lora/worker_manager.py +278 -0
- vllm/model_executor/__init__.py +9 -0
- vllm/model_executor/custom_op.py +203 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +628 -0
- vllm/model_executor/layers/attention/__init__.py +0 -0
- vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
- vllm/model_executor/layers/attention/cross_attention.py +182 -0
- vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
- vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
- vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
- vllm/model_executor/layers/attention_layer_base.py +34 -0
- vllm/model_executor/layers/batch_invariant.py +1063 -0
- vllm/model_executor/layers/conv.py +262 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +120 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
- vllm/model_executor/layers/fused_moe/config.py +1111 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
- vllm/model_executor/layers/fused_moe/fallback.py +127 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
- vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
- vllm/model_executor/layers/fused_moe/layer.py +2169 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
- vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
- vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
- vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
- vllm/model_executor/layers/fused_moe/utils.py +382 -0
- vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +451 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1478 -0
- vllm/model_executor/layers/logits_processor.py +109 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +410 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +254 -0
- vllm/model_executor/layers/mla.py +179 -0
- vllm/model_executor/layers/pooler/__init__.py +5 -0
- vllm/model_executor/layers/pooler/abstract.py +39 -0
- vllm/model_executor/layers/pooler/activations.py +162 -0
- vllm/model_executor/layers/pooler/common.py +32 -0
- vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
- vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
- vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
- vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
- vllm/model_executor/layers/pooler/special.py +128 -0
- vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
- vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
- vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
- vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
- vllm/model_executor/layers/quantization/__init__.py +195 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +209 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1224 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +682 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
- vllm/model_executor/layers/quantization/kv_cache.py +153 -0
- vllm/model_executor/layers/quantization/modelopt.py +1665 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +570 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +626 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
- vllm/model_executor/layers/rotary_embedding/base.py +282 -0
- vllm/model_executor/layers/rotary_embedding/common.py +289 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +71 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
- vllm/model_executor/model_loader/default_loader.py +304 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +371 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +793 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/utils.py +299 -0
- vllm/model_executor/model_loader/weight_utils.py +1183 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +592 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +567 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +633 -0
- vllm/model_executor/models/aria.py +663 -0
- vllm/model_executor/models/audioflamingo3.py +639 -0
- vllm/model_executor/models/aya_vision.py +448 -0
- vllm/model_executor/models/bagel.py +591 -0
- vllm/model_executor/models/baichuan.py +493 -0
- vllm/model_executor/models/bailing_moe.py +643 -0
- vllm/model_executor/models/bamba.py +511 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +911 -0
- vllm/model_executor/models/bert_with_rope.py +729 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +736 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1095 -0
- vllm/model_executor/models/chatglm.py +502 -0
- vllm/model_executor/models/clip.py +1045 -0
- vllm/model_executor/models/cohere2_vision.py +470 -0
- vllm/model_executor/models/commandr.py +469 -0
- vllm/model_executor/models/config.py +571 -0
- vllm/model_executor/models/dbrx.py +484 -0
- vllm/model_executor/models/deepencoder.py +679 -0
- vllm/model_executor/models/deepseek_eagle.py +253 -0
- vllm/model_executor/models/deepseek_mtp.py +447 -0
- vllm/model_executor/models/deepseek_ocr.py +601 -0
- vllm/model_executor/models/deepseek_v2.py +1727 -0
- vllm/model_executor/models/deepseek_vl2.py +642 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +830 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1702 -0
- vllm/model_executor/models/ernie45_vl_moe.py +801 -0
- vllm/model_executor/models/ernie_mtp.py +278 -0
- vllm/model_executor/models/exaone.py +524 -0
- vllm/model_executor/models/exaone4.py +518 -0
- vllm/model_executor/models/exaone_moe.py +579 -0
- vllm/model_executor/models/exaone_moe_mtp.py +255 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +543 -0
- vllm/model_executor/models/falcon_h1.py +675 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +371 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +435 -0
- vllm/model_executor/models/gemma3.py +520 -0
- vllm/model_executor/models/gemma3_mm.py +664 -0
- vllm/model_executor/models/gemma3n.py +1166 -0
- vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
- vllm/model_executor/models/gemma3n_mm.py +820 -0
- vllm/model_executor/models/glm.py +24 -0
- vllm/model_executor/models/glm4.py +295 -0
- vllm/model_executor/models/glm4_1v.py +1823 -0
- vllm/model_executor/models/glm4_moe.py +725 -0
- vllm/model_executor/models/glm4_moe_mtp.py +365 -0
- vllm/model_executor/models/glm4v.py +783 -0
- vllm/model_executor/models/glmasr.py +1154 -0
- vllm/model_executor/models/glmasr_utils.py +188 -0
- vllm/model_executor/models/gpt2.py +385 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +340 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +475 -0
- vllm/model_executor/models/granite_speech.py +919 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +703 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +242 -0
- vllm/model_executor/models/grok1.py +803 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1034 -0
- vllm/model_executor/models/hyperclovax_vision.py +1163 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +734 -0
- vllm/model_executor/models/interfaces.py +1180 -0
- vllm/model_executor/models/interfaces_base.py +252 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +451 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +828 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1436 -0
- vllm/model_executor/models/iquest_loopcoder.py +595 -0
- vllm/model_executor/models/isaac.py +1503 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jais2.py +508 -0
- vllm/model_executor/models/jamba.py +599 -0
- vllm/model_executor/models/jina_vl.py +145 -0
- vllm/model_executor/models/kanana_v.py +756 -0
- vllm/model_executor/models/keye.py +1709 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +659 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/lfm2.py +515 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lfm2_vl.py +732 -0
- vllm/model_executor/models/lightonocr.py +197 -0
- vllm/model_executor/models/llama.py +724 -0
- vllm/model_executor/models/llama4.py +860 -0
- vllm/model_executor/models/llama4_eagle.py +225 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +879 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +922 -0
- vllm/model_executor/models/longcat_flash.py +767 -0
- vllm/model_executor/models/longcat_flash_mtp.py +348 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +826 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/mimo_v2_flash.py +718 -0
- vllm/model_executor/models/minicpm.py +660 -0
- vllm/model_executor/models/minicpm3.py +233 -0
- vllm/model_executor/models/minicpm_eagle.py +386 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1742 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1008 -0
- vllm/model_executor/models/minimax_vl_01.py +395 -0
- vllm/model_executor/models/mistral3.py +638 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1170 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +458 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1592 -0
- vllm/model_executor/models/moonvit.py +601 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
- vllm/model_executor/models/nemotron.py +499 -0
- vllm/model_executor/models/nemotron_h.py +902 -0
- vllm/model_executor/models/nemotron_nas.py +474 -0
- vllm/model_executor/models/nemotron_parse.py +958 -0
- vllm/model_executor/models/nemotron_vl.py +651 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +412 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/opencua.py +262 -0
- vllm/model_executor/models/openpangu.py +1378 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +365 -0
- vllm/model_executor/models/ouro.py +507 -0
- vllm/model_executor/models/ovis.py +557 -0
- vllm/model_executor/models/ovis2_5.py +661 -0
- vllm/model_executor/models/paddleocr_vl.py +1261 -0
- vllm/model_executor/models/paligemma.py +429 -0
- vllm/model_executor/models/persimmon.py +373 -0
- vllm/model_executor/models/phi.py +363 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +729 -0
- vllm/model_executor/models/phi4mm.py +1250 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +671 -0
- vllm/model_executor/models/pixtral.py +1437 -0
- vllm/model_executor/models/plamo2.py +993 -0
- vllm/model_executor/models/plamo3.py +437 -0
- vllm/model_executor/models/qwen.py +377 -0
- vllm/model_executor/models/qwen2.py +600 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
- vllm/model_executor/models/qwen2_5_vl.py +1598 -0
- vllm/model_executor/models/qwen2_audio.py +478 -0
- vllm/model_executor/models/qwen2_moe.py +604 -0
- vllm/model_executor/models/qwen2_rm.py +120 -0
- vllm/model_executor/models/qwen2_vl.py +1588 -0
- vllm/model_executor/models/qwen3.py +331 -0
- vllm/model_executor/models/qwen3_moe.py +752 -0
- vllm/model_executor/models/qwen3_next.py +1410 -0
- vllm/model_executor/models/qwen3_next_mtp.py +293 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
- vllm/model_executor/models/qwen3_vl.py +2120 -0
- vllm/model_executor/models/qwen3_vl_moe.py +474 -0
- vllm/model_executor/models/qwen_vl.py +821 -0
- vllm/model_executor/models/radio.py +573 -0
- vllm/model_executor/models/registry.py +1218 -0
- vllm/model_executor/models/roberta.py +239 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +492 -0
- vllm/model_executor/models/siglip.py +1259 -0
- vllm/model_executor/models/siglip2.py +495 -0
- vllm/model_executor/models/siglip2navit.py +660 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +484 -0
- vllm/model_executor/models/stablelm.py +354 -0
- vllm/model_executor/models/starcoder2.py +365 -0
- vllm/model_executor/models/step3_text.py +554 -0
- vllm/model_executor/models/step3_vl.py +1147 -0
- vllm/model_executor/models/swin.py +500 -0
- vllm/model_executor/models/tarsier.py +624 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +318 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +523 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +329 -0
- vllm/model_executor/models/transformers/multimodal.py +441 -0
- vllm/model_executor/models/transformers/pooling.py +102 -0
- vllm/model_executor/models/transformers/utils.py +253 -0
- vllm/model_executor/models/ultravox.py +786 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +546 -0
- vllm/model_executor/models/voxtral.py +867 -0
- vllm/model_executor/models/voxtral_streaming.py +304 -0
- vllm/model_executor/models/whisper.py +993 -0
- vllm/model_executor/models/whisper_utils.py +299 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +113 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
- vllm/model_executor/warmup/kernel_warmup.py +97 -0
- vllm/model_inspection.py +136 -0
- vllm/multimodal/__init__.py +38 -0
- vllm/multimodal/audio.py +287 -0
- vllm/multimodal/base.py +60 -0
- vllm/multimodal/cache.py +829 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +123 -0
- vllm/multimodal/image.py +155 -0
- vllm/multimodal/inputs.py +1027 -0
- vllm/multimodal/parse.py +674 -0
- vllm/multimodal/processing.py +2469 -0
- vllm/multimodal/profiling.py +351 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +550 -0
- vllm/multimodal/video.py +512 -0
- vllm/outputs.py +347 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +423 -0
- vllm/platforms/cuda.py +618 -0
- vllm/platforms/interface.py +707 -0
- vllm/platforms/rocm.py +586 -0
- vllm/platforms/tpu.py +20 -0
- vllm/platforms/xpu.py +262 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +229 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/profiler/wrapper.py +241 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +96 -0
- vllm/reasoning/abs_reasoning_parsers.py +318 -0
- vllm/reasoning/basic_parsers.py +175 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/holo2_reasoning_parser.py +89 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +63 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
- vllm/reasoning/mistral_reasoning_parser.py +154 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +113 -0
- vllm/sampling_params.py +629 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +64 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +18 -0
- vllm/tokenizers/deepseek_v32.py +187 -0
- vllm/tokenizers/deepseek_v32_encoding.py +463 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/grok2.py +443 -0
- vllm/tokenizers/hf.py +119 -0
- vllm/tokenizers/mistral.py +543 -0
- vllm/tokenizers/protocol.py +123 -0
- vllm/tokenizers/registry.py +238 -0
- vllm/tool_parsers/__init__.py +158 -0
- vllm/tool_parsers/abstract_tool_parser.py +274 -0
- vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
- vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
- vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
- vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
- vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
- vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
- vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/tool_parsers/granite_tool_parser.py +253 -0
- vllm/tool_parsers/hermes_tool_parser.py +495 -0
- vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
- vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/tool_parsers/llama_tool_parser.py +324 -0
- vllm/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
- vllm/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/tool_parsers/mistral_tool_parser.py +612 -0
- vllm/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/tool_parsers/openai_tool_parser.py +111 -0
- vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/tool_parsers/step3_tool_parser.py +303 -0
- vllm/tool_parsers/utils.py +229 -0
- vllm/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1169 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +106 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/bagel.py +53 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/isaac.py +100 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +263 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +220 -0
- vllm/transformers_utils/configs/nemotron_h.py +284 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +277 -0
- vllm/transformers_utils/configs/radio.py +98 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/tarsier2.py +24 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/dynamic_module.py +70 -0
- vllm/transformers_utils/gguf_utils.py +280 -0
- vllm/transformers_utils/model_arch_config_convertor.py +402 -0
- vllm/transformers_utils/processor.py +424 -0
- vllm/transformers_utils/processors/__init__.py +25 -0
- vllm/transformers_utils/processors/bagel.py +78 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +102 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +19 -0
- vllm/transformers_utils/utils.py +112 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +278 -0
- vllm/utils/__init__.py +36 -0
- vllm/utils/argparse_utils.py +491 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +424 -0
- vllm/utils/flashinfer.py +602 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +117 -0
- vllm/utils/import_utils.py +438 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +285 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/nvtx_pytorch_hooks.py +286 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +214 -0
- vllm/utils/system_utils.py +296 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +781 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backend.py +736 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +501 -0
- vllm/v1/attention/backends/fa_utils.py +126 -0
- vllm/v1/attention/backends/flash_attn.py +1092 -0
- vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
- vllm/v1/attention/backends/flashinfer.py +1713 -0
- vllm/v1/attention/backends/flex_attention.py +1024 -0
- vllm/v1/attention/backends/gdn_attn.py +382 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +28 -0
- vllm/v1/attention/backends/mamba2_attn.py +256 -0
- vllm/v1/attention/backends/mamba_attn.py +313 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
- vllm/v1/attention/backends/mla/common.py +2156 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
- vllm/v1/attention/backends/mla/flashmla.py +321 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
- vllm/v1/attention/backends/mla/indexer.py +345 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/registry.py +258 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +405 -0
- vllm/v1/attention/backends/short_conv_attn.py +26 -0
- vllm/v1/attention/backends/tree_attn.py +430 -0
- vllm/v1/attention/backends/triton_attn.py +578 -0
- vllm/v1/attention/backends/utils.py +978 -0
- vllm/v1/attention/ops/__init__.py +0 -0
- vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
- vllm/v1/attention/ops/common.py +469 -0
- vllm/v1/attention/ops/flashmla.py +254 -0
- vllm/v1/attention/ops/merge_attn_states.py +47 -0
- vllm/v1/attention/ops/paged_attn.py +51 -0
- vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/v1/attention/ops/prefix_prefill.py +862 -0
- vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/v1/attention/ops/triton_decode_attention.py +709 -0
- vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
- vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
- vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
- vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
- vllm/v1/attention/selector.py +145 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +489 -0
- vllm/v1/core/encoder_cache_manager.py +402 -0
- vllm/v1/core/kv_cache_coordinator.py +560 -0
- vllm/v1/core/kv_cache_manager.py +485 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1642 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +66 -0
- vllm/v1/core/sched/interface.py +205 -0
- vllm/v1/core/sched/output.py +261 -0
- vllm/v1/core/sched/request_queue.py +208 -0
- vllm/v1/core/sched/scheduler.py +1936 -0
- vllm/v1/core/sched/utils.py +64 -0
- vllm/v1/core/single_type_kv_cache_manager.py +926 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +224 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +396 -0
- vllm/v1/engine/core.py +1614 -0
- vllm/v1/engine/core_client.py +1422 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +713 -0
- vllm/v1/engine/llm_engine.py +415 -0
- vllm/v1/engine/logprobs.py +245 -0
- vllm/v1/engine/output_processor.py +715 -0
- vllm/v1/engine/parallel_sampling.py +150 -0
- vllm/v1/engine/utils.py +1086 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +623 -0
- vllm/v1/executor/ray_utils.py +468 -0
- vllm/v1/executor/uniproc_executor.py +186 -0
- vllm/v1/kv_cache_interface.py +485 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +109 -0
- vllm/v1/kv_offload/factory.py +58 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +70 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
- vllm/v1/kv_offload/worker/worker.py +163 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1320 -0
- vllm/v1/metrics/perf.py +1244 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +440 -0
- vllm/v1/outputs.py +242 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +124 -0
- vllm/v1/request.py +281 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +57 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
- vllm/v1/sample/rejection_sampler.py +822 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +514 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1346 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +281 -0
- vllm/v1/spec_decode/suffix_decoding.py +95 -0
- vllm/v1/spec_decode/utils.py +109 -0
- vllm/v1/structured_output/__init__.py +337 -0
- vllm/v1/structured_output/backend_guidance.py +291 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +378 -0
- vllm/v1/structured_output/request.py +91 -0
- vllm/v1/structured_output/utils.py +457 -0
- vllm/v1/utils.py +466 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cp_utils.py +42 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +192 -0
- vllm/v1/worker/dp_utils.py +240 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +98 -0
- vllm/v1/worker/gpu/attn_utils.py +183 -0
- vllm/v1/worker/gpu/block_table.py +222 -0
- vllm/v1/worker/gpu/buffer_utils.py +224 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +526 -0
- vllm/v1/worker/gpu/metrics/__init__.py +0 -0
- vllm/v1/worker/gpu/metrics/logits.py +42 -0
- vllm/v1/worker/gpu/mm/__init__.py +0 -0
- vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
- vllm/v1/worker/gpu/model_runner.py +1005 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +106 -0
- vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +79 -0
- vllm/v1/worker/gpu/sample/min_p.py +58 -0
- vllm/v1/worker/gpu/sample/output.py +14 -0
- vllm/v1/worker/gpu/sample/penalties.py +155 -0
- vllm/v1/worker/gpu/sample/sampler.py +88 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
- vllm/v1/worker/gpu/states.py +282 -0
- vllm/v1/worker/gpu/structured_outputs.py +100 -0
- vllm/v1/worker/gpu_input_batch.py +1030 -0
- vllm/v1/worker/gpu_model_runner.py +5761 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
- vllm/v1/worker/gpu_worker.py +968 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
- vllm/v1/worker/lora_model_runner_mixin.py +225 -0
- vllm/v1/worker/tpu_input_batch.py +574 -0
- vllm/v1/worker/tpu_worker.py +18 -0
- vllm/v1/worker/ubatch_utils.py +112 -0
- vllm/v1/worker/ubatching.py +242 -0
- vllm/v1/worker/utils.py +400 -0
- vllm/v1/worker/worker_base.py +372 -0
- vllm/v1/worker/workspace.py +253 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +174 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,736 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from enum import Enum
|
|
7
|
+
from typing import TYPE_CHECKING, ClassVar, Generic, Protocol, TypeVar, get_args
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
import torch
|
|
11
|
+
from typing_extensions import deprecated
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from vllm.config import VllmConfig
|
|
15
|
+
from vllm.config.cache import CacheDType
|
|
16
|
+
from vllm.model_executor.layers.linear import ColumnParallelLinear
|
|
17
|
+
from vllm.model_executor.layers.quantization.utils.quant_utils import QuantKey
|
|
18
|
+
from vllm.platforms.interface import DeviceCapability
|
|
19
|
+
from vllm.v1.attention.backends.utils import KVCacheLayoutType
|
|
20
|
+
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class AttentionType(str, Enum):
|
|
24
|
+
"""
|
|
25
|
+
Attention type.
|
|
26
|
+
Use string to be compatible with `torch.compile`.
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
DECODER = "decoder"
|
|
30
|
+
"""Decoder attention between previous layer Q/K/V."""
|
|
31
|
+
ENCODER = "encoder"
|
|
32
|
+
"""Encoder attention between previous layer Q/K/V for encoder-decoder."""
|
|
33
|
+
ENCODER_ONLY = "encoder_only"
|
|
34
|
+
"""Encoder attention between previous layer Q/K/V."""
|
|
35
|
+
ENCODER_DECODER = "encoder_decoder"
|
|
36
|
+
"""Attention between dec. Q and enc. K/V for encoder-decoder."""
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class MultipleOf:
|
|
40
|
+
base: int
|
|
41
|
+
|
|
42
|
+
def __init__(self, base: int):
|
|
43
|
+
self.base = base
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class AttentionBackend(ABC):
|
|
47
|
+
"""Abstract class for attention backends."""
|
|
48
|
+
|
|
49
|
+
# For some attention backends, we allocate an output tensor before
|
|
50
|
+
# calling the custom op. When piecewise cudagraph is enabled, this
|
|
51
|
+
# makes sure the output tensor is allocated inside the cudagraph.
|
|
52
|
+
accept_output_buffer: bool = False
|
|
53
|
+
supported_dtypes: ClassVar[list[torch.dtype]] = [torch.float16, torch.bfloat16]
|
|
54
|
+
supported_kv_cache_dtypes: ClassVar[list["CacheDType"]] = ["auto"]
|
|
55
|
+
|
|
56
|
+
@staticmethod
|
|
57
|
+
def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
|
|
58
|
+
return [MultipleOf(1)]
|
|
59
|
+
|
|
60
|
+
@staticmethod
|
|
61
|
+
@abstractmethod
|
|
62
|
+
def get_name() -> str:
|
|
63
|
+
raise NotImplementedError
|
|
64
|
+
|
|
65
|
+
@staticmethod
|
|
66
|
+
@abstractmethod
|
|
67
|
+
def get_impl_cls() -> type["AttentionImpl"]:
|
|
68
|
+
raise NotImplementedError
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
@abstractmethod
|
|
72
|
+
def get_builder_cls(): # -> Type["AttentionMetadataBuilder"]:
|
|
73
|
+
raise NotImplementedError
|
|
74
|
+
|
|
75
|
+
@staticmethod
|
|
76
|
+
@abstractmethod
|
|
77
|
+
def get_kv_cache_shape(
|
|
78
|
+
num_blocks: int,
|
|
79
|
+
block_size: int,
|
|
80
|
+
num_kv_heads: int,
|
|
81
|
+
head_size: int,
|
|
82
|
+
cache_dtype_str: str = "auto",
|
|
83
|
+
) -> tuple[int, ...]:
|
|
84
|
+
raise NotImplementedError
|
|
85
|
+
|
|
86
|
+
@staticmethod
|
|
87
|
+
def get_kv_cache_stride_order(
|
|
88
|
+
include_num_layers_dimension: bool = False,
|
|
89
|
+
) -> tuple[int, ...]:
|
|
90
|
+
"""
|
|
91
|
+
Get the physical (memory layout) ordering of the kv cache dimensions.
|
|
92
|
+
e.g. if the KV cache shape is
|
|
93
|
+
[2, num_blocks, block_size, num_heads, head_size],
|
|
94
|
+
and get_kv_cache_stride_order returns (1, 3, 0, 2, 4) then the physical
|
|
95
|
+
ordering of dimensions is
|
|
96
|
+
[num_blocks, num_heads, 2, block_size, head_size].
|
|
97
|
+
|
|
98
|
+
If this function is unimplemented / raises NotImplementedError,
|
|
99
|
+
the physical layout of the KV cache will match the logical shape.
|
|
100
|
+
|
|
101
|
+
Args:
|
|
102
|
+
include_num_layers_dimension: if True, includes an additional
|
|
103
|
+
num_layers dimension, which is assumed to be prepended
|
|
104
|
+
to the logical KV cache shape.
|
|
105
|
+
With the above example, a return value (2, 4, 0, 1, 3, 5)
|
|
106
|
+
corresponds to
|
|
107
|
+
[num_blocks, num_heads, num_layers, 2, block_size, head_size].
|
|
108
|
+
|
|
109
|
+
If an additional dimension is NOT included in the returned
|
|
110
|
+
tuple, the physical layout will not include a layers dimension.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
A tuple of ints which is a permutation of range(len(shape)).
|
|
114
|
+
"""
|
|
115
|
+
raise NotImplementedError
|
|
116
|
+
|
|
117
|
+
@classmethod
|
|
118
|
+
def full_cls_name(cls) -> tuple[str, str]:
|
|
119
|
+
return (cls.__module__, cls.__qualname__)
|
|
120
|
+
|
|
121
|
+
@classmethod
|
|
122
|
+
def get_supported_head_sizes(cls) -> list[int]:
|
|
123
|
+
return []
|
|
124
|
+
|
|
125
|
+
@classmethod
|
|
126
|
+
def supports_head_size(cls, head_size: int) -> bool:
|
|
127
|
+
supported_head_sizes = cls.get_supported_head_sizes()
|
|
128
|
+
return (not supported_head_sizes) or head_size in supported_head_sizes
|
|
129
|
+
|
|
130
|
+
@classmethod
|
|
131
|
+
def supports_dtype(cls, dtype: torch.dtype) -> bool:
|
|
132
|
+
return dtype in cls.supported_dtypes
|
|
133
|
+
|
|
134
|
+
@classmethod
|
|
135
|
+
def supports_kv_cache_dtype(cls, kv_cache_dtype: "CacheDType | None") -> bool:
|
|
136
|
+
if kv_cache_dtype is None:
|
|
137
|
+
return True
|
|
138
|
+
return (not cls.supported_kv_cache_dtypes) or (
|
|
139
|
+
kv_cache_dtype in cls.supported_kv_cache_dtypes
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
@classmethod
|
|
143
|
+
def supports_block_size(cls, block_size: int | None) -> bool:
|
|
144
|
+
from vllm.config.cache import BlockSize
|
|
145
|
+
|
|
146
|
+
if block_size is None:
|
|
147
|
+
return True
|
|
148
|
+
|
|
149
|
+
valid_sizes = get_args(BlockSize)
|
|
150
|
+
if block_size not in valid_sizes:
|
|
151
|
+
return False
|
|
152
|
+
|
|
153
|
+
supported_kernel_block_sizes = cls.get_supported_kernel_block_sizes()
|
|
154
|
+
if not supported_kernel_block_sizes:
|
|
155
|
+
return True
|
|
156
|
+
|
|
157
|
+
for supported_size in supported_kernel_block_sizes:
|
|
158
|
+
if isinstance(supported_size, MultipleOf):
|
|
159
|
+
supported_size = supported_size.base
|
|
160
|
+
# With hybrid_blocks feature, the framework-level block size
|
|
161
|
+
# only needs to be a multiple of the kernel's requirement,
|
|
162
|
+
# even if the kernel requires a fixed block_size.
|
|
163
|
+
if block_size % supported_size == 0:
|
|
164
|
+
return True
|
|
165
|
+
return False
|
|
166
|
+
|
|
167
|
+
@classmethod
|
|
168
|
+
def is_mla(cls) -> bool:
|
|
169
|
+
return False
|
|
170
|
+
|
|
171
|
+
@classmethod
|
|
172
|
+
def supports_sink(cls) -> bool:
|
|
173
|
+
return False
|
|
174
|
+
|
|
175
|
+
@classmethod
|
|
176
|
+
def supports_mm_prefix(cls) -> bool:
|
|
177
|
+
return False
|
|
178
|
+
|
|
179
|
+
@classmethod
|
|
180
|
+
def is_sparse(cls) -> bool:
|
|
181
|
+
return False
|
|
182
|
+
|
|
183
|
+
@classmethod
|
|
184
|
+
def supports_attn_type(cls, attn_type: str) -> bool:
|
|
185
|
+
"""Check if backend supports a given attention type.
|
|
186
|
+
|
|
187
|
+
By default, only supports decoder attention.
|
|
188
|
+
Backends should override this to support other attention types.
|
|
189
|
+
"""
|
|
190
|
+
return attn_type == AttentionType.DECODER
|
|
191
|
+
|
|
192
|
+
@classmethod
|
|
193
|
+
def supports_compute_capability(cls, capability: "DeviceCapability") -> bool:
|
|
194
|
+
return True
|
|
195
|
+
|
|
196
|
+
@classmethod
|
|
197
|
+
def supports_combination(
|
|
198
|
+
cls,
|
|
199
|
+
head_size: int,
|
|
200
|
+
dtype: torch.dtype,
|
|
201
|
+
kv_cache_dtype: "CacheDType | None",
|
|
202
|
+
block_size: int,
|
|
203
|
+
use_mla: bool,
|
|
204
|
+
has_sink: bool,
|
|
205
|
+
use_sparse: bool,
|
|
206
|
+
device_capability: "DeviceCapability",
|
|
207
|
+
) -> str | None:
|
|
208
|
+
return None
|
|
209
|
+
|
|
210
|
+
@classmethod
|
|
211
|
+
def validate_configuration(
|
|
212
|
+
cls,
|
|
213
|
+
head_size: int,
|
|
214
|
+
dtype: torch.dtype,
|
|
215
|
+
kv_cache_dtype: "CacheDType | None",
|
|
216
|
+
block_size: int,
|
|
217
|
+
use_mla: bool,
|
|
218
|
+
has_sink: bool,
|
|
219
|
+
use_sparse: bool,
|
|
220
|
+
use_mm_prefix: bool,
|
|
221
|
+
device_capability: "DeviceCapability",
|
|
222
|
+
attn_type: str,
|
|
223
|
+
) -> list[str]:
|
|
224
|
+
invalid_reasons = []
|
|
225
|
+
if not cls.supports_head_size(head_size):
|
|
226
|
+
invalid_reasons.append("head_size not supported")
|
|
227
|
+
if not cls.supports_dtype(dtype):
|
|
228
|
+
invalid_reasons.append("dtype not supported")
|
|
229
|
+
if not cls.supports_kv_cache_dtype(kv_cache_dtype):
|
|
230
|
+
invalid_reasons.append("kv_cache_dtype not supported")
|
|
231
|
+
if not cls.supports_block_size(block_size):
|
|
232
|
+
invalid_reasons.append("block_size not supported")
|
|
233
|
+
if use_mm_prefix and not cls.supports_mm_prefix():
|
|
234
|
+
invalid_reasons.append(
|
|
235
|
+
"partial multimodal token full attention not supported"
|
|
236
|
+
)
|
|
237
|
+
if use_mla != cls.is_mla():
|
|
238
|
+
if use_mla:
|
|
239
|
+
invalid_reasons.append("MLA not supported")
|
|
240
|
+
else:
|
|
241
|
+
invalid_reasons.append("non-MLA not supported")
|
|
242
|
+
if has_sink and not cls.supports_sink():
|
|
243
|
+
invalid_reasons.append("sink setting not supported")
|
|
244
|
+
if use_sparse != cls.is_sparse():
|
|
245
|
+
if use_sparse:
|
|
246
|
+
invalid_reasons.append("sparse not supported")
|
|
247
|
+
else:
|
|
248
|
+
invalid_reasons.append("non-sparse not supported")
|
|
249
|
+
if not cls.supports_compute_capability(device_capability):
|
|
250
|
+
invalid_reasons.append("compute capability not supported")
|
|
251
|
+
if not cls.supports_attn_type(attn_type):
|
|
252
|
+
invalid_reasons.append(f"attention type {attn_type} not supported")
|
|
253
|
+
combination_reason = cls.supports_combination(
|
|
254
|
+
head_size,
|
|
255
|
+
dtype,
|
|
256
|
+
kv_cache_dtype,
|
|
257
|
+
block_size,
|
|
258
|
+
use_mla,
|
|
259
|
+
has_sink,
|
|
260
|
+
use_sparse,
|
|
261
|
+
device_capability,
|
|
262
|
+
)
|
|
263
|
+
if combination_reason is not None:
|
|
264
|
+
invalid_reasons.append(combination_reason)
|
|
265
|
+
return invalid_reasons
|
|
266
|
+
|
|
267
|
+
@classmethod
|
|
268
|
+
def get_required_kv_cache_layout(cls) -> "KVCacheLayoutType | None":
|
|
269
|
+
return None
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
class AttentionMetadata:
|
|
273
|
+
pass
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
T = TypeVar("T", bound=AttentionMetadata)
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
@dataclass
|
|
280
|
+
class CommonAttentionMetadata:
|
|
281
|
+
"""
|
|
282
|
+
Per-batch attention metadata, shared across layers and backends.
|
|
283
|
+
AttentionMetadataBuilder instances use it to construct per-layer metadata.
|
|
284
|
+
|
|
285
|
+
For many of the tensors we keep both GPU and CPU versions.
|
|
286
|
+
"""
|
|
287
|
+
|
|
288
|
+
query_start_loc: torch.Tensor
|
|
289
|
+
query_start_loc_cpu: torch.Tensor
|
|
290
|
+
"""(batch_size + 1,), the start location of each request in query Tensor"""
|
|
291
|
+
|
|
292
|
+
seq_lens: torch.Tensor
|
|
293
|
+
"""(batch_size,), the number of computed tokens for each request"""
|
|
294
|
+
|
|
295
|
+
num_reqs: int
|
|
296
|
+
"""Number of requests"""
|
|
297
|
+
# TODO(lucas): rename to num_tokens since it may be padded and this is misleading
|
|
298
|
+
num_actual_tokens: int
|
|
299
|
+
"""Total number of tokens in batch"""
|
|
300
|
+
max_query_len: int
|
|
301
|
+
"""Longest query in batch"""
|
|
302
|
+
max_seq_len: int
|
|
303
|
+
"""Longest context length (may be an upper bound)"""
|
|
304
|
+
|
|
305
|
+
block_table_tensor: torch.Tensor
|
|
306
|
+
slot_mapping: torch.Tensor
|
|
307
|
+
|
|
308
|
+
causal: bool = True
|
|
309
|
+
|
|
310
|
+
# Needed by FastPrefillAttentionBuilder
|
|
311
|
+
logits_indices_padded: torch.Tensor | None = None
|
|
312
|
+
num_logits_indices: int | None = None
|
|
313
|
+
|
|
314
|
+
# Needed by CrossAttentionBuilder
|
|
315
|
+
encoder_seq_lens: torch.Tensor | None = None
|
|
316
|
+
encoder_seq_lens_cpu: np.ndarray | None = None
|
|
317
|
+
|
|
318
|
+
dcp_local_seq_lens: torch.Tensor | None = None
|
|
319
|
+
dcp_local_seq_lens_cpu: torch.Tensor | None = None
|
|
320
|
+
"""Sequence lengths of the local rank in decode context parallelism world"""
|
|
321
|
+
|
|
322
|
+
# WARNING: Deprecated fields. Will be removed in a future release (v0.15.0)
|
|
323
|
+
_seq_lens_cpu: torch.Tensor | None = None
|
|
324
|
+
_num_computed_tokens_cpu: torch.Tensor | None = None
|
|
325
|
+
|
|
326
|
+
_num_computed_tokens_cache: torch.Tensor | None = None
|
|
327
|
+
|
|
328
|
+
@property
|
|
329
|
+
@deprecated(
|
|
330
|
+
"""
|
|
331
|
+
Prefer using device seq_lens directly to avoid implicit H<>D sync.
|
|
332
|
+
If a CPU copy is needed, use `seq_lens.cpu()` instead.
|
|
333
|
+
Will be removed in a future release (v0.15.0)
|
|
334
|
+
"""
|
|
335
|
+
)
|
|
336
|
+
def seq_lens_cpu(self) -> torch.Tensor:
|
|
337
|
+
if self._seq_lens_cpu is None:
|
|
338
|
+
self._seq_lens_cpu = self.seq_lens.to("cpu")
|
|
339
|
+
return self._seq_lens_cpu
|
|
340
|
+
|
|
341
|
+
@property
|
|
342
|
+
@deprecated(
|
|
343
|
+
"""
|
|
344
|
+
Prefer using device seq_lens directly to avoid implicit H<>D sync which breaks full
|
|
345
|
+
async scheduling. If a CPU copy is needed, it can be derived from
|
|
346
|
+
query_start_loc_cpu and seq_lens.
|
|
347
|
+
Will be removed in a future release (v0.15.0)
|
|
348
|
+
"""
|
|
349
|
+
)
|
|
350
|
+
def num_computed_tokens_cpu(self) -> torch.Tensor:
|
|
351
|
+
if self._num_computed_tokens_cpu is None:
|
|
352
|
+
query_seq_lens = (
|
|
353
|
+
self.query_start_loc_cpu[1:] - self.query_start_loc_cpu[:-1]
|
|
354
|
+
)
|
|
355
|
+
self._num_computed_tokens_cpu = self.seq_lens_cpu - query_seq_lens
|
|
356
|
+
return self._num_computed_tokens_cpu
|
|
357
|
+
|
|
358
|
+
def compute_num_computed_tokens(self) -> torch.Tensor:
|
|
359
|
+
"""Compute num_computed_tokens on device (seq_lens - query_lens)."""
|
|
360
|
+
if self._num_computed_tokens_cache is None:
|
|
361
|
+
query_lens = self.query_start_loc[1:] - self.query_start_loc[:-1]
|
|
362
|
+
self._num_computed_tokens_cache = self.seq_lens - query_lens
|
|
363
|
+
return self._num_computed_tokens_cache
|
|
364
|
+
|
|
365
|
+
# TODO(lucas): remove once we have FULL-CG spec-decode support
|
|
366
|
+
def unpadded(
|
|
367
|
+
self, num_actual_tokens: int, num_actual_reqs: int
|
|
368
|
+
) -> "CommonAttentionMetadata":
|
|
369
|
+
maybe_slice_reqs = lambda x: x[:num_actual_reqs] if x is not None else None
|
|
370
|
+
return CommonAttentionMetadata(
|
|
371
|
+
query_start_loc=self.query_start_loc[: num_actual_reqs + 1],
|
|
372
|
+
query_start_loc_cpu=self.query_start_loc_cpu[: num_actual_reqs + 1],
|
|
373
|
+
seq_lens=self.seq_lens[:num_actual_reqs],
|
|
374
|
+
_seq_lens_cpu=self._seq_lens_cpu[:num_actual_reqs]
|
|
375
|
+
if self._seq_lens_cpu is not None
|
|
376
|
+
else None,
|
|
377
|
+
_num_computed_tokens_cpu=self._num_computed_tokens_cpu[:num_actual_reqs]
|
|
378
|
+
if self._num_computed_tokens_cpu is not None
|
|
379
|
+
else None,
|
|
380
|
+
num_reqs=num_actual_reqs,
|
|
381
|
+
num_actual_tokens=num_actual_tokens,
|
|
382
|
+
max_query_len=self.max_query_len,
|
|
383
|
+
max_seq_len=self.max_seq_len,
|
|
384
|
+
block_table_tensor=self.block_table_tensor[:num_actual_reqs],
|
|
385
|
+
slot_mapping=self.slot_mapping[:num_actual_tokens],
|
|
386
|
+
causal=self.causal,
|
|
387
|
+
logits_indices_padded=self.logits_indices_padded,
|
|
388
|
+
num_logits_indices=self.num_logits_indices,
|
|
389
|
+
encoder_seq_lens=maybe_slice_reqs(self.encoder_seq_lens),
|
|
390
|
+
encoder_seq_lens_cpu=maybe_slice_reqs(self.encoder_seq_lens_cpu),
|
|
391
|
+
dcp_local_seq_lens=maybe_slice_reqs(self.dcp_local_seq_lens),
|
|
392
|
+
dcp_local_seq_lens_cpu=maybe_slice_reqs(self.dcp_local_seq_lens_cpu),
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
M = TypeVar("M")
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
class AttentionCGSupport(Enum):
|
|
400
|
+
"""Constants for the cudagraph support of the attention backend
|
|
401
|
+
Here we do not consider the cascade attention, as currently
|
|
402
|
+
it is never cudagraph supported."""
|
|
403
|
+
|
|
404
|
+
ALWAYS = 3
|
|
405
|
+
"""Cudagraph always supported; supports mixed-prefill-decode"""
|
|
406
|
+
UNIFORM_BATCH = 2
|
|
407
|
+
"""Cudagraph supported for batches the only contain query lengths that are
|
|
408
|
+
the same, this can be used for spec-decode
|
|
409
|
+
i.e. "decodes" are 1 + num_speculative_tokens"""
|
|
410
|
+
UNIFORM_SINGLE_TOKEN_DECODE = 1
|
|
411
|
+
"""Cudagraph supported for batches the only contain query_len==1 decodes"""
|
|
412
|
+
NEVER = 0
|
|
413
|
+
"""NO cudagraph support"""
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
class AttentionMetadataBuilder(ABC, Generic[M]):
|
|
417
|
+
# Does this backend/builder support CUDA Graphs for attention (default: no).
|
|
418
|
+
# Do not access directly. Call get_cudagraph_support() instead.
|
|
419
|
+
_cudagraph_support: ClassVar[AttentionCGSupport] = AttentionCGSupport.NEVER
|
|
420
|
+
# Does this backend/builder reorder the batch?
|
|
421
|
+
# If not, set this to None. Otherwise set it to the query
|
|
422
|
+
# length that will be pulled into the front of the batch.
|
|
423
|
+
reorder_batch_threshold: int | None = None
|
|
424
|
+
# Does this backend/builder support updating the block table in existing
|
|
425
|
+
# metadata
|
|
426
|
+
supports_update_block_table: bool = False
|
|
427
|
+
|
|
428
|
+
@abstractmethod
|
|
429
|
+
def __init__(
|
|
430
|
+
self,
|
|
431
|
+
kv_cache_spec: "AttentionSpec",
|
|
432
|
+
layer_names: list[str],
|
|
433
|
+
vllm_config: "VllmConfig",
|
|
434
|
+
device: torch.device,
|
|
435
|
+
):
|
|
436
|
+
self.kv_cache_spec = kv_cache_spec
|
|
437
|
+
self.layer_names = layer_names
|
|
438
|
+
self.vllm_config = vllm_config
|
|
439
|
+
self.device = device
|
|
440
|
+
|
|
441
|
+
@classmethod
|
|
442
|
+
def get_cudagraph_support(
|
|
443
|
+
cls: type["AttentionMetadataBuilder"],
|
|
444
|
+
vllm_config: "VllmConfig",
|
|
445
|
+
kv_cache_spec: "AttentionSpec",
|
|
446
|
+
) -> AttentionCGSupport:
|
|
447
|
+
"""Get the cudagraph support level of this builder class."""
|
|
448
|
+
return cls._cudagraph_support
|
|
449
|
+
|
|
450
|
+
def _init_reorder_batch_threshold(
|
|
451
|
+
self,
|
|
452
|
+
reorder_batch_threshold: int | None = 1,
|
|
453
|
+
supports_spec_as_decode: bool = False,
|
|
454
|
+
supports_dcp_with_varlen: bool = False,
|
|
455
|
+
) -> None:
|
|
456
|
+
self.reorder_batch_threshold = reorder_batch_threshold
|
|
457
|
+
if self.reorder_batch_threshold is not None and supports_spec_as_decode:
|
|
458
|
+
# If the backend supports spec-as-decode kernels, then we can set
|
|
459
|
+
# the reorder_batch_threshold based on the number of speculative
|
|
460
|
+
# tokens from the config.
|
|
461
|
+
speculative_config = self.vllm_config.speculative_config
|
|
462
|
+
if (
|
|
463
|
+
speculative_config is not None
|
|
464
|
+
and speculative_config.num_speculative_tokens is not None
|
|
465
|
+
):
|
|
466
|
+
self.reorder_batch_threshold = max(
|
|
467
|
+
self.reorder_batch_threshold,
|
|
468
|
+
1 + speculative_config.num_speculative_tokens,
|
|
469
|
+
)
|
|
470
|
+
|
|
471
|
+
if (
|
|
472
|
+
self.vllm_config.parallel_config.decode_context_parallel_size > 1
|
|
473
|
+
and not supports_dcp_with_varlen
|
|
474
|
+
):
|
|
475
|
+
self.reorder_batch_threshold = 1
|
|
476
|
+
|
|
477
|
+
@abstractmethod
|
|
478
|
+
def build(
|
|
479
|
+
self,
|
|
480
|
+
common_prefix_len: int,
|
|
481
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
482
|
+
fast_build: bool = False,
|
|
483
|
+
) -> M:
|
|
484
|
+
"""
|
|
485
|
+
Central method that builds attention metadata.
|
|
486
|
+
Some builders (MLA) require reorder_batch to be called prior to build.
|
|
487
|
+
|
|
488
|
+
Args:
|
|
489
|
+
common_prefix_len: The length of the common prefix of the batch.
|
|
490
|
+
common_attn_metadata: The common attention metadata.
|
|
491
|
+
fast_build: The meta-data will prioritize speed of building over
|
|
492
|
+
then speed at execution. Can be used for spec-decode where the
|
|
493
|
+
result of a build call may only be used for few layers/iters.
|
|
494
|
+
"""
|
|
495
|
+
raise NotImplementedError
|
|
496
|
+
|
|
497
|
+
def update_block_table(
|
|
498
|
+
self,
|
|
499
|
+
metadata: M,
|
|
500
|
+
blk_table: torch.Tensor,
|
|
501
|
+
slot_mapping: torch.Tensor,
|
|
502
|
+
) -> M:
|
|
503
|
+
"""
|
|
504
|
+
Update the block table for the attention metadata.
|
|
505
|
+
Faster when theres multiple kv-cache groups that create virtually the
|
|
506
|
+
same metadata but just with different block tables.
|
|
507
|
+
|
|
508
|
+
Only needs to be implemented if supports_update_block_table is True.
|
|
509
|
+
"""
|
|
510
|
+
raise NotImplementedError
|
|
511
|
+
|
|
512
|
+
def build_for_cudagraph_capture(
|
|
513
|
+
self, common_attn_metadata: CommonAttentionMetadata
|
|
514
|
+
) -> M:
|
|
515
|
+
"""
|
|
516
|
+
Build attention metadata for CUDA graph capture. Uses build by default.
|
|
517
|
+
Subclasses that override this method should call self.build or
|
|
518
|
+
super().build_for_cudagraph_capture.
|
|
519
|
+
"""
|
|
520
|
+
return self.build(
|
|
521
|
+
common_prefix_len=0, common_attn_metadata=common_attn_metadata
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
def build_for_drafting(
|
|
525
|
+
self,
|
|
526
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
527
|
+
draft_index: int,
|
|
528
|
+
) -> M:
|
|
529
|
+
"""
|
|
530
|
+
Build attention metadata for draft model. Uses build by default.
|
|
531
|
+
|
|
532
|
+
Args:
|
|
533
|
+
common_attn_metadata: The common attention metadata.
|
|
534
|
+
draft_index: The index of the current draft operation.
|
|
535
|
+
When speculating a chain of tokens, this index refers to the
|
|
536
|
+
draft attempt for the i-th token.
|
|
537
|
+
For tree-based attention, this index instead refers to the
|
|
538
|
+
draft attempt for the i-th level in the tree of tokens.
|
|
539
|
+
"""
|
|
540
|
+
return self.build(
|
|
541
|
+
common_prefix_len=0,
|
|
542
|
+
common_attn_metadata=common_attn_metadata,
|
|
543
|
+
fast_build=True,
|
|
544
|
+
)
|
|
545
|
+
|
|
546
|
+
def use_cascade_attention(
|
|
547
|
+
self,
|
|
548
|
+
common_prefix_len: int,
|
|
549
|
+
query_lens: np.ndarray,
|
|
550
|
+
num_query_heads: int,
|
|
551
|
+
num_kv_heads: int,
|
|
552
|
+
use_alibi: bool,
|
|
553
|
+
use_sliding_window: bool,
|
|
554
|
+
use_local_attention: bool,
|
|
555
|
+
num_sms: int,
|
|
556
|
+
dcp_world_size: int,
|
|
557
|
+
) -> bool:
|
|
558
|
+
return False
|
|
559
|
+
|
|
560
|
+
|
|
561
|
+
class AttentionLayer(Protocol):
|
|
562
|
+
_q_scale: torch.Tensor
|
|
563
|
+
_k_scale: torch.Tensor
|
|
564
|
+
_v_scale: torch.Tensor
|
|
565
|
+
_q_scale_float: float
|
|
566
|
+
_k_scale_float: float
|
|
567
|
+
_v_scale_float: float
|
|
568
|
+
_prob_scale: torch.Tensor
|
|
569
|
+
|
|
570
|
+
def forward(
|
|
571
|
+
self,
|
|
572
|
+
query: torch.Tensor,
|
|
573
|
+
key: torch.Tensor,
|
|
574
|
+
value: torch.Tensor,
|
|
575
|
+
kv_cache: torch.Tensor,
|
|
576
|
+
attn_metadata: AttentionMetadata,
|
|
577
|
+
) -> torch.Tensor: ...
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
class AttentionImpl(ABC, Generic[T]):
|
|
581
|
+
# Required attributes that all impls should have
|
|
582
|
+
num_heads: int
|
|
583
|
+
head_size: int
|
|
584
|
+
scale: float
|
|
585
|
+
|
|
586
|
+
# Whether the attention impl can return the softmax lse for decode.
|
|
587
|
+
# Some features like decode context parallelism require the softmax lse.
|
|
588
|
+
can_return_lse_for_decode: bool = False
|
|
589
|
+
|
|
590
|
+
# Whether the attention impl supports Prefill Context Parallelism.
|
|
591
|
+
supports_pcp: bool = False
|
|
592
|
+
# Whether the attention impl(or ops) supports MTP
|
|
593
|
+
# when cp_kv_cache_interleave_size > 1
|
|
594
|
+
supports_mtp_with_cp_non_trivial_interleave_size: bool = False
|
|
595
|
+
|
|
596
|
+
# some attention backends might not always want to return lse
|
|
597
|
+
# even if they can return lse (for efficiency reasons)
|
|
598
|
+
need_to_return_lse_for_decode: bool = False
|
|
599
|
+
|
|
600
|
+
# Whether this attention implementation supports pre-quantized query input.
|
|
601
|
+
# When True, the attention layer will quantize queries before passing them
|
|
602
|
+
# to this backend, allowing torch.compile to fuse the quantization with
|
|
603
|
+
# previous operations. This is typically supported when using FP8 KV cache
|
|
604
|
+
# with compatible attention kernels (e.g., TRT-LLM).
|
|
605
|
+
# Subclasses should set this in __init__.
|
|
606
|
+
# TODO add support to more backends:
|
|
607
|
+
# https://github.com/vllm-project/vllm/issues/25584
|
|
608
|
+
supports_quant_query_input: bool = False
|
|
609
|
+
|
|
610
|
+
dcp_world_size: int
|
|
611
|
+
dcp_rank: int
|
|
612
|
+
|
|
613
|
+
pcp_world_size: int
|
|
614
|
+
pcp_rank: int
|
|
615
|
+
|
|
616
|
+
total_cp_world_size: int
|
|
617
|
+
total_cp_rank: int
|
|
618
|
+
|
|
619
|
+
def __new__(cls, *args, **kwargs):
|
|
620
|
+
# use __new__ so that all subclasses will call this
|
|
621
|
+
self = super().__new__(cls)
|
|
622
|
+
try:
|
|
623
|
+
from vllm.distributed.parallel_state import get_dcp_group
|
|
624
|
+
|
|
625
|
+
self.dcp_world_size = get_dcp_group().world_size
|
|
626
|
+
self.dcp_rank = get_dcp_group().rank_in_group
|
|
627
|
+
except AssertionError:
|
|
628
|
+
# DCP might not be initialized in testing
|
|
629
|
+
self.dcp_world_size = 1
|
|
630
|
+
self.dcp_rank = 0
|
|
631
|
+
try:
|
|
632
|
+
from vllm.distributed.parallel_state import get_pcp_group
|
|
633
|
+
|
|
634
|
+
self.pcp_world_size = get_pcp_group().world_size
|
|
635
|
+
self.pcp_rank = get_pcp_group().rank_in_group
|
|
636
|
+
except AssertionError:
|
|
637
|
+
self.pcp_world_size = 1
|
|
638
|
+
self.pcp_rank = 0
|
|
639
|
+
self.total_cp_world_size = self.pcp_world_size * self.dcp_world_size
|
|
640
|
+
self.total_cp_rank = self.pcp_rank * self.dcp_world_size + self.dcp_rank
|
|
641
|
+
|
|
642
|
+
self.need_to_return_lse_for_decode = (
|
|
643
|
+
self.dcp_world_size > 1 and self.can_return_lse_for_decode
|
|
644
|
+
)
|
|
645
|
+
return self
|
|
646
|
+
|
|
647
|
+
@abstractmethod
|
|
648
|
+
def __init__(
|
|
649
|
+
self,
|
|
650
|
+
num_heads: int,
|
|
651
|
+
head_size: int,
|
|
652
|
+
scale: float,
|
|
653
|
+
num_kv_heads: int | None = None,
|
|
654
|
+
alibi_slopes: list[float] | None = None,
|
|
655
|
+
sliding_window: int | None = None,
|
|
656
|
+
kv_cache_dtype: str = "auto",
|
|
657
|
+
logits_soft_cap: float | None = None,
|
|
658
|
+
attn_type: str = AttentionType.DECODER,
|
|
659
|
+
kv_sharing_target_layer_name: str | None = None,
|
|
660
|
+
) -> None:
|
|
661
|
+
raise NotImplementedError
|
|
662
|
+
|
|
663
|
+
@abstractmethod
|
|
664
|
+
def forward(
|
|
665
|
+
self,
|
|
666
|
+
layer: AttentionLayer,
|
|
667
|
+
query: torch.Tensor,
|
|
668
|
+
key: torch.Tensor,
|
|
669
|
+
value: torch.Tensor,
|
|
670
|
+
kv_cache: torch.Tensor,
|
|
671
|
+
attn_metadata: T,
|
|
672
|
+
output: torch.Tensor | None = None,
|
|
673
|
+
output_scale: torch.Tensor | None = None,
|
|
674
|
+
output_block_scale: torch.Tensor | None = None,
|
|
675
|
+
) -> torch.Tensor:
|
|
676
|
+
raise NotImplementedError
|
|
677
|
+
|
|
678
|
+
def fused_output_quant_supported(self, quant_key: "QuantKey"):
|
|
679
|
+
"""
|
|
680
|
+
Does this attention implementation support fused output quantization.
|
|
681
|
+
This is used by the AttnFusionPass to only fuse output quantization
|
|
682
|
+
onto implementations that support it.
|
|
683
|
+
|
|
684
|
+
:param quant_key: QuantKey object that describes the quantization op
|
|
685
|
+
:return: is fusion supported for this type of quantization
|
|
686
|
+
"""
|
|
687
|
+
return False
|
|
688
|
+
|
|
689
|
+
def process_weights_after_loading(self, act_dtype: torch.dtype):
|
|
690
|
+
pass
|
|
691
|
+
|
|
692
|
+
|
|
693
|
+
class MLAAttentionImpl(AttentionImpl[T], Generic[T]):
|
|
694
|
+
@abstractmethod
|
|
695
|
+
def __init__(
|
|
696
|
+
self,
|
|
697
|
+
num_heads: int,
|
|
698
|
+
head_size: int,
|
|
699
|
+
scale: float,
|
|
700
|
+
num_kv_heads: int,
|
|
701
|
+
alibi_slopes: list[float] | None,
|
|
702
|
+
sliding_window: int | None,
|
|
703
|
+
kv_cache_dtype: str,
|
|
704
|
+
logits_soft_cap: float | None,
|
|
705
|
+
attn_type: str,
|
|
706
|
+
kv_sharing_target_layer_name: str | None,
|
|
707
|
+
# MLA Specific Arguments
|
|
708
|
+
q_lora_rank: int | None,
|
|
709
|
+
kv_lora_rank: int,
|
|
710
|
+
qk_nope_head_dim: int,
|
|
711
|
+
qk_rope_head_dim: int,
|
|
712
|
+
qk_head_dim: int,
|
|
713
|
+
v_head_dim: int,
|
|
714
|
+
kv_b_proj: "ColumnParallelLinear",
|
|
715
|
+
indexer: object | None = None,
|
|
716
|
+
) -> None:
|
|
717
|
+
raise NotImplementedError
|
|
718
|
+
|
|
719
|
+
@abstractmethod
|
|
720
|
+
def forward(
|
|
721
|
+
self,
|
|
722
|
+
layer: AttentionLayer,
|
|
723
|
+
hidden_states_or_cq: torch.Tensor,
|
|
724
|
+
kv_c_normed: torch.Tensor,
|
|
725
|
+
k_pe: torch.Tensor,
|
|
726
|
+
kv_cache: torch.Tensor,
|
|
727
|
+
attn_metadata: T,
|
|
728
|
+
output: torch.Tensor | None = None,
|
|
729
|
+
output_scale: torch.Tensor | None = None,
|
|
730
|
+
output_block_scale: torch.Tensor | None = None,
|
|
731
|
+
) -> torch.Tensor:
|
|
732
|
+
raise NotImplementedError
|
|
733
|
+
|
|
734
|
+
|
|
735
|
+
def is_quantized_kv_cache(kv_cache_dtype: str) -> bool:
|
|
736
|
+
return kv_cache_dtype != "auto"
|