vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +1511 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +3206 -0
- vllm/_ipex_ops.py +445 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +62 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +0 -0
- vllm/attention/layer.py +913 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3277 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/mm_processor.py +363 -0
- vllm/benchmarks/serve.py +1761 -0
- vllm/benchmarks/startup.py +321 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +41 -0
- vllm/benchmarks/sweep/param_sweep.py +159 -0
- vllm/benchmarks/sweep/plot.py +675 -0
- vllm/benchmarks/sweep/plot_pareto.py +393 -0
- vllm/benchmarks/sweep/serve.py +450 -0
- vllm/benchmarks/sweep/serve_sla.py +459 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +138 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +946 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +214 -0
- vllm/compilation/backends.py +840 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +196 -0
- vllm/compilation/collective_fusion.py +1224 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +50 -0
- vllm/compilation/cuda_graph.py +309 -0
- vllm/compilation/decorators.py +662 -0
- vllm/compilation/fix_functionalization.py +266 -0
- vllm/compilation/fusion.py +570 -0
- vllm/compilation/fusion_attn.py +363 -0
- vllm/compilation/fx_utils.py +92 -0
- vllm/compilation/inductor_pass.py +145 -0
- vllm/compilation/matcher_utils.py +454 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +130 -0
- vllm/compilation/partition_rules.py +75 -0
- vllm/compilation/pass_manager.py +164 -0
- vllm/compilation/piecewise_backend.py +191 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +244 -0
- vllm/compilation/rocm_aiter_fusion.py +401 -0
- vllm/compilation/sequence_parallelism.py +368 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +180 -0
- vllm/compilation/wrapper.py +329 -0
- vllm/config/__init__.py +112 -0
- vllm/config/attention.py +114 -0
- vllm/config/cache.py +233 -0
- vllm/config/compilation.py +1149 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +119 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +102 -0
- vllm/config/model.py +2026 -0
- vllm/config/model_arch.py +57 -0
- vllm/config/multimodal.py +247 -0
- vllm/config/observability.py +157 -0
- vllm/config/parallel.py +703 -0
- vllm/config/pooler.py +188 -0
- vllm/config/profiler.py +199 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +656 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +78 -0
- vllm/config/utils.py +374 -0
- vllm/config/vllm.py +1487 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +301 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +509 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +303 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +346 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +778 -0
- vllm/distributed/device_communicators/shm_object_storage.py +697 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/xpu_communicator.py +98 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +3 -0
- vllm/distributed/eplb/async_worker.py +115 -0
- vllm/distributed/eplb/eplb_state.py +1192 -0
- vllm/distributed/eplb/policy/__init__.py +19 -0
- vllm/distributed/eplb/policy/abstract.py +43 -0
- vllm/distributed/eplb/policy/default.py +376 -0
- vllm/distributed/eplb/rebalance_execute.py +699 -0
- vllm/distributed/kv_events.py +505 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
- vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
- vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1809 -0
- vllm/distributed/utils.py +545 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2137 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +194 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +468 -0
- vllm/entrypoints/api_server.py +186 -0
- vllm/entrypoints/chat_utils.py +1912 -0
- vllm/entrypoints/cli/__init__.py +19 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +57 -0
- vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/startup.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +260 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +253 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +12 -0
- vllm/entrypoints/context.py +898 -0
- vllm/entrypoints/grpc_server.py +531 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1807 -0
- vllm/entrypoints/logger.py +86 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1390 -0
- vllm/entrypoints/openai/cli_args.py +320 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/parser/__init__.py +0 -0
- vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
- vllm/entrypoints/openai/parser/responses_parser.py +176 -0
- vllm/entrypoints/openai/protocol.py +2566 -0
- vllm/entrypoints/openai/run_batch.py +635 -0
- vllm/entrypoints/openai/serving_chat.py +1897 -0
- vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
- vllm/entrypoints/openai/serving_completion.py +740 -0
- vllm/entrypoints/openai/serving_engine.py +1612 -0
- vllm/entrypoints/openai/serving_models.py +309 -0
- vllm/entrypoints/openai/serving_responses.py +2552 -0
- vllm/entrypoints/openai/serving_transcription.py +168 -0
- vllm/entrypoints/openai/speech_to_text.py +711 -0
- vllm/entrypoints/openai/utils.py +49 -0
- vllm/entrypoints/pooling/__init__.py +16 -0
- vllm/entrypoints/pooling/classify/__init__.py +0 -0
- vllm/entrypoints/pooling/classify/api_router.py +48 -0
- vllm/entrypoints/pooling/classify/protocol.py +181 -0
- vllm/entrypoints/pooling/classify/serving.py +233 -0
- vllm/entrypoints/pooling/embed/__init__.py +0 -0
- vllm/entrypoints/pooling/embed/api_router.py +65 -0
- vllm/entrypoints/pooling/embed/conftest.py +28 -0
- vllm/entrypoints/pooling/embed/protocol.py +217 -0
- vllm/entrypoints/pooling/embed/serving.py +684 -0
- vllm/entrypoints/pooling/pooling/__init__.py +0 -0
- vllm/entrypoints/pooling/pooling/api_router.py +62 -0
- vllm/entrypoints/pooling/pooling/protocol.py +146 -0
- vllm/entrypoints/pooling/pooling/serving.py +354 -0
- vllm/entrypoints/pooling/score/__init__.py +0 -0
- vllm/entrypoints/pooling/score/api_router.py +147 -0
- vllm/entrypoints/pooling/score/protocol.py +146 -0
- vllm/entrypoints/pooling/score/serving.py +511 -0
- vllm/entrypoints/renderer.py +411 -0
- vllm/entrypoints/responses_utils.py +218 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +118 -0
- vllm/entrypoints/score_utils.py +271 -0
- vllm/entrypoints/serve/__init__.py +94 -0
- vllm/entrypoints/serve/cache/__init__.py +0 -0
- vllm/entrypoints/serve/cache/api_router.py +61 -0
- vllm/entrypoints/serve/disagg/__init__.py +0 -0
- vllm/entrypoints/serve/disagg/api_router.py +109 -0
- vllm/entrypoints/serve/disagg/protocol.py +90 -0
- vllm/entrypoints/serve/disagg/serving.py +285 -0
- vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
- vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
- vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
- vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
- vllm/entrypoints/serve/instrumentator/health.py +33 -0
- vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
- vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
- vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
- vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
- vllm/entrypoints/serve/lora/__init__.py +0 -0
- vllm/entrypoints/serve/lora/api_router.py +70 -0
- vllm/entrypoints/serve/profile/__init__.py +0 -0
- vllm/entrypoints/serve/profile/api_router.py +46 -0
- vllm/entrypoints/serve/rlhf/__init__.py +0 -0
- vllm/entrypoints/serve/rlhf/api_router.py +102 -0
- vllm/entrypoints/serve/rpc/__init__.py +0 -0
- vllm/entrypoints/serve/rpc/api_router.py +61 -0
- vllm/entrypoints/serve/sleep/__init__.py +0 -0
- vllm/entrypoints/serve/sleep/api_router.py +56 -0
- vllm/entrypoints/serve/tokenize/__init__.py +0 -0
- vllm/entrypoints/serve/tokenize/api_router.py +112 -0
- vllm/entrypoints/serve/tokenize/serving.py +204 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +187 -0
- vllm/entrypoints/tool_server.py +234 -0
- vllm/entrypoints/utils.py +336 -0
- vllm/env_override.py +402 -0
- vllm/envs.py +1791 -0
- vllm/exceptions.py +36 -0
- vllm/forward_context.py +375 -0
- vllm/grpc/__init__.py +17 -0
- vllm/grpc/compile_protos.py +94 -0
- vllm/grpc/vllm_engine.proto +195 -0
- vllm/grpc/vllm_engine_pb2.py +77 -0
- vllm/grpc/vllm_engine_pb2.pyi +213 -0
- vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +147 -0
- vllm/inputs/preprocess.py +716 -0
- vllm/logger.py +303 -0
- vllm/logging_utils/__init__.py +13 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +127 -0
- vllm/logging_utils/lazy.py +20 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +206 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +43 -0
- vllm/lora/layers/base.py +66 -0
- vllm/lora/layers/base_linear.py +172 -0
- vllm/lora/layers/column_parallel_linear.py +577 -0
- vllm/lora/layers/fused_moe.py +739 -0
- vllm/lora/layers/logits_processor.py +203 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +176 -0
- vllm/lora/layers/utils.py +115 -0
- vllm/lora/layers/vocal_parallel_embedding.py +140 -0
- vllm/lora/lora_model.py +221 -0
- vllm/lora/lora_weights.py +227 -0
- vllm/lora/model_manager.py +858 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +313 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +493 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +413 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +60 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +281 -0
- vllm/lora/worker_manager.py +278 -0
- vllm/model_executor/__init__.py +9 -0
- vllm/model_executor/custom_op.py +203 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +628 -0
- vllm/model_executor/layers/attention/__init__.py +0 -0
- vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
- vllm/model_executor/layers/attention/cross_attention.py +182 -0
- vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
- vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
- vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
- vllm/model_executor/layers/attention_layer_base.py +34 -0
- vllm/model_executor/layers/batch_invariant.py +1063 -0
- vllm/model_executor/layers/conv.py +262 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +120 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
- vllm/model_executor/layers/fused_moe/config.py +1111 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
- vllm/model_executor/layers/fused_moe/fallback.py +127 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
- vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
- vllm/model_executor/layers/fused_moe/layer.py +2169 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
- vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
- vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
- vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
- vllm/model_executor/layers/fused_moe/utils.py +382 -0
- vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
- vllm/model_executor/layers/kda.py +442 -0
- vllm/model_executor/layers/layernorm.py +451 -0
- vllm/model_executor/layers/lightning_attn.py +735 -0
- vllm/model_executor/layers/linear.py +1478 -0
- vllm/model_executor/layers/logits_processor.py +109 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +68 -0
- vllm/model_executor/layers/mamba/linear_attn.py +410 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +254 -0
- vllm/model_executor/layers/mla.py +179 -0
- vllm/model_executor/layers/pooler/__init__.py +5 -0
- vllm/model_executor/layers/pooler/abstract.py +39 -0
- vllm/model_executor/layers/pooler/activations.py +162 -0
- vllm/model_executor/layers/pooler/common.py +32 -0
- vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
- vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
- vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
- vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
- vllm/model_executor/layers/pooler/special.py +128 -0
- vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
- vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
- vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
- vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
- vllm/model_executor/layers/quantization/__init__.py +195 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +209 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1224 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +682 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
- vllm/model_executor/layers/quantization/kv_cache.py +153 -0
- vllm/model_executor/layers/quantization/modelopt.py +1665 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
- vllm/model_executor/layers/quantization/petit.py +319 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +570 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +626 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
- vllm/model_executor/layers/rotary_embedding/base.py +282 -0
- vllm/model_executor/layers/rotary_embedding/common.py +289 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
- vllm/model_executor/model_loader/__init__.py +150 -0
- vllm/model_executor/model_loader/base_loader.py +71 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
- vllm/model_executor/model_loader/default_loader.py +304 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +371 -0
- vllm/model_executor/model_loader/online_quantization.py +275 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
- vllm/model_executor/model_loader/tensorizer.py +793 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/utils.py +299 -0
- vllm/model_executor/model_loader/weight_utils.py +1183 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +592 -0
- vllm/model_executor/models/afmoe.py +697 -0
- vllm/model_executor/models/aimv2.py +248 -0
- vllm/model_executor/models/apertus.py +567 -0
- vllm/model_executor/models/arcee.py +428 -0
- vllm/model_executor/models/arctic.py +633 -0
- vllm/model_executor/models/aria.py +663 -0
- vllm/model_executor/models/audioflamingo3.py +639 -0
- vllm/model_executor/models/aya_vision.py +448 -0
- vllm/model_executor/models/bagel.py +591 -0
- vllm/model_executor/models/baichuan.py +493 -0
- vllm/model_executor/models/bailing_moe.py +643 -0
- vllm/model_executor/models/bamba.py +511 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +911 -0
- vllm/model_executor/models/bert_with_rope.py +729 -0
- vllm/model_executor/models/blip.py +350 -0
- vllm/model_executor/models/blip2.py +736 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1095 -0
- vllm/model_executor/models/chatglm.py +502 -0
- vllm/model_executor/models/clip.py +1045 -0
- vllm/model_executor/models/cohere2_vision.py +470 -0
- vllm/model_executor/models/commandr.py +469 -0
- vllm/model_executor/models/config.py +571 -0
- vllm/model_executor/models/dbrx.py +484 -0
- vllm/model_executor/models/deepencoder.py +679 -0
- vllm/model_executor/models/deepseek_eagle.py +253 -0
- vllm/model_executor/models/deepseek_mtp.py +447 -0
- vllm/model_executor/models/deepseek_ocr.py +601 -0
- vllm/model_executor/models/deepseek_v2.py +1727 -0
- vllm/model_executor/models/deepseek_vl2.py +642 -0
- vllm/model_executor/models/dots1.py +566 -0
- vllm/model_executor/models/dots_ocr.py +830 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +755 -0
- vllm/model_executor/models/ernie45_vl.py +1702 -0
- vllm/model_executor/models/ernie45_vl_moe.py +801 -0
- vllm/model_executor/models/ernie_mtp.py +278 -0
- vllm/model_executor/models/exaone.py +524 -0
- vllm/model_executor/models/exaone4.py +518 -0
- vllm/model_executor/models/exaone_moe.py +579 -0
- vllm/model_executor/models/exaone_moe_mtp.py +255 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +543 -0
- vllm/model_executor/models/falcon_h1.py +675 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +371 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +435 -0
- vllm/model_executor/models/gemma3.py +520 -0
- vllm/model_executor/models/gemma3_mm.py +664 -0
- vllm/model_executor/models/gemma3n.py +1166 -0
- vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
- vllm/model_executor/models/gemma3n_mm.py +820 -0
- vllm/model_executor/models/glm.py +24 -0
- vllm/model_executor/models/glm4.py +295 -0
- vllm/model_executor/models/glm4_1v.py +1823 -0
- vllm/model_executor/models/glm4_moe.py +725 -0
- vllm/model_executor/models/glm4_moe_mtp.py +365 -0
- vllm/model_executor/models/glm4v.py +783 -0
- vllm/model_executor/models/glmasr.py +1154 -0
- vllm/model_executor/models/glmasr_utils.py +188 -0
- vllm/model_executor/models/gpt2.py +385 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +340 -0
- vllm/model_executor/models/gpt_oss.py +745 -0
- vllm/model_executor/models/granite.py +475 -0
- vllm/model_executor/models/granite_speech.py +919 -0
- vllm/model_executor/models/granitemoe.py +561 -0
- vllm/model_executor/models/granitemoehybrid.py +703 -0
- vllm/model_executor/models/granitemoeshared.py +328 -0
- vllm/model_executor/models/gritlm.py +242 -0
- vllm/model_executor/models/grok1.py +803 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hunyuan_vision.py +1034 -0
- vllm/model_executor/models/hyperclovax_vision.py +1163 -0
- vllm/model_executor/models/idefics2_vision_model.py +427 -0
- vllm/model_executor/models/idefics3.py +734 -0
- vllm/model_executor/models/interfaces.py +1180 -0
- vllm/model_executor/models/interfaces_base.py +252 -0
- vllm/model_executor/models/intern_vit.py +454 -0
- vllm/model_executor/models/internlm2.py +451 -0
- vllm/model_executor/models/internlm2_ve.py +139 -0
- vllm/model_executor/models/interns1.py +828 -0
- vllm/model_executor/models/interns1_vit.py +433 -0
- vllm/model_executor/models/internvl.py +1436 -0
- vllm/model_executor/models/iquest_loopcoder.py +595 -0
- vllm/model_executor/models/isaac.py +1503 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jais2.py +508 -0
- vllm/model_executor/models/jamba.py +599 -0
- vllm/model_executor/models/jina_vl.py +145 -0
- vllm/model_executor/models/kanana_v.py +756 -0
- vllm/model_executor/models/keye.py +1709 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +659 -0
- vllm/model_executor/models/kimi_vl.py +577 -0
- vllm/model_executor/models/lfm2.py +515 -0
- vllm/model_executor/models/lfm2_moe.py +746 -0
- vllm/model_executor/models/lfm2_vl.py +732 -0
- vllm/model_executor/models/lightonocr.py +197 -0
- vllm/model_executor/models/llama.py +724 -0
- vllm/model_executor/models/llama4.py +860 -0
- vllm/model_executor/models/llama4_eagle.py +225 -0
- vllm/model_executor/models/llama_eagle.py +213 -0
- vllm/model_executor/models/llama_eagle3.py +375 -0
- vllm/model_executor/models/llava.py +879 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +922 -0
- vllm/model_executor/models/longcat_flash.py +767 -0
- vllm/model_executor/models/longcat_flash_mtp.py +348 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +288 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +826 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/mimo_v2_flash.py +718 -0
- vllm/model_executor/models/minicpm.py +660 -0
- vllm/model_executor/models/minicpm3.py +233 -0
- vllm/model_executor/models/minicpm_eagle.py +386 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1742 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1008 -0
- vllm/model_executor/models/minimax_vl_01.py +395 -0
- vllm/model_executor/models/mistral3.py +638 -0
- vllm/model_executor/models/mistral_large_3.py +63 -0
- vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
- vllm/model_executor/models/mixtral.py +599 -0
- vllm/model_executor/models/mllama4.py +1170 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +458 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1592 -0
- vllm/model_executor/models/moonvit.py +601 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
- vllm/model_executor/models/nemotron.py +499 -0
- vllm/model_executor/models/nemotron_h.py +902 -0
- vllm/model_executor/models/nemotron_nas.py +474 -0
- vllm/model_executor/models/nemotron_parse.py +958 -0
- vllm/model_executor/models/nemotron_vl.py +651 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +412 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/opencua.py +262 -0
- vllm/model_executor/models/openpangu.py +1378 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +365 -0
- vllm/model_executor/models/ouro.py +507 -0
- vllm/model_executor/models/ovis.py +557 -0
- vllm/model_executor/models/ovis2_5.py +661 -0
- vllm/model_executor/models/paddleocr_vl.py +1261 -0
- vllm/model_executor/models/paligemma.py +429 -0
- vllm/model_executor/models/persimmon.py +373 -0
- vllm/model_executor/models/phi.py +363 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +729 -0
- vllm/model_executor/models/phi4mm.py +1250 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +671 -0
- vllm/model_executor/models/pixtral.py +1437 -0
- vllm/model_executor/models/plamo2.py +993 -0
- vllm/model_executor/models/plamo3.py +437 -0
- vllm/model_executor/models/qwen.py +377 -0
- vllm/model_executor/models/qwen2.py +600 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
- vllm/model_executor/models/qwen2_5_vl.py +1598 -0
- vllm/model_executor/models/qwen2_audio.py +478 -0
- vllm/model_executor/models/qwen2_moe.py +604 -0
- vllm/model_executor/models/qwen2_rm.py +120 -0
- vllm/model_executor/models/qwen2_vl.py +1588 -0
- vllm/model_executor/models/qwen3.py +331 -0
- vllm/model_executor/models/qwen3_moe.py +752 -0
- vllm/model_executor/models/qwen3_next.py +1410 -0
- vllm/model_executor/models/qwen3_next_mtp.py +293 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
- vllm/model_executor/models/qwen3_vl.py +2120 -0
- vllm/model_executor/models/qwen3_vl_moe.py +474 -0
- vllm/model_executor/models/qwen_vl.py +821 -0
- vllm/model_executor/models/radio.py +573 -0
- vllm/model_executor/models/registry.py +1218 -0
- vllm/model_executor/models/roberta.py +239 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +492 -0
- vllm/model_executor/models/siglip.py +1259 -0
- vllm/model_executor/models/siglip2.py +495 -0
- vllm/model_executor/models/siglip2navit.py +660 -0
- vllm/model_executor/models/skyworkr1v.py +951 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +484 -0
- vllm/model_executor/models/stablelm.py +354 -0
- vllm/model_executor/models/starcoder2.py +365 -0
- vllm/model_executor/models/step3_text.py +554 -0
- vllm/model_executor/models/step3_vl.py +1147 -0
- vllm/model_executor/models/swin.py +500 -0
- vllm/model_executor/models/tarsier.py +624 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +318 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +523 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +329 -0
- vllm/model_executor/models/transformers/multimodal.py +441 -0
- vllm/model_executor/models/transformers/pooling.py +102 -0
- vllm/model_executor/models/transformers/utils.py +253 -0
- vllm/model_executor/models/ultravox.py +786 -0
- vllm/model_executor/models/utils.py +832 -0
- vllm/model_executor/models/vision.py +546 -0
- vllm/model_executor/models/voxtral.py +867 -0
- vllm/model_executor/models/voxtral_streaming.py +304 -0
- vllm/model_executor/models/whisper.py +993 -0
- vllm/model_executor/models/whisper_utils.py +299 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +113 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
- vllm/model_executor/warmup/kernel_warmup.py +97 -0
- vllm/model_inspection.py +136 -0
- vllm/multimodal/__init__.py +38 -0
- vllm/multimodal/audio.py +287 -0
- vllm/multimodal/base.py +60 -0
- vllm/multimodal/cache.py +829 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +123 -0
- vllm/multimodal/image.py +155 -0
- vllm/multimodal/inputs.py +1027 -0
- vllm/multimodal/parse.py +674 -0
- vllm/multimodal/processing.py +2469 -0
- vllm/multimodal/profiling.py +351 -0
- vllm/multimodal/registry.py +375 -0
- vllm/multimodal/utils.py +550 -0
- vllm/multimodal/video.py +512 -0
- vllm/outputs.py +347 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +423 -0
- vllm/platforms/cuda.py +618 -0
- vllm/platforms/interface.py +707 -0
- vllm/platforms/rocm.py +586 -0
- vllm/platforms/tpu.py +20 -0
- vllm/platforms/xpu.py +262 -0
- vllm/plugins/__init__.py +81 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +229 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/profiler/wrapper.py +241 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +30 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +96 -0
- vllm/reasoning/abs_reasoning_parsers.py +318 -0
- vllm/reasoning/basic_parsers.py +175 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/holo2_reasoning_parser.py +89 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +63 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
- vllm/reasoning/mistral_reasoning_parser.py +154 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +113 -0
- vllm/sampling_params.py +629 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +64 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tokenizers/__init__.py +18 -0
- vllm/tokenizers/deepseek_v32.py +187 -0
- vllm/tokenizers/deepseek_v32_encoding.py +463 -0
- vllm/tokenizers/detokenizer_utils.py +198 -0
- vllm/tokenizers/grok2.py +443 -0
- vllm/tokenizers/hf.py +119 -0
- vllm/tokenizers/mistral.py +543 -0
- vllm/tokenizers/protocol.py +123 -0
- vllm/tokenizers/registry.py +238 -0
- vllm/tool_parsers/__init__.py +158 -0
- vllm/tool_parsers/abstract_tool_parser.py +274 -0
- vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
- vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
- vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
- vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
- vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
- vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
- vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/tool_parsers/granite_tool_parser.py +253 -0
- vllm/tool_parsers/hermes_tool_parser.py +495 -0
- vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
- vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/tool_parsers/llama_tool_parser.py +324 -0
- vllm/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
- vllm/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/tool_parsers/mistral_tool_parser.py +612 -0
- vllm/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/tool_parsers/openai_tool_parser.py +111 -0
- vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/tool_parsers/step3_tool_parser.py +303 -0
- vllm/tool_parsers/utils.py +229 -0
- vllm/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1169 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +106 -0
- vllm/transformers_utils/configs/afmoe.py +87 -0
- vllm/transformers_utils/configs/arctic.py +216 -0
- vllm/transformers_utils/configs/bagel.py +53 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +90 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +82 -0
- vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
- vllm/transformers_utils/configs/isaac.py +100 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +148 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +163 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +263 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +220 -0
- vllm/transformers_utils/configs/nemotron_h.py +284 -0
- vllm/transformers_utils/configs/olmo3.py +83 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +277 -0
- vllm/transformers_utils/configs/radio.py +98 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +178 -0
- vllm/transformers_utils/configs/tarsier2.py +24 -0
- vllm/transformers_utils/configs/ultravox.py +120 -0
- vllm/transformers_utils/dynamic_module.py +70 -0
- vllm/transformers_utils/gguf_utils.py +280 -0
- vllm/transformers_utils/model_arch_config_convertor.py +402 -0
- vllm/transformers_utils/processor.py +424 -0
- vllm/transformers_utils/processors/__init__.py +25 -0
- vllm/transformers_utils/processors/bagel.py +78 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
- vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/repo_utils.py +287 -0
- vllm/transformers_utils/runai_utils.py +102 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +19 -0
- vllm/transformers_utils/utils.py +112 -0
- vllm/triton_utils/__init__.py +20 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +278 -0
- vllm/utils/__init__.py +36 -0
- vllm/utils/argparse_utils.py +491 -0
- vllm/utils/async_utils.py +310 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +112 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +424 -0
- vllm/utils/flashinfer.py +602 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +151 -0
- vllm/utils/hashing.py +117 -0
- vllm/utils/import_utils.py +438 -0
- vllm/utils/jsontree.py +158 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +285 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/nvtx_pytorch_hooks.py +286 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +51 -0
- vllm/utils/serial_utils.py +214 -0
- vllm/utils/system_utils.py +296 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +781 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backend.py +736 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +501 -0
- vllm/v1/attention/backends/fa_utils.py +126 -0
- vllm/v1/attention/backends/flash_attn.py +1092 -0
- vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
- vllm/v1/attention/backends/flashinfer.py +1713 -0
- vllm/v1/attention/backends/flex_attention.py +1024 -0
- vllm/v1/attention/backends/gdn_attn.py +382 -0
- vllm/v1/attention/backends/linear_attn.py +77 -0
- vllm/v1/attention/backends/mamba1_attn.py +28 -0
- vllm/v1/attention/backends/mamba2_attn.py +256 -0
- vllm/v1/attention/backends/mamba_attn.py +313 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
- vllm/v1/attention/backends/mla/common.py +2156 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
- vllm/v1/attention/backends/mla/flashmla.py +321 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
- vllm/v1/attention/backends/mla/indexer.py +345 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/registry.py +258 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
- vllm/v1/attention/backends/rocm_attn.py +405 -0
- vllm/v1/attention/backends/short_conv_attn.py +26 -0
- vllm/v1/attention/backends/tree_attn.py +430 -0
- vllm/v1/attention/backends/triton_attn.py +578 -0
- vllm/v1/attention/backends/utils.py +978 -0
- vllm/v1/attention/ops/__init__.py +0 -0
- vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
- vllm/v1/attention/ops/common.py +469 -0
- vllm/v1/attention/ops/flashmla.py +254 -0
- vllm/v1/attention/ops/merge_attn_states.py +47 -0
- vllm/v1/attention/ops/paged_attn.py +51 -0
- vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/v1/attention/ops/prefix_prefill.py +862 -0
- vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
- vllm/v1/attention/ops/triton_decode_attention.py +709 -0
- vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
- vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
- vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
- vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
- vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
- vllm/v1/attention/selector.py +145 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +489 -0
- vllm/v1/core/encoder_cache_manager.py +402 -0
- vllm/v1/core/kv_cache_coordinator.py +560 -0
- vllm/v1/core/kv_cache_manager.py +485 -0
- vllm/v1/core/kv_cache_metrics.py +96 -0
- vllm/v1/core/kv_cache_utils.py +1642 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +66 -0
- vllm/v1/core/sched/interface.py +205 -0
- vllm/v1/core/sched/output.py +261 -0
- vllm/v1/core/sched/request_queue.py +208 -0
- vllm/v1/core/sched/scheduler.py +1936 -0
- vllm/v1/core/sched/utils.py +64 -0
- vllm/v1/core/single_type_kv_cache_manager.py +926 -0
- vllm/v1/cudagraph_dispatcher.py +183 -0
- vllm/v1/engine/__init__.py +224 -0
- vllm/v1/engine/async_llm.py +874 -0
- vllm/v1/engine/coordinator.py +396 -0
- vllm/v1/engine/core.py +1614 -0
- vllm/v1/engine/core_client.py +1422 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/input_processor.py +713 -0
- vllm/v1/engine/llm_engine.py +415 -0
- vllm/v1/engine/logprobs.py +245 -0
- vllm/v1/engine/output_processor.py +715 -0
- vllm/v1/engine/parallel_sampling.py +150 -0
- vllm/v1/engine/utils.py +1086 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +888 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +623 -0
- vllm/v1/executor/ray_utils.py +468 -0
- vllm/v1/executor/uniproc_executor.py +186 -0
- vllm/v1/kv_cache_interface.py +485 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +109 -0
- vllm/v1/kv_offload/factory.py +58 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +70 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
- vllm/v1/kv_offload/worker/worker.py +163 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1320 -0
- vllm/v1/metrics/perf.py +1244 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +194 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +440 -0
- vllm/v1/outputs.py +242 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +124 -0
- vllm/v1/request.py +281 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +278 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +57 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
- vllm/v1/sample/rejection_sampler.py +822 -0
- vllm/v1/sample/sampler.py +319 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +514 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1346 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +225 -0
- vllm/v1/spec_decode/ngram_proposer.py +281 -0
- vllm/v1/spec_decode/suffix_decoding.py +95 -0
- vllm/v1/spec_decode/utils.py +109 -0
- vllm/v1/structured_output/__init__.py +337 -0
- vllm/v1/structured_output/backend_guidance.py +291 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +378 -0
- vllm/v1/structured_output/request.py +91 -0
- vllm/v1/structured_output/utils.py +457 -0
- vllm/v1/utils.py +466 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +343 -0
- vllm/v1/worker/cp_utils.py +42 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +192 -0
- vllm/v1/worker/dp_utils.py +240 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
- vllm/v1/worker/gpu/README.md +4 -0
- vllm/v1/worker/gpu/__init__.py +0 -0
- vllm/v1/worker/gpu/async_utils.py +98 -0
- vllm/v1/worker/gpu/attn_utils.py +183 -0
- vllm/v1/worker/gpu/block_table.py +222 -0
- vllm/v1/worker/gpu/buffer_utils.py +224 -0
- vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
- vllm/v1/worker/gpu/dp_utils.py +31 -0
- vllm/v1/worker/gpu/input_batch.py +526 -0
- vllm/v1/worker/gpu/metrics/__init__.py +0 -0
- vllm/v1/worker/gpu/metrics/logits.py +42 -0
- vllm/v1/worker/gpu/mm/__init__.py +0 -0
- vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
- vllm/v1/worker/gpu/model_runner.py +1005 -0
- vllm/v1/worker/gpu/sample/__init__.py +0 -0
- vllm/v1/worker/gpu/sample/gumbel.py +106 -0
- vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
- vllm/v1/worker/gpu/sample/logprob.py +167 -0
- vllm/v1/worker/gpu/sample/metadata.py +79 -0
- vllm/v1/worker/gpu/sample/min_p.py +58 -0
- vllm/v1/worker/gpu/sample/output.py +14 -0
- vllm/v1/worker/gpu/sample/penalties.py +155 -0
- vllm/v1/worker/gpu/sample/sampler.py +88 -0
- vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
- vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
- vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
- vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
- vllm/v1/worker/gpu/states.py +282 -0
- vllm/v1/worker/gpu/structured_outputs.py +100 -0
- vllm/v1/worker/gpu_input_batch.py +1030 -0
- vllm/v1/worker/gpu_model_runner.py +5761 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
- vllm/v1/worker/gpu_worker.py +968 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
- vllm/v1/worker/lora_model_runner_mixin.py +225 -0
- vllm/v1/worker/tpu_input_batch.py +574 -0
- vllm/v1/worker/tpu_worker.py +18 -0
- vllm/v1/worker/ubatch_utils.py +112 -0
- vllm/v1/worker/ubatching.py +242 -0
- vllm/v1/worker/utils.py +400 -0
- vllm/v1/worker/worker_base.py +372 -0
- vllm/v1/worker/workspace.py +253 -0
- vllm/v1/worker/xpu_model_runner.py +48 -0
- vllm/v1/worker/xpu_worker.py +174 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
- vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1021 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import TYPE_CHECKING, ClassVar, Optional
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from vllm import _custom_ops as ops
|
|
10
|
+
from vllm.config import VllmConfig, get_current_vllm_config
|
|
11
|
+
from vllm.config.cache import CacheDType
|
|
12
|
+
from vllm.logger import init_logger
|
|
13
|
+
from vllm.platforms import current_platform
|
|
14
|
+
from vllm.platforms.interface import DeviceCapability
|
|
15
|
+
from vllm.triton_utils import tl, triton
|
|
16
|
+
from vllm.utils.math_utils import cdiv
|
|
17
|
+
from vllm.v1.attention.backend import (
|
|
18
|
+
AttentionBackend,
|
|
19
|
+
AttentionCGSupport,
|
|
20
|
+
AttentionLayer,
|
|
21
|
+
AttentionMetadata,
|
|
22
|
+
AttentionMetadataBuilder,
|
|
23
|
+
CommonAttentionMetadata,
|
|
24
|
+
MultipleOf,
|
|
25
|
+
)
|
|
26
|
+
from vllm.v1.attention.backends.mla.common import MLACommonBaseImpl, get_mla_dims
|
|
27
|
+
from vllm.v1.attention.backends.utils import (
|
|
28
|
+
reshape_attn_output_for_spec_decode,
|
|
29
|
+
reshape_query_for_spec_decode,
|
|
30
|
+
split_decodes_and_prefills,
|
|
31
|
+
split_prefill_chunks,
|
|
32
|
+
)
|
|
33
|
+
from vllm.v1.attention.ops.flashmla import (
|
|
34
|
+
flash_mla_sparse_prefill,
|
|
35
|
+
flash_mla_with_kvcache,
|
|
36
|
+
get_mla_metadata,
|
|
37
|
+
)
|
|
38
|
+
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
39
|
+
from vllm.v1.worker.workspace import current_workspace_manager
|
|
40
|
+
|
|
41
|
+
if TYPE_CHECKING:
|
|
42
|
+
from vllm.model_executor.models.deepseek_v2 import Indexer
|
|
43
|
+
|
|
44
|
+
logger = init_logger(__name__)
|
|
45
|
+
|
|
46
|
+
# For FP8 sparse attention we have two impelementations:
|
|
47
|
+
# 1. Mixed batch mode: use the FP8 decode kernel for both prefill and decode this is
|
|
48
|
+
# done by treating all tokens as single batch.
|
|
49
|
+
# 2. Separate prefill and decode mode: use the BF16 prefill kernel for prefill
|
|
50
|
+
# (upconverting the FP8 cache to BF16 then calling the prefill kernel) and using
|
|
51
|
+
# the FP8 decode kernel for decode.
|
|
52
|
+
# Currently we use #1 when the number of heads per rank is low (i.e. TP) since the BF16
|
|
53
|
+
# prefill kernel requires padding the numer of heads to 128 while the decode does not
|
|
54
|
+
# so when the per ranke head count is below MIN_HEADS_FOR_BF16_PREFILL we use the mixed
|
|
55
|
+
# batch mode (#2).
|
|
56
|
+
MIN_HEADS_FOR_BF16_PREFILL = 32
|
|
57
|
+
|
|
58
|
+
"""
|
|
59
|
+
NOTE: FlashMLA Sparse uses an fp8 cache with the following format
|
|
60
|
+
|
|
61
|
+
In the "FP8 with scale" format, each token's KV cache is 656 Bytes,
|
|
62
|
+
structured as:
|
|
63
|
+
- **First 512 bytes:** The "quantized NoPE" part, containing 512
|
|
64
|
+
`float8_e4m3` values.
|
|
65
|
+
- **Next 16 bytes:** Scale factors, containing 4 `float32` values.
|
|
66
|
+
The first `float32` is the scale for the first 128 `float8_e4m3` values,
|
|
67
|
+
the second for the next 128, and so on.
|
|
68
|
+
- **Last 128 bytes:** The "RoPE" part, containing 64 `bfloat16` values. This
|
|
69
|
+
part is not quantized for accuracy.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class FlashMLASparseBackend(AttentionBackend):
|
|
74
|
+
accept_output_buffer: bool = True
|
|
75
|
+
supported_dtypes: ClassVar[list[torch.dtype]] = [torch.bfloat16]
|
|
76
|
+
supported_kv_cache_dtypes: ClassVar[list[CacheDType]] = ["auto", "fp8_ds_mla"]
|
|
77
|
+
|
|
78
|
+
@staticmethod
|
|
79
|
+
def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
|
|
80
|
+
return [64]
|
|
81
|
+
|
|
82
|
+
@staticmethod
|
|
83
|
+
def get_name() -> str:
|
|
84
|
+
return "FLASHMLA_SPARSE"
|
|
85
|
+
|
|
86
|
+
@staticmethod
|
|
87
|
+
def get_builder_cls() -> type["FlashMLASparseMetadataBuilder"]:
|
|
88
|
+
return FlashMLASparseMetadataBuilder
|
|
89
|
+
|
|
90
|
+
@staticmethod
|
|
91
|
+
def get_impl_cls() -> type["FlashMLASparseImpl"]:
|
|
92
|
+
return FlashMLASparseImpl
|
|
93
|
+
|
|
94
|
+
@classmethod
|
|
95
|
+
def get_supported_head_sizes(cls) -> list[int]:
|
|
96
|
+
return [576]
|
|
97
|
+
|
|
98
|
+
@classmethod
|
|
99
|
+
def is_mla(cls) -> bool:
|
|
100
|
+
return True
|
|
101
|
+
|
|
102
|
+
@classmethod
|
|
103
|
+
def is_sparse(cls) -> bool:
|
|
104
|
+
return True
|
|
105
|
+
|
|
106
|
+
@classmethod
|
|
107
|
+
def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
|
|
108
|
+
return capability.major in [9, 10]
|
|
109
|
+
|
|
110
|
+
@staticmethod
|
|
111
|
+
def get_kv_cache_shape(
|
|
112
|
+
num_blocks: int,
|
|
113
|
+
block_size: int,
|
|
114
|
+
num_kv_heads: int, # assumed to be 1 for MLA
|
|
115
|
+
head_size: int,
|
|
116
|
+
cache_dtype_str: str = "auto",
|
|
117
|
+
) -> tuple[int, ...]:
|
|
118
|
+
if cache_dtype_str == "fp8_ds_mla":
|
|
119
|
+
# custom storage fromat is 656 bytes
|
|
120
|
+
# see FlashMLA readme.md for details
|
|
121
|
+
return (num_blocks, block_size, 656)
|
|
122
|
+
else:
|
|
123
|
+
return (num_blocks, block_size, head_size)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@dataclass
|
|
127
|
+
class FlashMLASparseMetadata(AttentionMetadata):
|
|
128
|
+
num_reqs: int
|
|
129
|
+
max_query_len: int
|
|
130
|
+
max_seq_len: int
|
|
131
|
+
|
|
132
|
+
num_actual_tokens: int # Number of tokens excluding padding.
|
|
133
|
+
query_start_loc: torch.Tensor
|
|
134
|
+
slot_mapping: torch.Tensor
|
|
135
|
+
|
|
136
|
+
block_table: torch.Tensor
|
|
137
|
+
req_id_per_token: torch.Tensor
|
|
138
|
+
block_size: int = 64
|
|
139
|
+
topk_tokens: int = 2048
|
|
140
|
+
|
|
141
|
+
@dataclass
|
|
142
|
+
class FP8KernelMetadata:
|
|
143
|
+
scheduler_metadata: torch.Tensor | None
|
|
144
|
+
num_splits: torch.Tensor
|
|
145
|
+
dummy_block_table: torch.Tensor
|
|
146
|
+
cache_lens: torch.Tensor
|
|
147
|
+
|
|
148
|
+
@dataclass
|
|
149
|
+
class FP8SeperatePrefillDecode:
|
|
150
|
+
@dataclass
|
|
151
|
+
class Decode:
|
|
152
|
+
kernel_metadata: "FlashMLASparseMetadata.FP8KernelMetadata"
|
|
153
|
+
decode_query_len: int # needed for reshape in spec decode
|
|
154
|
+
|
|
155
|
+
@dataclass
|
|
156
|
+
class Prefill:
|
|
157
|
+
# Sequence lengths (context + query) for prefill requests
|
|
158
|
+
# Shape: [num_prefill_reqs]
|
|
159
|
+
seq_lens: torch.Tensor
|
|
160
|
+
|
|
161
|
+
# Request ID for each token: -1 for decode tokens, request index
|
|
162
|
+
# (0, 1, 2, ...) for prefill tokens.
|
|
163
|
+
# Shape: [num_actual_tokens]
|
|
164
|
+
request_ids: torch.Tensor
|
|
165
|
+
|
|
166
|
+
# Workspace start offsets for all prefill requests
|
|
167
|
+
# Shape: [num_prefill_reqs], adjusted in-place per chunk to be
|
|
168
|
+
# 0-indexed within each chunk. Used to map prefill tokens to workspace
|
|
169
|
+
# offsets in convert_logical_index_to_physical_index
|
|
170
|
+
workspace_starts: torch.Tensor
|
|
171
|
+
|
|
172
|
+
@dataclass
|
|
173
|
+
class Chunk:
|
|
174
|
+
"""Metadata for a chunk of prefill requests.
|
|
175
|
+
|
|
176
|
+
Prefill requests may be chunked to fit within the fixed workspace size.
|
|
177
|
+
"""
|
|
178
|
+
|
|
179
|
+
seq_lens: torch.Tensor
|
|
180
|
+
tokens_slice: slice
|
|
181
|
+
block_table: torch.Tensor
|
|
182
|
+
req_start_idx: int
|
|
183
|
+
workspace_starts: torch.Tensor
|
|
184
|
+
chunk_tot_seqlen: int
|
|
185
|
+
|
|
186
|
+
chunks: list[Chunk]
|
|
187
|
+
|
|
188
|
+
num_prefills: int = 0
|
|
189
|
+
num_decodes: int = 0
|
|
190
|
+
num_prefill_tokens: int = 0
|
|
191
|
+
num_decode_tokens: int = 0
|
|
192
|
+
|
|
193
|
+
decode: Decode | None = None
|
|
194
|
+
prefill: Prefill | None = None
|
|
195
|
+
|
|
196
|
+
fp8_extra_metadata: FP8SeperatePrefillDecode | FP8KernelMetadata | None = None
|
|
197
|
+
fp8_use_mixed_batch: bool = False
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
# Kernel with prefill workspace support
|
|
201
|
+
@triton.jit
|
|
202
|
+
def _convert_req_index_to_global_index_kernel(
|
|
203
|
+
req_id_ptr, # int32 [num_tokens]
|
|
204
|
+
block_table_ptr, # int32 [num_requests, max_num_blocks_per_req]
|
|
205
|
+
token_indices_ptr, # int32 [num_tokens, NUM_TOPK_TOKENS]
|
|
206
|
+
out_ptr, # int32 [num_tokens, NUM_TOPK_TOKENS]
|
|
207
|
+
prefill_request_id_ptr, # int32 [num_tokens], -1 for decode, >=0 for prefill
|
|
208
|
+
workspace_starts_ptr, # int32 [num_prefill_reqs+1] or nullptr
|
|
209
|
+
# shapes (compile-time where possible)
|
|
210
|
+
max_num_blocks_per_req: tl.constexpr,
|
|
211
|
+
BLOCK_SIZE: tl.constexpr,
|
|
212
|
+
BLOCK_N: tl.constexpr, # tile width along columns
|
|
213
|
+
HAS_PREFILL: tl.constexpr,
|
|
214
|
+
# strides (in elements)
|
|
215
|
+
bt_stride0,
|
|
216
|
+
bt_stride1,
|
|
217
|
+
ti_stride0,
|
|
218
|
+
ti_stride1,
|
|
219
|
+
out_stride0,
|
|
220
|
+
out_stride1,
|
|
221
|
+
):
|
|
222
|
+
# program_id(0) -> token_id (row)
|
|
223
|
+
# program_id(1) -> tile index along columns
|
|
224
|
+
token_id = tl.program_id(0)
|
|
225
|
+
tile_id = tl.program_id(1)
|
|
226
|
+
|
|
227
|
+
# Each program covers BLOCK_N consecutive columns
|
|
228
|
+
indice_id = tile_id * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
229
|
+
|
|
230
|
+
# Load request id for this token (no mask: grid is exact)
|
|
231
|
+
req = tl.load(req_id_ptr + token_id)
|
|
232
|
+
|
|
233
|
+
# Load token indices for this tile
|
|
234
|
+
ti_ptr = token_indices_ptr + token_id * ti_stride0 + indice_id * ti_stride1
|
|
235
|
+
tok = tl.load(ti_ptr) # int32
|
|
236
|
+
|
|
237
|
+
# Only token == -1 should propagate as -1
|
|
238
|
+
is_invalid_tok = tok < 0
|
|
239
|
+
is_prefill = False
|
|
240
|
+
if HAS_PREFILL:
|
|
241
|
+
prefill_req_id = tl.load(prefill_request_id_ptr + token_id)
|
|
242
|
+
is_prefill = prefill_req_id >= 0
|
|
243
|
+
# Compute block id and in-block offset
|
|
244
|
+
block_id = tok // BLOCK_SIZE
|
|
245
|
+
inblock_off = tok % BLOCK_SIZE
|
|
246
|
+
|
|
247
|
+
# Guard block_table access
|
|
248
|
+
valid_block = (block_id < max_num_blocks_per_req) & (block_id >= 0)
|
|
249
|
+
bt_ptr = block_table_ptr + req * bt_stride0 + block_id * bt_stride1
|
|
250
|
+
is_invalid_tok |= ~valid_block
|
|
251
|
+
base = tl.load(bt_ptr, mask=valid_block & ~is_prefill, other=0)
|
|
252
|
+
out_val = base * BLOCK_SIZE + inblock_off
|
|
253
|
+
|
|
254
|
+
# Override with prefill output if prefill is enabled
|
|
255
|
+
if HAS_PREFILL:
|
|
256
|
+
workspace_start = tl.load(
|
|
257
|
+
workspace_starts_ptr + prefill_req_id, mask=is_prefill, other=0
|
|
258
|
+
)
|
|
259
|
+
prefill_out = workspace_start + tok
|
|
260
|
+
out_val = tl.where(is_prefill, prefill_out, out_val)
|
|
261
|
+
out_val = tl.where(is_invalid_tok, -1, out_val)
|
|
262
|
+
|
|
263
|
+
# Store results
|
|
264
|
+
out_ptr_ij = out_ptr + token_id * out_stride0 + indice_id * out_stride1
|
|
265
|
+
tl.store(out_ptr_ij, out_val)
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
def triton_convert_req_index_to_global_index(
|
|
269
|
+
req_id: torch.Tensor, # int32 [num_tokens]
|
|
270
|
+
block_table: torch.Tensor, # int32 [num_requests, max_num_blocks_per_req]
|
|
271
|
+
token_indices: torch.Tensor, # int32 [num_tokens, NUM_TOPK_TOKENS]
|
|
272
|
+
BLOCK_SIZE: int = 64,
|
|
273
|
+
NUM_TOPK_TOKENS: int = 2048,
|
|
274
|
+
BLOCK_N: int = 128, # tile width along columns
|
|
275
|
+
HAS_PREFILL_WORKSPACE: bool = False,
|
|
276
|
+
prefill_workspace_request_ids: torch.Tensor | None = None,
|
|
277
|
+
prefill_workspace_starts: torch.Tensor | None = None,
|
|
278
|
+
):
|
|
279
|
+
"""
|
|
280
|
+
out[token_id, indice_id] =
|
|
281
|
+
block_table[req_id[token_id],
|
|
282
|
+
token_indices[token_id, indice_id] // BLOCK_SIZE] * BLOCK_SIZE
|
|
283
|
+
+ token_indices[token_id, indice_id] % BLOCK_SIZE
|
|
284
|
+
|
|
285
|
+
Only when token_indices[token_id, indice_id] == -1 do we output -1.
|
|
286
|
+
For safety, we also output -1 if the derived block_id would be
|
|
287
|
+
out-of-bounds.
|
|
288
|
+
|
|
289
|
+
When HAS_PREFILL_WORKSPACE is True, prefill tokens are mapped to workspace offsets
|
|
290
|
+
instead of global cache slots. prefill_workspace_request_ids and
|
|
291
|
+
prefill_workspace_starts must be provided.
|
|
292
|
+
|
|
293
|
+
prefill_workspace_request_ids: int32 [num_tokens], -1 for decode else
|
|
294
|
+
prefill request index (maps to prefill_workspace_starts)
|
|
295
|
+
prefill_workspace_starts: int32 [num_prefills], 0-indexed workspace
|
|
296
|
+
starts for each prefill request
|
|
297
|
+
"""
|
|
298
|
+
assert req_id.dtype == torch.int32
|
|
299
|
+
assert block_table.dtype == torch.int32
|
|
300
|
+
assert token_indices.dtype == torch.int32
|
|
301
|
+
assert token_indices.shape[1] == NUM_TOPK_TOKENS
|
|
302
|
+
assert NUM_TOPK_TOKENS % BLOCK_N == 0, (
|
|
303
|
+
f"NUM_TOPK_TOKENS ({NUM_TOPK_TOKENS}) must be divisible by BLOCK_N ({BLOCK_N})"
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
if HAS_PREFILL_WORKSPACE:
|
|
307
|
+
assert prefill_workspace_request_ids is not None
|
|
308
|
+
assert prefill_workspace_starts is not None
|
|
309
|
+
assert prefill_workspace_request_ids.dtype == torch.int32
|
|
310
|
+
assert prefill_workspace_starts.dtype == torch.int32
|
|
311
|
+
|
|
312
|
+
num_tokens = req_id.shape[0]
|
|
313
|
+
max_num_blocks_per_req = block_table.shape[1]
|
|
314
|
+
tiles_per_row = NUM_TOPK_TOKENS // BLOCK_N
|
|
315
|
+
|
|
316
|
+
# Ensure contiguous tensors on the same device
|
|
317
|
+
req_id_c = req_id.contiguous()
|
|
318
|
+
block_table_c = block_table.contiguous()
|
|
319
|
+
token_indices_c = token_indices.contiguous()
|
|
320
|
+
out = torch.empty_like(token_indices_c)
|
|
321
|
+
|
|
322
|
+
# Strides in elements
|
|
323
|
+
bt_stride0, bt_stride1 = block_table_c.stride()
|
|
324
|
+
ti_stride0, ti_stride1 = token_indices_c.stride()
|
|
325
|
+
out_stride0, out_stride1 = out.stride()
|
|
326
|
+
|
|
327
|
+
# Prepare prefill pointers
|
|
328
|
+
if HAS_PREFILL_WORKSPACE:
|
|
329
|
+
assert prefill_workspace_request_ids is not None # for mypy
|
|
330
|
+
assert prefill_workspace_starts is not None # for mypy
|
|
331
|
+
assert prefill_workspace_request_ids.is_contiguous()
|
|
332
|
+
assert prefill_workspace_starts.is_contiguous()
|
|
333
|
+
|
|
334
|
+
# Exact 2D grid: tokens × column tiles
|
|
335
|
+
grid = (num_tokens, tiles_per_row)
|
|
336
|
+
|
|
337
|
+
_convert_req_index_to_global_index_kernel[grid](
|
|
338
|
+
req_id_c,
|
|
339
|
+
block_table_c,
|
|
340
|
+
token_indices_c,
|
|
341
|
+
out,
|
|
342
|
+
prefill_workspace_request_ids,
|
|
343
|
+
prefill_workspace_starts,
|
|
344
|
+
# shapes / constexprs
|
|
345
|
+
max_num_blocks_per_req,
|
|
346
|
+
BLOCK_SIZE,
|
|
347
|
+
BLOCK_N,
|
|
348
|
+
HAS_PREFILL_WORKSPACE,
|
|
349
|
+
# strides
|
|
350
|
+
bt_stride0,
|
|
351
|
+
bt_stride1,
|
|
352
|
+
ti_stride0,
|
|
353
|
+
ti_stride1,
|
|
354
|
+
out_stride0,
|
|
355
|
+
out_stride1,
|
|
356
|
+
)
|
|
357
|
+
return out
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
def get_prefill_workspace_size(max_model_len: int):
|
|
361
|
+
# NOTE(Lucas): 5 is a magic number for controlling the prefill buffer size.
|
|
362
|
+
# May be tuned later.
|
|
363
|
+
# Memory usage: 5 * max_model_len * 576 * 2 bytes
|
|
364
|
+
# Example: DeepSeek-V3.2 with max_model_len=163840 ->
|
|
365
|
+
# 5 * 163840 * 576 * 2 = ~900 MB
|
|
366
|
+
# This fits nicely below the typical MoE workspace size of >2GB so this is "free"
|
|
367
|
+
return max_model_len * 5
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
class FlashMLASparseMetadataBuilder(AttentionMetadataBuilder[FlashMLASparseMetadata]):
|
|
371
|
+
_cudagraph_support: ClassVar[AttentionCGSupport] = AttentionCGSupport.UNIFORM_BATCH
|
|
372
|
+
|
|
373
|
+
def __init__(
|
|
374
|
+
self,
|
|
375
|
+
kv_cache_spec: AttentionSpec,
|
|
376
|
+
layer_names: list[str],
|
|
377
|
+
vllm_config: VllmConfig,
|
|
378
|
+
device: torch.device,
|
|
379
|
+
) -> None:
|
|
380
|
+
self.vllm_config = vllm_config
|
|
381
|
+
self.layer_names = layer_names
|
|
382
|
+
cache_config = vllm_config.cache_config
|
|
383
|
+
self.kv_cache_spec = kv_cache_spec
|
|
384
|
+
self.model_config = vllm_config.model_config
|
|
385
|
+
parallel_config = vllm_config.parallel_config
|
|
386
|
+
self.device = device
|
|
387
|
+
|
|
388
|
+
# Treat requests with query length <= 1 as decodes to match the
|
|
389
|
+
# DeepGEMM indexer constraint (fp8_paged_mqa_logits only supports next_n <= 2)
|
|
390
|
+
self._init_reorder_batch_threshold(1, supports_spec_as_decode=True)
|
|
391
|
+
|
|
392
|
+
props = torch.cuda.get_device_properties(device)
|
|
393
|
+
sm_count = props.multi_processor_count
|
|
394
|
+
|
|
395
|
+
self.num_heads = self.model_config.get_num_attention_heads(parallel_config)
|
|
396
|
+
self.mla_dims = get_mla_dims(self.model_config)
|
|
397
|
+
|
|
398
|
+
self.topk_tokens = vllm_config.model_config.hf_config.index_topk
|
|
399
|
+
self.use_fp8_kv_cache = cache_config.cache_dtype == "fp8_ds_mla"
|
|
400
|
+
max_num_seqs = vllm_config.scheduler_config.max_num_seqs
|
|
401
|
+
# Shape: [max_num_seqs], all elements = topk_tokens (constant for full-CG)
|
|
402
|
+
self.topk_tokens_tensor = torch.full(
|
|
403
|
+
(max_num_seqs,), self.topk_tokens, device=device, dtype=torch.int32
|
|
404
|
+
)
|
|
405
|
+
# Shape: [max_num_seqs], all elements = max_model_len
|
|
406
|
+
self.max_model_len_tensor = torch.full(
|
|
407
|
+
(max_num_seqs,),
|
|
408
|
+
self.model_config.max_model_len,
|
|
409
|
+
device=device,
|
|
410
|
+
dtype=torch.int32,
|
|
411
|
+
)
|
|
412
|
+
# this is ignored by `flash_mla_with_kvcache` if indices not None
|
|
413
|
+
self.dummy_block_table = torch.empty(
|
|
414
|
+
(max_num_seqs, 1), dtype=torch.int32, device=self.device
|
|
415
|
+
)
|
|
416
|
+
|
|
417
|
+
# Equation taken from FlashMLA/csrc/pybind.cpp
|
|
418
|
+
h_q, h_k = self.num_heads, 1
|
|
419
|
+
s_q = 1 # inversely proportional to s_q, so s_q = 1 is the largest
|
|
420
|
+
max_num_sm_parts = int(
|
|
421
|
+
max((sm_count // 2) / h_k // (cdiv(h_q // h_k, 2 * 64) * s_q), 1)
|
|
422
|
+
)
|
|
423
|
+
if current_platform.is_device_capability_family(100):
|
|
424
|
+
max_num_sm_parts *= 2
|
|
425
|
+
self.tile_scheduler_metadata_buffer = torch.empty(
|
|
426
|
+
# TileSchedulerMetaDataSize = 8
|
|
427
|
+
# see: FlashMLA/csrc/params.h
|
|
428
|
+
(max_num_sm_parts, 8),
|
|
429
|
+
dtype=torch.int32,
|
|
430
|
+
device=device,
|
|
431
|
+
)
|
|
432
|
+
# Sized for per-request batching (num_decodes + 1)
|
|
433
|
+
self.num_splits_buffer = torch.empty(
|
|
434
|
+
(max_num_seqs + 1,),
|
|
435
|
+
dtype=torch.int32,
|
|
436
|
+
device=device,
|
|
437
|
+
)
|
|
438
|
+
self.req_id_per_token_buffer = torch.empty(
|
|
439
|
+
(vllm_config.scheduler_config.max_num_batched_tokens,),
|
|
440
|
+
dtype=torch.int32,
|
|
441
|
+
device=device,
|
|
442
|
+
)
|
|
443
|
+
|
|
444
|
+
def _build_fp8_mixed_decode_prefill(
|
|
445
|
+
self,
|
|
446
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
447
|
+
) -> "FlashMLASparseMetadata.FP8KernelMetadata":
|
|
448
|
+
"""Build FP8 metadata treating all tokens as one mixed batch.
|
|
449
|
+
|
|
450
|
+
This matches main branch's approach and avoids the BF16 prefill kernel
|
|
451
|
+
which has head padding overhead when num_heads is small (high TP case).
|
|
452
|
+
"""
|
|
453
|
+
num_tokens = common_attn_metadata.num_actual_tokens
|
|
454
|
+
|
|
455
|
+
# Build metadata for all tokens as a single batch
|
|
456
|
+
tile_scheduler_metadata, num_splits = get_mla_metadata(
|
|
457
|
+
cache_seqlens=self.topk_tokens_tensor[:1], # Single batch
|
|
458
|
+
num_q_tokens_per_head_k=num_tokens * self.num_heads,
|
|
459
|
+
topk=self.topk_tokens,
|
|
460
|
+
num_heads_q=self.num_heads,
|
|
461
|
+
num_heads_k=1,
|
|
462
|
+
is_fp8_kvcache=True,
|
|
463
|
+
)
|
|
464
|
+
|
|
465
|
+
num_sm_parts = tile_scheduler_metadata.size(0)
|
|
466
|
+
tile_scheduler_metadata_buffer = self.tile_scheduler_metadata_buffer[
|
|
467
|
+
:num_sm_parts
|
|
468
|
+
]
|
|
469
|
+
tile_scheduler_metadata_buffer.copy_(tile_scheduler_metadata)
|
|
470
|
+
num_splits_view = self.num_splits_buffer[:2]
|
|
471
|
+
num_splits_view.copy_(num_splits)
|
|
472
|
+
|
|
473
|
+
fp8_metadata = FlashMLASparseMetadata.FP8KernelMetadata(
|
|
474
|
+
scheduler_metadata=tile_scheduler_metadata_buffer,
|
|
475
|
+
num_splits=num_splits_view,
|
|
476
|
+
cache_lens=self.max_model_len_tensor[:1],
|
|
477
|
+
dummy_block_table=self.dummy_block_table[:1],
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
return fp8_metadata
|
|
481
|
+
|
|
482
|
+
def _build_fp8_separate_prefill_decode(
|
|
483
|
+
self,
|
|
484
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
485
|
+
) -> "FlashMLASparseMetadata.FP8SeperatePrefillDecode":
|
|
486
|
+
num_tokens = common_attn_metadata.num_actual_tokens
|
|
487
|
+
|
|
488
|
+
(num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens) = (
|
|
489
|
+
split_decodes_and_prefills(
|
|
490
|
+
common_attn_metadata,
|
|
491
|
+
decode_threshold=self.reorder_batch_threshold or 1,
|
|
492
|
+
require_uniform=True,
|
|
493
|
+
)
|
|
494
|
+
)
|
|
495
|
+
|
|
496
|
+
FP8Meta = FlashMLASparseMetadata.FP8SeperatePrefillDecode
|
|
497
|
+
fp8_metadata = FP8Meta(
|
|
498
|
+
num_decodes=num_decodes,
|
|
499
|
+
num_prefills=num_prefills,
|
|
500
|
+
num_decode_tokens=num_decode_tokens,
|
|
501
|
+
num_prefill_tokens=num_prefill_tokens,
|
|
502
|
+
)
|
|
503
|
+
|
|
504
|
+
# Extract prefill sequence lengths (context + query, not just query)
|
|
505
|
+
# Decode requests come first in the batch, prefill requests follow
|
|
506
|
+
prefill_seq_lens = None
|
|
507
|
+
prefill_request_id = None
|
|
508
|
+
prefill_workspace_starts = None
|
|
509
|
+
prefill_chunks = None
|
|
510
|
+
|
|
511
|
+
# For pure decode batches, prefill_request_id will be None
|
|
512
|
+
# For mixed batches, it will have -1 for decode and request_id for prefill
|
|
513
|
+
if num_prefills > 0:
|
|
514
|
+
seq_lens_cpu = common_attn_metadata.seq_lens.cpu()
|
|
515
|
+
seq_lens = common_attn_metadata.seq_lens
|
|
516
|
+
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
|
|
517
|
+
|
|
518
|
+
prefill_seq_lens_cpu = seq_lens_cpu[num_decodes:]
|
|
519
|
+
prefill_seq_lens = seq_lens[num_decodes:]
|
|
520
|
+
|
|
521
|
+
# Build prefill_request_id: -1 for decode, request index for
|
|
522
|
+
# prefill. This enables a single
|
|
523
|
+
# convert_logical_index_to_physical_index call for all tokens
|
|
524
|
+
prefill_request_id = torch.full(
|
|
525
|
+
(num_tokens,), -1, dtype=torch.int32, device=self.device
|
|
526
|
+
)
|
|
527
|
+
# Map prefill tokens to their request IDs (0, 1, 2, ...)
|
|
528
|
+
for req_idx in range(num_prefills):
|
|
529
|
+
# Get query token range for this prefill request
|
|
530
|
+
global_req_idx = num_decodes + req_idx
|
|
531
|
+
req_query_start = query_start_loc_cpu[global_req_idx]
|
|
532
|
+
req_query_end = query_start_loc_cpu[global_req_idx + 1]
|
|
533
|
+
prefill_request_id[req_query_start:req_query_end] = req_idx
|
|
534
|
+
|
|
535
|
+
# will be adjusted by chunk loop
|
|
536
|
+
prefill_workspace_starts_cpu = torch.zeros(
|
|
537
|
+
num_prefills, dtype=torch.int32, pin_memory=True
|
|
538
|
+
)
|
|
539
|
+
prefill_workspace_starts_cpu[1:] = torch.cumsum(
|
|
540
|
+
prefill_seq_lens_cpu[:-1], dim=0
|
|
541
|
+
)
|
|
542
|
+
# populated by non-blocking copy after prefill_workspace_starts_cpu is
|
|
543
|
+
# updated by each chunk
|
|
544
|
+
prefill_workspace_starts = torch.empty(
|
|
545
|
+
num_prefills, dtype=torch.int32, device=self.device
|
|
546
|
+
)
|
|
547
|
+
|
|
548
|
+
# Chunk prefill requests to fit within workspace size
|
|
549
|
+
max_prefill_buffer_size = get_prefill_workspace_size(
|
|
550
|
+
self.vllm_config.model_config.max_model_len
|
|
551
|
+
)
|
|
552
|
+
chunk_bounds = split_prefill_chunks(
|
|
553
|
+
prefill_seq_lens_cpu, max_prefill_buffer_size
|
|
554
|
+
)
|
|
555
|
+
|
|
556
|
+
prefill_chunks = []
|
|
557
|
+
for chunk_start, chunk_end in chunk_bounds:
|
|
558
|
+
# Adjust workspace_starts in-place per chunk to be
|
|
559
|
+
# 0-indexed within each chunk
|
|
560
|
+
# Example: seq_lens=[10,15,20,5], chunks=[[0,2],[2,4]]
|
|
561
|
+
# Initial: workspace_starts=[0,10,25,45]
|
|
562
|
+
# After: workspace_starts=[0,10,0,20]
|
|
563
|
+
# (chunk 0 starts at 0, chunk 1 starts at 0)
|
|
564
|
+
offset = prefill_workspace_starts_cpu[chunk_start].item()
|
|
565
|
+
prefill_workspace_starts_cpu[chunk_start:chunk_end] -= offset
|
|
566
|
+
|
|
567
|
+
chunk_seq_lens = prefill_seq_lens[chunk_start:chunk_end]
|
|
568
|
+
chunk_tot_seqlen = prefill_seq_lens_cpu[chunk_start:chunk_end].sum()
|
|
569
|
+
token_start = query_start_loc_cpu[num_decodes + chunk_start].item()
|
|
570
|
+
token_end = query_start_loc_cpu[num_decodes + chunk_end].item()
|
|
571
|
+
tokens_slice = slice(token_start, token_end)
|
|
572
|
+
|
|
573
|
+
# Create chunk view of gpu tensor
|
|
574
|
+
chunk_workspace_starts = prefill_workspace_starts[chunk_start:chunk_end]
|
|
575
|
+
chunk_block_table = common_attn_metadata.block_table_tensor[
|
|
576
|
+
num_decodes + chunk_start : num_decodes + chunk_end
|
|
577
|
+
]
|
|
578
|
+
|
|
579
|
+
prefill_chunks.append(
|
|
580
|
+
FP8Meta.Prefill.Chunk(
|
|
581
|
+
seq_lens=chunk_seq_lens,
|
|
582
|
+
tokens_slice=tokens_slice,
|
|
583
|
+
block_table=chunk_block_table,
|
|
584
|
+
req_start_idx=chunk_start,
|
|
585
|
+
workspace_starts=chunk_workspace_starts,
|
|
586
|
+
chunk_tot_seqlen=chunk_tot_seqlen,
|
|
587
|
+
)
|
|
588
|
+
)
|
|
589
|
+
|
|
590
|
+
prefill_workspace_starts.copy_(
|
|
591
|
+
prefill_workspace_starts_cpu, non_blocking=True
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
fp8_metadata.prefill = FP8Meta.Prefill(
|
|
595
|
+
seq_lens=prefill_seq_lens,
|
|
596
|
+
request_ids=prefill_request_id,
|
|
597
|
+
workspace_starts=prefill_workspace_starts,
|
|
598
|
+
chunks=prefill_chunks,
|
|
599
|
+
)
|
|
600
|
+
|
|
601
|
+
if num_decodes > 0:
|
|
602
|
+
# Compute decode_query_len for spec decode (uniform due to require_uniform)
|
|
603
|
+
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
|
|
604
|
+
decode_query_len = (query_start_loc_cpu[1] - query_start_loc_cpu[0]).item()
|
|
605
|
+
|
|
606
|
+
tile_scheduler_metadata, num_splits = get_mla_metadata(
|
|
607
|
+
cache_seqlens=self.topk_tokens_tensor[:num_decodes],
|
|
608
|
+
num_q_tokens_per_head_k=decode_query_len * self.num_heads,
|
|
609
|
+
topk=self.topk_tokens,
|
|
610
|
+
num_heads_q=self.num_heads,
|
|
611
|
+
num_heads_k=1,
|
|
612
|
+
is_fp8_kvcache=True,
|
|
613
|
+
)
|
|
614
|
+
|
|
615
|
+
num_sm_parts = tile_scheduler_metadata.size(0)
|
|
616
|
+
# Copy to persistent buffer for full-CG support
|
|
617
|
+
tile_scheduler_metadata_buffer = self.tile_scheduler_metadata_buffer[
|
|
618
|
+
:num_sm_parts
|
|
619
|
+
]
|
|
620
|
+
tile_scheduler_metadata_buffer.copy_(tile_scheduler_metadata)
|
|
621
|
+
# num_splits has size [num_decodes + 1]
|
|
622
|
+
num_splits_view = self.num_splits_buffer[: num_decodes + 1]
|
|
623
|
+
num_splits_view.copy_(num_splits)
|
|
624
|
+
|
|
625
|
+
kernel_meta = FlashMLASparseMetadata.FP8KernelMetadata(
|
|
626
|
+
scheduler_metadata=tile_scheduler_metadata_buffer,
|
|
627
|
+
num_splits=num_splits_view,
|
|
628
|
+
dummy_block_table=self.dummy_block_table[:num_decodes],
|
|
629
|
+
cache_lens=self.max_model_len_tensor[:num_decodes],
|
|
630
|
+
)
|
|
631
|
+
fp8_metadata.decode = FP8Meta.Decode(
|
|
632
|
+
kernel_metadata=kernel_meta,
|
|
633
|
+
decode_query_len=decode_query_len,
|
|
634
|
+
)
|
|
635
|
+
|
|
636
|
+
return fp8_metadata
|
|
637
|
+
|
|
638
|
+
def build(
|
|
639
|
+
self,
|
|
640
|
+
common_prefix_len: int,
|
|
641
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
642
|
+
fast_build: bool = False,
|
|
643
|
+
) -> FlashMLASparseMetadata:
|
|
644
|
+
cm = common_attn_metadata
|
|
645
|
+
num_tokens = cm.num_actual_tokens
|
|
646
|
+
starts = np.asarray(cm.query_start_loc_cpu, dtype=np.int32)
|
|
647
|
+
seg_lengths = np.diff(starts)
|
|
648
|
+
req_id_per_token = np.repeat(
|
|
649
|
+
np.arange(seg_lengths.shape[0], dtype=np.int32), seg_lengths
|
|
650
|
+
)
|
|
651
|
+
# Zero-fill for cudagraphs
|
|
652
|
+
self.req_id_per_token_buffer.fill_(0)
|
|
653
|
+
self.req_id_per_token_buffer[: req_id_per_token.shape[0]].copy_(
|
|
654
|
+
torch.from_numpy(req_id_per_token), non_blocking=True
|
|
655
|
+
)
|
|
656
|
+
req_id_per_token = self.req_id_per_token_buffer[:num_tokens]
|
|
657
|
+
|
|
658
|
+
fp8_extra_metadata: (
|
|
659
|
+
FlashMLASparseMetadata.FP8SeperatePrefillDecode
|
|
660
|
+
| FlashMLASparseMetadata.FP8KernelMetadata
|
|
661
|
+
| None
|
|
662
|
+
) = None
|
|
663
|
+
fp8_use_mixed_batch = self.num_heads < MIN_HEADS_FOR_BF16_PREFILL
|
|
664
|
+
if self.use_fp8_kv_cache:
|
|
665
|
+
if fp8_use_mixed_batch:
|
|
666
|
+
fp8_extra_metadata = self._build_fp8_mixed_decode_prefill(cm)
|
|
667
|
+
else:
|
|
668
|
+
fp8_extra_metadata = self._build_fp8_separate_prefill_decode(cm)
|
|
669
|
+
|
|
670
|
+
metadata = FlashMLASparseMetadata(
|
|
671
|
+
num_reqs=cm.num_reqs,
|
|
672
|
+
max_query_len=cm.max_query_len,
|
|
673
|
+
max_seq_len=cm.max_seq_len,
|
|
674
|
+
num_actual_tokens=cm.num_actual_tokens,
|
|
675
|
+
query_start_loc=cm.query_start_loc,
|
|
676
|
+
slot_mapping=cm.slot_mapping,
|
|
677
|
+
block_table=cm.block_table_tensor,
|
|
678
|
+
req_id_per_token=req_id_per_token,
|
|
679
|
+
block_size=self.kv_cache_spec.block_size,
|
|
680
|
+
topk_tokens=self.topk_tokens,
|
|
681
|
+
fp8_extra_metadata=fp8_extra_metadata,
|
|
682
|
+
fp8_use_mixed_batch=fp8_use_mixed_batch,
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
return metadata
|
|
686
|
+
|
|
687
|
+
|
|
688
|
+
class FlashMLASparseImpl(MLACommonBaseImpl[FlashMLASparseMetadata]):
|
|
689
|
+
def __init__(
|
|
690
|
+
self,
|
|
691
|
+
num_heads: int,
|
|
692
|
+
head_size: int,
|
|
693
|
+
scale: float,
|
|
694
|
+
num_kv_heads: int,
|
|
695
|
+
alibi_slopes: list[float] | None,
|
|
696
|
+
sliding_window: int | None,
|
|
697
|
+
kv_cache_dtype: str,
|
|
698
|
+
logits_soft_cap: float | None,
|
|
699
|
+
attn_type: str,
|
|
700
|
+
kv_sharing_target_layer_name: str | None,
|
|
701
|
+
# MLA Specific Arguments
|
|
702
|
+
topk_indice_buffer: torch.Tensor | None = None,
|
|
703
|
+
indexer: Optional["Indexer"] = None,
|
|
704
|
+
**mla_args,
|
|
705
|
+
) -> None:
|
|
706
|
+
super().__init__(
|
|
707
|
+
num_heads,
|
|
708
|
+
head_size,
|
|
709
|
+
scale,
|
|
710
|
+
num_kv_heads,
|
|
711
|
+
alibi_slopes,
|
|
712
|
+
sliding_window,
|
|
713
|
+
kv_cache_dtype,
|
|
714
|
+
logits_soft_cap,
|
|
715
|
+
attn_type,
|
|
716
|
+
kv_sharing_target_layer_name,
|
|
717
|
+
**mla_args,
|
|
718
|
+
)
|
|
719
|
+
self.softmax_scale = scale
|
|
720
|
+
assert indexer is not None
|
|
721
|
+
self.topk_indices_buffer: torch.Tensor | None = indexer.topk_indices_buffer
|
|
722
|
+
self.padding = 128 if current_platform.is_device_capability_family(100) else 64
|
|
723
|
+
|
|
724
|
+
if kv_cache_dtype == "fp8_ds_mla":
|
|
725
|
+
# Reserve workspace during initialization
|
|
726
|
+
vllm_config = get_current_vllm_config()
|
|
727
|
+
assert vllm_config is not None and vllm_config.model_config is not None
|
|
728
|
+
prefill_workspace_size = get_prefill_workspace_size(
|
|
729
|
+
vllm_config.model_config.max_model_len
|
|
730
|
+
)
|
|
731
|
+
self.prefill_workspace_shape = (prefill_workspace_size, head_size)
|
|
732
|
+
(self.prefill_bf16_workspace,) = (
|
|
733
|
+
current_workspace_manager().get_simultaneous(
|
|
734
|
+
(self.prefill_workspace_shape, torch.bfloat16)
|
|
735
|
+
)
|
|
736
|
+
)
|
|
737
|
+
|
|
738
|
+
def _forward_bf16_kv(
|
|
739
|
+
self,
|
|
740
|
+
q: torch.Tensor,
|
|
741
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
742
|
+
topk_indices: torch.Tensor,
|
|
743
|
+
attn_metadata: FlashMLASparseMetadata,
|
|
744
|
+
) -> torch.Tensor:
|
|
745
|
+
# Convert per-request indices to global slots (decode) or workspace
|
|
746
|
+
# offsets (prefill).
|
|
747
|
+
topk_indices = triton_convert_req_index_to_global_index(
|
|
748
|
+
attn_metadata.req_id_per_token,
|
|
749
|
+
attn_metadata.block_table,
|
|
750
|
+
topk_indices,
|
|
751
|
+
BLOCK_SIZE=attn_metadata.block_size,
|
|
752
|
+
NUM_TOPK_TOKENS=topk_indices.shape[1],
|
|
753
|
+
)
|
|
754
|
+
|
|
755
|
+
return self._bf16_flash_mla_kernel(q, kv_c_and_k_pe_cache, topk_indices)
|
|
756
|
+
|
|
757
|
+
def _forward_fp8_kv_separate_prefill_decode(
|
|
758
|
+
self,
|
|
759
|
+
q: torch.Tensor,
|
|
760
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
761
|
+
topk_indices: torch.Tensor,
|
|
762
|
+
attn_metadata: FlashMLASparseMetadata,
|
|
763
|
+
) -> torch.Tensor:
|
|
764
|
+
fp8_metadata = attn_metadata.fp8_extra_metadata
|
|
765
|
+
assert isinstance(fp8_metadata, FlashMLASparseMetadata.FP8SeperatePrefillDecode)
|
|
766
|
+
num_decodes = fp8_metadata.num_decodes
|
|
767
|
+
|
|
768
|
+
prefill_request_ids = None
|
|
769
|
+
prefill_workspace_starts = None
|
|
770
|
+
has_prefill_workspace = False
|
|
771
|
+
if fp8_metadata.prefill is not None:
|
|
772
|
+
prefill_request_ids = fp8_metadata.prefill.request_ids
|
|
773
|
+
prefill_workspace_starts = fp8_metadata.prefill.workspace_starts
|
|
774
|
+
has_prefill_workspace = True
|
|
775
|
+
|
|
776
|
+
# Convert per-request indices to global slots (decode) or workspace
|
|
777
|
+
# offsets (prefill).
|
|
778
|
+
# For FP8 cache: prefill uses workspace mapping (upconverted to BF16)
|
|
779
|
+
# For BF16 cache: always use global cache slots (no workspace)
|
|
780
|
+
# prefill_workspace_starts has been adjusted in-place per chunk so
|
|
781
|
+
# prefill indices automatically come out chunk-local
|
|
782
|
+
topk_indices = triton_convert_req_index_to_global_index(
|
|
783
|
+
attn_metadata.req_id_per_token,
|
|
784
|
+
attn_metadata.block_table,
|
|
785
|
+
topk_indices,
|
|
786
|
+
BLOCK_SIZE=attn_metadata.block_size,
|
|
787
|
+
NUM_TOPK_TOKENS=topk_indices.shape[1],
|
|
788
|
+
HAS_PREFILL_WORKSPACE=has_prefill_workspace,
|
|
789
|
+
prefill_workspace_request_ids=prefill_request_ids,
|
|
790
|
+
prefill_workspace_starts=prefill_workspace_starts,
|
|
791
|
+
)
|
|
792
|
+
|
|
793
|
+
fp8_metadata = attn_metadata.fp8_extra_metadata
|
|
794
|
+
assert isinstance(fp8_metadata, FlashMLASparseMetadata.FP8SeperatePrefillDecode)
|
|
795
|
+
|
|
796
|
+
def _fp8_decode(q: torch.Tensor, topk_indices: torch.Tensor) -> torch.Tensor:
|
|
797
|
+
# Reshape q: (num_decode_tokens, num_heads, head_dim)
|
|
798
|
+
# -> (num_decodes, seq_len, num_heads, head_dim)
|
|
799
|
+
q = reshape_query_for_spec_decode(q, num_decodes)
|
|
800
|
+
seq_len = q.shape[1]
|
|
801
|
+
# Reshape topk_indices: (num_decode_tokens, topk)
|
|
802
|
+
# -> (num_decodes, seq_len, topk)
|
|
803
|
+
topk_indices = topk_indices.view(num_decodes, seq_len, -1)
|
|
804
|
+
assert fp8_metadata.decode is not None
|
|
805
|
+
attn_out, _ = self._fp8_flash_mla_kernel(
|
|
806
|
+
q=q,
|
|
807
|
+
kv_c_and_k_pe_cache=kv_c_and_k_pe_cache,
|
|
808
|
+
topk_indices=topk_indices,
|
|
809
|
+
kernel_metadata=fp8_metadata.decode.kernel_metadata,
|
|
810
|
+
)
|
|
811
|
+
# Reshape output: (num_decodes, seq_len, num_heads, head_dim_v)
|
|
812
|
+
# -> (num_decode_tokens, num_heads, head_dim_v)
|
|
813
|
+
return reshape_attn_output_for_spec_decode(attn_out)
|
|
814
|
+
|
|
815
|
+
num_decode_tokens = fp8_metadata.num_decode_tokens
|
|
816
|
+
num_prefill_tokens = fp8_metadata.num_prefill_tokens
|
|
817
|
+
|
|
818
|
+
# Pure decode: direct call without allocation
|
|
819
|
+
if num_decode_tokens > 0 and num_prefill_tokens == 0:
|
|
820
|
+
assert fp8_metadata.decode is not None
|
|
821
|
+
attn_out = _fp8_decode(q, topk_indices)
|
|
822
|
+
else:
|
|
823
|
+
# Mixed or pure prefill: allocate output tensor
|
|
824
|
+
attn_out = q.new_empty(
|
|
825
|
+
(attn_metadata.num_actual_tokens, self.num_heads, self.kv_lora_rank),
|
|
826
|
+
dtype=q.dtype,
|
|
827
|
+
device=q.device,
|
|
828
|
+
)
|
|
829
|
+
|
|
830
|
+
if num_decode_tokens > 0:
|
|
831
|
+
attn_out[:num_decode_tokens] = _fp8_decode(
|
|
832
|
+
q[:num_decode_tokens], topk_indices[:num_decode_tokens]
|
|
833
|
+
)
|
|
834
|
+
|
|
835
|
+
assert fp8_metadata.prefill is not None
|
|
836
|
+
for chunk in fp8_metadata.prefill.chunks:
|
|
837
|
+
chunk_workspace = self.prefill_bf16_workspace[: chunk.chunk_tot_seqlen]
|
|
838
|
+
ops.cp_gather_and_upconvert_fp8_kv_cache(
|
|
839
|
+
kv_c_and_k_pe_cache,
|
|
840
|
+
chunk_workspace,
|
|
841
|
+
chunk.block_table,
|
|
842
|
+
chunk.seq_lens,
|
|
843
|
+
chunk.workspace_starts,
|
|
844
|
+
len(chunk.block_table),
|
|
845
|
+
)
|
|
846
|
+
|
|
847
|
+
chunk_q = q[chunk.tokens_slice]
|
|
848
|
+
chunk_topk_indices_workspace = topk_indices[chunk.tokens_slice]
|
|
849
|
+
|
|
850
|
+
attn_out[chunk.tokens_slice] = self._bf16_flash_mla_kernel(
|
|
851
|
+
chunk_q,
|
|
852
|
+
chunk_workspace,
|
|
853
|
+
chunk_topk_indices_workspace,
|
|
854
|
+
)
|
|
855
|
+
|
|
856
|
+
return attn_out
|
|
857
|
+
|
|
858
|
+
def _forward_fp8_kv_mixed_batch(
|
|
859
|
+
self,
|
|
860
|
+
q: torch.Tensor,
|
|
861
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
862
|
+
topk_indices: torch.Tensor,
|
|
863
|
+
attn_metadata: FlashMLASparseMetadata,
|
|
864
|
+
) -> torch.Tensor:
|
|
865
|
+
"""Mixed batch FP8 forward path that treats all tokens as one batch.
|
|
866
|
+
|
|
867
|
+
This is equivalent to main branch's approach and avoids the BF16
|
|
868
|
+
prefill kernel which has head padding overhead when num_heads is small.
|
|
869
|
+
Used when use_mixed_batch is True.
|
|
870
|
+
"""
|
|
871
|
+
# Convert per-request indices to global slots (decode) or workspace
|
|
872
|
+
# offsets (prefill).
|
|
873
|
+
topk_indices = triton_convert_req_index_to_global_index(
|
|
874
|
+
attn_metadata.req_id_per_token,
|
|
875
|
+
attn_metadata.block_table,
|
|
876
|
+
topk_indices,
|
|
877
|
+
BLOCK_SIZE=attn_metadata.block_size,
|
|
878
|
+
NUM_TOPK_TOKENS=topk_indices.shape[1],
|
|
879
|
+
)
|
|
880
|
+
|
|
881
|
+
assert attn_metadata.fp8_extra_metadata is not None
|
|
882
|
+
assert isinstance(
|
|
883
|
+
attn_metadata.fp8_extra_metadata, FlashMLASparseMetadata.FP8KernelMetadata
|
|
884
|
+
)
|
|
885
|
+
fp8_metadata = attn_metadata.fp8_extra_metadata
|
|
886
|
+
|
|
887
|
+
_attn_out, _ = self._fp8_flash_mla_kernel(
|
|
888
|
+
q=q.unsqueeze(0), # unsqueeze to add batch_dim: (T, H, D) -> (1, T, H, D)
|
|
889
|
+
kv_c_and_k_pe_cache=kv_c_and_k_pe_cache,
|
|
890
|
+
topk_indices=topk_indices.unsqueeze(0), # (T, topk) -> (1, T, topk)
|
|
891
|
+
kernel_metadata=fp8_metadata,
|
|
892
|
+
)
|
|
893
|
+
|
|
894
|
+
# Output is (1, T, H, D_v), squeeze back to (T, H, D_v)
|
|
895
|
+
return _attn_out.squeeze(0)
|
|
896
|
+
|
|
897
|
+
def _fp8_flash_mla_kernel(
|
|
898
|
+
self,
|
|
899
|
+
q: torch.Tensor,
|
|
900
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
901
|
+
topk_indices: torch.Tensor,
|
|
902
|
+
kernel_metadata: FlashMLASparseMetadata.FP8KernelMetadata,
|
|
903
|
+
) -> torch.Tensor:
|
|
904
|
+
return flash_mla_with_kvcache(
|
|
905
|
+
q=q,
|
|
906
|
+
k_cache=kv_c_and_k_pe_cache.view(torch.uint8).unsqueeze(-2),
|
|
907
|
+
block_table=kernel_metadata.dummy_block_table,
|
|
908
|
+
head_dim_v=512,
|
|
909
|
+
cache_seqlens=kernel_metadata.cache_lens,
|
|
910
|
+
tile_scheduler_metadata=kernel_metadata.scheduler_metadata,
|
|
911
|
+
num_splits=kernel_metadata.num_splits,
|
|
912
|
+
is_fp8_kvcache=True,
|
|
913
|
+
indices=topk_indices,
|
|
914
|
+
softmax_scale=self.softmax_scale,
|
|
915
|
+
)
|
|
916
|
+
|
|
917
|
+
def _bf16_flash_mla_kernel(
|
|
918
|
+
self,
|
|
919
|
+
q: torch.Tensor,
|
|
920
|
+
kv_c_and_k_pe_cache: torch.Tensor,
|
|
921
|
+
topk_indices: torch.Tensor,
|
|
922
|
+
) -> torch.Tensor:
|
|
923
|
+
num_tokens = q.shape[0]
|
|
924
|
+
kv_c_and_k_pe_cache = kv_c_and_k_pe_cache.view(
|
|
925
|
+
-1, 1, kv_c_and_k_pe_cache.shape[-1]
|
|
926
|
+
)
|
|
927
|
+
|
|
928
|
+
# NOTE(Chen): kernel requires num_local_head to be a multiple of
|
|
929
|
+
# 64 on hopper and 128 on blackwell
|
|
930
|
+
if self.num_heads % self.padding != 0:
|
|
931
|
+
assert self.padding % self.num_heads == 0
|
|
932
|
+
logger.warning_once(
|
|
933
|
+
f"padding num_heads to {self.padding} due to sparse attn "
|
|
934
|
+
"kernel requirement"
|
|
935
|
+
)
|
|
936
|
+
q_padded = q.new_empty((q.shape[0], self.padding, q.shape[2]))
|
|
937
|
+
q_padded[:, : self.num_heads, :] = q
|
|
938
|
+
q = q_padded
|
|
939
|
+
|
|
940
|
+
topk_indices = topk_indices.view(num_tokens, 1, -1)
|
|
941
|
+
output = flash_mla_sparse_prefill(
|
|
942
|
+
q, kv_c_and_k_pe_cache, topk_indices, self.softmax_scale
|
|
943
|
+
)[0]
|
|
944
|
+
output = output[:, : self.num_heads, :]
|
|
945
|
+
return output
|
|
946
|
+
|
|
947
|
+
def forward(
|
|
948
|
+
self,
|
|
949
|
+
layer: AttentionLayer,
|
|
950
|
+
q: torch.Tensor,
|
|
951
|
+
k_c_normed: torch.Tensor, # key in unified attn
|
|
952
|
+
k_pe: torch.Tensor, # value in unified attn
|
|
953
|
+
kv_cache: torch.Tensor,
|
|
954
|
+
attn_metadata: FlashMLASparseMetadata | None,
|
|
955
|
+
output: torch.Tensor | None = None,
|
|
956
|
+
output_scale: torch.Tensor | None = None,
|
|
957
|
+
output_block_scale: torch.Tensor | None = None,
|
|
958
|
+
) -> torch.Tensor:
|
|
959
|
+
# NOTE(lucas): for the sparse FlashMLA kernels the kernels want to use
|
|
960
|
+
# MQA 576/512 approach for both prefill and decode
|
|
961
|
+
|
|
962
|
+
assert output is not None, "Output tensor must be provided."
|
|
963
|
+
|
|
964
|
+
if output_scale is not None or output_block_scale is not None:
|
|
965
|
+
raise NotImplementedError(
|
|
966
|
+
"fused output quantization is not yet supported for MLACommonImpl"
|
|
967
|
+
)
|
|
968
|
+
|
|
969
|
+
if attn_metadata is None:
|
|
970
|
+
# Dummy run - no need to allocate buffers
|
|
971
|
+
# The zero fill is required when used with DP + EP
|
|
972
|
+
# to ensure all ranks within a DP group compute the
|
|
973
|
+
# same expert outputs.
|
|
974
|
+
return output.fill_(0)
|
|
975
|
+
|
|
976
|
+
num_actual_toks = attn_metadata.num_actual_tokens
|
|
977
|
+
|
|
978
|
+
# Inputs and outputs may be padded for CUDA graphs
|
|
979
|
+
|
|
980
|
+
q = q[:num_actual_toks, ...]
|
|
981
|
+
k_c_normed = k_c_normed[:num_actual_toks, ...]
|
|
982
|
+
k_pe = k_pe[:num_actual_toks, ...]
|
|
983
|
+
assert self.topk_indices_buffer is not None
|
|
984
|
+
topk_indices = self.topk_indices_buffer[:num_actual_toks]
|
|
985
|
+
|
|
986
|
+
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
987
|
+
# Convert from (B, N, P) to (N, B, P)
|
|
988
|
+
q_nope = q_nope.transpose(0, 1)
|
|
989
|
+
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
|
|
990
|
+
ql_nope = torch.bmm(q_nope, self.W_UK_T)
|
|
991
|
+
# Convert from (N, B, L) to (B, N, L)
|
|
992
|
+
ql_nope = ql_nope.transpose(0, 1)
|
|
993
|
+
|
|
994
|
+
use_fp8_cache = self.kv_cache_dtype == "fp8_ds_mla"
|
|
995
|
+
|
|
996
|
+
q = torch.cat([ql_nope, q_pe], dim=-1)
|
|
997
|
+
|
|
998
|
+
# write the latent and rope to kv cache
|
|
999
|
+
if kv_cache.numel() > 0:
|
|
1000
|
+
ops.concat_and_cache_mla(
|
|
1001
|
+
k_c_normed,
|
|
1002
|
+
k_pe.squeeze(1),
|
|
1003
|
+
kv_cache,
|
|
1004
|
+
attn_metadata.slot_mapping.flatten(),
|
|
1005
|
+
kv_cache_dtype=self.kv_cache_dtype,
|
|
1006
|
+
scale=layer._k_scale,
|
|
1007
|
+
)
|
|
1008
|
+
|
|
1009
|
+
if not use_fp8_cache:
|
|
1010
|
+
attn_out = self._forward_bf16_kv(q, kv_cache, topk_indices, attn_metadata)
|
|
1011
|
+
elif attn_metadata.fp8_use_mixed_batch:
|
|
1012
|
+
attn_out = self._forward_fp8_kv_mixed_batch(
|
|
1013
|
+
q, kv_cache, topk_indices, attn_metadata
|
|
1014
|
+
)
|
|
1015
|
+
else:
|
|
1016
|
+
attn_out = self._forward_fp8_kv_separate_prefill_decode(
|
|
1017
|
+
q, kv_cache, topk_indices, attn_metadata
|
|
1018
|
+
)
|
|
1019
|
+
|
|
1020
|
+
self._v_up_proj(attn_out, out=output[:num_actual_toks])
|
|
1021
|
+
return output
|