vllm-cpu-avx512bf16 0.14.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1712) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1511 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3206 -0
  6. vllm/_ipex_ops.py +445 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +62 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/layer.py +913 -0
  15. vllm/attention/utils/__init__.py +0 -0
  16. vllm/attention/utils/kv_sharing_utils.py +33 -0
  17. vllm/attention/utils/kv_transfer_utils.py +60 -0
  18. vllm/beam_search.py +88 -0
  19. vllm/benchmarks/__init__.py +0 -0
  20. vllm/benchmarks/datasets.py +3277 -0
  21. vllm/benchmarks/latency.py +172 -0
  22. vllm/benchmarks/lib/__init__.py +3 -0
  23. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  24. vllm/benchmarks/lib/ready_checker.py +72 -0
  25. vllm/benchmarks/lib/utils.py +79 -0
  26. vllm/benchmarks/mm_processor.py +363 -0
  27. vllm/benchmarks/serve.py +1761 -0
  28. vllm/benchmarks/startup.py +321 -0
  29. vllm/benchmarks/sweep/__init__.py +0 -0
  30. vllm/benchmarks/sweep/cli.py +41 -0
  31. vllm/benchmarks/sweep/param_sweep.py +159 -0
  32. vllm/benchmarks/sweep/plot.py +675 -0
  33. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  34. vllm/benchmarks/sweep/serve.py +450 -0
  35. vllm/benchmarks/sweep/serve_sla.py +459 -0
  36. vllm/benchmarks/sweep/server.py +114 -0
  37. vllm/benchmarks/sweep/sla_sweep.py +138 -0
  38. vllm/benchmarks/sweep/utils.py +4 -0
  39. vllm/benchmarks/throughput.py +946 -0
  40. vllm/collect_env.py +857 -0
  41. vllm/compilation/__init__.py +0 -0
  42. vllm/compilation/activation_quant_fusion.py +214 -0
  43. vllm/compilation/backends.py +840 -0
  44. vllm/compilation/base_static_graph.py +57 -0
  45. vllm/compilation/caching.py +196 -0
  46. vllm/compilation/collective_fusion.py +1224 -0
  47. vllm/compilation/compiler_interface.py +639 -0
  48. vllm/compilation/counter.py +50 -0
  49. vllm/compilation/cuda_graph.py +309 -0
  50. vllm/compilation/decorators.py +662 -0
  51. vllm/compilation/fix_functionalization.py +266 -0
  52. vllm/compilation/fusion.py +570 -0
  53. vllm/compilation/fusion_attn.py +363 -0
  54. vllm/compilation/fx_utils.py +92 -0
  55. vllm/compilation/inductor_pass.py +145 -0
  56. vllm/compilation/matcher_utils.py +454 -0
  57. vllm/compilation/monitor.py +62 -0
  58. vllm/compilation/noop_elimination.py +130 -0
  59. vllm/compilation/partition_rules.py +75 -0
  60. vllm/compilation/pass_manager.py +164 -0
  61. vllm/compilation/piecewise_backend.py +191 -0
  62. vllm/compilation/post_cleanup.py +21 -0
  63. vllm/compilation/qk_norm_rope_fusion.py +244 -0
  64. vllm/compilation/rocm_aiter_fusion.py +401 -0
  65. vllm/compilation/sequence_parallelism.py +368 -0
  66. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  67. vllm/compilation/vllm_inductor_pass.py +180 -0
  68. vllm/compilation/wrapper.py +329 -0
  69. vllm/config/__init__.py +112 -0
  70. vllm/config/attention.py +114 -0
  71. vllm/config/cache.py +233 -0
  72. vllm/config/compilation.py +1149 -0
  73. vllm/config/device.py +75 -0
  74. vllm/config/ec_transfer.py +110 -0
  75. vllm/config/kv_events.py +56 -0
  76. vllm/config/kv_transfer.py +119 -0
  77. vllm/config/load.py +124 -0
  78. vllm/config/lora.py +102 -0
  79. vllm/config/model.py +2026 -0
  80. vllm/config/model_arch.py +57 -0
  81. vllm/config/multimodal.py +247 -0
  82. vllm/config/observability.py +157 -0
  83. vllm/config/parallel.py +703 -0
  84. vllm/config/pooler.py +188 -0
  85. vllm/config/profiler.py +199 -0
  86. vllm/config/scheduler.py +298 -0
  87. vllm/config/speculative.py +656 -0
  88. vllm/config/speech_to_text.py +39 -0
  89. vllm/config/structured_outputs.py +78 -0
  90. vllm/config/utils.py +374 -0
  91. vllm/config/vllm.py +1487 -0
  92. vllm/connections.py +189 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +301 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +43 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +509 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +303 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +346 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +190 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  106. vllm/distributed/device_communicators/pynccl.py +386 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +567 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  113. vllm/distributed/device_communicators/symm_mem.py +156 -0
  114. vllm/distributed/device_communicators/xpu_communicator.py +98 -0
  115. vllm/distributed/ec_transfer/__init__.py +14 -0
  116. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  117. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  118. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  119. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  120. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  121. vllm/distributed/eplb/__init__.py +3 -0
  122. vllm/distributed/eplb/async_worker.py +115 -0
  123. vllm/distributed/eplb/eplb_state.py +1192 -0
  124. vllm/distributed/eplb/policy/__init__.py +19 -0
  125. vllm/distributed/eplb/policy/abstract.py +43 -0
  126. vllm/distributed/eplb/policy/default.py +376 -0
  127. vllm/distributed/eplb/rebalance_execute.py +699 -0
  128. vllm/distributed/kv_events.py +505 -0
  129. vllm/distributed/kv_transfer/README.md +29 -0
  130. vllm/distributed/kv_transfer/__init__.py +20 -0
  131. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  132. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  133. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  134. vllm/distributed/kv_transfer/kv_connector/factory.py +203 -0
  135. vllm/distributed/kv_transfer/kv_connector/utils.py +459 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/base.py +607 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  140. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +344 -0
  141. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  142. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +395 -0
  143. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +211 -0
  144. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1431 -0
  145. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +941 -0
  146. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  147. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +916 -0
  148. vllm/distributed/kv_transfer/kv_connector/v1/moriio/__init__.py +0 -0
  149. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_common.py +321 -0
  150. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_connector.py +1515 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/moriio/moriio_engine.py +609 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +477 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2688 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +557 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  159. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  160. vllm/distributed/parallel_state.py +1809 -0
  161. vllm/distributed/utils.py +545 -0
  162. vllm/engine/__init__.py +0 -0
  163. vllm/engine/arg_utils.py +2137 -0
  164. vllm/engine/async_llm_engine.py +6 -0
  165. vllm/engine/llm_engine.py +6 -0
  166. vllm/engine/protocol.py +194 -0
  167. vllm/entrypoints/__init__.py +0 -0
  168. vllm/entrypoints/anthropic/__init__.py +0 -0
  169. vllm/entrypoints/anthropic/protocol.py +162 -0
  170. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  171. vllm/entrypoints/api_server.py +186 -0
  172. vllm/entrypoints/chat_utils.py +1912 -0
  173. vllm/entrypoints/cli/__init__.py +19 -0
  174. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  175. vllm/entrypoints/cli/benchmark/base.py +25 -0
  176. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  177. vllm/entrypoints/cli/benchmark/main.py +57 -0
  178. vllm/entrypoints/cli/benchmark/mm_processor.py +21 -0
  179. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  180. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  181. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  182. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  183. vllm/entrypoints/cli/collect_env.py +38 -0
  184. vllm/entrypoints/cli/main.py +79 -0
  185. vllm/entrypoints/cli/openai.py +260 -0
  186. vllm/entrypoints/cli/run_batch.py +68 -0
  187. vllm/entrypoints/cli/serve.py +253 -0
  188. vllm/entrypoints/cli/types.py +29 -0
  189. vllm/entrypoints/constants.py +12 -0
  190. vllm/entrypoints/context.py +898 -0
  191. vllm/entrypoints/grpc_server.py +531 -0
  192. vllm/entrypoints/launcher.py +175 -0
  193. vllm/entrypoints/llm.py +1807 -0
  194. vllm/entrypoints/logger.py +86 -0
  195. vllm/entrypoints/openai/__init__.py +0 -0
  196. vllm/entrypoints/openai/api_server.py +1390 -0
  197. vllm/entrypoints/openai/cli_args.py +320 -0
  198. vllm/entrypoints/openai/orca_metrics.py +120 -0
  199. vllm/entrypoints/openai/parser/__init__.py +0 -0
  200. vllm/entrypoints/openai/parser/harmony_utils.py +820 -0
  201. vllm/entrypoints/openai/parser/responses_parser.py +176 -0
  202. vllm/entrypoints/openai/protocol.py +2566 -0
  203. vllm/entrypoints/openai/run_batch.py +635 -0
  204. vllm/entrypoints/openai/serving_chat.py +1897 -0
  205. vllm/entrypoints/openai/serving_chat_stream_harmony.py +101 -0
  206. vllm/entrypoints/openai/serving_completion.py +740 -0
  207. vllm/entrypoints/openai/serving_engine.py +1612 -0
  208. vllm/entrypoints/openai/serving_models.py +309 -0
  209. vllm/entrypoints/openai/serving_responses.py +2552 -0
  210. vllm/entrypoints/openai/serving_transcription.py +168 -0
  211. vllm/entrypoints/openai/speech_to_text.py +711 -0
  212. vllm/entrypoints/openai/utils.py +49 -0
  213. vllm/entrypoints/pooling/__init__.py +16 -0
  214. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  215. vllm/entrypoints/pooling/classify/api_router.py +48 -0
  216. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  217. vllm/entrypoints/pooling/classify/serving.py +233 -0
  218. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  219. vllm/entrypoints/pooling/embed/api_router.py +65 -0
  220. vllm/entrypoints/pooling/embed/conftest.py +28 -0
  221. vllm/entrypoints/pooling/embed/protocol.py +217 -0
  222. vllm/entrypoints/pooling/embed/serving.py +684 -0
  223. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  224. vllm/entrypoints/pooling/pooling/api_router.py +62 -0
  225. vllm/entrypoints/pooling/pooling/protocol.py +146 -0
  226. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  227. vllm/entrypoints/pooling/score/__init__.py +0 -0
  228. vllm/entrypoints/pooling/score/api_router.py +147 -0
  229. vllm/entrypoints/pooling/score/protocol.py +146 -0
  230. vllm/entrypoints/pooling/score/serving.py +511 -0
  231. vllm/entrypoints/renderer.py +411 -0
  232. vllm/entrypoints/responses_utils.py +218 -0
  233. vllm/entrypoints/sagemaker/__init__.py +4 -0
  234. vllm/entrypoints/sagemaker/routes.py +118 -0
  235. vllm/entrypoints/score_utils.py +271 -0
  236. vllm/entrypoints/serve/__init__.py +94 -0
  237. vllm/entrypoints/serve/cache/__init__.py +0 -0
  238. vllm/entrypoints/serve/cache/api_router.py +61 -0
  239. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  240. vllm/entrypoints/serve/disagg/api_router.py +109 -0
  241. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  242. vllm/entrypoints/serve/disagg/serving.py +285 -0
  243. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  244. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  245. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  246. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  247. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  248. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  249. vllm/entrypoints/serve/instrumentator/offline_docs.py +50 -0
  250. vllm/entrypoints/serve/instrumentator/server_info.py +56 -0
  251. vllm/entrypoints/serve/instrumentator/static/swagger-ui-bundle.js +2 -0
  252. vllm/entrypoints/serve/instrumentator/static/swagger-ui.css +3 -0
  253. vllm/entrypoints/serve/lora/__init__.py +0 -0
  254. vllm/entrypoints/serve/lora/api_router.py +70 -0
  255. vllm/entrypoints/serve/profile/__init__.py +0 -0
  256. vllm/entrypoints/serve/profile/api_router.py +46 -0
  257. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  258. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  259. vllm/entrypoints/serve/rpc/__init__.py +0 -0
  260. vllm/entrypoints/serve/rpc/api_router.py +61 -0
  261. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  262. vllm/entrypoints/serve/sleep/api_router.py +56 -0
  263. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  264. vllm/entrypoints/serve/tokenize/api_router.py +112 -0
  265. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +187 -0
  268. vllm/entrypoints/tool_server.py +234 -0
  269. vllm/entrypoints/utils.py +336 -0
  270. vllm/env_override.py +402 -0
  271. vllm/envs.py +1791 -0
  272. vllm/exceptions.py +36 -0
  273. vllm/forward_context.py +375 -0
  274. vllm/grpc/__init__.py +17 -0
  275. vllm/grpc/compile_protos.py +94 -0
  276. vllm/grpc/vllm_engine.proto +195 -0
  277. vllm/grpc/vllm_engine_pb2.py +77 -0
  278. vllm/grpc/vllm_engine_pb2.pyi +213 -0
  279. vllm/grpc/vllm_engine_pb2_grpc.py +330 -0
  280. vllm/inputs/__init__.py +44 -0
  281. vllm/inputs/data.py +359 -0
  282. vllm/inputs/parse.py +147 -0
  283. vllm/inputs/preprocess.py +716 -0
  284. vllm/logger.py +303 -0
  285. vllm/logging_utils/__init__.py +13 -0
  286. vllm/logging_utils/dump_input.py +83 -0
  287. vllm/logging_utils/formatter.py +127 -0
  288. vllm/logging_utils/lazy.py +20 -0
  289. vllm/logging_utils/log_time.py +34 -0
  290. vllm/logits_process.py +121 -0
  291. vllm/logprobs.py +206 -0
  292. vllm/lora/__init__.py +0 -0
  293. vllm/lora/layers/__init__.py +43 -0
  294. vllm/lora/layers/base.py +66 -0
  295. vllm/lora/layers/base_linear.py +172 -0
  296. vllm/lora/layers/column_parallel_linear.py +577 -0
  297. vllm/lora/layers/fused_moe.py +739 -0
  298. vllm/lora/layers/logits_processor.py +203 -0
  299. vllm/lora/layers/replicated_linear.py +70 -0
  300. vllm/lora/layers/row_parallel_linear.py +176 -0
  301. vllm/lora/layers/utils.py +115 -0
  302. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  303. vllm/lora/lora_model.py +221 -0
  304. vllm/lora/lora_weights.py +227 -0
  305. vllm/lora/model_manager.py +858 -0
  306. vllm/lora/ops/__init__.py +0 -0
  307. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  308. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  309. vllm/lora/ops/torch_ops/__init__.py +20 -0
  310. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  311. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  312. vllm/lora/ops/triton_ops/__init__.py +21 -0
  313. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +677 -0
  314. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  315. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  316. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  317. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  318. vllm/lora/ops/triton_ops/utils.py +313 -0
  319. vllm/lora/peft_helper.py +128 -0
  320. vllm/lora/punica_wrapper/__init__.py +10 -0
  321. vllm/lora/punica_wrapper/punica_base.py +493 -0
  322. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  323. vllm/lora/punica_wrapper/punica_gpu.py +413 -0
  324. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  325. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  326. vllm/lora/punica_wrapper/utils.py +150 -0
  327. vllm/lora/request.py +60 -0
  328. vllm/lora/resolver.py +88 -0
  329. vllm/lora/utils.py +281 -0
  330. vllm/lora/worker_manager.py +278 -0
  331. vllm/model_executor/__init__.py +9 -0
  332. vllm/model_executor/custom_op.py +203 -0
  333. vllm/model_executor/layers/__init__.py +0 -0
  334. vllm/model_executor/layers/activation.py +628 -0
  335. vllm/model_executor/layers/attention/__init__.py +0 -0
  336. vllm/model_executor/layers/attention/chunked_local_attention.py +130 -0
  337. vllm/model_executor/layers/attention/cross_attention.py +182 -0
  338. vllm/model_executor/layers/attention/encoder_only_attention.py +103 -0
  339. vllm/model_executor/layers/attention/mm_encoder_attention.py +234 -0
  340. vllm/model_executor/layers/attention/static_sink_attention.py +254 -0
  341. vllm/model_executor/layers/attention_layer_base.py +34 -0
  342. vllm/model_executor/layers/batch_invariant.py +1063 -0
  343. vllm/model_executor/layers/conv.py +262 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +120 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +173 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +411 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1111 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200.json +147 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=129,N=704,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Workstation_Edition,dtype=fp8_w8a8.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=160,N=768,device_name=NVIDIA_B300_SXM6_AC,dtype=fp8_w8a8.json +147 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  638. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  639. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  640. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  641. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  642. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  643. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  644. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  645. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  646. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  647. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  648. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  649. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  650. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  651. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +444 -0
  652. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1086 -0
  653. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +364 -0
  654. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  655. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  656. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +436 -0
  657. vllm/model_executor/layers/fused_moe/fallback.py +127 -0
  658. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +338 -0
  659. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +310 -0
  660. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +371 -0
  661. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  662. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1018 -0
  663. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +824 -0
  664. vllm/model_executor/layers/fused_moe/fused_moe.py +2638 -0
  665. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +119 -0
  666. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +117 -0
  667. vllm/model_executor/layers/fused_moe/fused_moe_router.py +40 -0
  668. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +531 -0
  669. vllm/model_executor/layers/fused_moe/layer.py +2169 -0
  670. vllm/model_executor/layers/fused_moe/modular_kernel.py +1251 -0
  671. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  672. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  673. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  674. vllm/model_executor/layers/fused_moe/oracle/__init__.py +2 -0
  675. vllm/model_executor/layers/fused_moe/oracle/fp8.py +358 -0
  676. vllm/model_executor/layers/fused_moe/oracle/nvfp4.py +280 -0
  677. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  678. vllm/model_executor/layers/fused_moe/prepare_finalize.py +87 -0
  679. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +347 -0
  680. vllm/model_executor/layers/fused_moe/routed_experts_capturer.py +324 -0
  681. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  682. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  683. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  684. vllm/model_executor/layers/fused_moe/triton_cutlass_moe.py +78 -0
  685. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +75 -0
  686. vllm/model_executor/layers/fused_moe/trtllm_moe.py +144 -0
  687. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +403 -0
  688. vllm/model_executor/layers/fused_moe/utils.py +382 -0
  689. vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py +189 -0
  690. vllm/model_executor/layers/kda.py +442 -0
  691. vllm/model_executor/layers/layernorm.py +451 -0
  692. vllm/model_executor/layers/lightning_attn.py +735 -0
  693. vllm/model_executor/layers/linear.py +1478 -0
  694. vllm/model_executor/layers/logits_processor.py +109 -0
  695. vllm/model_executor/layers/mamba/__init__.py +0 -0
  696. vllm/model_executor/layers/mamba/abstract.py +68 -0
  697. vllm/model_executor/layers/mamba/linear_attn.py +410 -0
  698. vllm/model_executor/layers/mamba/mamba_mixer.py +541 -0
  699. vllm/model_executor/layers/mamba/mamba_mixer2.py +936 -0
  700. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  701. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  702. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  703. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  704. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  705. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  706. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  707. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  708. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  709. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  710. vllm/model_executor/layers/mamba/short_conv.py +254 -0
  711. vllm/model_executor/layers/mla.py +179 -0
  712. vllm/model_executor/layers/pooler/__init__.py +5 -0
  713. vllm/model_executor/layers/pooler/abstract.py +39 -0
  714. vllm/model_executor/layers/pooler/activations.py +162 -0
  715. vllm/model_executor/layers/pooler/common.py +32 -0
  716. vllm/model_executor/layers/pooler/seqwise/__init__.py +45 -0
  717. vllm/model_executor/layers/pooler/seqwise/heads.py +151 -0
  718. vllm/model_executor/layers/pooler/seqwise/methods.py +93 -0
  719. vllm/model_executor/layers/pooler/seqwise/poolers.py +127 -0
  720. vllm/model_executor/layers/pooler/special.py +128 -0
  721. vllm/model_executor/layers/pooler/tokwise/__init__.py +39 -0
  722. vllm/model_executor/layers/pooler/tokwise/heads.py +133 -0
  723. vllm/model_executor/layers/pooler/tokwise/methods.py +122 -0
  724. vllm/model_executor/layers/pooler/tokwise/poolers.py +127 -0
  725. vllm/model_executor/layers/quantization/__init__.py +195 -0
  726. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  727. vllm/model_executor/layers/quantization/awq.py +277 -0
  728. vllm/model_executor/layers/quantization/awq_marlin.py +795 -0
  729. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  730. vllm/model_executor/layers/quantization/base_config.py +170 -0
  731. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  732. vllm/model_executor/layers/quantization/bitsandbytes.py +631 -0
  733. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  734. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +982 -0
  735. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2368 -0
  736. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +37 -0
  737. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  738. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  739. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  740. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_mxfp4.py +106 -0
  741. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  742. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  743. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  744. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  745. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  746. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +203 -0
  747. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  748. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  749. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  750. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  751. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  752. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  753. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  754. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  755. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  756. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  757. vllm/model_executor/layers/quantization/cpu_wna16.py +299 -0
  758. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  759. vllm/model_executor/layers/quantization/experts_int8.py +209 -0
  760. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  761. vllm/model_executor/layers/quantization/fp8.py +1224 -0
  762. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  763. vllm/model_executor/layers/quantization/gguf.py +682 -0
  764. vllm/model_executor/layers/quantization/gptq.py +393 -0
  765. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  766. vllm/model_executor/layers/quantization/gptq_marlin.py +934 -0
  767. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  768. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  769. vllm/model_executor/layers/quantization/inc.py +65 -0
  770. vllm/model_executor/layers/quantization/input_quant_fp8.py +212 -0
  771. vllm/model_executor/layers/quantization/ipex_quant.py +403 -0
  772. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  773. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  774. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +113 -0
  775. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  776. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  777. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  778. vllm/model_executor/layers/quantization/kernels/mixed_precision/cpu.py +126 -0
  779. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  780. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  781. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +168 -0
  782. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  783. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  784. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  785. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  786. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +77 -0
  787. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  788. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  789. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  790. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +88 -0
  791. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  792. vllm/model_executor/layers/quantization/modelopt.py +1665 -0
  793. vllm/model_executor/layers/quantization/moe_wna16.py +518 -0
  794. vllm/model_executor/layers/quantization/mxfp4.py +1145 -0
  795. vllm/model_executor/layers/quantization/petit.py +319 -0
  796. vllm/model_executor/layers/quantization/ptpc_fp8.py +140 -0
  797. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  798. vllm/model_executor/layers/quantization/quark/quark.py +570 -0
  799. vllm/model_executor/layers/quantization/quark/quark_moe.py +797 -0
  800. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  801. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  802. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  803. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  804. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  805. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  806. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  807. vllm/model_executor/layers/quantization/rtn.py +626 -0
  808. vllm/model_executor/layers/quantization/schema.py +90 -0
  809. vllm/model_executor/layers/quantization/torchao.py +380 -0
  810. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  811. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  812. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  996. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  997. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  998. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  999. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1000. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1001. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1002. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1003. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1004. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1005. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1006. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1007. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1008. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1009. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1010. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1011. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1012. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1013. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1014. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1015. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1016. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1017. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1018. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  1019. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  1020. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  1021. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1022. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1023. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1024. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1025. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1026. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  1027. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  1028. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +514 -0
  1029. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +370 -0
  1030. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1658 -0
  1031. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1032. vllm/model_executor/layers/quantization/utils/int8_utils.py +477 -0
  1033. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1034. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1035. vllm/model_executor/layers/quantization/utils/marlin_utils.py +720 -0
  1036. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +565 -0
  1037. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +378 -0
  1038. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1039. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1040. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1041. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1042. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1043. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1044. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1045. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1046. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1047. vllm/model_executor/layers/quantization/utils/quant_utils.py +767 -0
  1048. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1049. vllm/model_executor/layers/resampler.py +283 -0
  1050. vllm/model_executor/layers/rotary_embedding/__init__.py +291 -0
  1051. vllm/model_executor/layers/rotary_embedding/base.py +282 -0
  1052. vllm/model_executor/layers/rotary_embedding/common.py +289 -0
  1053. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +184 -0
  1054. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +218 -0
  1055. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1056. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1057. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1058. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1059. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1060. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +83 -0
  1061. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1062. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1063. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1064. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1065. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1066. vllm/model_executor/layers/utils.py +251 -0
  1067. vllm/model_executor/layers/vocab_parallel_embedding.py +564 -0
  1068. vllm/model_executor/model_loader/__init__.py +150 -0
  1069. vllm/model_executor/model_loader/base_loader.py +71 -0
  1070. vllm/model_executor/model_loader/bitsandbytes_loader.py +821 -0
  1071. vllm/model_executor/model_loader/default_loader.py +304 -0
  1072. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1073. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1074. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1075. vllm/model_executor/model_loader/runai_streamer_loader.py +115 -0
  1076. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1077. vllm/model_executor/model_loader/tensorizer.py +793 -0
  1078. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1079. vllm/model_executor/model_loader/utils.py +299 -0
  1080. vllm/model_executor/model_loader/weight_utils.py +1183 -0
  1081. vllm/model_executor/models/__init__.py +44 -0
  1082. vllm/model_executor/models/adapters.py +592 -0
  1083. vllm/model_executor/models/afmoe.py +697 -0
  1084. vllm/model_executor/models/aimv2.py +248 -0
  1085. vllm/model_executor/models/apertus.py +567 -0
  1086. vllm/model_executor/models/arcee.py +428 -0
  1087. vllm/model_executor/models/arctic.py +633 -0
  1088. vllm/model_executor/models/aria.py +663 -0
  1089. vllm/model_executor/models/audioflamingo3.py +639 -0
  1090. vllm/model_executor/models/aya_vision.py +448 -0
  1091. vllm/model_executor/models/bagel.py +591 -0
  1092. vllm/model_executor/models/baichuan.py +493 -0
  1093. vllm/model_executor/models/bailing_moe.py +643 -0
  1094. vllm/model_executor/models/bamba.py +511 -0
  1095. vllm/model_executor/models/bee.py +157 -0
  1096. vllm/model_executor/models/bert.py +911 -0
  1097. vllm/model_executor/models/bert_with_rope.py +729 -0
  1098. vllm/model_executor/models/blip.py +350 -0
  1099. vllm/model_executor/models/blip2.py +736 -0
  1100. vllm/model_executor/models/bloom.py +390 -0
  1101. vllm/model_executor/models/chameleon.py +1095 -0
  1102. vllm/model_executor/models/chatglm.py +502 -0
  1103. vllm/model_executor/models/clip.py +1045 -0
  1104. vllm/model_executor/models/cohere2_vision.py +470 -0
  1105. vllm/model_executor/models/commandr.py +469 -0
  1106. vllm/model_executor/models/config.py +571 -0
  1107. vllm/model_executor/models/dbrx.py +484 -0
  1108. vllm/model_executor/models/deepencoder.py +679 -0
  1109. vllm/model_executor/models/deepseek_eagle.py +253 -0
  1110. vllm/model_executor/models/deepseek_mtp.py +447 -0
  1111. vllm/model_executor/models/deepseek_ocr.py +601 -0
  1112. vllm/model_executor/models/deepseek_v2.py +1727 -0
  1113. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1114. vllm/model_executor/models/dots1.py +566 -0
  1115. vllm/model_executor/models/dots_ocr.py +830 -0
  1116. vllm/model_executor/models/ernie45.py +53 -0
  1117. vllm/model_executor/models/ernie45_moe.py +755 -0
  1118. vllm/model_executor/models/ernie45_vl.py +1702 -0
  1119. vllm/model_executor/models/ernie45_vl_moe.py +801 -0
  1120. vllm/model_executor/models/ernie_mtp.py +278 -0
  1121. vllm/model_executor/models/exaone.py +524 -0
  1122. vllm/model_executor/models/exaone4.py +518 -0
  1123. vllm/model_executor/models/exaone_moe.py +579 -0
  1124. vllm/model_executor/models/exaone_moe_mtp.py +255 -0
  1125. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1126. vllm/model_executor/models/falcon.py +543 -0
  1127. vllm/model_executor/models/falcon_h1.py +675 -0
  1128. vllm/model_executor/models/flex_olmo.py +155 -0
  1129. vllm/model_executor/models/fuyu.py +371 -0
  1130. vllm/model_executor/models/gemma.py +425 -0
  1131. vllm/model_executor/models/gemma2.py +435 -0
  1132. vllm/model_executor/models/gemma3.py +520 -0
  1133. vllm/model_executor/models/gemma3_mm.py +664 -0
  1134. vllm/model_executor/models/gemma3n.py +1166 -0
  1135. vllm/model_executor/models/gemma3n_audio_utils.py +57 -0
  1136. vllm/model_executor/models/gemma3n_mm.py +820 -0
  1137. vllm/model_executor/models/glm.py +24 -0
  1138. vllm/model_executor/models/glm4.py +295 -0
  1139. vllm/model_executor/models/glm4_1v.py +1823 -0
  1140. vllm/model_executor/models/glm4_moe.py +725 -0
  1141. vllm/model_executor/models/glm4_moe_mtp.py +365 -0
  1142. vllm/model_executor/models/glm4v.py +783 -0
  1143. vllm/model_executor/models/glmasr.py +1154 -0
  1144. vllm/model_executor/models/glmasr_utils.py +188 -0
  1145. vllm/model_executor/models/gpt2.py +385 -0
  1146. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1147. vllm/model_executor/models/gpt_j.py +346 -0
  1148. vllm/model_executor/models/gpt_neox.py +340 -0
  1149. vllm/model_executor/models/gpt_oss.py +745 -0
  1150. vllm/model_executor/models/granite.py +475 -0
  1151. vllm/model_executor/models/granite_speech.py +919 -0
  1152. vllm/model_executor/models/granitemoe.py +561 -0
  1153. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1154. vllm/model_executor/models/granitemoeshared.py +328 -0
  1155. vllm/model_executor/models/gritlm.py +242 -0
  1156. vllm/model_executor/models/grok1.py +803 -0
  1157. vllm/model_executor/models/h2ovl.py +554 -0
  1158. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1159. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1160. vllm/model_executor/models/hyperclovax_vision.py +1163 -0
  1161. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1162. vllm/model_executor/models/idefics3.py +734 -0
  1163. vllm/model_executor/models/interfaces.py +1180 -0
  1164. vllm/model_executor/models/interfaces_base.py +252 -0
  1165. vllm/model_executor/models/intern_vit.py +454 -0
  1166. vllm/model_executor/models/internlm2.py +451 -0
  1167. vllm/model_executor/models/internlm2_ve.py +139 -0
  1168. vllm/model_executor/models/interns1.py +828 -0
  1169. vllm/model_executor/models/interns1_vit.py +433 -0
  1170. vllm/model_executor/models/internvl.py +1436 -0
  1171. vllm/model_executor/models/iquest_loopcoder.py +595 -0
  1172. vllm/model_executor/models/isaac.py +1503 -0
  1173. vllm/model_executor/models/jais.py +397 -0
  1174. vllm/model_executor/models/jais2.py +508 -0
  1175. vllm/model_executor/models/jamba.py +599 -0
  1176. vllm/model_executor/models/jina_vl.py +145 -0
  1177. vllm/model_executor/models/kanana_v.py +756 -0
  1178. vllm/model_executor/models/keye.py +1709 -0
  1179. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1180. vllm/model_executor/models/kimi_linear.py +659 -0
  1181. vllm/model_executor/models/kimi_vl.py +577 -0
  1182. vllm/model_executor/models/lfm2.py +515 -0
  1183. vllm/model_executor/models/lfm2_moe.py +746 -0
  1184. vllm/model_executor/models/lfm2_vl.py +732 -0
  1185. vllm/model_executor/models/lightonocr.py +197 -0
  1186. vllm/model_executor/models/llama.py +724 -0
  1187. vllm/model_executor/models/llama4.py +860 -0
  1188. vllm/model_executor/models/llama4_eagle.py +225 -0
  1189. vllm/model_executor/models/llama_eagle.py +213 -0
  1190. vllm/model_executor/models/llama_eagle3.py +375 -0
  1191. vllm/model_executor/models/llava.py +879 -0
  1192. vllm/model_executor/models/llava_next.py +583 -0
  1193. vllm/model_executor/models/llava_next_video.py +467 -0
  1194. vllm/model_executor/models/llava_onevision.py +922 -0
  1195. vllm/model_executor/models/longcat_flash.py +767 -0
  1196. vllm/model_executor/models/longcat_flash_mtp.py +348 -0
  1197. vllm/model_executor/models/mamba.py +276 -0
  1198. vllm/model_executor/models/mamba2.py +288 -0
  1199. vllm/model_executor/models/medusa.py +179 -0
  1200. vllm/model_executor/models/midashenglm.py +826 -0
  1201. vllm/model_executor/models/mimo.py +188 -0
  1202. vllm/model_executor/models/mimo_mtp.py +294 -0
  1203. vllm/model_executor/models/mimo_v2_flash.py +718 -0
  1204. vllm/model_executor/models/minicpm.py +660 -0
  1205. vllm/model_executor/models/minicpm3.py +233 -0
  1206. vllm/model_executor/models/minicpm_eagle.py +386 -0
  1207. vllm/model_executor/models/minicpmo.py +768 -0
  1208. vllm/model_executor/models/minicpmv.py +1742 -0
  1209. vllm/model_executor/models/minimax_m2.py +552 -0
  1210. vllm/model_executor/models/minimax_text_01.py +1008 -0
  1211. vllm/model_executor/models/minimax_vl_01.py +395 -0
  1212. vllm/model_executor/models/mistral3.py +638 -0
  1213. vllm/model_executor/models/mistral_large_3.py +63 -0
  1214. vllm/model_executor/models/mistral_large_3_eagle.py +137 -0
  1215. vllm/model_executor/models/mixtral.py +599 -0
  1216. vllm/model_executor/models/mllama4.py +1170 -0
  1217. vllm/model_executor/models/mlp_speculator.py +235 -0
  1218. vllm/model_executor/models/modernbert.py +458 -0
  1219. vllm/model_executor/models/module_mapping.py +74 -0
  1220. vllm/model_executor/models/molmo.py +1592 -0
  1221. vllm/model_executor/models/moonvit.py +601 -0
  1222. vllm/model_executor/models/mpt.py +335 -0
  1223. vllm/model_executor/models/nano_nemotron_vl.py +1725 -0
  1224. vllm/model_executor/models/nemotron.py +499 -0
  1225. vllm/model_executor/models/nemotron_h.py +902 -0
  1226. vllm/model_executor/models/nemotron_nas.py +474 -0
  1227. vllm/model_executor/models/nemotron_parse.py +958 -0
  1228. vllm/model_executor/models/nemotron_vl.py +651 -0
  1229. vllm/model_executor/models/nvlm_d.py +216 -0
  1230. vllm/model_executor/models/olmo.py +412 -0
  1231. vllm/model_executor/models/olmo2.py +454 -0
  1232. vllm/model_executor/models/olmoe.py +498 -0
  1233. vllm/model_executor/models/opencua.py +262 -0
  1234. vllm/model_executor/models/openpangu.py +1378 -0
  1235. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1236. vllm/model_executor/models/opt.py +426 -0
  1237. vllm/model_executor/models/orion.py +365 -0
  1238. vllm/model_executor/models/ouro.py +507 -0
  1239. vllm/model_executor/models/ovis.py +557 -0
  1240. vllm/model_executor/models/ovis2_5.py +661 -0
  1241. vllm/model_executor/models/paddleocr_vl.py +1261 -0
  1242. vllm/model_executor/models/paligemma.py +429 -0
  1243. vllm/model_executor/models/persimmon.py +373 -0
  1244. vllm/model_executor/models/phi.py +363 -0
  1245. vllm/model_executor/models/phi3.py +18 -0
  1246. vllm/model_executor/models/phi3v.py +729 -0
  1247. vllm/model_executor/models/phi4mm.py +1250 -0
  1248. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1249. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1250. vllm/model_executor/models/phimoe.py +671 -0
  1251. vllm/model_executor/models/pixtral.py +1437 -0
  1252. vllm/model_executor/models/plamo2.py +993 -0
  1253. vllm/model_executor/models/plamo3.py +437 -0
  1254. vllm/model_executor/models/qwen.py +377 -0
  1255. vllm/model_executor/models/qwen2.py +600 -0
  1256. vllm/model_executor/models/qwen2_5_omni_thinker.py +1200 -0
  1257. vllm/model_executor/models/qwen2_5_vl.py +1598 -0
  1258. vllm/model_executor/models/qwen2_audio.py +478 -0
  1259. vllm/model_executor/models/qwen2_moe.py +604 -0
  1260. vllm/model_executor/models/qwen2_rm.py +120 -0
  1261. vllm/model_executor/models/qwen2_vl.py +1588 -0
  1262. vllm/model_executor/models/qwen3.py +331 -0
  1263. vllm/model_executor/models/qwen3_moe.py +752 -0
  1264. vllm/model_executor/models/qwen3_next.py +1410 -0
  1265. vllm/model_executor/models/qwen3_next_mtp.py +293 -0
  1266. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1814 -0
  1267. vllm/model_executor/models/qwen3_vl.py +2120 -0
  1268. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1269. vllm/model_executor/models/qwen_vl.py +821 -0
  1270. vllm/model_executor/models/radio.py +573 -0
  1271. vllm/model_executor/models/registry.py +1218 -0
  1272. vllm/model_executor/models/roberta.py +239 -0
  1273. vllm/model_executor/models/rvl.py +107 -0
  1274. vllm/model_executor/models/seed_oss.py +492 -0
  1275. vllm/model_executor/models/siglip.py +1259 -0
  1276. vllm/model_executor/models/siglip2.py +495 -0
  1277. vllm/model_executor/models/siglip2navit.py +660 -0
  1278. vllm/model_executor/models/skyworkr1v.py +951 -0
  1279. vllm/model_executor/models/smolvlm.py +38 -0
  1280. vllm/model_executor/models/solar.py +484 -0
  1281. vllm/model_executor/models/stablelm.py +354 -0
  1282. vllm/model_executor/models/starcoder2.py +365 -0
  1283. vllm/model_executor/models/step3_text.py +554 -0
  1284. vllm/model_executor/models/step3_vl.py +1147 -0
  1285. vllm/model_executor/models/swin.py +500 -0
  1286. vllm/model_executor/models/tarsier.py +624 -0
  1287. vllm/model_executor/models/telechat2.py +153 -0
  1288. vllm/model_executor/models/teleflm.py +78 -0
  1289. vllm/model_executor/models/terratorch.py +318 -0
  1290. vllm/model_executor/models/transformers/__init__.py +127 -0
  1291. vllm/model_executor/models/transformers/base.py +523 -0
  1292. vllm/model_executor/models/transformers/causal.py +65 -0
  1293. vllm/model_executor/models/transformers/legacy.py +90 -0
  1294. vllm/model_executor/models/transformers/moe.py +329 -0
  1295. vllm/model_executor/models/transformers/multimodal.py +441 -0
  1296. vllm/model_executor/models/transformers/pooling.py +102 -0
  1297. vllm/model_executor/models/transformers/utils.py +253 -0
  1298. vllm/model_executor/models/ultravox.py +786 -0
  1299. vllm/model_executor/models/utils.py +832 -0
  1300. vllm/model_executor/models/vision.py +546 -0
  1301. vllm/model_executor/models/voxtral.py +867 -0
  1302. vllm/model_executor/models/voxtral_streaming.py +304 -0
  1303. vllm/model_executor/models/whisper.py +993 -0
  1304. vllm/model_executor/models/whisper_utils.py +299 -0
  1305. vllm/model_executor/models/zamba2.py +986 -0
  1306. vllm/model_executor/parameter.py +642 -0
  1307. vllm/model_executor/utils.py +113 -0
  1308. vllm/model_executor/warmup/__init__.py +0 -0
  1309. vllm/model_executor/warmup/deep_gemm_warmup.py +371 -0
  1310. vllm/model_executor/warmup/kernel_warmup.py +97 -0
  1311. vllm/model_inspection.py +136 -0
  1312. vllm/multimodal/__init__.py +38 -0
  1313. vllm/multimodal/audio.py +287 -0
  1314. vllm/multimodal/base.py +60 -0
  1315. vllm/multimodal/cache.py +829 -0
  1316. vllm/multimodal/evs.py +294 -0
  1317. vllm/multimodal/hasher.py +123 -0
  1318. vllm/multimodal/image.py +155 -0
  1319. vllm/multimodal/inputs.py +1027 -0
  1320. vllm/multimodal/parse.py +674 -0
  1321. vllm/multimodal/processing.py +2469 -0
  1322. vllm/multimodal/profiling.py +351 -0
  1323. vllm/multimodal/registry.py +375 -0
  1324. vllm/multimodal/utils.py +550 -0
  1325. vllm/multimodal/video.py +512 -0
  1326. vllm/outputs.py +347 -0
  1327. vllm/platforms/__init__.py +277 -0
  1328. vllm/platforms/cpu.py +423 -0
  1329. vllm/platforms/cuda.py +618 -0
  1330. vllm/platforms/interface.py +707 -0
  1331. vllm/platforms/rocm.py +586 -0
  1332. vllm/platforms/tpu.py +20 -0
  1333. vllm/platforms/xpu.py +262 -0
  1334. vllm/plugins/__init__.py +81 -0
  1335. vllm/plugins/io_processors/__init__.py +68 -0
  1336. vllm/plugins/io_processors/interface.py +77 -0
  1337. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1338. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1339. vllm/pooling_params.py +229 -0
  1340. vllm/profiler/__init__.py +0 -0
  1341. vllm/profiler/layerwise_profile.py +392 -0
  1342. vllm/profiler/utils.py +151 -0
  1343. vllm/profiler/wrapper.py +241 -0
  1344. vllm/py.typed +2 -0
  1345. vllm/ray/__init__.py +0 -0
  1346. vllm/ray/lazy_utils.py +30 -0
  1347. vllm/ray/ray_env.py +79 -0
  1348. vllm/reasoning/__init__.py +96 -0
  1349. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1350. vllm/reasoning/basic_parsers.py +175 -0
  1351. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1352. vllm/reasoning/deepseek_v3_reasoning_parser.py +69 -0
  1353. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1354. vllm/reasoning/glm4_moe_reasoning_parser.py +13 -0
  1355. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1356. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1357. vllm/reasoning/holo2_reasoning_parser.py +89 -0
  1358. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1359. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1360. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1361. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1362. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1363. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1364. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1365. vllm/reasoning/step3_reasoning_parser.py +113 -0
  1366. vllm/sampling_params.py +629 -0
  1367. vllm/scalar_type.py +355 -0
  1368. vllm/scripts.py +17 -0
  1369. vllm/sequence.py +64 -0
  1370. vllm/tasks.py +13 -0
  1371. vllm/third_party/__init__.py +0 -0
  1372. vllm/third_party/pynvml.py +6140 -0
  1373. vllm/tokenizers/__init__.py +18 -0
  1374. vllm/tokenizers/deepseek_v32.py +187 -0
  1375. vllm/tokenizers/deepseek_v32_encoding.py +463 -0
  1376. vllm/tokenizers/detokenizer_utils.py +198 -0
  1377. vllm/tokenizers/grok2.py +443 -0
  1378. vllm/tokenizers/hf.py +119 -0
  1379. vllm/tokenizers/mistral.py +543 -0
  1380. vllm/tokenizers/protocol.py +123 -0
  1381. vllm/tokenizers/registry.py +238 -0
  1382. vllm/tool_parsers/__init__.py +158 -0
  1383. vllm/tool_parsers/abstract_tool_parser.py +274 -0
  1384. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1385. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1386. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1387. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1388. vllm/tool_parsers/functiongemma_tool_parser.py +321 -0
  1389. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1390. vllm/tool_parsers/glm47_moe_tool_parser.py +23 -0
  1391. vllm/tool_parsers/glm4_moe_tool_parser.py +215 -0
  1392. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1393. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1394. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1395. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1396. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1397. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1398. vllm/tool_parsers/kimi_k2_tool_parser.py +598 -0
  1399. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1400. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1401. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1402. vllm/tool_parsers/minimax_m2_tool_parser.py +776 -0
  1403. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1404. vllm/tool_parsers/mistral_tool_parser.py +612 -0
  1405. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1406. vllm/tool_parsers/openai_tool_parser.py +111 -0
  1407. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1408. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1409. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1410. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1411. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1412. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1413. vllm/tool_parsers/utils.py +229 -0
  1414. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1415. vllm/tracing.py +135 -0
  1416. vllm/transformers_utils/__init__.py +26 -0
  1417. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1418. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1419. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1420. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1421. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1422. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1423. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1424. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1425. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1426. vllm/transformers_utils/config.py +1169 -0
  1427. vllm/transformers_utils/config_parser_base.py +20 -0
  1428. vllm/transformers_utils/configs/__init__.py +106 -0
  1429. vllm/transformers_utils/configs/afmoe.py +87 -0
  1430. vllm/transformers_utils/configs/arctic.py +216 -0
  1431. vllm/transformers_utils/configs/bagel.py +53 -0
  1432. vllm/transformers_utils/configs/chatglm.py +75 -0
  1433. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1434. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1435. vllm/transformers_utils/configs/eagle.py +90 -0
  1436. vllm/transformers_utils/configs/falcon.py +89 -0
  1437. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1438. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1439. vllm/transformers_utils/configs/isaac.py +100 -0
  1440. vllm/transformers_utils/configs/jais.py +243 -0
  1441. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1442. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1443. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1444. vllm/transformers_utils/configs/medusa.py +65 -0
  1445. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1446. vllm/transformers_utils/configs/mistral.py +263 -0
  1447. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1448. vllm/transformers_utils/configs/moonvit.py +33 -0
  1449. vllm/transformers_utils/configs/nemotron.py +220 -0
  1450. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1451. vllm/transformers_utils/configs/olmo3.py +83 -0
  1452. vllm/transformers_utils/configs/ovis.py +182 -0
  1453. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1454. vllm/transformers_utils/configs/radio.py +98 -0
  1455. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1456. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1457. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1458. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1459. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1460. vllm/transformers_utils/configs/ultravox.py +120 -0
  1461. vllm/transformers_utils/dynamic_module.py +70 -0
  1462. vllm/transformers_utils/gguf_utils.py +280 -0
  1463. vllm/transformers_utils/model_arch_config_convertor.py +402 -0
  1464. vllm/transformers_utils/processor.py +424 -0
  1465. vllm/transformers_utils/processors/__init__.py +25 -0
  1466. vllm/transformers_utils/processors/bagel.py +78 -0
  1467. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1468. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1469. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1470. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1471. vllm/transformers_utils/processors/ovis.py +453 -0
  1472. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1473. vllm/transformers_utils/repo_utils.py +287 -0
  1474. vllm/transformers_utils/runai_utils.py +102 -0
  1475. vllm/transformers_utils/s3_utils.py +95 -0
  1476. vllm/transformers_utils/tokenizer.py +19 -0
  1477. vllm/transformers_utils/utils.py +112 -0
  1478. vllm/triton_utils/__init__.py +20 -0
  1479. vllm/triton_utils/importing.py +103 -0
  1480. vllm/usage/__init__.py +0 -0
  1481. vllm/usage/usage_lib.py +278 -0
  1482. vllm/utils/__init__.py +36 -0
  1483. vllm/utils/argparse_utils.py +491 -0
  1484. vllm/utils/async_utils.py +310 -0
  1485. vllm/utils/cache.py +214 -0
  1486. vllm/utils/collection_utils.py +112 -0
  1487. vllm/utils/counter.py +45 -0
  1488. vllm/utils/deep_gemm.py +424 -0
  1489. vllm/utils/flashinfer.py +602 -0
  1490. vllm/utils/func_utils.py +236 -0
  1491. vllm/utils/gc_utils.py +151 -0
  1492. vllm/utils/hashing.py +117 -0
  1493. vllm/utils/import_utils.py +438 -0
  1494. vllm/utils/jsontree.py +158 -0
  1495. vllm/utils/math_utils.py +32 -0
  1496. vllm/utils/mem_constants.py +13 -0
  1497. vllm/utils/mem_utils.py +285 -0
  1498. vllm/utils/nccl.py +64 -0
  1499. vllm/utils/network_utils.py +331 -0
  1500. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1501. vllm/utils/platform_utils.py +59 -0
  1502. vllm/utils/profiling.py +56 -0
  1503. vllm/utils/registry.py +51 -0
  1504. vllm/utils/serial_utils.py +214 -0
  1505. vllm/utils/system_utils.py +296 -0
  1506. vllm/utils/tensor_schema.py +255 -0
  1507. vllm/utils/torch_utils.py +781 -0
  1508. vllm/v1/__init__.py +0 -0
  1509. vllm/v1/attention/__init__.py +0 -0
  1510. vllm/v1/attention/backend.py +736 -0
  1511. vllm/v1/attention/backends/__init__.py +0 -0
  1512. vllm/v1/attention/backends/cpu_attn.py +501 -0
  1513. vllm/v1/attention/backends/fa_utils.py +126 -0
  1514. vllm/v1/attention/backends/flash_attn.py +1092 -0
  1515. vllm/v1/attention/backends/flash_attn_diffkv.py +277 -0
  1516. vllm/v1/attention/backends/flashinfer.py +1713 -0
  1517. vllm/v1/attention/backends/flex_attention.py +1024 -0
  1518. vllm/v1/attention/backends/gdn_attn.py +382 -0
  1519. vllm/v1/attention/backends/linear_attn.py +77 -0
  1520. vllm/v1/attention/backends/mamba1_attn.py +28 -0
  1521. vllm/v1/attention/backends/mamba2_attn.py +256 -0
  1522. vllm/v1/attention/backends/mamba_attn.py +313 -0
  1523. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1524. vllm/v1/attention/backends/mla/aiter_triton_mla.py +66 -0
  1525. vllm/v1/attention/backends/mla/common.py +2156 -0
  1526. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1527. vllm/v1/attention/backends/mla/flashattn_mla.py +348 -0
  1528. vllm/v1/attention/backends/mla/flashinfer_mla.py +175 -0
  1529. vllm/v1/attention/backends/mla/flashmla.py +321 -0
  1530. vllm/v1/attention/backends/mla/flashmla_sparse.py +1021 -0
  1531. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1532. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +284 -0
  1533. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +321 -0
  1534. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1535. vllm/v1/attention/backends/registry.py +258 -0
  1536. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1537. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1538. vllm/v1/attention/backends/rocm_attn.py +405 -0
  1539. vllm/v1/attention/backends/short_conv_attn.py +26 -0
  1540. vllm/v1/attention/backends/tree_attn.py +430 -0
  1541. vllm/v1/attention/backends/triton_attn.py +578 -0
  1542. vllm/v1/attention/backends/utils.py +978 -0
  1543. vllm/v1/attention/ops/__init__.py +0 -0
  1544. vllm/v1/attention/ops/chunked_prefill_paged_decode.py +459 -0
  1545. vllm/v1/attention/ops/common.py +469 -0
  1546. vllm/v1/attention/ops/flashmla.py +254 -0
  1547. vllm/v1/attention/ops/merge_attn_states.py +47 -0
  1548. vllm/v1/attention/ops/paged_attn.py +51 -0
  1549. vllm/v1/attention/ops/pallas_kv_cache_update.py +130 -0
  1550. vllm/v1/attention/ops/prefix_prefill.py +862 -0
  1551. vllm/v1/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  1552. vllm/v1/attention/ops/triton_decode_attention.py +709 -0
  1553. vllm/v1/attention/ops/triton_merge_attn_states.py +116 -0
  1554. vllm/v1/attention/ops/triton_prefill_attention.py +272 -0
  1555. vllm/v1/attention/ops/triton_reshape_and_cache_flash.py +395 -0
  1556. vllm/v1/attention/ops/triton_unified_attention.py +1088 -0
  1557. vllm/v1/attention/ops/vit_attn_wrappers.py +185 -0
  1558. vllm/v1/attention/selector.py +145 -0
  1559. vllm/v1/core/__init__.py +0 -0
  1560. vllm/v1/core/block_pool.py +489 -0
  1561. vllm/v1/core/encoder_cache_manager.py +402 -0
  1562. vllm/v1/core/kv_cache_coordinator.py +560 -0
  1563. vllm/v1/core/kv_cache_manager.py +485 -0
  1564. vllm/v1/core/kv_cache_metrics.py +96 -0
  1565. vllm/v1/core/kv_cache_utils.py +1642 -0
  1566. vllm/v1/core/sched/__init__.py +0 -0
  1567. vllm/v1/core/sched/async_scheduler.py +66 -0
  1568. vllm/v1/core/sched/interface.py +205 -0
  1569. vllm/v1/core/sched/output.py +261 -0
  1570. vllm/v1/core/sched/request_queue.py +208 -0
  1571. vllm/v1/core/sched/scheduler.py +1936 -0
  1572. vllm/v1/core/sched/utils.py +64 -0
  1573. vllm/v1/core/single_type_kv_cache_manager.py +926 -0
  1574. vllm/v1/cudagraph_dispatcher.py +183 -0
  1575. vllm/v1/engine/__init__.py +224 -0
  1576. vllm/v1/engine/async_llm.py +874 -0
  1577. vllm/v1/engine/coordinator.py +396 -0
  1578. vllm/v1/engine/core.py +1614 -0
  1579. vllm/v1/engine/core_client.py +1422 -0
  1580. vllm/v1/engine/detokenizer.py +351 -0
  1581. vllm/v1/engine/exceptions.py +18 -0
  1582. vllm/v1/engine/input_processor.py +713 -0
  1583. vllm/v1/engine/llm_engine.py +415 -0
  1584. vllm/v1/engine/logprobs.py +245 -0
  1585. vllm/v1/engine/output_processor.py +715 -0
  1586. vllm/v1/engine/parallel_sampling.py +150 -0
  1587. vllm/v1/engine/utils.py +1086 -0
  1588. vllm/v1/executor/__init__.py +6 -0
  1589. vllm/v1/executor/abstract.py +352 -0
  1590. vllm/v1/executor/multiproc_executor.py +888 -0
  1591. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1592. vllm/v1/executor/ray_executor.py +623 -0
  1593. vllm/v1/executor/ray_utils.py +468 -0
  1594. vllm/v1/executor/uniproc_executor.py +186 -0
  1595. vllm/v1/kv_cache_interface.py +485 -0
  1596. vllm/v1/kv_offload/__init__.py +0 -0
  1597. vllm/v1/kv_offload/abstract.py +161 -0
  1598. vllm/v1/kv_offload/arc_manager.py +237 -0
  1599. vllm/v1/kv_offload/backend.py +97 -0
  1600. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1601. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1602. vllm/v1/kv_offload/cpu.py +109 -0
  1603. vllm/v1/kv_offload/factory.py +58 -0
  1604. vllm/v1/kv_offload/lru_manager.py +139 -0
  1605. vllm/v1/kv_offload/mediums.py +39 -0
  1606. vllm/v1/kv_offload/spec.py +70 -0
  1607. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1608. vllm/v1/kv_offload/worker/cpu_gpu.py +287 -0
  1609. vllm/v1/kv_offload/worker/worker.py +163 -0
  1610. vllm/v1/metrics/__init__.py +0 -0
  1611. vllm/v1/metrics/loggers.py +1320 -0
  1612. vllm/v1/metrics/perf.py +1244 -0
  1613. vllm/v1/metrics/prometheus.py +82 -0
  1614. vllm/v1/metrics/ray_wrappers.py +194 -0
  1615. vllm/v1/metrics/reader.py +257 -0
  1616. vllm/v1/metrics/stats.py +440 -0
  1617. vllm/v1/outputs.py +242 -0
  1618. vllm/v1/pool/__init__.py +0 -0
  1619. vllm/v1/pool/metadata.py +124 -0
  1620. vllm/v1/request.py +281 -0
  1621. vllm/v1/sample/__init__.py +0 -0
  1622. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1623. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1624. vllm/v1/sample/logits_processor/interface.py +106 -0
  1625. vllm/v1/sample/logits_processor/state.py +165 -0
  1626. vllm/v1/sample/metadata.py +44 -0
  1627. vllm/v1/sample/ops/__init__.py +0 -0
  1628. vllm/v1/sample/ops/bad_words.py +57 -0
  1629. vllm/v1/sample/ops/logprobs.py +25 -0
  1630. vllm/v1/sample/ops/penalties.py +57 -0
  1631. vllm/v1/sample/ops/topk_topp_sampler.py +388 -0
  1632. vllm/v1/sample/rejection_sampler.py +822 -0
  1633. vllm/v1/sample/sampler.py +319 -0
  1634. vllm/v1/sample/tpu/__init__.py +0 -0
  1635. vllm/v1/sample/tpu/metadata.py +120 -0
  1636. vllm/v1/sample/tpu/sampler.py +215 -0
  1637. vllm/v1/serial_utils.py +514 -0
  1638. vllm/v1/spec_decode/__init__.py +0 -0
  1639. vllm/v1/spec_decode/eagle.py +1346 -0
  1640. vllm/v1/spec_decode/medusa.py +73 -0
  1641. vllm/v1/spec_decode/metadata.py +66 -0
  1642. vllm/v1/spec_decode/metrics.py +225 -0
  1643. vllm/v1/spec_decode/ngram_proposer.py +281 -0
  1644. vllm/v1/spec_decode/suffix_decoding.py +95 -0
  1645. vllm/v1/spec_decode/utils.py +109 -0
  1646. vllm/v1/structured_output/__init__.py +337 -0
  1647. vllm/v1/structured_output/backend_guidance.py +291 -0
  1648. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1649. vllm/v1/structured_output/backend_outlines.py +324 -0
  1650. vllm/v1/structured_output/backend_types.py +136 -0
  1651. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1652. vllm/v1/structured_output/request.py +91 -0
  1653. vllm/v1/structured_output/utils.py +457 -0
  1654. vllm/v1/utils.py +466 -0
  1655. vllm/v1/worker/__init__.py +0 -0
  1656. vllm/v1/worker/block_table.py +343 -0
  1657. vllm/v1/worker/cp_utils.py +42 -0
  1658. vllm/v1/worker/cpu_model_runner.py +122 -0
  1659. vllm/v1/worker/cpu_worker.py +192 -0
  1660. vllm/v1/worker/dp_utils.py +240 -0
  1661. vllm/v1/worker/ec_connector_model_runner_mixin.py +85 -0
  1662. vllm/v1/worker/gpu/README.md +4 -0
  1663. vllm/v1/worker/gpu/__init__.py +0 -0
  1664. vllm/v1/worker/gpu/async_utils.py +98 -0
  1665. vllm/v1/worker/gpu/attn_utils.py +183 -0
  1666. vllm/v1/worker/gpu/block_table.py +222 -0
  1667. vllm/v1/worker/gpu/buffer_utils.py +224 -0
  1668. vllm/v1/worker/gpu/cudagraph_utils.py +264 -0
  1669. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1670. vllm/v1/worker/gpu/input_batch.py +526 -0
  1671. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1672. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1673. vllm/v1/worker/gpu/mm/__init__.py +0 -0
  1674. vllm/v1/worker/gpu/mm/mrope_utils.py +127 -0
  1675. vllm/v1/worker/gpu/model_runner.py +1005 -0
  1676. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1677. vllm/v1/worker/gpu/sample/gumbel.py +106 -0
  1678. vllm/v1/worker/gpu/sample/logit_bias.py +270 -0
  1679. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1680. vllm/v1/worker/gpu/sample/metadata.py +79 -0
  1681. vllm/v1/worker/gpu/sample/min_p.py +58 -0
  1682. vllm/v1/worker/gpu/sample/output.py +14 -0
  1683. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1684. vllm/v1/worker/gpu/sample/sampler.py +88 -0
  1685. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1686. vllm/v1/worker/gpu/spec_decode/eagle.py +566 -0
  1687. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1688. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1689. vllm/v1/worker/gpu/states.py +282 -0
  1690. vllm/v1/worker/gpu/structured_outputs.py +100 -0
  1691. vllm/v1/worker/gpu_input_batch.py +1030 -0
  1692. vllm/v1/worker/gpu_model_runner.py +5761 -0
  1693. vllm/v1/worker/gpu_ubatch_wrapper.py +475 -0
  1694. vllm/v1/worker/gpu_worker.py +968 -0
  1695. vllm/v1/worker/kv_connector_model_runner_mixin.py +300 -0
  1696. vllm/v1/worker/lora_model_runner_mixin.py +225 -0
  1697. vllm/v1/worker/tpu_input_batch.py +574 -0
  1698. vllm/v1/worker/tpu_worker.py +18 -0
  1699. vllm/v1/worker/ubatch_utils.py +112 -0
  1700. vllm/v1/worker/ubatching.py +242 -0
  1701. vllm/v1/worker/utils.py +400 -0
  1702. vllm/v1/worker/worker_base.py +372 -0
  1703. vllm/v1/worker/workspace.py +253 -0
  1704. vllm/v1/worker/xpu_model_runner.py +48 -0
  1705. vllm/v1/worker/xpu_worker.py +174 -0
  1706. vllm/version.py +39 -0
  1707. vllm/vllm_flash_attn/.gitkeep +0 -0
  1708. vllm_cpu_avx512bf16-0.14.0.dist-info/METADATA +348 -0
  1709. vllm_cpu_avx512bf16-0.14.0.dist-info/RECORD +1712 -0
  1710. vllm_cpu_avx512bf16-0.14.0.dist-info/WHEEL +5 -0
  1711. vllm_cpu_avx512bf16-0.14.0.dist-info/entry_points.txt +5 -0
  1712. vllm_cpu_avx512bf16-0.14.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2368 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from enum import Enum
6
+
7
+ import torch
8
+ from compressed_tensors import CompressionFormat
9
+ from compressed_tensors.quantization import (
10
+ ActivationOrdering,
11
+ QuantizationArgs,
12
+ QuantizationStrategy,
13
+ )
14
+
15
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
16
+ from vllm import _custom_ops as ops
17
+ from vllm.distributed import get_tensor_model_parallel_world_size
18
+ from vllm.logger import init_logger
19
+ from vllm.model_executor.layers.fused_moe import (
20
+ FusedMoE,
21
+ FusedMoEActivationFormat,
22
+ FusedMoEConfig,
23
+ FusedMoEMethodBase,
24
+ FusedMoEPermuteExpertsUnpermute,
25
+ FusedMoeWeightScaleSupported,
26
+ UnquantizedFusedMoEMethod,
27
+ )
28
+ from vllm.model_executor.layers.fused_moe.config import (
29
+ FusedMoEQuantConfig,
30
+ fp8_w8a8_moe_quant_config,
31
+ fp8_w8a16_moe_quant_config,
32
+ int4_w4a16_moe_quant_config,
33
+ int4_w4afp8_moe_quant_config,
34
+ int8_w8a8_moe_quant_config,
35
+ int8_w8a16_moe_quant_config,
36
+ )
37
+ from vllm.model_executor.layers.fused_moe.cpu_fused_moe import select_experts
38
+ from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
39
+ BatchedMarlinExperts,
40
+ MarlinExperts,
41
+ fused_marlin_moe,
42
+ )
43
+ from vllm.model_executor.layers.fused_moe.fused_moe_router import FusedMoERouter
44
+ from vllm.model_executor.layers.fused_moe.oracle.fp8 import (
45
+ Fp8MoeBackend,
46
+ convert_to_fp8_moe_kernel_format,
47
+ make_fp8_moe_kernel,
48
+ select_fp8_moe_backend,
49
+ )
50
+ from vllm.model_executor.layers.fused_moe.oracle.nvfp4 import (
51
+ FLASHINFER_NVFP4_MOE_BACKENDS,
52
+ NvFp4MoeBackend,
53
+ convert_to_nvfp4_moe_kernel_format,
54
+ is_global_sf_supported_for_nvfp4_backend,
55
+ make_nvfp4_moe_kernel,
56
+ make_nvfp4_moe_quant_config,
57
+ select_nvfp4_moe_backend,
58
+ )
59
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
60
+ WNA16_SUPPORTED_BITS,
61
+ WNA16_SUPPORTED_TYPES_MAP,
62
+ )
63
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
64
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize,
65
+ flashinfer_trtllm_fp4_moe,
66
+ flashinfer_trtllm_fp4_routed_moe,
67
+ select_nvfp4_gemm_impl,
68
+ )
69
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
70
+ process_fp8_input_tensor_strategy_moe,
71
+ process_fp8_weight_tensor_strategy_moe,
72
+ )
73
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
74
+ check_moe_marlin_supports_layer,
75
+ get_marlin_input_dtype,
76
+ marlin_act_int8_process_scales,
77
+ marlin_make_workspace_new,
78
+ marlin_moe_permute_scales,
79
+ )
80
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
81
+ is_fp4_marlin_supported,
82
+ )
83
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
84
+ convert_bf16_scales_to_fp8,
85
+ convert_packed_uint4b8_to_signed_int4_inplace,
86
+ )
87
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
88
+ normalize_e4m3fn_to_e4m3fnuz,
89
+ )
90
+ from vllm.model_executor.utils import replace_parameter, set_weight_attrs
91
+ from vllm.platforms import CpuArchEnum, current_platform
92
+
93
+ logger = init_logger(__name__)
94
+
95
+
96
+ class GPTQMarlinState(Enum):
97
+ REPACK = enum.auto()
98
+ READY = enum.auto()
99
+
100
+
101
+ __all__ = [
102
+ "CompressedTensorsMoEMethod",
103
+ "CompressedTensorsW8A8Fp8MoEMethod",
104
+ "CompressedTensorsW8A8Int8MoEMethod",
105
+ "CompressedTensorsWNA16MarlinMoEMethod",
106
+ "CompressedTensorsWNA16MoEMethod",
107
+ "CompressedTensorsW4A4Nvfp4MoEMethod",
108
+ "CompressedTensorsW4A8Int8MoEMethod",
109
+ ]
110
+
111
+
112
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
113
+ @staticmethod
114
+ def get_moe_method(
115
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
116
+ layer: torch.nn.Module,
117
+ layer_name: str,
118
+ ) -> "CompressedTensorsMoEMethod":
119
+ # FusedMoE was made by combining multiple Linears so need to
120
+ # make sure quantization config for Linear can target it
121
+ quant_config._add_fused_moe_to_target_scheme_map()
122
+ unfused_names = [
123
+ layer_name + proj_name
124
+ for proj_name in [".0.gate_proj", ".0.up_proj", ".0.down_proj"]
125
+ ]
126
+ # TODO: refactor this to use expert_mapping and check all layer numbers
127
+ all_scheme_dicts = [
128
+ quant_config.get_scheme_dict(layer, name) for name in unfused_names
129
+ ]
130
+ scheme_dict = all_scheme_dicts.pop()
131
+
132
+ # multiple schemes found
133
+ if not all([cur_dict == scheme_dict for cur_dict in all_scheme_dicts]):
134
+ raise ValueError(
135
+ "All MoE projections need to have same "
136
+ "quantization scheme but found multiple"
137
+ )
138
+
139
+ if scheme_dict is None: # ignored layer
140
+ return UnquantizedFusedMoEMethod(layer.moe_config)
141
+
142
+ # TODO: @dsikka: refactor this to use schemes as other kernels
143
+ # are supported + check if the layer is being ignored.
144
+ weight_quant = scheme_dict.get("weights")
145
+ input_quant = scheme_dict.get("input_activations")
146
+ format = scheme_dict.get("format")
147
+
148
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
149
+ # group_size=None means channelwise
150
+ group_size = weight_quant.group_size or -1
151
+
152
+ valid_format_and_bits = (
153
+ weight_quant.num_bits in WNA16_SUPPORTED_BITS
154
+ and format == CompressionFormat.pack_quantized.value
155
+ )
156
+
157
+ if not valid_format_and_bits:
158
+ raise ValueError(
159
+ "For Fused MoE layers, only format: ",
160
+ f"{CompressionFormat.pack_quantized.value} ",
161
+ f" and bits: {WNA16_SUPPORTED_BITS} is supported ",
162
+ f"but got format: {CompressionFormat.pack_quantized.value} "
163
+ f" and bits: {weight_quant.num_bits}",
164
+ )
165
+
166
+ # Prefer to use the MarlinMoE kernel when it is supported.
167
+ if (
168
+ not check_moe_marlin_supports_layer(layer, group_size)
169
+ or current_platform.is_rocm()
170
+ ):
171
+ if (
172
+ weight_quant.strategy == QuantizationStrategy.GROUP
173
+ and weight_quant.actorder
174
+ in (ActivationOrdering.GROUP, ActivationOrdering.DYNAMIC)
175
+ ):
176
+ raise ValueError(
177
+ "WNA16MoE is not supported with actorder=group/dynamic."
178
+ )
179
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
180
+ return CompressedTensorsWNA16MoEMethod(
181
+ weight_quant, input_quant, layer.moe_config
182
+ )
183
+ else:
184
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
185
+ return CompressedTensorsWNA16MarlinMoEMethod(
186
+ weight_quant, input_quant, layer.moe_config
187
+ )
188
+ elif quant_config._is_nvfp4_format(weight_quant):
189
+ _is_valid_nvfp4_activations = (
190
+ quant_config._is_nvfp4_format(input_quant) or input_quant is None
191
+ )
192
+ if not _is_valid_nvfp4_activations:
193
+ raise ValueError(
194
+ "For NVFP4 weights, input quantization must also be NVFP4 format ",
195
+ f"or None for NVFP4A16, found {input_quant}",
196
+ )
197
+ return CompressedTensorsW4A4Nvfp4MoEMethod(
198
+ layer.moe_config, layer_name, use_marlin=input_quant is None
199
+ )
200
+ elif (
201
+ quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
202
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
203
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)
204
+ ):
205
+ return CompressedTensorsW8A8Fp8MoEMethod(
206
+ weight_quant, input_quant, layer.moe_config
207
+ )
208
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
209
+ return CompressedTensorsW8A8Int8MoEMethod(
210
+ weight_quant, input_quant, layer.moe_config
211
+ )
212
+ elif quant_config._is_fp8_w4a8_sm90(weight_quant, input_quant):
213
+ logger.info_once("Using CompressedTensorsW4A8Fp8MoEMethod")
214
+ return CompressedTensorsW4A8Fp8MoEMethod(
215
+ weight_quant, input_quant, layer.moe_config
216
+ )
217
+ elif quant_config._is_dynamic_token_w4a8_int(weight_quant, input_quant):
218
+ return CompressedTensorsW4A8Int8MoEMethod(
219
+ weight_quant, input_quant, layer.moe_config
220
+ )
221
+ else:
222
+ raise RuntimeError(
223
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}"
224
+ )
225
+
226
+
227
+ class CompressedTensorsW4A4Nvfp4MoEMethod(CompressedTensorsMoEMethod):
228
+ def __init__(
229
+ self,
230
+ moe: FusedMoEConfig,
231
+ layer_name: str | None = None,
232
+ use_marlin: bool = False,
233
+ ):
234
+ if not moe.is_act_and_mul:
235
+ raise ValueError(
236
+ "CompressedTensorsW4A4Nvfp4MoEMethod does not yet "
237
+ "support non gated MoE models."
238
+ )
239
+
240
+ super().__init__(moe)
241
+ self.group_size = 16
242
+ if use_marlin:
243
+ if is_fp4_marlin_supported():
244
+ self.nvfp4_backend = NvFp4MoeBackend.MARLIN
245
+ else:
246
+ raise ValueError(
247
+ "Marlin FP4 MoE kernel requested but not ",
248
+ "supported on current platform.",
249
+ )
250
+ else:
251
+ self.nvfp4_backend = select_nvfp4_moe_backend()
252
+ self.use_global_sf = is_global_sf_supported_for_nvfp4_backend(
253
+ self.nvfp4_backend
254
+ )
255
+ self.kernel: mk.FusedMoEModularKernel | None = None
256
+
257
+ def create_weights(
258
+ self,
259
+ layer: torch.nn.Module,
260
+ num_experts: int,
261
+ hidden_size: int,
262
+ intermediate_size_per_partition: int,
263
+ params_dtype: torch.dtype,
264
+ **extra_weight_attrs,
265
+ ):
266
+ layer.num_experts = num_experts
267
+ layer.params_dtype = params_dtype
268
+
269
+ w13_weight = torch.nn.Parameter(
270
+ torch.empty(
271
+ num_experts,
272
+ 2 * intermediate_size_per_partition,
273
+ # 2 fp4 items are packed in the input dimension
274
+ hidden_size // 2,
275
+ requires_grad=False,
276
+ dtype=torch.uint8,
277
+ ),
278
+ requires_grad=False,
279
+ )
280
+ layer.register_parameter("w13_weight_packed", w13_weight)
281
+ set_weight_attrs(w13_weight, extra_weight_attrs)
282
+
283
+ w2_weight = torch.nn.Parameter(
284
+ torch.empty(
285
+ num_experts,
286
+ hidden_size,
287
+ # 2 fp4 items are packed in the input dimension
288
+ intermediate_size_per_partition // 2,
289
+ dtype=torch.uint8,
290
+ ),
291
+ requires_grad=False,
292
+ )
293
+ layer.register_parameter("w2_weight_packed", w2_weight)
294
+ set_weight_attrs(w2_weight, extra_weight_attrs)
295
+
296
+ # Weight Scales
297
+ w13_weight_scale = torch.nn.Parameter(
298
+ torch.empty(
299
+ num_experts,
300
+ 2 * intermediate_size_per_partition,
301
+ # 2 fp4 items are packed in the input dimension
302
+ hidden_size // self.group_size,
303
+ dtype=torch.float8_e4m3fn,
304
+ ),
305
+ requires_grad=False,
306
+ )
307
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
308
+ extra_weight_attrs.update(
309
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
310
+ )
311
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
312
+
313
+ w2_weight_scale = torch.nn.Parameter(
314
+ torch.empty(
315
+ num_experts,
316
+ hidden_size,
317
+ # 2 fp4 items are packed in the input dimension
318
+ intermediate_size_per_partition // self.group_size,
319
+ dtype=torch.float8_e4m3fn,
320
+ ),
321
+ requires_grad=False,
322
+ )
323
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
324
+ extra_weight_attrs.update(
325
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
326
+ )
327
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
328
+
329
+ # Weight Global Scales
330
+ w13_weight_scale_2 = torch.nn.Parameter(
331
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
332
+ )
333
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
334
+ extra_weight_attrs.update(
335
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
336
+ )
337
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
338
+
339
+ w2_weight_scale_2 = torch.nn.Parameter(
340
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
341
+ )
342
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
343
+ extra_weight_attrs.update(
344
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
345
+ )
346
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
347
+
348
+ # Input Global Scales
349
+ w13_input_scale = torch.nn.Parameter(
350
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
351
+ )
352
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
353
+ extra_weight_attrs.update(
354
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
355
+ )
356
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
357
+
358
+ w2_input_scale = torch.nn.Parameter(
359
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
360
+ )
361
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
362
+ extra_weight_attrs.update(
363
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
364
+ )
365
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
366
+
367
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
368
+ """
369
+ Convert NVFP4 MoE weights into kernel format and setup the kernel.
370
+ """
371
+ # NOTE(rob): wN_weight_packed -> wN_weight is because ModularKernelMethod
372
+ # requires this naming convention. However, the name change breaks
373
+ # reloading because the state dict no longer matches disk. Once we
374
+ # remove MKM, we should revert this change to ensure compatibility.
375
+ layer.w13_weight = torch.nn.Parameter(
376
+ layer.w13_weight_packed.data, requires_grad=False
377
+ )
378
+ delattr(layer, "w13_weight_packed")
379
+
380
+ layer.w2_weight = torch.nn.Parameter(
381
+ layer.w2_weight_packed.data, requires_grad=False
382
+ )
383
+ delattr(layer, "w2_weight_packed")
384
+
385
+ # Use a single gscale for w13.
386
+ if self.moe.is_act_and_mul and not torch.allclose(
387
+ layer.w13_weight_global_scale[:, 0], layer.w13_weight_global_scale[:, 1]
388
+ ):
389
+ logger.warning_once(
390
+ "w1_weight_global_scale must match w3_weight_global_scale. "
391
+ "Accuracy may be affected.",
392
+ )
393
+ w13_weight_global_scale = layer.w13_weight_global_scale[:, 0].contiguous()
394
+
395
+ # Shuffle weights into the NvFp4 kernel format.
396
+ (
397
+ w13,
398
+ w13_scale,
399
+ w13_scale_2,
400
+ a13_scale,
401
+ w2,
402
+ w2_scale,
403
+ w2_scale_2,
404
+ a2_scale,
405
+ ) = convert_to_nvfp4_moe_kernel_format(
406
+ nvfp4_backend=self.nvfp4_backend,
407
+ layer=layer,
408
+ w13=layer.w13_weight,
409
+ w13_scale=layer.w13_weight_scale,
410
+ w13_scale_2=(1.0 / w13_weight_global_scale),
411
+ a13_scale=(1.0 / layer.w13_input_global_scale),
412
+ w2=layer.w2_weight,
413
+ w2_scale=layer.w2_weight_scale,
414
+ w2_scale_2=(1.0 / layer.w2_weight_global_scale),
415
+ a2_scale=(1.0 / layer.w2_input_global_scale),
416
+ is_act_and_mul=self.moe.is_act_and_mul,
417
+ )
418
+
419
+ replace_parameter(layer, "w13_weight", w13)
420
+ replace_parameter(layer, "w13_weight_scale", w13_scale)
421
+ replace_parameter(layer, "w2_weight", w2)
422
+ replace_parameter(layer, "w2_weight_scale", w2_scale)
423
+ layer.w13_weight_scale_2 = w13_scale_2
424
+ layer.w2_weight_scale_2 = w2_scale_2
425
+ layer.w13_input_scale = a13_scale
426
+ layer.w2_input_scale = a2_scale
427
+
428
+ # Initialize the kernel that will be called in apply().
429
+ self.moe_quant_config = self.get_fused_moe_quant_config(layer)
430
+ use_dp = self.moe.dp_size > 1
431
+ if self.moe_quant_config is not None and not use_dp:
432
+ self.kernel = make_nvfp4_moe_kernel(
433
+ backend=self.nvfp4_backend,
434
+ quant_config=self.moe_quant_config,
435
+ moe_config=self.moe,
436
+ )
437
+
438
+ def maybe_make_prepare_finalize(
439
+ self,
440
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
441
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
442
+ UNSUPPORTED = [NvFp4MoeBackend.MARLIN, NvFp4MoeBackend.FLASHINFER_TRTLLM]
443
+ if self.nvfp4_backend in UNSUPPORTED:
444
+ return None
445
+ elif self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_CUTLASS:
446
+ # TP case: avoid convert to ModularKernelMethod - to be refactored.
447
+ if self.moe.dp_size == 1:
448
+ return None
449
+ # For now, fp4 moe only works with the flashinfer dispatcher.
450
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
451
+ self.moe
452
+ )
453
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
454
+ return prepare_finalize
455
+ else:
456
+ return super().maybe_make_prepare_finalize(routing_tables)
457
+
458
+ def select_gemm_impl(
459
+ self,
460
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
461
+ layer: torch.nn.Module,
462
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
463
+ assert self.moe_quant_config is not None
464
+ """Return the appropriate GEMM experts implementation."""
465
+ experts = select_nvfp4_gemm_impl(
466
+ self.moe,
467
+ self.moe_quant_config,
468
+ allow_flashinfer=(self.nvfp4_backend in FLASHINFER_NVFP4_MOE_BACKENDS),
469
+ )
470
+ logger.debug_once("Using %s", experts.__class__.__name__)
471
+ return experts
472
+
473
+ def get_fused_moe_quant_config(
474
+ self, layer: torch.nn.Module
475
+ ) -> FusedMoEQuantConfig | None:
476
+ return make_nvfp4_moe_quant_config(
477
+ backend=self.nvfp4_backend,
478
+ w13_scale=layer.w13_weight_scale,
479
+ w2_scale=layer.w2_weight_scale,
480
+ w13_scale_2=layer.w13_weight_scale_2,
481
+ w2_scale_2=layer.w2_weight_scale_2,
482
+ a13_scale=layer.w13_input_scale,
483
+ a2_scale=layer.w2_input_scale,
484
+ )
485
+
486
+ def apply(
487
+ self,
488
+ layer: FusedMoE,
489
+ router: FusedMoERouter,
490
+ x: torch.Tensor,
491
+ router_logits: torch.Tensor,
492
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
493
+ assert layer.activation == "silu", "Only SiLU activation is supported."
494
+
495
+ if (
496
+ self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM
497
+ and not layer.enable_eplb
498
+ ):
499
+ return flashinfer_trtllm_fp4_moe(
500
+ layer=layer,
501
+ x=x,
502
+ router_logits=router_logits,
503
+ top_k=layer.top_k,
504
+ global_num_experts=layer.global_num_experts,
505
+ num_expert_group=layer.num_expert_group,
506
+ topk_group=layer.topk_group,
507
+ custom_routing_function=layer.custom_routing_function,
508
+ e_score_correction_bias=layer.e_score_correction_bias,
509
+ )
510
+
511
+ # Hidden_states in select_experts is only used to extract metadata
512
+ if isinstance(x, tuple):
513
+ x_routing, _ = x
514
+ else:
515
+ x_routing = x
516
+ topk_weights, topk_ids = router.select_experts(
517
+ hidden_states=x_routing,
518
+ router_logits=router_logits,
519
+ )
520
+
521
+ # EPLB path
522
+ if self.nvfp4_backend == NvFp4MoeBackend.FLASHINFER_TRTLLM:
523
+ assert layer.enable_eplb
524
+ return flashinfer_trtllm_fp4_routed_moe(
525
+ layer=layer,
526
+ x=x,
527
+ topk_ids=topk_ids,
528
+ topk_weights=topk_weights,
529
+ top_k=layer.top_k,
530
+ global_num_experts=layer.global_num_experts,
531
+ )
532
+ else:
533
+ assert self.kernel is not None
534
+ return self.kernel(
535
+ x,
536
+ layer.w13_weight,
537
+ layer.w2_weight,
538
+ topk_weights,
539
+ topk_ids,
540
+ inplace=False,
541
+ activation=layer.activation,
542
+ global_num_experts=layer.global_num_experts,
543
+ expert_map=layer.expert_map,
544
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
545
+ )
546
+
547
+
548
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
549
+ def __init__(
550
+ self,
551
+ weight_quant: QuantizationArgs,
552
+ input_quant: QuantizationArgs,
553
+ moe: FusedMoEConfig,
554
+ layer_name: str | None = None,
555
+ ):
556
+ super().__init__(moe)
557
+ self.weight_quant = weight_quant
558
+ self.input_quant = input_quant
559
+
560
+ per_tensor = (
561
+ self.weight_quant.strategy == QuantizationStrategy.TENSOR
562
+ and self.input_quant.strategy == QuantizationStrategy.TENSOR
563
+ )
564
+ per_channel = (
565
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
566
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
567
+ )
568
+ if not (per_tensor or per_channel):
569
+ assert self.weight_quant.strategy == QuantizationStrategy.BLOCK
570
+ self.weight_block_size = self.weight_quant.block_structure
571
+ assert self.weight_quant.dynamic is not None
572
+ else:
573
+ self.weight_block_size = None
574
+ self.block_quant = self.weight_block_size is not None
575
+
576
+ self.static_input_scales = not self.input_quant.dynamic
577
+ if self.static_input_scales and per_channel:
578
+ raise ValueError(
579
+ "For FP8 Fused MoE layer, we require either per tensor or "
580
+ "channelwise, dynamic per token quantization."
581
+ )
582
+ self.fp8_backend = select_fp8_moe_backend(
583
+ block_quant=self.block_quant,
584
+ tp_size=moe.tp_size,
585
+ with_lora_support=moe.is_lora_enabled,
586
+ # TODO(rob): enable selecting this externally.
587
+ allow_vllm_cutlass=True,
588
+ )
589
+ if self.fp8_backend != Fp8MoeBackend.MARLIN:
590
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
591
+ per_channel_quant = (
592
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
593
+ )
594
+ if per_act_token != per_channel_quant:
595
+ raise NotImplementedError(
596
+ "For FP8 Fused MoE layers, per-token and per-channel must be "
597
+ "used together."
598
+ )
599
+ # TODO(rob): hook this up in a follow up PR.
600
+ if self.fp8_backend == Fp8MoeBackend.FLASHINFER_TRTLLM:
601
+ raise NotImplementedError(
602
+ "FlashInfer TRTLLM backend not supported for compressed-tensors yet."
603
+ )
604
+ self.disable_expert_map = False
605
+
606
+ self.kernel: mk.FusedMoEModularKernel | None = None
607
+
608
+ def create_weights(
609
+ self,
610
+ layer: torch.nn.Module,
611
+ num_experts: int,
612
+ hidden_size: int,
613
+ intermediate_size_per_partition: int,
614
+ params_dtype: torch.dtype,
615
+ **extra_weight_attrs,
616
+ ):
617
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
618
+ layer.hidden_size = hidden_size
619
+ layer.num_experts = num_experts
620
+ layer.orig_dtype = params_dtype
621
+ layer.weight_block_size = None
622
+
623
+ params_dtype = torch.float8_e4m3fn
624
+
625
+ if self.block_quant:
626
+ assert self.weight_block_size is not None
627
+ layer.weight_block_size = self.weight_block_size
628
+ tp_size = get_tensor_model_parallel_world_size()
629
+ block_n, block_k = (
630
+ self.weight_block_size[0],
631
+ self.weight_block_size[1],
632
+ )
633
+ # NOTE: To ensure proper alignment of the block-wise quantization
634
+ # scales, the output_size of the weights for both the gate and up
635
+ # layers must be divisible by block_n.
636
+ # Required by column parallel or enabling merged weights
637
+ if intermediate_size_per_partition % block_n != 0:
638
+ raise ValueError(
639
+ f"The output_size of gate's and up's weight = "
640
+ f"{intermediate_size_per_partition} is not divisible by "
641
+ f"weight quantization block_n = {block_n}."
642
+ )
643
+ if tp_size > 1 and intermediate_size_per_partition % block_k != 0:
644
+ # Required by row parallel
645
+ raise ValueError(
646
+ f"The input_size of down's weight = "
647
+ f"{intermediate_size_per_partition} is not divisible by "
648
+ f"weight quantization block_k = {block_k}."
649
+ )
650
+
651
+ # WEIGHTS
652
+ w13_weight = torch.nn.Parameter(
653
+ torch.empty(
654
+ num_experts,
655
+ 2 * intermediate_size_per_partition,
656
+ hidden_size,
657
+ dtype=params_dtype,
658
+ ),
659
+ requires_grad=False,
660
+ )
661
+ layer.register_parameter("w13_weight", w13_weight)
662
+ set_weight_attrs(w13_weight, extra_weight_attrs)
663
+
664
+ w2_weight = torch.nn.Parameter(
665
+ torch.empty(
666
+ num_experts,
667
+ hidden_size,
668
+ intermediate_size_per_partition,
669
+ dtype=params_dtype,
670
+ ),
671
+ requires_grad=False,
672
+ )
673
+ layer.register_parameter("w2_weight", w2_weight)
674
+ set_weight_attrs(w2_weight, extra_weight_attrs)
675
+
676
+ # WEIGHT_SCALES
677
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
678
+ # Allocate 2 scales for w1 and w3 respectively.
679
+ # They are combined to a single scale after weight loading.
680
+ w13_weight_scale = torch.nn.Parameter(
681
+ torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
682
+ )
683
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
684
+ w2_weight_scale = torch.nn.Parameter(
685
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
686
+ )
687
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
688
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
689
+ extra_weight_attrs.update(
690
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
691
+ )
692
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
693
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
694
+
695
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
696
+ w13_weight_scale = torch.nn.Parameter(
697
+ torch.ones(
698
+ num_experts,
699
+ 2 * intermediate_size_per_partition,
700
+ 1,
701
+ dtype=torch.float32,
702
+ ),
703
+ requires_grad=False,
704
+ )
705
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
706
+ w2_weight_scale = torch.nn.Parameter(
707
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
708
+ requires_grad=False,
709
+ )
710
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
711
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
712
+ extra_weight_attrs.update(
713
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
714
+ )
715
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
716
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
717
+
718
+ elif self.weight_quant.strategy == QuantizationStrategy.BLOCK:
719
+ w13_weight_scale = torch.nn.Parameter(
720
+ torch.ones(
721
+ num_experts,
722
+ 2 * ((intermediate_size_per_partition + block_n - 1) // block_n),
723
+ (hidden_size + block_k - 1) // block_k,
724
+ dtype=torch.float32,
725
+ ),
726
+ requires_grad=False,
727
+ )
728
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
729
+ w2_weight_scale = torch.nn.Parameter(
730
+ torch.ones(
731
+ num_experts,
732
+ (hidden_size + block_n - 1) // block_n,
733
+ (intermediate_size_per_partition + block_k - 1) // block_k,
734
+ dtype=torch.float32,
735
+ ),
736
+ requires_grad=False,
737
+ )
738
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
739
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
740
+ extra_weight_attrs.update(
741
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
742
+ )
743
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
744
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
745
+
746
+ # INPUT_SCALES
747
+ if self.static_input_scales:
748
+ w13_input_scale = torch.nn.Parameter(
749
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
750
+ )
751
+ layer.register_parameter("w13_input_scale", w13_input_scale)
752
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
753
+
754
+ w2_input_scale = torch.nn.Parameter(
755
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
756
+ )
757
+ layer.register_parameter("w2_input_scale", w2_input_scale)
758
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
759
+ else:
760
+ layer.w13_input_scale = None
761
+ layer.w2_input_scale = None
762
+
763
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
764
+ # Allow for accessing weights and scales in standard way.
765
+ w13 = layer.w13_weight
766
+ w2 = layer.w2_weight
767
+ w13_scale = layer.w13_weight_scale
768
+ w2_scale = layer.w2_weight_scale
769
+ w13_input_scale = layer.w13_input_scale
770
+ w2_input_scale = layer.w2_input_scale
771
+
772
+ # MI300x and MI325x use FNUZ format for FP8. Convert if needed.
773
+ if current_platform.is_fp8_fnuz():
774
+ w13, w13_scale, w13_input_scale = normalize_e4m3fn_to_e4m3fnuz(
775
+ w13, w13_scale, w13_input_scale
776
+ )
777
+ w2, w2_scale, w2_input_scale = normalize_e4m3fn_to_e4m3fnuz(
778
+ w2, w2_scale, w2_input_scale
779
+ )
780
+
781
+ # Per tensor kernels require single activation scale. Use the max.
782
+ if self.static_input_scales:
783
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
784
+ assert w13_input_scale is not None and w2_input_scale is not None
785
+ w13_input_scale, w2_input_scale = process_fp8_input_tensor_strategy_moe(
786
+ w13_input_scale, w2_input_scale
787
+ )
788
+ replace_parameter(layer, "w13_input_scale", w13_input_scale)
789
+ replace_parameter(layer, "w2_input_scale", w2_input_scale)
790
+
791
+ # Per-tensor kernels use a single scale, for W13, but on disk there
792
+ # is a separate scale for W1 and W3. Requantize with the max scale.
793
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
794
+ process_fp8_weight_tensor_strategy_moe(
795
+ w13,
796
+ w13_scale,
797
+ shard_size=layer.intermediate_size_per_partition,
798
+ num_experts=layer.num_local_experts,
799
+ )
800
+
801
+ w13, w2, w13_scale, w2_scale = convert_to_fp8_moe_kernel_format(
802
+ fp8_backend=self.fp8_backend,
803
+ layer=layer,
804
+ w13=w13,
805
+ w2=w2,
806
+ w13_scale=w13_scale,
807
+ w2_scale=w2_scale,
808
+ w13_input_scale=w13_input_scale,
809
+ w2_input_scale=w2_input_scale,
810
+ )
811
+
812
+ # Replace parameters with updated versions. Note that this helper
813
+ # function ensures the replacement is compatible with RL weight reloads.
814
+ replace_parameter(layer, "w13_weight", w13)
815
+ replace_parameter(layer, "w2_weight", w2)
816
+ replace_parameter(layer, "w13_weight_scale", w13_scale)
817
+ replace_parameter(layer, "w2_weight_scale", w2_scale)
818
+
819
+ self.moe_quant_config = self.get_fused_moe_quant_config(layer)
820
+ if self.moe_quant_config:
821
+ self.kernel, self.use_inplace = make_fp8_moe_kernel(
822
+ layer=layer,
823
+ moe_quant_config=self.moe_quant_config,
824
+ moe_config=self.moe,
825
+ fp8_backend=self.fp8_backend,
826
+ )
827
+
828
+ def maybe_make_prepare_finalize(
829
+ self,
830
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
831
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
832
+ if self.fp8_backend in [Fp8MoeBackend.MARLIN, Fp8MoeBackend.AITER]:
833
+ return None
834
+ else:
835
+ return super().maybe_make_prepare_finalize(routing_tables)
836
+
837
+ def select_gemm_impl(
838
+ self,
839
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
840
+ layer: torch.nn.Module,
841
+ ) -> FusedMoEPermuteExpertsUnpermute:
842
+ # cutlass path
843
+ assert self.moe_quant_config is not None
844
+ if self.fp8_backend == Fp8MoeBackend.VLLM_CUTLASS:
845
+ from vllm.model_executor.layers.fused_moe import (
846
+ CutlassBatchedExpertsFp8,
847
+ CutlassExpertsFp8,
848
+ )
849
+
850
+ experts: FusedMoEPermuteExpertsUnpermute
851
+
852
+ num_dispatchers = prepare_finalize.num_dispatchers()
853
+
854
+ if (
855
+ prepare_finalize.activation_format
856
+ == FusedMoEActivationFormat.BatchedExperts
857
+ ):
858
+ logger.debug("CutlassBatchedExpertsFp8(%s)", self.__class__.__name__)
859
+ experts = CutlassBatchedExpertsFp8(
860
+ max_experts_per_worker=self.moe.num_local_experts,
861
+ num_dispatchers=num_dispatchers,
862
+ out_dtype=self.moe.in_dtype,
863
+ e=layer.local_num_experts,
864
+ n=layer.intermediate_size_per_partition,
865
+ k=layer.hidden_size,
866
+ device=layer.w13_weight.device,
867
+ quant_config=self.moe_quant_config,
868
+ )
869
+ else:
870
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
871
+ experts = CutlassExpertsFp8(
872
+ out_dtype=self.moe.in_dtype,
873
+ e=layer.local_num_experts,
874
+ n=layer.intermediate_size_per_partition,
875
+ k=layer.hidden_size,
876
+ device=layer.w13_weight.device,
877
+ quant_config=self.moe_quant_config,
878
+ )
879
+
880
+ # TODO(rob): investigate disable_expert_map
881
+ self.disable_expert_map = (
882
+ num_dispatchers > 1 or not experts.supports_expert_map()
883
+ )
884
+
885
+ return experts
886
+
887
+ from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
888
+ BatchedDeepGemmExperts,
889
+ )
890
+ from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
891
+ BatchedTritonExperts,
892
+ )
893
+ from vllm.model_executor.layers.fused_moe.fused_moe import (
894
+ TritonExperts,
895
+ )
896
+ from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
897
+ TritonOrDeepGemmExperts,
898
+ )
899
+
900
+ assert self.fp8_backend not in [Fp8MoeBackend.AITER, Fp8MoeBackend.MARLIN]
901
+
902
+ if (
903
+ prepare_finalize.activation_format
904
+ == FusedMoEActivationFormat.BatchedExperts
905
+ ):
906
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
907
+ assert max_num_tokens_per_rank is not None
908
+
909
+ if self.fp8_backend == Fp8MoeBackend.DEEPGEMM:
910
+ logger.debug("BatchedDeepGemmExperts(%s)", self.__class__.__name__)
911
+ return BatchedDeepGemmExperts(
912
+ max_num_tokens=max_num_tokens_per_rank,
913
+ num_dispatchers=prepare_finalize.num_dispatchers(),
914
+ quant_config=self.moe_quant_config,
915
+ )
916
+ else:
917
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
918
+ return BatchedTritonExperts(
919
+ max_num_tokens=max_num_tokens_per_rank,
920
+ num_dispatchers=prepare_finalize.num_dispatchers(),
921
+ quant_config=self.moe_quant_config,
922
+ )
923
+
924
+ else:
925
+ if self.fp8_backend == Fp8MoeBackend.DEEPGEMM:
926
+ logger.debug("TritonOrDeepGemmExperts(%s)", self.__class__.__name__)
927
+ return TritonOrDeepGemmExperts(self.moe_quant_config)
928
+ else:
929
+ logger.debug("TritonExperts(%s)", self.__class__.__name__)
930
+ return TritonExperts(self.moe_quant_config)
931
+
932
+ def get_fused_moe_quant_config(
933
+ self, layer: torch.nn.Module
934
+ ) -> FusedMoEQuantConfig | None:
935
+ if self.fp8_backend == Fp8MoeBackend.MARLIN:
936
+ return fp8_w8a16_moe_quant_config(
937
+ w1_scale=layer.w13_weight_scale,
938
+ w2_scale=layer.w2_weight_scale,
939
+ block_shape=self.weight_block_size,
940
+ )
941
+
942
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
943
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
944
+
945
+ return fp8_w8a8_moe_quant_config(
946
+ w1_scale=layer.w13_weight_scale,
947
+ w2_scale=layer.w2_weight_scale,
948
+ a1_scale=layer.w13_input_scale,
949
+ a2_scale=layer.w2_input_scale,
950
+ per_act_token_quant=per_act_token,
951
+ per_out_ch_quant=per_channel_quant,
952
+ block_shape=layer.weight_block_size,
953
+ )
954
+
955
+ def apply(
956
+ self,
957
+ layer: FusedMoE,
958
+ router: FusedMoERouter,
959
+ x: torch.Tensor,
960
+ router_logits: torch.Tensor,
961
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
962
+ topk_weights, topk_ids = router.select_experts(
963
+ hidden_states=x,
964
+ router_logits=router_logits,
965
+ )
966
+
967
+ assert self.kernel is not None
968
+ result = self.kernel(
969
+ x,
970
+ layer.w13_weight,
971
+ layer.w2_weight,
972
+ topk_weights,
973
+ topk_ids,
974
+ inplace=self.use_inplace,
975
+ activation=layer.activation,
976
+ global_num_experts=layer.global_num_experts,
977
+ # TODO(rob): investigate the disable_expert_map introduced by:
978
+ # https://github.com/vllm-project/vllm/commit/84166fee9770e6fba71a96978b3e7d149392fb28 # noqa: E501
979
+ expert_map=None if self.disable_expert_map else layer.expert_map,
980
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
981
+ )
982
+
983
+ return result
984
+
985
+ @property
986
+ def supports_eplb(self) -> bool:
987
+ return True
988
+
989
+
990
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
991
+ def __init__(
992
+ self,
993
+ weight_quant: QuantizationArgs,
994
+ input_quant: QuantizationArgs,
995
+ moe: FusedMoEConfig,
996
+ layer_name: str | None = None,
997
+ ):
998
+ super().__init__(moe)
999
+ self.weight_quant = weight_quant
1000
+ self.input_quant = input_quant
1001
+
1002
+ per_channel = (
1003
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1004
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
1005
+ )
1006
+ if not per_channel:
1007
+ raise ValueError(
1008
+ "For INT8 Fused MoE layers, we require channelwise, "
1009
+ "dynamic per token quantization. Found "
1010
+ f"{self.weight_quant}, {self.input_quant}"
1011
+ )
1012
+
1013
+ self.static_input_scales = not self.input_quant.dynamic
1014
+ if self.static_input_scales:
1015
+ raise ValueError(
1016
+ "For INT8 Fused MoE layers, we require channelwise, "
1017
+ "dynamic per token quantization. Found static input scales."
1018
+ )
1019
+
1020
+ def create_weights(
1021
+ self,
1022
+ layer: torch.nn.Module,
1023
+ num_experts: int,
1024
+ hidden_size: int,
1025
+ intermediate_size_per_partition: int,
1026
+ params_dtype: torch.dtype,
1027
+ **extra_weight_attrs,
1028
+ ):
1029
+ params_dtype = torch.int8
1030
+
1031
+ # WEIGHTS
1032
+ w13_weight = torch.nn.Parameter(
1033
+ torch.empty(
1034
+ num_experts,
1035
+ 2 * intermediate_size_per_partition,
1036
+ hidden_size,
1037
+ dtype=params_dtype,
1038
+ ),
1039
+ requires_grad=False,
1040
+ )
1041
+ layer.register_parameter("w13_weight", w13_weight)
1042
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1043
+
1044
+ w2_weight = torch.nn.Parameter(
1045
+ torch.empty(
1046
+ num_experts,
1047
+ hidden_size,
1048
+ intermediate_size_per_partition,
1049
+ dtype=params_dtype,
1050
+ ),
1051
+ requires_grad=False,
1052
+ )
1053
+ layer.register_parameter("w2_weight", w2_weight)
1054
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1055
+
1056
+ # WEIGHT_SCALES
1057
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1058
+ w13_weight_scale = torch.nn.Parameter(
1059
+ torch.ones(
1060
+ num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
1061
+ ),
1062
+ requires_grad=False,
1063
+ )
1064
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1065
+ w2_weight_scale = torch.nn.Parameter(
1066
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
1067
+ requires_grad=False,
1068
+ )
1069
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1070
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1071
+ extra_weight_attrs.update(
1072
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
1073
+ )
1074
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1075
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1076
+
1077
+ # INPUT_SCALES
1078
+ assert not self.static_input_scales
1079
+ layer.w13_input_scale = None
1080
+ layer.w2_input_scale = None
1081
+
1082
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1083
+ pass
1084
+
1085
+ def get_fused_moe_quant_config(
1086
+ self, layer: torch.nn.Module
1087
+ ) -> FusedMoEQuantConfig | None:
1088
+ return int8_w8a8_moe_quant_config(
1089
+ w1_scale=layer.w13_weight_scale,
1090
+ w2_scale=layer.w2_weight_scale,
1091
+ a1_scale=layer.w13_input_scale,
1092
+ a2_scale=layer.w2_input_scale,
1093
+ per_act_token_quant=True,
1094
+ )
1095
+
1096
+ def apply(
1097
+ self,
1098
+ layer: FusedMoE,
1099
+ router: FusedMoERouter,
1100
+ x: torch.Tensor,
1101
+ router_logits: torch.Tensor,
1102
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1103
+ from vllm.model_executor.layers.fused_moe import fused_experts
1104
+
1105
+ topk_weights, topk_ids = router.select_experts(
1106
+ hidden_states=x,
1107
+ router_logits=router_logits,
1108
+ )
1109
+
1110
+ return fused_experts(
1111
+ hidden_states=x,
1112
+ w1=layer.w13_weight,
1113
+ w2=layer.w2_weight,
1114
+ topk_weights=topk_weights,
1115
+ topk_ids=topk_ids,
1116
+ inplace=True,
1117
+ activation=layer.activation,
1118
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1119
+ global_num_experts=layer.global_num_experts,
1120
+ expert_map=layer.expert_map,
1121
+ quant_config=self.moe_quant_config,
1122
+ )
1123
+
1124
+
1125
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1126
+ def __init__(
1127
+ self,
1128
+ weight_quant: QuantizationArgs,
1129
+ input_quant: QuantizationArgs | None,
1130
+ moe: FusedMoEConfig,
1131
+ layer_name: str | None = None,
1132
+ ):
1133
+ super().__init__(moe)
1134
+ self.weight_quant = weight_quant
1135
+ self.input_quant = input_quant
1136
+ assert weight_quant.symmetric, (
1137
+ "Only symmetric quantization is supported for MoE"
1138
+ )
1139
+ # Extract properties from weight_quant
1140
+ self.num_bits = weight_quant.num_bits
1141
+ self.packed_factor = 32 // weight_quant.num_bits
1142
+ self.strategy = weight_quant.strategy
1143
+ self.group_size = weight_quant.group_size
1144
+ self.actorder = weight_quant.actorder
1145
+
1146
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1147
+ self.use_marlin = True
1148
+ self.marlin_input_dtype = get_marlin_input_dtype(layer_name)
1149
+
1150
+ def create_weights(
1151
+ self,
1152
+ layer: torch.nn.Module,
1153
+ num_experts: int,
1154
+ hidden_size: int,
1155
+ intermediate_size_per_partition: int,
1156
+ params_dtype: torch.dtype,
1157
+ **extra_weight_attrs,
1158
+ ):
1159
+ intermediate_size_full = extra_weight_attrs.pop("intermediate_size_full")
1160
+
1161
+ # Will transpose the loaded weight along the
1162
+ # intermediate and hidden dim sizes. Will
1163
+ # shard for TP along the transposed dims
1164
+ extra_weight_attrs.update(
1165
+ {"is_transposed": True, "quant_method": self.strategy}
1166
+ )
1167
+ w13_weight = torch.nn.Parameter(
1168
+ torch.empty(
1169
+ num_experts,
1170
+ hidden_size // self.packed_factor,
1171
+ 2 * intermediate_size_per_partition,
1172
+ dtype=torch.int32,
1173
+ ),
1174
+ requires_grad=False,
1175
+ )
1176
+ layer.register_parameter("w13_weight_packed", w13_weight)
1177
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1178
+
1179
+ w2_weight = torch.nn.Parameter(
1180
+ torch.empty(
1181
+ num_experts,
1182
+ intermediate_size_per_partition // self.packed_factor,
1183
+ hidden_size,
1184
+ dtype=torch.int32,
1185
+ ),
1186
+ requires_grad=False,
1187
+ )
1188
+ layer.register_parameter("w2_weight_packed", w2_weight)
1189
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1190
+
1191
+ # In the case where we have actorder/g_idx,
1192
+ # we do not partition the w2 scales
1193
+ load_full_w2 = self.actorder and self.group_size != -1
1194
+ w2_scales_size = (
1195
+ intermediate_size_full if load_full_w2 else intermediate_size_per_partition
1196
+ )
1197
+
1198
+ self.is_k_full = (not self.actorder) or (
1199
+ intermediate_size_per_partition == intermediate_size_full
1200
+ )
1201
+
1202
+ if self.strategy == "channel":
1203
+ num_groups_w2 = num_groups_w13 = 1
1204
+ self.group_size = -1
1205
+ else:
1206
+ num_groups_w2 = w2_scales_size // self.group_size
1207
+ num_groups_w13 = hidden_size // self.group_size
1208
+
1209
+ layer.num_groups_w13 = num_groups_w13
1210
+ layer.num_groups_w2 = num_groups_w2
1211
+
1212
+ w13_scale = torch.nn.Parameter(
1213
+ torch.ones(
1214
+ num_experts,
1215
+ num_groups_w13,
1216
+ 2 * intermediate_size_per_partition,
1217
+ dtype=params_dtype,
1218
+ ),
1219
+ requires_grad=False,
1220
+ )
1221
+ layer.register_parameter("w13_weight_scale", w13_scale)
1222
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1223
+
1224
+ w2_scale = torch.nn.Parameter(
1225
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1226
+ requires_grad=False,
1227
+ )
1228
+ layer.register_parameter("w2_weight_scale", w2_scale)
1229
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1230
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1231
+
1232
+ w2_weight_shape = torch.nn.Parameter(
1233
+ torch.empty(num_experts, 2), requires_grad=False
1234
+ )
1235
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1236
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1237
+ w13_weight_shape = torch.nn.Parameter(
1238
+ torch.empty(num_experts, 2), requires_grad=False
1239
+ )
1240
+
1241
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1242
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1243
+
1244
+ w13_g_idx = torch.nn.Parameter(
1245
+ torch.empty(
1246
+ num_experts,
1247
+ hidden_size,
1248
+ dtype=torch.int32,
1249
+ ),
1250
+ requires_grad=False,
1251
+ )
1252
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1253
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1254
+
1255
+ w2_g_idx = torch.nn.Parameter(
1256
+ torch.empty(
1257
+ num_experts,
1258
+ intermediate_size_per_partition,
1259
+ dtype=torch.int32,
1260
+ ),
1261
+ requires_grad=False,
1262
+ )
1263
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1264
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1265
+
1266
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1267
+ torch.empty(
1268
+ num_experts,
1269
+ hidden_size,
1270
+ dtype=torch.int32,
1271
+ ),
1272
+ requires_grad=False,
1273
+ )
1274
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1275
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1276
+
1277
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1278
+ torch.empty(
1279
+ num_experts,
1280
+ intermediate_size_per_partition,
1281
+ dtype=torch.int32,
1282
+ ),
1283
+ requires_grad=False,
1284
+ )
1285
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1286
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1287
+
1288
+ layer.a13_scale = None
1289
+ layer.a2_scale = None
1290
+ layer.marlin_state = GPTQMarlinState.REPACK
1291
+
1292
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1293
+ num_experts = layer.w13_weight_g_idx.shape[0]
1294
+ device = layer.w13_weight_g_idx.device
1295
+ is_a_8bit = (
1296
+ self.marlin_input_dtype is not None
1297
+ and self.marlin_input_dtype.itemsize == 1
1298
+ )
1299
+
1300
+ if self.marlin_input_dtype == torch.float8_e4m3fn:
1301
+ # NOTE: for non-zp quantization format only
1302
+ ops.marlin_int4_fp8_preprocess(layer.w13_weight_packed, inplace=True)
1303
+ ops.marlin_int4_fp8_preprocess(layer.w2_weight_packed, inplace=True)
1304
+ layer.w13_weight_scale.data = layer.w13_weight_scale.data * 512
1305
+ layer.w2_weight_scale.data = layer.w2_weight_scale.data * 512
1306
+
1307
+ # when running models with grouped act order,
1308
+ # resort to g_idx values provided in checkpoint
1309
+ if self.actorder == "group":
1310
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1311
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1312
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1313
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1314
+
1315
+ for e in range(num_experts):
1316
+ w13_g_idx_sort_indices[e] = torch.argsort(layer.w13_weight_g_idx[e]).to(
1317
+ torch.int32
1318
+ )
1319
+ w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_weight_g_idx[e]).to(
1320
+ torch.int32
1321
+ )
1322
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1323
+ w13_g_idx_sort_indices[e]
1324
+ ]
1325
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][w2_g_idx_sort_indices[e]]
1326
+
1327
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1328
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1329
+ replace_parameter(layer, "w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1330
+ replace_parameter(layer, "w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1331
+
1332
+ else:
1333
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1334
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1335
+ requires_grad=False,
1336
+ )
1337
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1338
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1339
+ requires_grad=False,
1340
+ )
1341
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1342
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1343
+ requires_grad=False,
1344
+ )
1345
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1346
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1347
+ requires_grad=False,
1348
+ )
1349
+
1350
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1351
+ layer.w13_weight_packed,
1352
+ layer.w13_g_idx_sort_indices,
1353
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1354
+ layer.w13_weight_packed.shape[2],
1355
+ self.num_bits,
1356
+ is_a_8bit=is_a_8bit,
1357
+ )
1358
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1359
+
1360
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1361
+ layer.w2_weight_packed,
1362
+ layer.w2_g_idx_sort_indices,
1363
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1364
+ layer.w2_weight_packed.shape[2],
1365
+ self.num_bits,
1366
+ is_a_8bit=is_a_8bit,
1367
+ )
1368
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1369
+
1370
+ # Repack scales
1371
+ marlin_w13_scales = marlin_moe_permute_scales(
1372
+ s=layer.w13_weight_scale,
1373
+ size_k=layer.w13_weight_packed.shape[2],
1374
+ size_n=layer.w13_weight_scale.shape[2],
1375
+ group_size=self.group_size,
1376
+ is_a_8bit=is_a_8bit,
1377
+ )
1378
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w13 > 1:
1379
+ marlin_w13_scales, w13_input_global_scale = marlin_act_int8_process_scales(
1380
+ marlin_w13_scales
1381
+ )
1382
+ layer.register_parameter(
1383
+ "w13_input_global_scale",
1384
+ torch.nn.Parameter(w13_input_global_scale, requires_grad=False),
1385
+ )
1386
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1387
+
1388
+ marlin_w2_scales = marlin_moe_permute_scales(
1389
+ s=layer.w2_weight_scale,
1390
+ size_k=layer.w2_weight_scale.shape[1]
1391
+ * (self.group_size if self.group_size != -1 else self.packed_factor),
1392
+ size_n=layer.w2_weight_scale.shape[2],
1393
+ group_size=self.group_size,
1394
+ is_a_8bit=is_a_8bit,
1395
+ )
1396
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w2 > 1:
1397
+ marlin_w2_scales, w2_input_global_scale = marlin_act_int8_process_scales(
1398
+ marlin_w2_scales
1399
+ )
1400
+ layer.register_parameter(
1401
+ "w2_input_global_scale",
1402
+ torch.nn.Parameter(w2_input_global_scale, requires_grad=False),
1403
+ )
1404
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1405
+
1406
+ layer.workspace = marlin_make_workspace_new(device, 4)
1407
+
1408
+ def get_fused_moe_quant_config(
1409
+ self, layer: torch.nn.Module
1410
+ ) -> FusedMoEQuantConfig | None:
1411
+ if self.num_bits != 4:
1412
+ return None
1413
+ return int4_w4a16_moe_quant_config(
1414
+ w1_scale=layer.w13_weight_scale,
1415
+ w2_scale=layer.w2_weight_scale,
1416
+ w1_zp=None,
1417
+ w2_zp=None,
1418
+ block_shape=[0, self.group_size],
1419
+ )
1420
+
1421
+ def select_gemm_impl(
1422
+ self,
1423
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1424
+ layer: torch.nn.Module,
1425
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1426
+ assert self.num_bits == 4, "only supporting w4"
1427
+ layer.w13_weight = layer.w13_weight_packed
1428
+ layer.w2_weight = layer.w2_weight_packed
1429
+ assert all([w is not None for w in [layer.w13_weight, layer.w2_weight]])
1430
+ assert self.moe_quant_config is not None
1431
+ if (
1432
+ prepare_finalize.activation_format
1433
+ == mk.FusedMoEActivationFormat.BatchedExperts
1434
+ ):
1435
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1436
+ assert max_num_tokens_per_rank is not None
1437
+ return BatchedMarlinExperts(
1438
+ max_num_tokens=max_num_tokens_per_rank,
1439
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1440
+ quant_config=self.moe_quant_config,
1441
+ w13_g_idx=layer.w13_weight_g_idx,
1442
+ w2_g_idx=layer.w2_weight_g_idx,
1443
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1444
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1445
+ is_k_full=self.is_k_full,
1446
+ )
1447
+ else:
1448
+ return MarlinExperts(
1449
+ quant_config=self.moe_quant_config,
1450
+ w13_g_idx=layer.w13_weight_g_idx,
1451
+ w2_g_idx=layer.w2_weight_g_idx,
1452
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1453
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1454
+ is_k_full=self.is_k_full,
1455
+ )
1456
+
1457
+ def apply(
1458
+ self,
1459
+ layer: FusedMoE,
1460
+ router: FusedMoERouter,
1461
+ x: torch.Tensor,
1462
+ router_logits: torch.Tensor,
1463
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1464
+ assert layer.activation == "silu", (
1465
+ f"{layer.activation} not supported for Marlin MoE."
1466
+ )
1467
+
1468
+ topk_weights, topk_ids = router.select_experts(
1469
+ hidden_states=x,
1470
+ router_logits=router_logits,
1471
+ )
1472
+
1473
+ return fused_marlin_moe(
1474
+ x,
1475
+ layer.w13_weight_packed,
1476
+ layer.w2_weight_packed,
1477
+ None,
1478
+ None,
1479
+ layer.w13_weight_scale,
1480
+ layer.w2_weight_scale,
1481
+ router_logits,
1482
+ topk_weights,
1483
+ topk_ids,
1484
+ input_global_scale1=getattr(layer, "w13_input_global_scale", None),
1485
+ input_global_scale2=getattr(layer, "w2_input_global_scale", None),
1486
+ quant_type_id=self.quant_type.id,
1487
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1488
+ global_num_experts=layer.global_num_experts,
1489
+ expert_map=layer.expert_map,
1490
+ g_idx1=layer.w13_weight_g_idx,
1491
+ g_idx2=layer.w2_weight_g_idx,
1492
+ sort_indices1=layer.w13_g_idx_sort_indices,
1493
+ sort_indices2=layer.w2_g_idx_sort_indices,
1494
+ workspace=layer.workspace,
1495
+ input_dtype=self.marlin_input_dtype,
1496
+ is_k_full=self.is_k_full,
1497
+ )
1498
+
1499
+
1500
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1501
+ def __init__(
1502
+ self,
1503
+ weight_quant: QuantizationArgs,
1504
+ input_quant: QuantizationArgs | None,
1505
+ moe: FusedMoEConfig,
1506
+ layer_name: str | None = None,
1507
+ ):
1508
+ super().__init__(moe)
1509
+ self.weight_quant = weight_quant
1510
+ self.input_quant = input_quant
1511
+ # Extract properties from weight_quant
1512
+ self.num_bits = weight_quant.num_bits
1513
+ self.packed_factor = 32 // weight_quant.num_bits
1514
+ self.strategy = weight_quant.strategy
1515
+ # channelwise is not supported by this kernel
1516
+ assert weight_quant.strategy == "group"
1517
+ self.group_size = weight_quant.group_size
1518
+ # grouped actorder isn't supported by this kernel
1519
+ assert weight_quant.actorder != "group"
1520
+ assert weight_quant.symmetric, (
1521
+ "Only symmetric quantization is supported for MoE"
1522
+ )
1523
+
1524
+ def create_weights(
1525
+ self,
1526
+ layer: torch.nn.Module,
1527
+ num_experts: int,
1528
+ hidden_size: int,
1529
+ intermediate_size_per_partition: int,
1530
+ params_dtype: torch.dtype,
1531
+ **extra_weight_attrs,
1532
+ ):
1533
+ # Will transpose the loaded weight along the
1534
+ # intermediate and hidden dim sizes. Will
1535
+ # shard for TP along the transposed dims
1536
+ extra_weight_attrs.update(
1537
+ {"is_transposed": True, "quant_method": self.strategy}
1538
+ )
1539
+ w13_weight = torch.nn.Parameter(
1540
+ torch.empty(
1541
+ num_experts,
1542
+ hidden_size // self.packed_factor,
1543
+ 2 * intermediate_size_per_partition,
1544
+ dtype=torch.int32,
1545
+ ),
1546
+ requires_grad=False,
1547
+ )
1548
+ layer.register_parameter("w13_weight_packed", w13_weight)
1549
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1550
+
1551
+ w2_weight = torch.nn.Parameter(
1552
+ torch.empty(
1553
+ num_experts,
1554
+ intermediate_size_per_partition // self.packed_factor,
1555
+ hidden_size,
1556
+ dtype=torch.int32,
1557
+ ),
1558
+ requires_grad=False,
1559
+ )
1560
+ layer.register_parameter("w2_weight_packed", w2_weight)
1561
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1562
+
1563
+ w2_scales_size = intermediate_size_per_partition
1564
+
1565
+ if self.strategy == "channel":
1566
+ num_groups_w2 = num_groups_w13 = 1
1567
+ self.group_size = -1
1568
+ else:
1569
+ num_groups_w2 = w2_scales_size // self.group_size
1570
+ num_groups_w13 = hidden_size // self.group_size
1571
+
1572
+ w13_scale = torch.nn.Parameter(
1573
+ torch.ones(
1574
+ num_experts,
1575
+ num_groups_w13,
1576
+ 2 * intermediate_size_per_partition,
1577
+ dtype=params_dtype,
1578
+ ),
1579
+ requires_grad=False,
1580
+ )
1581
+ layer.register_parameter("w13_weight_scale", w13_scale)
1582
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1583
+
1584
+ w2_scale = torch.nn.Parameter(
1585
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1586
+ requires_grad=False,
1587
+ )
1588
+ layer.register_parameter("w2_weight_scale", w2_scale)
1589
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1590
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1591
+
1592
+ w2_weight_shape = torch.nn.Parameter(
1593
+ torch.empty(num_experts, 2), requires_grad=False
1594
+ )
1595
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1596
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1597
+ w13_weight_shape = torch.nn.Parameter(
1598
+ torch.empty(num_experts, 2), requires_grad=False
1599
+ )
1600
+
1601
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1602
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1603
+
1604
+ w13_g_idx = torch.nn.Parameter(
1605
+ torch.empty(
1606
+ num_experts,
1607
+ hidden_size,
1608
+ dtype=torch.int32,
1609
+ ),
1610
+ requires_grad=False,
1611
+ )
1612
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1613
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1614
+
1615
+ w2_g_idx = torch.nn.Parameter(
1616
+ torch.empty(
1617
+ num_experts,
1618
+ intermediate_size_per_partition,
1619
+ dtype=torch.int32,
1620
+ ),
1621
+ requires_grad=False,
1622
+ )
1623
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1624
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1625
+
1626
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1627
+ torch.empty(
1628
+ num_experts,
1629
+ hidden_size,
1630
+ dtype=torch.int32,
1631
+ ),
1632
+ requires_grad=False,
1633
+ )
1634
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1635
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1636
+
1637
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1638
+ torch.empty(
1639
+ num_experts,
1640
+ intermediate_size_per_partition,
1641
+ dtype=torch.int32,
1642
+ ),
1643
+ requires_grad=False,
1644
+ )
1645
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1646
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1647
+
1648
+ layer.a13_scale = None
1649
+ layer.a2_scale = None
1650
+
1651
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1652
+ # Reconfigure packed weights and scales to match moe_wna16 format
1653
+ layer.w13_weight_packed = torch.nn.Parameter(
1654
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1655
+ requires_grad=False,
1656
+ )
1657
+ layer.w2_weight_packed = torch.nn.Parameter(
1658
+ layer.w2_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1659
+ requires_grad=False,
1660
+ )
1661
+ layer.w13_weight_scale = torch.nn.Parameter(
1662
+ layer.w13_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1663
+ )
1664
+ layer.w2_weight_scale = torch.nn.Parameter(
1665
+ layer.w2_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1666
+ )
1667
+
1668
+ def get_fused_moe_quant_config(
1669
+ self, layer: torch.nn.Module
1670
+ ) -> FusedMoEQuantConfig | None:
1671
+ assert self.num_bits == 4 or self.num_bits == 8
1672
+ config_builder = (
1673
+ int4_w4a16_moe_quant_config
1674
+ if self.num_bits == 4
1675
+ else int8_w8a16_moe_quant_config
1676
+ )
1677
+
1678
+ return config_builder(
1679
+ w1_scale=layer.w13_weight_scale,
1680
+ w2_scale=layer.w2_weight_scale,
1681
+ w1_zp=None,
1682
+ w2_zp=None,
1683
+ block_shape=[0, self.group_size],
1684
+ )
1685
+
1686
+ def select_gemm_impl(
1687
+ self,
1688
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1689
+ layer: torch.nn.Module,
1690
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1691
+ if self.moe.is_lora_enabled:
1692
+ assert self.moe_quant_config is not None
1693
+ from vllm.triton_utils import HAS_TRITON
1694
+
1695
+ if HAS_TRITON:
1696
+ from vllm.model_executor.layers.fused_moe import TritonWNA16Experts
1697
+
1698
+ layer.w13_weight = layer.w13_weight_packed
1699
+ layer.w2_weight = layer.w2_weight_packed
1700
+ return TritonWNA16Experts(quant_config=self.moe_quant_config)
1701
+ else:
1702
+ raise NotImplementedError(
1703
+ "TritonExperts requires Triton. "
1704
+ "Install triton or disable LoRA for MoE."
1705
+ )
1706
+
1707
+ raise NotImplementedError
1708
+
1709
+ def apply(
1710
+ self,
1711
+ layer: FusedMoE,
1712
+ router: FusedMoERouter,
1713
+ x: torch.Tensor,
1714
+ router_logits: torch.Tensor,
1715
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1716
+ from vllm.model_executor.layers.fused_moe import fused_experts
1717
+
1718
+ topk_weights, topk_ids = router.select_experts(
1719
+ hidden_states=x,
1720
+ router_logits=router_logits,
1721
+ )
1722
+
1723
+ return fused_experts(
1724
+ x,
1725
+ layer.w13_weight_packed,
1726
+ layer.w2_weight_packed,
1727
+ topk_weights=topk_weights,
1728
+ topk_ids=topk_ids,
1729
+ inplace=True,
1730
+ activation=layer.activation,
1731
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1732
+ global_num_experts=layer.global_num_experts,
1733
+ expert_map=layer.expert_map,
1734
+ quant_config=self.moe_quant_config,
1735
+ )
1736
+
1737
+ @property
1738
+ def supports_eplb(self) -> bool:
1739
+ return True
1740
+
1741
+
1742
+ class CompressedTensorsW4A8Int8MoEMethod(CompressedTensorsMoEMethod):
1743
+ """
1744
+ CPU-only MoE method using dynamic 4-bit matmul kernels on Arm Platform
1745
+ - Weights: int4 (stored as int8 values in [-8,7], packed to uint8 nibbles)
1746
+ - Scales: Fp32 for Channelwise , bf16 for groupwise quantization
1747
+ - Bias: Same data type as original weights
1748
+ - Activations: FP32/Bf16 dynamic per-token (A8 Int),
1749
+ quantized inside the kernel
1750
+ """
1751
+
1752
+ def __init__(
1753
+ self,
1754
+ weight_quant: QuantizationArgs,
1755
+ input_quant: QuantizationArgs,
1756
+ moe: FusedMoEConfig,
1757
+ layer_name: str | None = None,
1758
+ ):
1759
+ super().__init__(moe)
1760
+ self.has_bias = self.moe.has_bias
1761
+ self.weight_quant = weight_quant
1762
+ self.input_quant = input_quant
1763
+
1764
+ # Validate scheme: weights=W4 (channel or group),
1765
+ # activations=dynamic TOKEN (A8)
1766
+
1767
+ # Must be dynamic per-token activations
1768
+ if (
1769
+ input_quant.strategy != QuantizationStrategy.TOKEN
1770
+ or not input_quant.dynamic
1771
+ ):
1772
+ raise ValueError(
1773
+ "W4A8-int MoE needs dynamic per-token activation quantization."
1774
+ )
1775
+
1776
+ # Weight can be channel-wise (group_size=None) or group-wise
1777
+ self.group_size = (
1778
+ weight_quant.group_size if (weight_quant.group_size is not None) else -1
1779
+ )
1780
+ if weight_quant.num_bits != 4:
1781
+ raise ValueError("This method only supports 4-bit weights (num_bits=4).")
1782
+
1783
+ # CPU only
1784
+ if not current_platform.is_cpu():
1785
+ raise ValueError("CompressedTensorsW4A8Int8MoEMethod is CPU-only.")
1786
+
1787
+ # Arm: check _dyn ops availability
1788
+ if current_platform.get_cpu_architecture() == CpuArchEnum.ARM:
1789
+ try:
1790
+ _ = torch.ops.aten._dyn_quant_matmul_4bit
1791
+ _ = torch.ops.aten._dyn_quant_pack_4bit_weight
1792
+ except AttributeError as err:
1793
+ raise RuntimeError(
1794
+ f"""PyTorch {torch.__version__} lacks _dyn_quant_* 4bit ops;
1795
+ install a newer build."""
1796
+ ) from err
1797
+ self.static_input_scales = False # always dynamic per token
1798
+
1799
+ # ---- parameter creation ----
1800
+ def create_weights(
1801
+ self,
1802
+ layer: torch.nn.Module,
1803
+ num_experts: int,
1804
+ hidden_size: int,
1805
+ intermediate_size_per_partition: int,
1806
+ params_dtype: torch.dtype,
1807
+ **extra_weight_attrs,
1808
+ ):
1809
+ # Shapes per local rank (TP/EP):
1810
+ # w13: [E, 2*I_local, H] int8 (int4 values in [-8,7])
1811
+ # w2 : [E, H, I_local] int8
1812
+ # Scales:
1813
+ # channel-wise: group_size=-1 -> per-output-row, single scale per row
1814
+ # group-wise : group_size=g ->
1815
+ # per-output-row, (in_features/g) scales
1816
+
1817
+ E = num_experts
1818
+ H = hidden_size
1819
+ IN = intermediate_size_per_partition
1820
+ g = self.group_size
1821
+
1822
+ # Per-row scale columns
1823
+ def _n_scale_cols(in_features: int) -> int:
1824
+ return 1 if g == -1 else (in_features // g)
1825
+
1826
+ # Register unpacked int4-as-int8 weights the loader will fill.
1827
+ w13 = torch.nn.Parameter(
1828
+ torch.empty(E, 2 * IN, H, dtype=torch.int8), requires_grad=False
1829
+ )
1830
+ set_weight_attrs(w13, extra_weight_attrs)
1831
+ layer.register_parameter("w13_weight", w13)
1832
+
1833
+ w2 = torch.nn.Parameter(
1834
+ torch.empty(E, H, IN, dtype=torch.int8), requires_grad=False
1835
+ )
1836
+ set_weight_attrs(w2, extra_weight_attrs)
1837
+ layer.register_parameter("w2_weight", w2)
1838
+
1839
+ # Register scales
1840
+ # KleidiAI groupwise kernels accepts float32 scales
1841
+ # KleidiAI groupwise kernels accepts bfloat16 scales
1842
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
1843
+
1844
+ w13_s = torch.nn.Parameter(
1845
+ torch.ones(E, 2 * IN, _n_scale_cols(H), dtype=scale_dtype),
1846
+ requires_grad=False,
1847
+ )
1848
+ set_weight_attrs(
1849
+ w13_s,
1850
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
1851
+ )
1852
+ layer.register_parameter("w13_weight_scale", w13_s)
1853
+
1854
+ w2_s = torch.nn.Parameter(
1855
+ torch.ones(E, H, _n_scale_cols(IN), dtype=scale_dtype), requires_grad=False
1856
+ )
1857
+ set_weight_attrs(
1858
+ w2_s,
1859
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
1860
+ )
1861
+ layer.register_parameter("w2_weight_scale", w2_s)
1862
+
1863
+ if self.has_bias:
1864
+ w13_bias = torch.nn.Parameter(
1865
+ torch.zeros(E, 2 * IN, dtype=params_dtype), requires_grad=False
1866
+ )
1867
+ layer.register_parameter("w13_bias", w13_bias)
1868
+ set_weight_attrs(w13_bias, extra_weight_attrs)
1869
+
1870
+ w2_bias = torch.nn.Parameter(
1871
+ torch.zeros(num_experts, hidden_size, dtype=params_dtype),
1872
+ requires_grad=False,
1873
+ )
1874
+ layer.register_parameter("w2_bias", w2_bias)
1875
+ set_weight_attrs(w2_bias, extra_weight_attrs)
1876
+
1877
+ # Placeholders for packed weights (will be replaced after packing)
1878
+ layer.register_parameter(
1879
+ "w13_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
1880
+ )
1881
+ set_weight_attrs(layer.w13_weight_packed, extra_weight_attrs)
1882
+
1883
+ layer.register_parameter(
1884
+ "w2_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
1885
+ )
1886
+ set_weight_attrs(layer.w2_weight_packed, extra_weight_attrs)
1887
+
1888
+ # dims for 4 bit fused matmuls
1889
+ layer.w13_in_features = H
1890
+ layer.w13_out_features = 2 * IN
1891
+ layer.w2_in_features = IN
1892
+ layer.w2_out_features = H
1893
+ layer.group_size = g
1894
+
1895
+ # post-load packing to dyn-4bit KleidiAI kernel's format
1896
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1897
+ E = layer.w13_weight.shape[0]
1898
+ H = layer.w13_in_features
1899
+ I2 = layer.w13_out_features
1900
+ IN = layer.w2_in_features
1901
+ g = layer.group_size
1902
+
1903
+ def _pack_matrix(
1904
+ int4_as_int8_2d: torch.Tensor,
1905
+ scales_2d: torch.Tensor,
1906
+ bias_1d: torch.Tensor | None,
1907
+ in_features: int,
1908
+ out_features: int,
1909
+ ) -> torch.Tensor:
1910
+ # int4 values are stored as int8 in [-8,7].
1911
+ # Shift to unsigned nibble and pack pairs along input-dim.
1912
+ tmp = int4_as_int8_2d.add(8) # [out, in]
1913
+ uint8_nibbles = ((tmp[:, 1::2] << 4) | tmp[:, ::2]).to(
1914
+ torch.uint8
1915
+ ) # [out, in//2]
1916
+
1917
+ # KleidiAI groupwise kernels accepts float32 scales
1918
+ # KleidiAI groupwise kernels accepts bfloat16 scales
1919
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
1920
+ scales = scales_2d.to(scale_dtype)
1921
+ bias = None if bias_1d is None else bias_1d.to(torch.float32)
1922
+ return torch.ops.aten._dyn_quant_pack_4bit_weight(
1923
+ uint8_nibbles,
1924
+ scales,
1925
+ bias,
1926
+ g if g != -1 else in_features,
1927
+ in_features,
1928
+ out_features,
1929
+ )
1930
+
1931
+ # Pack per expert
1932
+ w13_packed_list = []
1933
+ w2_packed_list = []
1934
+
1935
+ has_w13_bias = hasattr(layer, "w13_bias") and layer.w13_bias is not None
1936
+ has_w2_bias = hasattr(layer, "w2_bias") and layer.w2_bias is not None
1937
+
1938
+ for e in range(E):
1939
+ w13_packed_list.append(
1940
+ _pack_matrix(
1941
+ layer.w13_weight[e], # [2I, H]
1942
+ layer.w13_weight_scale[e], # [2I, H/g or 1]
1943
+ layer.w13_bias[e] if has_w13_bias else None, # [2I]
1944
+ H,
1945
+ I2,
1946
+ )
1947
+ )
1948
+ w2_packed_list.append(
1949
+ _pack_matrix(
1950
+ # w2 shape is [H, IN]; we need [out, in] == [H, IN].
1951
+ layer.w2_weight[e], # [H, IN]
1952
+ layer.w2_weight_scale[e], # [H, IN/g or 1]
1953
+ layer.w2_bias[e] if has_w2_bias else None, # [H]
1954
+ IN,
1955
+ layer.w2_out_features, # in_features=IN, out_features=H
1956
+ )
1957
+ )
1958
+
1959
+ # each packed tensor has identical shape per expert; stack on dim 0
1960
+ w13_packed = torch.stack(w13_packed_list, dim=0)
1961
+ w2_packed = torch.stack(w2_packed_list, dim=0)
1962
+
1963
+ replace_parameter(
1964
+ layer,
1965
+ "w13_weight_packed",
1966
+ torch.nn.Parameter(w13_packed, requires_grad=False),
1967
+ )
1968
+ replace_parameter(
1969
+ layer,
1970
+ "w2_weight_packed",
1971
+ torch.nn.Parameter(w2_packed, requires_grad=False),
1972
+ )
1973
+
1974
+ # free raw tensors/scales/bias now that they're packed into the payload.
1975
+ replace_parameter(
1976
+ layer, "w13_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
1977
+ )
1978
+ replace_parameter(
1979
+ layer, "w2_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
1980
+ )
1981
+ replace_parameter(
1982
+ layer,
1983
+ "w13_weight_scale",
1984
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
1985
+ )
1986
+ replace_parameter(
1987
+ layer,
1988
+ "w2_weight_scale",
1989
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
1990
+ )
1991
+ if has_w13_bias:
1992
+ replace_parameter(
1993
+ layer,
1994
+ "w13_bias",
1995
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
1996
+ )
1997
+ if has_w2_bias:
1998
+ replace_parameter(
1999
+ layer,
2000
+ "w2_bias",
2001
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2002
+ )
2003
+
2004
+ def get_fused_moe_quant_config(
2005
+ self, layer: torch.nn.Module
2006
+ ) -> FusedMoEQuantConfig | None:
2007
+ # CPU dynamic 4-bit MoE path does not use modular kernels or
2008
+ # fused_experts; quant config is not needed.
2009
+ return None
2010
+
2011
+ def apply(
2012
+ self,
2013
+ layer: FusedMoE,
2014
+ router: FusedMoERouter,
2015
+ x: torch.Tensor,
2016
+ router_logits: torch.Tensor,
2017
+ ) -> torch.Tensor:
2018
+ assert not layer.enable_eplb, "EPLB not supported for W4A8-int MoE yet."
2019
+ assert layer.activation in ("silu", "swigluoai", "swiglu"), (
2020
+ "Only SiLU/SwiGLUGU/SwiGLUUG are supported."
2021
+ )
2022
+ assert layer.expert_map is None, """expert_map/EP not implemented
2023
+ for CPU dyn-4bit MoE."""
2024
+
2025
+ def _act_kind(s: str) -> int:
2026
+ # 0 = SwiGLU_Gu (SiLU(g)*u), 1 = SwiGLU_Ug (SiLU(u)*g), 2 = SiLU
2027
+ if s == "swiglu":
2028
+ return 0
2029
+ if s == "swigluoai":
2030
+ return 1
2031
+ if s == "silu":
2032
+ return 2
2033
+ raise ValueError(f"Unknown activation '{s}'")
2034
+
2035
+ # Apply topk softmax on router output
2036
+ topk_weights, topk_ids = select_experts(
2037
+ hidden_states=x,
2038
+ router_logits=router_logits,
2039
+ top_k=layer.top_k,
2040
+ use_grouped_topk=layer.use_grouped_topk,
2041
+ renormalize=layer.renormalize,
2042
+ )
2043
+
2044
+ return torch.ops._C.dynamic_4bit_int_moe(
2045
+ x,
2046
+ topk_ids.to(torch.long),
2047
+ topk_weights,
2048
+ layer.w13_weight_packed,
2049
+ layer.w2_weight_packed,
2050
+ layer.w2_out_features,
2051
+ layer.w2_in_features,
2052
+ layer.w13_out_features,
2053
+ layer.group_size,
2054
+ layer.apply_router_weight_on_input,
2055
+ int(_act_kind(layer.activation)),
2056
+ )
2057
+
2058
+
2059
+ class CompressedTensorsW4A8Fp8MoEMethod(CompressedTensorsMoEMethod):
2060
+ def __init__(
2061
+ self,
2062
+ weight_quant: QuantizationArgs,
2063
+ input_quant: QuantizationArgs,
2064
+ moe: FusedMoEConfig,
2065
+ layer_name: str | None = None,
2066
+ ):
2067
+ super().__init__(moe)
2068
+ self.weight_quant = weight_quant
2069
+ self.input_quant = input_quant
2070
+
2071
+ self.group_size = self.weight_quant.group_size
2072
+ self.num_bits = self.weight_quant.num_bits
2073
+ self.packed_factor = 32 // self.num_bits
2074
+
2075
+ assert self.weight_quant.symmetric, (
2076
+ "Only symmetric quantization is supported for W4A8 MoE"
2077
+ )
2078
+ assert self.weight_quant.actorder != "group"
2079
+ assert self.group_size == 128, "Only group size 128 supported for W4A8 MoE"
2080
+
2081
+ self.disable_expert_map = False
2082
+ self.layer_name = layer_name
2083
+
2084
+ from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
2085
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
2086
+ GroupShape,
2087
+ )
2088
+
2089
+ self.quant_fp8 = QuantFP8(static=False, group_shape=GroupShape.PER_TOKEN)
2090
+
2091
+ def create_weights(
2092
+ self,
2093
+ layer: torch.nn.Module,
2094
+ num_experts: int,
2095
+ hidden_size: int,
2096
+ intermediate_size_per_partition: int,
2097
+ params_dtype: torch.dtype,
2098
+ **extra_weight_attrs,
2099
+ ):
2100
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
2101
+ layer.hidden_size = hidden_size
2102
+ layer.num_experts = num_experts
2103
+ layer.orig_dtype = params_dtype
2104
+ layer.weight_block_size = None
2105
+
2106
+ # requirement for CUTLASS reorder_tensor
2107
+ assert hidden_size % 256 == 0, f"{hidden_size=} must be divisible by 256"
2108
+ assert intermediate_size_per_partition % 256 == 0, (
2109
+ f"{intermediate_size_per_partition=} must be divisible by 256"
2110
+ )
2111
+ # storage type, pack 8xint4 into int32
2112
+ params_dtype = torch.int32
2113
+
2114
+ # WEIGHTS
2115
+ w13_weight_packed = torch.nn.Parameter(
2116
+ torch.empty(
2117
+ num_experts,
2118
+ 2 * intermediate_size_per_partition,
2119
+ hidden_size // self.packed_factor,
2120
+ dtype=params_dtype,
2121
+ ),
2122
+ requires_grad=False,
2123
+ )
2124
+ layer.register_parameter("w13_weight_packed", w13_weight_packed)
2125
+ set_weight_attrs(w13_weight_packed, extra_weight_attrs)
2126
+
2127
+ w2_weight_packed = torch.nn.Parameter(
2128
+ torch.empty(
2129
+ num_experts,
2130
+ hidden_size,
2131
+ intermediate_size_per_partition // self.packed_factor,
2132
+ dtype=params_dtype,
2133
+ ),
2134
+ requires_grad=False,
2135
+ )
2136
+ layer.register_parameter("w2_weight_packed", w2_weight_packed)
2137
+ set_weight_attrs(w2_weight_packed, extra_weight_attrs)
2138
+
2139
+ # SCALES
2140
+ # weight_scale refers to the group-wise scales
2141
+ # they are initially loaded as bf16, we will convert to fp8
2142
+ # after loading
2143
+ w13_weight_scale = torch.nn.Parameter(
2144
+ torch.ones(
2145
+ num_experts,
2146
+ 2 * intermediate_size_per_partition,
2147
+ hidden_size // self.group_size,
2148
+ dtype=layer.orig_dtype,
2149
+ ),
2150
+ requires_grad=False,
2151
+ )
2152
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
2153
+
2154
+ w2_weight_scale = torch.nn.Parameter(
2155
+ torch.ones(
2156
+ num_experts,
2157
+ hidden_size,
2158
+ intermediate_size_per_partition // self.group_size,
2159
+ dtype=layer.orig_dtype,
2160
+ ),
2161
+ requires_grad=False,
2162
+ )
2163
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
2164
+ # Add PER-GROUP quantization for FusedMoE.weight_loader.
2165
+ extra_weight_attrs.update(
2166
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
2167
+ )
2168
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
2169
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
2170
+
2171
+ # weight shapes
2172
+ w2_weight_shape = torch.nn.Parameter(
2173
+ torch.empty(num_experts, 2), requires_grad=False
2174
+ )
2175
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
2176
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
2177
+ w13_weight_shape = torch.nn.Parameter(
2178
+ torch.empty(num_experts, 2), requires_grad=False
2179
+ )
2180
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
2181
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
2182
+
2183
+ # don't use input scales
2184
+ layer.w13_input_scale = None
2185
+ layer.w2_input_scale = None
2186
+
2187
+ def process_weights_after_loading(self, layer):
2188
+ device = layer.w13_weight_packed.device
2189
+
2190
+ # STRIDES
2191
+ # A, C
2192
+ self.a_strides1_c_strides2 = torch.full(
2193
+ (layer.local_num_experts,),
2194
+ layer.hidden_size,
2195
+ device=device,
2196
+ dtype=torch.int64,
2197
+ )
2198
+ self.a_strides2 = torch.full(
2199
+ (layer.local_num_experts,),
2200
+ layer.intermediate_size_per_partition,
2201
+ device=device,
2202
+ dtype=torch.int64,
2203
+ )
2204
+ self.c_strides1 = torch.full(
2205
+ (layer.local_num_experts,),
2206
+ 2 * layer.intermediate_size_per_partition,
2207
+ device=device,
2208
+ dtype=torch.int64,
2209
+ )
2210
+
2211
+ # S (group-wise scales)
2212
+ # sizeof(StrideS) = 16 bytes, so we need to use 2xint64 to encode it
2213
+ self.s_strides1 = torch.zeros(
2214
+ (layer.local_num_experts, 2), device=device, dtype=torch.int64
2215
+ )
2216
+ self.s_strides1[:, 0] = 2 * layer.intermediate_size_per_partition
2217
+
2218
+ self.s_strides2 = torch.zeros(
2219
+ (layer.local_num_experts, 2), device=device, dtype=torch.int64
2220
+ )
2221
+ self.s_strides2[:, 0] = layer.hidden_size
2222
+
2223
+ # encode and reorder weight tensors, and get the layout to pass to
2224
+ # the grouped gemm kernel. `b_strides1/2` specifies the entire layout
2225
+ convert_packed_uint4b8_to_signed_int4_inplace(layer.w13_weight_packed)
2226
+ w13_weight_shuffled, self.b_strides1 = (
2227
+ ops.cutlass_encode_and_reorder_int4b_grouped(layer.w13_weight_packed)
2228
+ )
2229
+ replace_parameter(layer, "w13_weight_packed", w13_weight_shuffled)
2230
+ convert_packed_uint4b8_to_signed_int4_inplace(layer.w2_weight_packed)
2231
+ w2_weight_shuffled, self.b_strides2 = (
2232
+ ops.cutlass_encode_and_reorder_int4b_grouped(layer.w2_weight_packed)
2233
+ )
2234
+ replace_parameter(layer, "w2_weight_packed", w2_weight_shuffled)
2235
+
2236
+ # convert bf16 scales to (fp8_scales, channel_scales)
2237
+ w13_weight_scale, w13_weight_chan_scale = convert_bf16_scales_to_fp8(
2238
+ self.quant_fp8, layer.w13_weight_scale
2239
+ )
2240
+ w2_weight_scale, w2_weight_chan_scale = convert_bf16_scales_to_fp8(
2241
+ self.quant_fp8, layer.w2_weight_scale
2242
+ )
2243
+
2244
+ # register channel scales
2245
+ layer.register_parameter(
2246
+ "w13_weight_chan_scale",
2247
+ torch.nn.Parameter(w13_weight_chan_scale, requires_grad=False),
2248
+ )
2249
+ layer.register_parameter(
2250
+ "w2_weight_chan_scale",
2251
+ torch.nn.Parameter(w2_weight_chan_scale, requires_grad=False),
2252
+ )
2253
+
2254
+ # The scales are stored as (E, N, K // 128) but the kernel expects
2255
+ # (E, K // 128, N) in row-major format, so we need to permute the last 2 dims
2256
+ # and make it contiguous
2257
+ w13_weight_scale_packed = ops.cutlass_pack_scale_fp8(
2258
+ w13_weight_scale.permute(0, 2, 1).contiguous()
2259
+ )
2260
+ replace_parameter(layer, "w13_weight_scale", w13_weight_scale_packed)
2261
+ w2_weight_scale_packed = ops.cutlass_pack_scale_fp8(
2262
+ w2_weight_scale.permute(0, 2, 1).contiguous()
2263
+ )
2264
+ replace_parameter(layer, "w2_weight_scale", w2_weight_scale_packed)
2265
+
2266
+ def maybe_make_prepare_finalize(
2267
+ self,
2268
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
2269
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
2270
+ return super().maybe_make_prepare_finalize(routing_tables)
2271
+
2272
+ def get_fused_moe_quant_config(
2273
+ self, layer: torch.nn.Module
2274
+ ) -> FusedMoEQuantConfig | None:
2275
+ # Store quantization scales; both per-group and per-channel
2276
+ # Note we haven't specified the group size here because
2277
+ # the quant config logic assumes group-wise scaling
2278
+ # and channel-wise scaling are exclusive.
2279
+ return int4_w4afp8_moe_quant_config(
2280
+ w1_scale=layer.w13_weight_scale, # group scale
2281
+ w2_scale=layer.w2_weight_scale, # group scale
2282
+ g1_alphas=layer.w13_weight_chan_scale,
2283
+ g2_alphas=layer.w2_weight_chan_scale,
2284
+ per_act_token_quant=True, # always use dynamc per-token
2285
+ per_out_ch_quant=True, # always use per-channel
2286
+ )
2287
+
2288
+ def select_gemm_impl(
2289
+ self,
2290
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
2291
+ layer: torch.nn.Module,
2292
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
2293
+ assert self.moe_quant_config is not None
2294
+ assert (
2295
+ prepare_finalize.activation_format == FusedMoEActivationFormat.Standard
2296
+ ), "BatchedExperts not supported"
2297
+
2298
+ from vllm.model_executor.layers.fused_moe import CutlassExpertsW4A8Fp8
2299
+
2300
+ experts: FusedMoEPermuteExpertsUnpermute
2301
+
2302
+ logger.debug("CutlassExpertsW4A8Fp8(%s)", self.__class__.__name__)
2303
+ experts = CutlassExpertsW4A8Fp8(
2304
+ out_dtype=self.moe.in_dtype,
2305
+ a_strides1=self.a_strides1_c_strides2,
2306
+ a_strides2=self.a_strides2,
2307
+ b_strides1=self.b_strides1,
2308
+ b_strides2=self.b_strides2,
2309
+ c_strides1=self.c_strides1,
2310
+ c_strides2=self.a_strides1_c_strides2,
2311
+ s_strides1=self.s_strides1,
2312
+ s_strides2=self.s_strides2,
2313
+ quant_config=self.moe_quant_config,
2314
+ group_size=self.group_size,
2315
+ )
2316
+
2317
+ num_dispatchers = prepare_finalize.num_dispatchers()
2318
+ self.disable_expert_map = (
2319
+ num_dispatchers > 1 or not experts.supports_expert_map()
2320
+ )
2321
+
2322
+ return experts
2323
+
2324
+ def apply(
2325
+ self,
2326
+ layer: FusedMoE,
2327
+ router: FusedMoERouter,
2328
+ x: torch.Tensor,
2329
+ router_logits: torch.Tensor,
2330
+ ):
2331
+ if layer.enable_eplb:
2332
+ raise NotImplementedError(
2333
+ "EPLB not supported for `CompressedTensorsW4A8Fp8MoEMethod` yet."
2334
+ )
2335
+ assert self.moe_quant_config is not None
2336
+ topk_weights, topk_ids = router.select_experts(
2337
+ hidden_states=x,
2338
+ router_logits=router_logits,
2339
+ )
2340
+
2341
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
2342
+ cutlass_moe_w4a8_fp8,
2343
+ )
2344
+
2345
+ return cutlass_moe_w4a8_fp8(
2346
+ x,
2347
+ layer.w13_weight_packed,
2348
+ layer.w2_weight_packed,
2349
+ topk_weights,
2350
+ topk_ids,
2351
+ quant_config=self.moe_quant_config,
2352
+ activation=layer.activation,
2353
+ global_num_experts=layer.global_num_experts,
2354
+ expert_map=None if self.disable_expert_map else layer.expert_map,
2355
+ a_strides1=self.a_strides1_c_strides2,
2356
+ a_strides2=self.a_strides2,
2357
+ b_strides1=self.b_strides1,
2358
+ b_strides2=self.b_strides2,
2359
+ c_strides1=self.c_strides1,
2360
+ c_strides2=self.a_strides1_c_strides2,
2361
+ s_strides1=self.s_strides1,
2362
+ s_strides2=self.s_strides2,
2363
+ group_size=self.group_size,
2364
+ )
2365
+
2366
+ @property
2367
+ def supports_eplb(self) -> bool:
2368
+ return False