teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (240) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +306 -0
  4. teradataml/__init__.py +10 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +299 -16
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +13 -3
  11. teradataml/analytics/json_parser/utils.py +13 -6
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +11 -2
  15. teradataml/analytics/table_operator/__init__.py +4 -3
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +66 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1502 -323
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +247 -307
  22. teradataml/automl/data_transformation.py +32 -12
  23. teradataml/automl/feature_engineering.py +325 -86
  24. teradataml/automl/model_evaluation.py +44 -35
  25. teradataml/automl/model_training.py +122 -153
  26. teradataml/catalog/byom.py +8 -8
  27. teradataml/clients/pkce_client.py +1 -1
  28. teradataml/common/__init__.py +2 -1
  29. teradataml/common/constants.py +72 -0
  30. teradataml/common/deprecations.py +13 -7
  31. teradataml/common/garbagecollector.py +152 -120
  32. teradataml/common/messagecodes.py +11 -2
  33. teradataml/common/messages.py +4 -1
  34. teradataml/common/sqlbundle.py +26 -4
  35. teradataml/common/utils.py +225 -14
  36. teradataml/common/wrapper_utils.py +1 -1
  37. teradataml/context/context.py +82 -2
  38. teradataml/data/SQL_Fundamentals.pdf +0 -0
  39. teradataml/data/complaints_test_tokenized.csv +353 -0
  40. teradataml/data/complaints_tokens_model.csv +348 -0
  41. teradataml/data/covid_confirm_sd.csv +83 -0
  42. teradataml/data/dataframe_example.json +27 -1
  43. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  44. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  45. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  46. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  47. teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
  48. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  49. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  50. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  51. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  52. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  53. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  54. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  55. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  56. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  57. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  58. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  59. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  60. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  61. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  62. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  63. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  64. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  65. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  66. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  67. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  68. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  69. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  70. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  71. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  72. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  74. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  75. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  76. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  77. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  78. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  79. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  80. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  81. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  82. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  83. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  84. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  85. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  86. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  87. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  88. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  89. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  90. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  91. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  92. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  93. teradataml/data/dwt2d_dataTable.csv +65 -0
  94. teradataml/data/dwt_dataTable.csv +8 -0
  95. teradataml/data/dwt_filterTable.csv +3 -0
  96. teradataml/data/finance_data4.csv +13 -0
  97. teradataml/data/grocery_transaction.csv +19 -0
  98. teradataml/data/idwt2d_dataTable.csv +5 -0
  99. teradataml/data/idwt_dataTable.csv +8 -0
  100. teradataml/data/idwt_filterTable.csv +3 -0
  101. teradataml/data/interval_data.csv +5 -0
  102. teradataml/data/jsons/paired_functions.json +14 -0
  103. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  104. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  105. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  106. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  107. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  108. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  109. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  110. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  111. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  112. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  113. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  114. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  115. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  116. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  117. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  118. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  119. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  120. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  121. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  122. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  123. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  124. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  125. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  126. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  127. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  128. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  129. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  130. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  131. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  132. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  133. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  134. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  135. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  136. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  137. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  138. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  139. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  140. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  141. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  142. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  143. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  144. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  145. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  146. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  147. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  148. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  149. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  150. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  151. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  152. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  153. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  154. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  155. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  156. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  157. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  158. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  159. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  160. teradataml/data/load_example_data.py +8 -2
  161. teradataml/data/medical_readings.csv +101 -0
  162. teradataml/data/naivebayestextclassifier_example.json +1 -1
  163. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  164. teradataml/data/patient_profile.csv +101 -0
  165. teradataml/data/peppers.png +0 -0
  166. teradataml/data/real_values.csv +14 -0
  167. teradataml/data/sax_example.json +8 -0
  168. teradataml/data/scripts/deploy_script.py +1 -1
  169. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  170. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  171. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  172. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  173. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
  174. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  175. teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
  176. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  177. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  178. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  179. teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
  180. teradataml/data/star_pivot.csv +8 -0
  181. teradataml/data/target_udt_data.csv +8 -0
  182. teradataml/data/templates/open_source_ml.json +3 -1
  183. teradataml/data/teradataml_example.json +20 -1
  184. teradataml/data/timestamp_data.csv +4 -0
  185. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  186. teradataml/data/uaf_example.json +55 -1
  187. teradataml/data/unpivot_example.json +15 -0
  188. teradataml/data/url_data.csv +9 -0
  189. teradataml/data/vectordistance_example.json +4 -0
  190. teradataml/data/windowdfft.csv +16 -0
  191. teradataml/dataframe/copy_to.py +1 -1
  192. teradataml/dataframe/data_transfer.py +5 -3
  193. teradataml/dataframe/dataframe.py +1002 -201
  194. teradataml/dataframe/fastload.py +3 -3
  195. teradataml/dataframe/functions.py +867 -0
  196. teradataml/dataframe/row.py +160 -0
  197. teradataml/dataframe/setop.py +2 -2
  198. teradataml/dataframe/sql.py +840 -33
  199. teradataml/dataframe/window.py +1 -1
  200. teradataml/dbutils/dbutils.py +878 -34
  201. teradataml/dbutils/filemgr.py +48 -1
  202. teradataml/geospatial/geodataframe.py +1 -1
  203. teradataml/geospatial/geodataframecolumn.py +1 -1
  204. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  205. teradataml/lib/aed_0_1.dll +0 -0
  206. teradataml/opensource/__init__.py +1 -1
  207. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  208. teradataml/opensource/_lightgbm.py +950 -0
  209. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  210. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  211. teradataml/opensource/sklearn/__init__.py +0 -1
  212. teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
  213. teradataml/options/__init__.py +9 -23
  214. teradataml/options/configure.py +42 -4
  215. teradataml/options/display.py +2 -2
  216. teradataml/plot/axis.py +4 -4
  217. teradataml/scriptmgmt/UserEnv.py +13 -9
  218. teradataml/scriptmgmt/lls_utils.py +77 -23
  219. teradataml/store/__init__.py +13 -0
  220. teradataml/store/feature_store/__init__.py +0 -0
  221. teradataml/store/feature_store/constants.py +291 -0
  222. teradataml/store/feature_store/feature_store.py +2223 -0
  223. teradataml/store/feature_store/models.py +1505 -0
  224. teradataml/store/vector_store/__init__.py +1586 -0
  225. teradataml/table_operators/Script.py +2 -2
  226. teradataml/table_operators/TableOperator.py +106 -20
  227. teradataml/table_operators/query_generator.py +3 -0
  228. teradataml/table_operators/table_operator_query_generator.py +3 -1
  229. teradataml/table_operators/table_operator_util.py +102 -56
  230. teradataml/table_operators/templates/dataframe_register.template +69 -0
  231. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  232. teradataml/telemetry_utils/__init__.py +0 -0
  233. teradataml/telemetry_utils/queryband.py +52 -0
  234. teradataml/utils/dtypes.py +4 -2
  235. teradataml/utils/validators.py +34 -2
  236. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
  237. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
  238. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  239. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  240. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
@@ -1,63 +1,63 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
2
- teradataml/LICENSE.pdf,sha256=YAaz9284BsR7reNg2ez_CCccYhD3k8r7rTLaORDZ-HE,66827
3
- teradataml/README.md,sha256=jYLOg9VI4yMSf9yjVCTfywXLry6oURodHft_TBje7ao,106467
4
- teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
5
- teradataml/_version.py,sha256=mUUB6KxwOXJAtbPZoBNVSLnqHPhuKLi3LOA-2_LqdvA,364
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=LMHCf0oAp5qfkJ2sLByXp_C7gO1ztBXXc0fLhFymAOE,319845
2
+ teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
+ teradataml/README.md,sha256=5n0NVRuMR7tyh85y8vr3zplZyjsNguPZf2U8SJu2nKw,122093
4
+ teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
+ teradataml/_version.py,sha256=ud4XhZmc6XmseduxRAFPT0dYSNfbvg4ZW-1wB_TYR7k,364
6
6
  teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
7
  teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
8
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
- teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
10
- teradataml/analytics/analytic_function_executor.py,sha256=XMeJCSudqfOP0htOhZQUH6qcF4Ztp_V7uzeUeu4n6dY,92393
11
- teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
12
- teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
13
- teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
14
- teradataml/analytics/valib.py,sha256=7iyoxf-zK4-kM7RkCMXuOviZSSoVo1GDIaR8b1J4WWo,73589
9
+ teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
+ teradataml/analytics/analytic_function_executor.py,sha256=9n18PxyQocRyDeVLc0OYw_7ak07goue3nMDHX-Kncs4,106505
11
+ teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
+ teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
+ teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
14
+ teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
15
15
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
16
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
- teradataml/analytics/byom/__init__.py,sha256=ViV7E_6d0RkbPcKQQ62Ar11-dMUwxf2Eg68TdYmCM6c,810
17
+ teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3B9x_i7M8,876
18
18
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
19
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
20
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
- teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
22
- teradataml/analytics/json_parser/utils.py,sha256=hYi2ZLuJbRaGGyIpLUvUWS4ohL2ohS2uPPUcLcH5jCQ,33425
23
- teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
21
+ teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
22
+ teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
23
+ teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
24
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
25
+ teradataml/analytics/sqle/__init__.py,sha256=xyuXkW1fc3N6yjxj5PMUBD-FsySdSpOIKY6A9IEyxLg,4194
26
26
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
27
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
- teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
29
- teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
30
- teradataml/automl/__init__.py,sha256=cx55kRJ_Sv5XQZZ-Mce1BEDLTn5FXo-rKAkHt0xJ2lU,79825
31
- teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
32
- teradataml/automl/data_preparation.py,sha256=P4sVPNQIylByo6eby4ktwdgL7bvwhPoDNsKxdLVfxyA,44517
33
- teradataml/automl/data_transformation.py,sha256=KoFbZwp_lOTYcZRrc9q3t6m-jSmFWiDFZMVYI6bpMv0,41684
34
- teradataml/automl/feature_engineering.py,sha256=oQOLpj0vUL0BL_q2SZTjcD3SmbFIsbLU1QhQtUJf4kE,83273
28
+ teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
29
+ teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
30
+ teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
31
+ teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
+ teradataml/automl/data_preparation.py,sha256=N2BJ8cAYkQGFxZQ-D-fhsG6wx8saPWU3LCPwah-KXOg,41712
33
+ teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
+ teradataml/automl/feature_engineering.py,sha256=lATEWrbziHfg-n-NPkUt81Pw6QHlwNy4eZpA5WDFhL8,94803
35
35
  teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
- teradataml/automl/model_evaluation.py,sha256=4F-ehLBYBKO5u7V3T4m_D81dWh47yfRk_RCghIlaPio,5689
37
- teradataml/automl/model_training.py,sha256=Qk4oRjxnb6-EbXHsN5OPScdgIR6lHylwdf9qvbKooq8,44145
36
+ teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
+ teradataml/automl/model_training.py,sha256=oygbUYZjUr6fqbjDxJUR0qzgN_qeUhjop0hVunGnowc,42108
38
38
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
- teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
39
+ teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
40
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
41
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
42
42
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
43
  teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
44
- teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
45
- teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
44
+ teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
+ teradataml/common/__init__.py,sha256=8x9tqa-EYdQtO9JHpAwrtSFApkJVjq29kvH6pRgJWoo,112
46
46
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=DQkD3BsYcZ_Q1Fkckgiumye4_yfavQrQuJyf4hGWL34,57892
49
- teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
48
+ teradataml/common/constants.py,sha256=qZGlF8C9KfjdeG6pvoY0YDXW6wbF8FX44zcBF7HhyQg,61463
49
+ teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
50
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
- teradataml/common/garbagecollector.py,sha256=uPM2SPwti8xwnq4XntHK2ulgwLpLrUFsEl5_MfsNWug,26088
53
- teradataml/common/messagecodes.py,sha256=VAQdn3H71PkxobFSrcDoLWp7iiSKcjd-QIqbvQ1pWiE,28322
54
- teradataml/common/messages.py,sha256=dbzg_XVhjICy4KQdLpaPUgK9QEGj-xTO6d8Zqzhsy08,17615
52
+ teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
53
+ teradataml/common/messagecodes.py,sha256=aWJ2Vgp485LobYvksJ8KcqMYIAtKxzHsRTX_eTlxA6s,28930
54
+ teradataml/common/messages.py,sha256=kqXjvmfjENQtA3ncA_HtKbmCMn7vDElzQewTY51DbVE,17903
55
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
56
+ teradataml/common/sqlbundle.py,sha256=wcA7Kwmv6Hy0tOko-k7zMgRm3qFar8J0EISGQhm6SsM,25217
57
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=7f0BZSVTCWRtJ6SX48SJ-Nd7QtsWOUvSltw9wWfXNaw,89118
58
+ teradataml/common/utils.py,sha256=ZsdMOseH2Dzf8o-6U42mnib2vY0FVPUEs8Ae7VfkgJo,96439
59
59
  teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
60
- teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
60
+ teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
62
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
63
63
  teradataml/config/dummy_file2.cfg,sha256=3m0tBK8GnKV4jVwmwmaU9plZDGL-fI-bWTLBGvU6kpM,44
@@ -66,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=8eWoeDmrshWpOmHF0ZbS6XBavKM5AYTQZONQUqme7UY,43359
69
+ teradataml/context/context.py,sha256=Nzc9viYF8v9tY-bcFbkofaobHfz0U8d-kKLvah2trTc,45759
70
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -82,6 +82,7 @@ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEm
82
82
  teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
83
  teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
84
  teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
85
+ teradataml/data/SQL_Fundamentals.pdf,sha256=N9dplUEwi-Eqd7LNXeC-j4T6CsOR6wxqzjSSOYUBmsA,980617
85
86
  teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
86
87
  teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
87
88
  teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
@@ -161,7 +162,9 @@ teradataml/data/clickstream1.csv,sha256=jBIkQJS6S8DIy2Bff4GOxC-nfSBSFzTNZBPZZvFb
161
162
  teradataml/data/closeness_example.json,sha256=oo5yYraaL95dYafGwLsxqauxbv6UzV77WqZTBrmBk3w,280
162
163
  teradataml/data/complaints.csv,sha256=8AIvzzvu-MTQOybNXhPq1dXhL9Pnelln8P_EktuEgA4,4299
163
164
  teradataml/data/complaints_mini.csv,sha256=CZlBGkpU3_WogxMkS-y19289VPtSA1_Z1Z-HRuGqYek,662
165
+ teradataml/data/complaints_test_tokenized.csv,sha256=cd66nK8vY5obXzRFoUklZow6VDfFeFZcOxuONTZ2Y74,4719
164
166
  teradataml/data/complaints_testtoken.csv,sha256=yKyhSZcS9zRrPbo-s05QJlrhf0aq_SYta4XB85Z5WXo,5045
167
+ teradataml/data/complaints_tokens_model.csv,sha256=rH2gm-RtWtTcAlt-ffBYkQXL7yvcgonFUaDhQW87i8c,11478
165
168
  teradataml/data/complaints_tokens_test.csv,sha256=qQp4t9-0CIvH5hYj3RFDjp81bII2M3Sw0gm_De8wmRE,4405
166
169
  teradataml/data/complaints_traintoken.csv,sha256=uK-EvfhRSPNXFvAOY1wPqRwvz28MJe-4G9y5DboJIuc,15718
167
170
  teradataml/data/computers_category.csv,sha256=9pV7pwdE65obb1tSptbjs_2HBAtHVNwE_6-pAB_Wykc,59745
@@ -172,6 +175,7 @@ teradataml/data/confusionmatrix_example.json,sha256=EUakqolq0Q3Iy2itpAXHDjdAOQ5F
172
175
  teradataml/data/conversion_event_table.csv,sha256=wAQh4lezO0FaslrxGdRC10M_TJWBIHW19UunBByu7Vg,52
173
176
  teradataml/data/corr_input.csv,sha256=yN8yIb7wktzmHQcEg9b9dBGQXREhhYddQ4vNxkbrlVI,982
174
177
  teradataml/data/correlation_example.json,sha256=YuVUAlILtBX_ecBLyv_VeexRd2pj0_7IzrNBTPa4vVs,217
178
+ teradataml/data/covid_confirm_sd.csv,sha256=sMeyZ8n-Rr2J2VIBhUk7BJN9c2X7EZGcH-dHNJaCO7Q,1424
175
179
  teradataml/data/coxhazardratio_example.json,sha256=vnu-HlxWL2mNillLBILkTZzfdrHqzoIZ_uvpXFQj_5s,1207
176
180
  teradataml/data/coxph_example.json,sha256=7D5kTyggIC5NqQS2ovMSMCCmGpcGQoMoQmsMSPakGLs,443
177
181
  teradataml/data/coxsurvival_example.json,sha256=av6ciraJe5zDHfgLFkO5aV_L7i9bLFICwhdWmKA771U,860
@@ -181,7 +185,7 @@ teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vf
181
185
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
182
186
  teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
183
187
  teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
184
- teradataml/data/dataframe_example.json,sha256=PMBl3s3eNuQ_kvPDTP5Zyzt8eAgdtLEa_8QHAc3N6p8,4005
188
+ teradataml/data/dataframe_example.json,sha256=JqOAAv-v-GDu4Z0MTxK4dJG51pECvJtS0Gt51x6jVWw,4707
185
189
  teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
186
190
  teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
187
191
  teradataml/data/decisiontree_example.json,sha256=6DLmN9BeqnR1-4GlZJz1DlBGW4wwsBNASLno9j22fzs,560
@@ -196,8 +200,11 @@ teradataml/data/docperterm_table.csv,sha256=Qyr_b5wPThIiDS74oAgRbZKfdmKsLlOPkBQ4
196
200
  teradataml/data/dtw_example.json,sha256=0jxKZFpJZx94jfvjhUTQwJQSGm9PA0QWlEnm2UTFmv8,462
197
201
  teradataml/data/dtw_t1.csv,sha256=7OpuvHUwmbv-Ylu88uMk9uNo81Z2PKgjKPqEzyRS5Hg,218
198
202
  teradataml/data/dtw_t2.csv,sha256=W2s0a0x2_1MxO7FRQz-gaF5oJC_TS6SJ3CNpHpQ_zAM,70
203
+ teradataml/data/dwt2d_dataTable.csv,sha256=xVmyaCULz_haK0hAVdi4U6UqfsiR_dgkL5UXQZ7fMqk,842
199
204
  teradataml/data/dwt2d_example.json,sha256=67bBR9l__CYN-RFdoCqxUSwqSv9rKr5sBs6S-1CE5No,474
205
+ teradataml/data/dwt_dataTable.csv,sha256=U6R4VyD2NqR8FvQewseZ2rAiSq7CJcwokr7-mTTTqOA,89
200
206
  teradataml/data/dwt_example.json,sha256=GtsNvqmrLUJU2WfvVLHfb-jLyB-mLCAbPC2i7L20RxA,416
207
+ teradataml/data/dwt_filterTable.csv,sha256=LrJ6CZyXjCn6uLH-2caCyxH73MyWA9GGh_2OdRakXSQ,47
201
208
  teradataml/data/dwt_filter_dim.csv,sha256=C7XddFAS_XHPJNVwHThgtSG8HY0CABCcGGEX2V8FOn8,266
202
209
  teradataml/data/emission.csv,sha256=MiYR3p8wA2JWqkszuIB55yukdE5ByLSI7SHADRa5mcU,184
203
210
  teradataml/data/emp_table_by_dept.csv,sha256=r1dAEq4_kazrr17k9V_A2Y6yBV8471SKRoV8NiklVy8,597
@@ -207,6 +214,7 @@ teradataml/data/excluding_event_table.csv,sha256=127t4i5xtm2Hz5FF3WT9Bx_A12jCXqP
207
214
  teradataml/data/finance_data.csv,sha256=qPcVOUI6EI4kaD0ZWqktmxOTEAjS2Y6d8mSlEP8wwzU,265
208
215
  teradataml/data/finance_data2.csv,sha256=FywSdftZ3ZXM5At4ZwYnL0XpmoItmMSt7l8B92MCs5I,3712
209
216
  teradataml/data/finance_data3.csv,sha256=lp_irRnY5SosrYzEVxW4VB07vP5dP1FgIEJesjkQU6A,2358
217
+ teradataml/data/finance_data4.csv,sha256=VKIELdpH1JK70YzRyPb3-k5aInEN5idUny9X8lcQYtA,344
210
218
  teradataml/data/fish.csv,sha256=ja2iyemvEDRmdnASD2eC-pUAMgzIVGEJVVSsfjqrvg4,6022
211
219
  teradataml/data/fm_blood2ageandweight.csv,sha256=IBigbrDMap4hDdB9TiGlalN8EYRE7EKeUazHyvldxpY,495
212
220
  teradataml/data/fmeasure_example.json,sha256=tSXRX3n-02WPiBr_iZdscslV6Bh_FHsDdoiWHRS3Dwo,298
@@ -225,6 +233,7 @@ teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr
225
233
  teradataml/data/glml1l2predict_example.json,sha256=GZJpQ7dWM188f1spjmItIN5u1f_VCFI8cAShl4tbhdo,1782
226
234
  teradataml/data/glmpredict_example.json,sha256=LbPzvK5doOjsamOR5cUSHpg6XU0X-I-yliV3hDFsoBw,1911
227
235
  teradataml/data/gq_t1.csv,sha256=_iGiz61HKIk2BEvGFp_1REisSHFKkjhF0m15Qte2RYc,601
236
+ teradataml/data/grocery_transaction.csv,sha256=4lrRGTYp4S5_wx5MW9fxFgpRaO1iR5HaJ24LctOxj9o,702
228
237
  teradataml/data/hconvolve_complex_right.csv,sha256=VCdYl0iYVXuZV74GKtaBGlC_3JsbZPyRI-7AV6PQ_8g,103
229
238
  teradataml/data/hconvolve_complex_rightmulti.csv,sha256=9gHNIVxZmGADCcvNT7FVC6MhV2AqmRrJu0Khr22g9QI,245
230
239
  teradataml/data/histogram_example.json,sha256=T-5SgDcbo4lC-AajDQ0nb7LbOzoqOzzmRC8OkXI3iX0,241
@@ -248,6 +257,9 @@ teradataml/data/ibm_stock.csv,sha256=nY85WYi9rtYlM5eStAKVRVPIjYAMN4fZ-CVSzbS6pL4
248
257
  teradataml/data/ibm_stock1.csv,sha256=GZ7woXK6ss4UYhKxWyjWiFitS46GHT2D6Cp1YjSu4Zk,17747
249
258
  teradataml/data/identitymatch_example.json,sha256=EQnoTmGowYaDveMsmufATtecWdF3jG-vsW5H6z6eT1s,553
250
259
  teradataml/data/idf_table.csv,sha256=dPVvU7hx1ELtkAxnGDJFGMvF6-lgXO0OQiPnD_zEbkQ,97
260
+ teradataml/data/idwt2d_dataTable.csv,sha256=zsgl8I2iBIsBDFB42owpO_A_stL4obsDQLxkuTLHDlA,62
261
+ teradataml/data/idwt_dataTable.csv,sha256=WNWb4vq25iCVsDhB_LjBgQcmFy3ieaAavJZ-2IKtVpE,145
262
+ teradataml/data/idwt_filterTable.csv,sha256=1Q7zbHfuxrUUDw2uSYDp2H2E6OPD2FuiTOvD8KQDU3E,113
251
263
  teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0Yc,2483
252
264
  teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
253
265
  teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
@@ -255,6 +267,7 @@ teradataml/data/insect2Cols.csv,sha256=A8h4ng_It3rOBwJoxr4LtrDDD-GdjX1vl5Xi7hwsC
255
267
  teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
256
268
  teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
257
269
  teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
270
+ teradataml/data/interval_data.csv,sha256=P4_ts3swAPXgfVl8eRPCo49nR1gb1rvBfpf-16Vbzog,227
258
271
  teradataml/data/iris_altinput.csv,sha256=1XTmOumWhN5Q9ZmboJoNsMdsXTaZwRXvR8w6gjz4DYI,18290
259
272
  teradataml/data/iris_attribute_output.csv,sha256=R5UejlCRJTceL6Ht9F3g8HJoJlLcf4CMjzXQRtGqcTo,2012
260
273
  teradataml/data/iris_attribute_test.csv,sha256=Yl9ncbAGXHI7sbOalOM2JzRIWPCLtMsNjf_YzGhbwr4,2929
@@ -283,10 +296,11 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
283
296
  teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
284
297
  teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
285
298
  teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
286
- teradataml/data/load_example_data.py,sha256=A-NtbmsBPwBQNa6XwHRUSCs32_s1FkurgT9q-Tl2AN4,14272
299
+ teradataml/data/load_example_data.py,sha256=6fEDd5l87SfzAy6clQTwBM7PkNYhjaiY8-2XLotKcPI,14582
287
300
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
288
301
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
289
302
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
303
+ teradataml/data/medical_readings.csv,sha256=VuKNn9bvFM4uYZ_h8RvUYIsV2lYa6FZhHkOnwlTrCnc,4219
290
304
  teradataml/data/milk_timeseries.csv,sha256=U0woD3Bs4myyFbYdUtlKNcomLAo45iSIJ0D44JyR74w,3498
291
305
  teradataml/data/min_max_titanic.csv,sha256=wu7CXqLRfp3SBKT4foFjFHqZLm6nO-C13Le6gWmQlXU,88
292
306
  teradataml/data/minhash_example.json,sha256=KKjXit6ed08c38FQ4oisD9_gW5xPzt_QHD_b6NPbuVE,87
@@ -305,8 +319,8 @@ teradataml/data/mvdfft8.csv,sha256=Bi9J1hxbuzvNBbtzNqZETvJlx6RhZb5-_tQNoC3WMlo,2
305
319
  teradataml/data/naivebayes_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
306
320
  teradataml/data/naivebayespredict_example.json,sha256=yYjv-bSl7iutKbZB9FIobbIYdv0PasKlU4IUlipkNQM,521
307
321
  teradataml/data/naivebayestextclassifier2_example.json,sha256=_NP4_5G0wt1eruB9N7vfl4wNKhW_CXIsGmj4DGMuIA4,151
308
- teradataml/data/naivebayestextclassifier_example.json,sha256=a1oGhGAwCR1xGjka_aqgU3pI4XBxXO6mIcMHUWP8c7I,155
309
- teradataml/data/naivebayestextclassifierpredict_example.json,sha256=AlriKIoyTO8v7WnZte3J35lnpRiY_q32vK6aBb5pWI8,492
322
+ teradataml/data/naivebayestextclassifier_example.json,sha256=gXm9VzYPL-QHZeeOWuShDI1tQKmP8DcUhl0CPVbR_mg,151
323
+ teradataml/data/naivebayestextclassifierpredict_example.json,sha256=7B2FwLvprVe1w3MKPj4LJmTrItmxA6K5rsHAZa7Ycfs,813
310
324
  teradataml/data/name_Find_configure.csv,sha256=lYVIn0ZrjDVqQCTITzW3Y5u77yofpWWOhvdKstHSyvg,380
311
325
  teradataml/data/namedentityfinder_example.json,sha256=JTHyoARLe05_zemppuXI_KPu_DzQEzOKLk-2wl5XWw8,354
312
326
  teradataml/data/namedentityfinderevaluator_example.json,sha256=7q3Vfzr8yCe-B0taXNlljn3pkap5NP04ayM2V91MFoc,260
@@ -346,6 +360,8 @@ teradataml/data/pagerank_example.json,sha256=1DhseHJJhzxjyE6hukmBVyXkEN6EVNO3K1w
346
360
  teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-EujTvNk,3000
347
361
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
348
362
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
363
+ teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
364
+ teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
349
365
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
350
366
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
351
367
  teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
@@ -357,6 +373,7 @@ teradataml/data/production_data2.csv,sha256=Zo3VRoi9_sR4y10nfxNznw3CqMzWQQi28ROB
357
373
  teradataml/data/randomsample_example.json,sha256=TNbECMoF7cZq1kIIbVrVyzNlTBxrEPwCo30O2yQS878,800
358
374
  teradataml/data/randomwalksample_example.json,sha256=v9liCFqTVqNiXnpqmvC0RNWyUdZ-Tx5Et2FwhuVAOls,128
359
375
  teradataml/data/rank_table.csv,sha256=oazTlhOAA4C9rNBcHuJa7gOmftO2vmf3bevxZC7jeJw,100
376
+ teradataml/data/real_values.csv,sha256=UJCbvU6Ztm8k4_AA16MCgtAyQTBvmrXmAbJ2ZkT9n4c,444
360
377
  teradataml/data/ref_mobile_data.csv,sha256=mJcSoKQfS6t177wq60ygMXa1LI8O9B62vVj9PjhNmeI,106
361
378
  teradataml/data/ref_mobile_data_dense.csv,sha256=Bm6C74aeHApPaQr7KeagYVi8tPJ3mQqW0EdAp01IroU,63
362
379
  teradataml/data/ref_url.csv,sha256=nXDagdEJ7Hn94hdss2xa-JbHBMbZ8EmekrQJuX8079Q,850
@@ -374,7 +391,7 @@ teradataml/data/sample_cities.csv,sha256=4Gq6zh3bkMqxIvb_Y_Zt5bAZqzSvUBMbyzD8Wez
374
391
  teradataml/data/sample_shapes.csv,sha256=TsewEbNMysCM2dVbdn81fSBRQCmZ2Vo99izJ01Pk5sk,2672
375
392
  teradataml/data/sample_streets.csv,sha256=_LJeoG7nH6wHGsQFldOn-O3a2Morm-Hg69o0qbvpG18,123
376
393
  teradataml/data/sampling_example.json,sha256=pnB1Lzwt5baZIBDU0sMLKqnGDzcOoVQ-5X26PZSboDs,269
377
- teradataml/data/sax_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
394
+ teradataml/data/sax_example.json,sha256=y7hnQ7NeCr_bgGHLOzNKUKnaVzDUNSD4J6skU5FoPiQ,326
378
395
  teradataml/data/scale_attributes.csv,sha256=3OC7BRqhQohXO9OYfjyzYY_K1G-gs1Y6KdMV1MmONRk,37
379
396
  teradataml/data/scale_example.json,sha256=2KJEsG7CXoXkQD5qT_x9BtmdD1vkRwa2aij53r0VvSs,2152
380
397
  teradataml/data/scale_housing.csv,sha256=yD016RxlF2ldgv6-C8z-liooe_icioZNxiFEjQjRQqc,363
@@ -411,6 +428,7 @@ teradataml/data/sparse_iris_attribute.csv,sha256=HK5JnSw0Z0h_RWSiyhZQmd-v0tftDDF
411
428
  teradataml/data/sparse_iris_test.csv,sha256=oaekgs-9pgabMXG4LFOK-hFvsUKKGaSsQfwiEKDygQ4,3260
412
429
  teradataml/data/sparse_iris_train.csv,sha256=ojGhZQAscHKcv3rciUqA2Bptr5t2qFs0ENYmghYE9Zg,21708
413
430
  teradataml/data/star1.csv,sha256=QS8CfUfCRbLV0mwpTp3d_Z9yxl_7kivC2gu-Bz74v7Y,147
431
+ teradataml/data/star_pivot.csv,sha256=dHLEwmvjFib0Hu_fmQK716kJNzGpmV_ikw4L2x62uAc,212
414
432
  teradataml/data/state_transition.csv,sha256=UFLpdy4Z2fTTdXOw1t4iBOZKzWdm_kYneMQdYrQEYPE,99
415
433
  teradataml/data/stock_data.csv,sha256=ViyRqN2dSi22TVi1IqSP8Wl33k4FHZNBcnZFGuy-m6Q,1569
416
434
  teradataml/data/stock_movement.csv,sha256=LAINEFLRqaAVTl5iB1zPK6cENtSgzgwmsoTXUkG7oSs,129698
@@ -430,9 +448,10 @@ teradataml/data/svmsparsepredict_example.json,sha256=4ZI9vcMSC4gdL8pyeB29wm3WOZU
430
448
  teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRzBCOjMBHmv6_TLGCw,156
431
449
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
432
450
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
+ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
433
452
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
434
453
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
435
- teradataml/data/teradataml_example.json,sha256=H1cfD6eJH8uv8R9DWs-00TbIEQeEN5owExEHhWyko6M,41250
454
+ teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
436
455
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
437
456
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
438
457
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -457,7 +476,9 @@ teradataml/data/time_table1.csv,sha256=8BqrLSZ02WKQuYk3iyFOjV-n42iKjssNRsdZUdZkd
457
476
  teradataml/data/time_table2.csv,sha256=kknBm8lyO1bS7dIig4xoMvDKmHCuj1QU1cY45snWv18,357
458
477
  teradataml/data/timeseriesdata.csv,sha256=EF_JDM1aYDhrX2Qz1kxvJwKobB-7xv9e-CjPv2EiUfA,29650
459
478
  teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6P6ey_uXuCMg,2824
479
+ teradataml/data/timestamp_data.csv,sha256=KcV3J8qNfj2-EwQlNaG9uGkCTNjBKE21nSfIAj3Dgd4,281
460
480
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
481
+ teradataml/data/titanic_dataset_unpivoted.csv,sha256=NsU8OJIn6bmCCgmOx4lTy7-pxTqbncADzXpWgrqEhI8,350
461
482
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
462
483
  teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
463
484
  teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
@@ -467,16 +488,17 @@ teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOj
467
488
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
468
489
  teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
469
490
  teradataml/data/twod_climate_data.csv,sha256=hjKs1evHoAWWEiYVcncyZvwkDw03M_2yxE5QF4-Qipw,4310
470
- teradataml/data/uaf_example.json,sha256=OWD_dYyNWOSeiAIqEa46lyIKWdebitwrg5mwGQ3mDSU,11355
491
+ teradataml/data/uaf_example.json,sha256=HFGX0hQmsEq2VxFP9By-kVWMErk4qhzNpvFhNuwUQh0,12461
471
492
  teradataml/data/univariatestatistics_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
472
493
  teradataml/data/unpack_example.json,sha256=5-v3zdRXoSgVuQbL0sQTQ-n2d-KhdFpRdjm83DhWM8g,186
473
- teradataml/data/unpivot_example.json,sha256=luDCJgs0k5uf5HXi0d4ZSMR3URsZbuSSR0ywI3cyH7M,185
494
+ teradataml/data/unpivot_example.json,sha256=LJP--etfQ56RASpoQ8Ozvgi2AMpTl6M5eKmMi5OhKTc,566
474
495
  teradataml/data/unpivot_input.csv,sha256=80W9AQhe_5-JULJA_SJXJbi-lV-6pkfOJ6bygb_oZL8,294
496
+ teradataml/data/url_data.csv,sha256=zIpqkGUxPsv-62ncrjvM9TUf3l8FRMZTlN1I9N1j3_s,536
475
497
  teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLStnY,1056
476
498
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
477
499
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
478
500
  teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
479
- teradataml/data/vectordistance_example.json,sha256=tG87HwgTSyUXOLdNOfWJExrSMIhtpm6c4T39X_Od_mw,585
501
+ teradataml/data/vectordistance_example.json,sha256=1E5xNeC7lQWScf_HP6Nj_DMPH23U-aHHBzhQqhRnomc,665
480
502
  teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
481
503
  teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
482
504
  teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
@@ -485,6 +507,7 @@ teradataml/data/waveletTable.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H
485
507
  teradataml/data/waveletTable2.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
486
508
  teradataml/data/weightedmovavg_example.json,sha256=Gc592H0CHcq9f-2we_9RvrBJ9E9A8_HD5f3mHnm4n3o,153
487
509
  teradataml/data/wft_testing.csv,sha256=2g56ogivANGHMrle1MMfY5OGQeHwxnox1inRl88dPlI,422
510
+ teradataml/data/windowdfft.csv,sha256=XuHRQt098Go1vaf85z-b9ITr8AQ9Y_RCENlFfSY4fKU,361
488
511
  teradataml/data/wine_data.csv,sha256=ttv5ymiLcNmi678dPxMSvKd73ZuQ-vwkzXEkktzjfQ0,89796
489
512
  teradataml/data/word_embed_input_table1.csv,sha256=47fOsMTC4GC0-t5QQDeYqnx2kwNkxL73HEuXf7ZB08U,220
490
513
  teradataml/data/word_embed_input_table2.csv,sha256=y3OxXnCf75fVchZ5FpSyzymmvk8HJeodcwupOqc4JIk,95
@@ -558,6 +581,7 @@ teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZ
558
581
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
559
582
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
560
583
  teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
584
+ teradataml/data/docs/sqle/docs_17_20/CFilter.py,sha256=Jx1fEeAc4NisKHr5V4zeV5D9syLZ-ZeWmB-AjRM63g0,5626
561
585
  teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTGdc4uwJsFoZiDkCXfqvkgWIGwhGoOs,3673
562
586
  teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
563
587
  teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
@@ -584,6 +608,7 @@ teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMd
584
608
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
585
609
  teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
586
610
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
611
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
587
612
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
588
613
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
589
614
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
@@ -596,9 +621,10 @@ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=V-dnV9Oo_yCyXUe
596
621
  teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=RqX_iobIa9vm9f5hb-OLDO4hDTIRyvZXlEQHyyYT7YY,5425
597
622
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
598
623
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
599
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
624
+ teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=qS_sCHXFizud3G3c6f6a_0ESvRsM5Bz_B0pVjy1WPYs,8385
600
625
  teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=IWNif30agfXyuPdeLvNtwmlQm_iEfYKkWz-KM391ivQ,5465
601
626
  teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1FpgN9Au10zKeIh8,5376
627
+ teradataml/data/docs/sqle/docs_17_20/Pivoting.py,sha256=N9f408SvUn3bpFBeFl_3GbqhIfwY9Xr_bwpLoLZ2nt8,12815
602
628
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
603
629
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
604
630
  teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
@@ -617,6 +643,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
617
643
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
618
644
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
619
645
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
646
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=zUr0JXV1hMhHzm2o7ihHiK9g2qeHC3mI2pW7tMI7o9A,8902
620
647
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
621
648
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
622
649
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -624,13 +651,16 @@ teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPS
624
651
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
625
652
  teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
626
653
  teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
654
+ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPSJ7UAHVJORzGS3P--9LoDcOs9pd9Yf8,9402
655
+ teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
627
656
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
628
657
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
629
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
658
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
630
659
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
631
660
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
632
661
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
633
662
  teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
663
+ teradataml/data/docs/sqle/docs_17_20/Unpivoting.py,sha256=dl8Y7lkT2Dd_AuV6P0pfBdviYFZddu8z1odRlooheIo,9080
634
664
  teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_dEZzKK5rbNFcW243DK1g79f-hE,8259
635
665
  teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUbFdorbHn4_s55XorIq7I,3455
636
666
  teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
@@ -648,63 +678,76 @@ teradataml/data/docs/tableoperator/docs_17_05/__init__.py,sha256=47DEQpj8HBSa-_T
648
678
  teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py,sha256=K4BZEoQKBrA0sXlN1gBok_l9DllROzXV6bal71zOZkE,23570
649
679
  teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py,sha256=uwP3j9tRO38Bc83D4ZFtD-B49gX3xP9yxi4XZNjtgFM,18554
650
680
  teradataml/data/docs/tableoperator/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
681
+ teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py,sha256=mGzV0LYuWIaOk_Iq-QbgTxGphZZFX2b_ekepan_rvPs,4956
651
682
  teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VLbDDkvsN3ocOOgmnQmAMdUuhYpv8,25369
652
683
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
653
684
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
654
685
  teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
655
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=N-BB1qSRhO2xS3RqyVYs9R1nx4NJeN27SF0hUBGXbOY,8045
656
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=UESO1WnfM25AL_rQ1-2GTvwgJJAQADfsNAD43qCk7jQ,16782
657
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=x0LYzPOIHAE_7Q9DNz-fFoLjF3vHujdQvPdM6XVMci4,6185
658
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=Lq_17JlqHrjrR4sN9EWrGQTVAMC_dbrC2WHSWAZSOZQ,6906
686
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=-s0sm_E-IS9PC3igu9jGIl_ns5lC_kOk4iNWQ9IrbhE,7691
687
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=88KujTMVra_Bb9SSyWmecF2QA3xzqUwwYNdFVvhrwFE,16782
688
+ teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=KPRkOCAeQysFQO6HEjhJpiB2PlfCBf8tqkw3hM4S4Gs,7612
689
+ teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=xwnoDwKQ1oWJ7OSiJmMLO-qLA-ppgl5zSsPJ2_ptvi4,6974
690
+ teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=WsGyT_F4USv6ya0ROTl-YN0rq4oGo3XEpIQn-WSRTUY,12426
691
+ teradataml/data/docs/uaf/docs_17_20/AutoArima.py,sha256=Jo8DtwfR5XPcKnshD94NRUMA_7z8feGpnk791zLAh4s,13683
659
692
  teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
660
693
  teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
661
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=Noku5_OeqCOY7s-pvNbcsnC1nx_fQSLEwp0uhwOaLU4,7950
662
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=Jk2p5D76cL33_lV0oLYcWKsgMEH8FP1xiZDTbav1rRQ,7594
663
- teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=8vEgf4Mc6TQuFwudUMoOYbWAuLvou2gvoyEvxDqNfQk,11016
664
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=PYA5QVi9BOjTOyK23BImYTMOZUJEnGY4JIoScL0sJfc,10307
665
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=n2PSxPFKoZ64HwITi3WGnzQx2CHKrMQ-ztrAmkQwl-o,8393
694
+ teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=xrQZwpNB4RzxujJ4UTuCvAMNCw8EaMX1J5HwByeD85k,7994
695
+ teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=DF2uVAREW13rSOd2NScIKb1a30LISeFv9CSO_oBk0Xc,7605
696
+ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0-HlJC3-0Op6p4WTtGs,11093
697
+ teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
698
+ teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
699
+ teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
666
700
  teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
667
701
  teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
668
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=yBlLiQqoYhiBDW5ze4Ghjwt0iuPFSuudxTMDe3qxJJI,9444
702
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=AyinWi8Lehd7BgmeEpKKw7QDnXDJMVwQhWlAJDE0aqo,9452
669
703
  teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
670
704
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
671
705
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
672
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=fHNNRwhDVUh7ZszoXK4NH0-ckRJzVO1fqnSEFuvYRGQ,5872
673
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=9fw7rY0xKwyIiwMcqJiAOunrZgMvWvj2uzuGGIHVFGA,7873
674
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=PuYPtJjQQzAra-HY7qIKznu9srtQwdxsiViW5osiJVY,9313
706
+ teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
707
+ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
708
+ teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
709
+ teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
710
+ teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
711
+ teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
675
712
  teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
676
713
  teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
677
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=9X3y7YZHgNoyEUc8v5m1UVx7ezi86K_HNSsnmDfiLwE,6037
678
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=rODhub2j2L3S7D3lWRADm8gBehTn-65Z86jnw5Rq9e4,10057
679
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=qfWNhqwCT8B7VabcmoamxUD4I5BBTyC60WBL_tv_aY0,11109
714
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=yqDiMlYPAeKgQ6aflD-nEuQLwPddqCjzC6VN7t2Ll_8,6036
715
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=ANe0_6uaiuLsRgGt2-FRwofirq8nxK2OnNdtJ0NuTCc,8923
716
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=7VDJCyPvL4jXaaWeO9iBk_rMCPYoFPLU8zb1m-kcFZ8,11096
680
717
  teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
681
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=ZtrhFHCO6ki6xhvDU_RSESiqTbEbe2wKdEZ8wWOeoFA,8711
718
+ teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=d-Syxypd40wtLppuvq6QEW29LOo8nqqcjXMDjWy-sB8,8437
719
+ teradataml/data/docs/uaf/docs_17_20/IDWT.py,sha256=tQpomLX8hPO0-moPKOZfHYYh6Z0fGu7U5OESnkMvq2s,9846
720
+ teradataml/data/docs/uaf/docs_17_20/IDWT2D.py,sha256=X1HKTz0B5QTUr7LKC_F_Ai8a2WSEhlImKX-HegW-lI0,9506
721
+ teradataml/data/docs/uaf/docs_17_20/IQR.py,sha256=TUhYaVU8BTbUQLrUil_cKWsafkNWZgIhm4Fdudd-L5M,5271
682
722
  teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
683
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=8ZbWkcJQyMuIOPc-63X9MDyS7QkxkBfcdn_wFKcWk4o,6343
684
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=DCsazuWDkRtEeUzCFzXs0dTe1AHWval2xCx1qVXWCrA,9424
685
- teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=AF6_5y0beT_s53fRHg3TiRmVCgDgffbVwtmC-x6g8HI,7121
723
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=54El1YgvQK79jDiNYtl5k1SMiIP5QrsT-8ZpYQfS5dE,6353
724
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=Y9w5SeANPADamCE85lbTy2sU_rXxLzZozZ3rFBqCm3M,9444
725
+ teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Kfb11dv1YhAVXBwQ4FwQrIF7QuTBMKKxm5SAMUZXYhk,7123
686
726
  teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
687
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=nNGMQP0TjXMn_rboSUFnVPIuR2UC0o-BTdFCqnaGepI,5867
727
+ teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=6C9efeXQIRjcrnAD3stwvXTsAXQppxroZxctqLFbzsM,12242
728
+ teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=-A5so6qYHsesJkRmcElL-fTgu7FAFJOkASLE0KCVET4,6161
688
729
  teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
689
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=xNltFshem8nXYHRgxmqUaRI3HeaxNYOhkY1aQ4JhulY,6628
690
- teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=jt5ZatO2GjwvxtBubf5tJB30zxEmMpfEz7k81jvRE8g,9864
691
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=7Gdr6orIAbwyfPkhZDGqiw5SNCxvs69p2_c6kzcmrV0,8571
730
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=2ShZR_0uqtTeoR0_fP-eQamuw2fINeXJA0gYUfDTIhw,6626
731
+ teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=LT7FiEIFgF59lBgb6cAwh292b0cX2LzM_TXTPHj85zI,9926
732
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=JfZXJqumaS4FiJLuWuxX2hW-0RL1RLLZkPEpwZQ0mSA,8585
692
733
  teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
693
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=PATwrXSyvJoq7l3jxJ9dvsUvYqWcfNeCx7L8WTs-OoQ,8999
734
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=OJ8V2lo9G99VwLZ_SVd8FHv8JzDooSR-E0VinDw5Ddc,9416
735
+ teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=VbxA0cJLpaayJxFAsifEjQgkNwukTia2vbixOEdRg14,9794
694
736
  teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
695
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=_Lc-2ROoZhLByZFDzFhRKvzZ_COtGgw1HWH0sflc8GA,6565
737
+ teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=Nx-DmS3U46MFu0Twr_WJimaSa8fXM0yaaJWsSz0WPbo,7275
696
738
  teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
697
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=LDIg0hSbAz2LPyywY9MBzGTGU-Zq9ERhhqGodAF4sQY,7475
739
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=NgGEJvjIIctWh_pm7acr00WjD-c9FpfxFi0arY3epJE,7485
698
740
  teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
699
741
  teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
700
742
  teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
701
743
  teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
702
744
  teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
703
745
  teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
704
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=UB0fT3Otgbex7ttpOSg1dYWHBDxBdXVX7MgW5gf8ZDg,7474
746
+ teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=wR4WdoR4zNfza1w4BNeeK7Qdmz_KvgnEYJ_2rfULpm4,7544
747
+ teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3j2CEd3SsQuCp31Y9QQ6A,15374
705
748
  teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
706
749
  teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8SsvxpcRv0hXD1zi0,146
707
- teradataml/data/jsons/paired_functions.json,sha256=B9T9Q8T9OicJspTcnid_HlXnXh0cRHCYTYMYJ_cUyaw,9496
750
+ teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
708
751
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
709
752
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
710
753
  teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
@@ -819,6 +862,7 @@ teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR
819
862
  teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
820
863
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
821
864
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
865
+ teradataml/data/jsons/sqle/17.20/TD_CFilter.json,sha256=GmljbjUsiPrinKRjgU29BFvndoo060T_tA8KSSHI2S0,4200
822
866
  teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=S5iSTpkJWGO07FkMlmv2KkRtkKcAt8GMdIkJF4Vt1Y4,1761
823
867
  teradataml/data/jsons/sqle/17.20/TD_Chisq.json,sha256=qL5cuRF06PBqkOQ82PNX-owsIFqggK34fnt0l6buHGo,2226
824
868
  teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json,sha256=bzCU-Xr87pF0knkcVxaXLRTV0bOVnDsft-PmyK59zRY,4859
@@ -842,11 +886,13 @@ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigc
842
886
  teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
843
887
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
844
888
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
889
+ teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json,sha256=aKa9bh7TVCavRYfE-uA4j3ckLkoNvNolE3q68ajcU30,6391
890
+ teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json,sha256=rG9eLlNyWNpIZSWNhj-9e5eltM7JH-sbabwXi564IP8,6938
845
891
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
846
892
  teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=ybn6aYRmo9dkBprs27ol8c6D4gxpJCLv8PuRIVctp1g,3458
847
893
  teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=rWq7tvhrOKdvsD97rrFs4RglPOC-JdidCunKAoShZgk,2708
848
894
  teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
849
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=1huR_7WgqbvjJvuMhGXtrVjVdF7runEa2Iu-aYFUUKo,14584
895
+ teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=Y44hitYBAMaGHAWBdHQUCJ4bAoHC2Fo35GjN2qrEQc4,14593
850
896
  teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json,sha256=le7Zk4oGzqZ1x3rK26HSNGqo4XWAHEq6EVk2zITkGsE,4564
851
897
  teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json,sha256=v11JoQOEK0qVUdBvqaqyzxwMNrNqhcDEduoxGRDyX_s,10628
852
898
  teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json,sha256=IkOOnnFzYkU8jjUWDconokmeGE1YE-hXBXHAMS_Nk_g,2364
@@ -854,6 +900,7 @@ teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json,sha256=1HHCS-jhwSStL
854
900
  teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json,sha256=Nq0xByI-gnrR5ykcgIj5Drjk1zO4vq4D5BUD2_df7zc,2701
855
901
  teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json,sha256=4SRXsKo0SsKjTeRatKdWITPcI9Jh-lmbDN5sin3o3Vc,7881
856
902
  teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
903
+ teradataml/data/jsons/sqle/17.20/TD_Pivoting.json,sha256=koFK5RqAL3jgl8TXon8fA0cfmUlZtMolwyIr-MwiybY,11896
857
904
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
858
905
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
859
906
  teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=C_ZGyq9pZb9HPpm-TEz2bnX_Z4vGzFo7RcVMgyu3_q8,4133
@@ -870,15 +917,18 @@ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5
870
917
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
871
918
  teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
872
919
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
920
+ teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=lievgkOWQII4bdQirHXo_OGFuexhTAocmV-SKQj5Rqs,7928
873
921
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
874
922
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
875
923
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
876
924
  teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
925
+ teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
877
926
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
878
927
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
879
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=uBK2ftzgYog6d3jGIP3JQXnbF-7EakupvjTl6xlvZEM,5925
928
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
880
929
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
881
930
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
931
+ teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
882
932
  teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=ytRPvQhDifsUCRS9MzPifqizyhlOh_DscvEGJ_mZQsk,6415
883
933
  teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
884
934
  teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
@@ -888,63 +938,79 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
888
938
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
889
939
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
890
940
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
941
+ teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=yknTTt9x6pYsXV_L9C5caqOcfxTCCch5cMqowbAI9hc,8886
942
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=mf3S5Q2ZlvE025yDdPkkWJ7zi94q4diIPs0lQwCWMao,9937
943
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=HBFTmnlbAATu5xUt9ztByZsB5ka6HP8Z1hQ1PUmlViE,9841
944
+ teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
945
+ teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
891
946
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
892
947
  teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
893
948
  teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=RxlbMg0c2MAv_SweZL6rB7Ew34zSdcJxF4lgxf2N4L4,15256
894
949
  teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=DJu_Ux7VQV9EXIcuCSkc3B5m3690VdK7Pl6epHDgE30,27897
895
950
  teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=dofQigRkF9jKyYRO9dOQL5jKBwd9i4h02rs4UYBJkzM,18115
951
+ teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json,sha256=5tooGwxALY4n13sIVcUD-JG4vJqjcNeAkmhxQk1yMsU,2224
896
952
  teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=dXmnLi7pXayTjeZEIeBRCK8ysdmdLiXy8iHZx_LXdCM,23674
897
953
  teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=I-526Zymf3LdRZw1ojfD3MAZSqxkXD9JW0rs7BvOjRg,19158
898
- teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=POpdthnCbPHsKKTdj_CkcPPRqk5A_96cWN_yt9EWLdQ,6793
899
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=GdNukEl5Pw9Zd-7yKtNm1shTNztDNq7RqPhbJ_a0Lqk,25827
900
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=iBosTMDcyDUheKF4BBkZjoT4sg3b9WGo9k5XtZ35dXY,4636
901
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=LR7R1GJZF4Y2hrzV33nEa_elDuuqolBTu1i9FZdXi3g,8981
902
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=pnmN870DVtfmftHGWkAevTBjScdu2pQPALUVS3lz4Ic,10823
903
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=nttsu-3KAls_Bj3Qm4F0yD6lrvGXb4NhH8TSZv5l5b4,10730
904
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=Z0F-eOSJprRa_wuD5ojR7EfzP3bU2noP07vNGqF9JVo,4762
905
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=CsmtBwf3ZqZ7t-9nF4PHZzPud5TjHgqQ-n--ibRqHgo,8019
906
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=ujrK0Kpp9elbTKur_o6SOW7-wjuHaNAg0QSz48-Wmf4,4126
907
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=LEwJHCuC5-v-yvKHBiVxHZVvSMa1NMaPM-zRqEynsKE,3140
908
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=K9UVwsmUDNzosNKoXE-mqkOK16wuPpx92GgcRoWsE30,6224
909
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=ZxJfO2APYywfwDcdlYDcYFged5fwQdC786y5NBaRSCE,11353
910
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=hBt9lyUvjK6X5nu4Bf2s7NYwweC0qbuLHscXhmqr44Y,9149
911
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=omPVu4fFETeWQowNqkNiWWN3xSvRnX-KAhtULyM3ptQ,7799
912
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=VGiG_dbdRbHAjt6DqtvU9YTSIofOJy5yla5TqvYSLw8,7693
913
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=WlrAJpViFPK0f4qeQSRfQ1_D1IaHARJN48S-SGh9FJ0,5225
954
+ teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=sdCp6-xPkCTHyCN96bAVR6xivoAx3OC3oWPYHUBLq60,5952
955
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=tB1Ho7rq-yl3LEg0I0kU8njMobY9vNJgYMuH5rauvVk,25944
956
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=q5vLNz2QV6v1hljeoQs0Q7H7EbQRU88CuCxlv2ZPLr0,4616
957
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=7a3LWdfZfT6giCncb_nlojYR4Vfb-9uSq1IQedQxrWs,8947
958
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json,sha256=9WACTSwOqviy8eMaEFqfQSFu1h_-SAPfsCNqHf66JLI,17763
959
+ teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json,sha256=eiXVh7EwOfpscuAsNiv6PkyYUMwKWyT942qxpaQ1OBQ,20464
960
+ teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=Gt1m747wMwTYxHIHoN-Dn2o3Nf0RTmjmG_D8cQHLA3g,10803
961
+ teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=SYgMKxZg7t0eeFDdNS-QPxvybbXAkVs9ZShphmi7qts,10714
962
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=YCLN4ubYzIC9gwdMRQoi5gG9xpERfYp-yb0c_BGhBVk,4825
963
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=68r9C58FCUdHL8zygFzvuCVhfFBm__2Z6Fad7Tdn9Gs,7990
964
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=R26aQVFQIh_uG2OZe42n7uhJqYH1QUDKEYtSyUZrz2s,4117
965
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=Brbl68-J4n2KP3hC1lg33GZy3i6s7bhR1RBOjop9iYU,3128
966
+ teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=MFcD3UafWtVoiy6xu834Ru-cjvFxwnvoFwcqHOlny9k,6213
967
+ teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=_kpih5WRCU5UwZrYqI8lZM0ra4TQeyz7YlmdkqdYCpo,11345
968
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=foL65oFgS3b8ERqXA5K_oMBusoVMT1jUd77dZ3XN73o,9129
969
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=c7Bd_1anlfw-ZNbgc_L7KJWcUS8VQYGv-iL2cZ-T6mI,7797
970
+ teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=s1RrzJ_vdzoEip0DP9fr643D3KYt8rPc4kLnKLN-vtw,7689
971
+ teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=qMPAYUUeJMfeVUwyd1SsO1OkHZgrwwLtWzGYiZUh8ig,4422
914
972
  teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=HRBGm5GdjG0OYiYEuFKZEfm1t6DKrHn3Pv6BqD_9GGY,5371
915
- teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=Y8tpHFuXRcv2lStk9eTVLVU90qYrcIMTqe1YpVDkJnk,7246
973
+ teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=IqkbCHGZDOEdG6sno00CvdgdjccWEnsvnH1r4qnITjQ,7234
916
974
  teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=vkB6WUS_J0M2XQMoMGuQEmJ2kl6WeDeDpApWYhXodGg,5779
975
+ teradataml/data/jsons/uaf/17.20/TD_DWT.json,sha256=Ib2IZdhhhK4K780FGndUzuvQavH0ozhbOLhT49nLNUY,8872
976
+ teradataml/data/jsons/uaf/17.20/TD_DWT2D.json,sha256=mCVdd5ZkrU_IZsW-RtQbMumLx51rLX95nMbT2i5573U,8343
917
977
  teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json,sha256=yTB4R0SWx8vc3aF9WuWiXulF34WPfkpFu8KcacYPXh8,2149
918
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=3VHVfv8y9uXktmjOBCG44uJpvT8qjI3LLAgKGrU74f4,5886
978
+ teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=9Pyz-_T5rOYLA7O_GEpkGQAXASJMh1F4BudZwcjAxoo,5873
919
979
  teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json,sha256=LOkwRmdeLe0FumnhK5ftO0KRs9bxaM8VYoX8YFZgr-o,5294
920
980
  teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json,sha256=7Fo-52k5tu6RHnvT_9lTmubRVEuX_98ay073FSHN98Q,4749
921
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=Ou-TCd5RRDIoB9i9RjR9WMccSNj44SWZ9TQiPJiqBB8,8961
922
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json,sha256=Ja23hGQxoAydp3XQ4fYcAwLoOubUXTaTuB_WeARrelw,19472
981
+ teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=0W7OYQ0xCnfmqRH7cUQMig1hfHq_s-VcENaLyWXBsR8,8741
982
+ teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json,sha256=K1n7gDY9ck9a6ZcX8x7QbeV7rfL14xYCX5oU3j1Abho,19428
923
983
  teradataml/data/jsons/uaf/17.20/TD_IDFFT.json,sha256=BkBgjpBBZpp6qSMuhw2YO5kOj1IKvJqC9RvHry5QBk8,4011
924
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=YKIQ3O996UyFR_aGMFsH5YIkisrD4grXW450HwqYLLo,6660
984
+ teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=nfR75c9m4Bvk_Xi3OJSQWI-rvDO3u8nF8T4NmPJ1aDc,5954
985
+ teradataml/data/jsons/uaf/17.20/TD_IDWT.json,sha256=42MIoqKJJ4CE6YaUek_vEm5nomtCBWa0rJ-l2Qb-SyY,8392
986
+ teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json,sha256=2bueR5bFwzpSYE9sPE_2lLFsDzqDFJvECoDg-iXt6q8,7851
925
987
  teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json,sha256=RATfm1-DJtKXXSClyYC6QcSfuEE90SbGbq26lZ_rxdI,4325
926
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=iiTWO-H0IKeQJVkKUlhi3eoV0MgDn8B-PEc39iwVMv8,12171
927
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=3BYsHsKiUH7pVc8r2HSNDJpodj-azEGg9tSjHScIJCA,6148
928
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=vWiIp3FtYnbuGjshHUOtRTyK_CAuJx6sjBJ44wkticw,10516
988
+ teradataml/data/jsons/uaf/17.20/TD_IQR.json,sha256=gieHUb75US9MUqWMXeHbOhVINIfG0VDLA8Zqma60cUU,6073
989
+ teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=2uPXJsyDAqUjPF8Qf5H1Cgb8ZPiK7ucOR_kUE4BxtP4,12189
990
+ teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=aItXFIG0e32Qj1U27EKP3Ut69WBfxfy27dkXe1xnDUs,6148
991
+ teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=LEckadtGdcQvxD9oXqqLDHEy9zCQDge26sOk2LlNGoI,10538
992
+ teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json,sha256=x8e0qIl1zjMnFpd3t2sNaBQo6mqH5pTNpfVo5oqR1zQ,10506
929
993
  teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json,sha256=KsmRSYhBihA7uKRtjlZ2WAO9YHUs6eYO3gTi2cWBr20,4196
930
994
  teradataml/data/jsons/uaf/17.20/TD_MINFO.json,sha256=X2XxLdYC-oTQ-syXmqPxknzVsFGlpyUANqCyW-qqE9Y,4267
931
995
  teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json,sha256=hZpLpxritCt8ZrnJbhm0MuNKo9molN9aS4CouBBQJ_M,11978
932
- teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=Gug8WIeRIb8xuDCQCee34LLGuFr_U_a6dWbGQ267HlU,7587
996
+ teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=5CAN0HOaWGxQ5sezILWGWIQBaKBJ6UH_2JJYMuHNS_A,7072
933
997
  teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=Y2BejE5qpRqrjvqg6wM9-rHQtTlThMzLuMMTt5NZwSA,7070
934
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=oHUi8jl23EkxJBT_BbJ7FHpdWaVIcbUMVaxYM2g2fak,10486
998
+ teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=l3FV5T28DvSUvkoMtvsuiBxlswPi5NcduecoTgB2DbM,10531
935
999
  teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=aJ-3gSBvL5ZP-X2_PbosnSbQUHAJhkbr8nq35xsD8us,5080
936
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=c7uNyNzpqLYUbDk5taP4HEA8TIwk6RgSgKBDTZ6fl5o,10544
937
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=blmIxyPYHY6dHJ9ocaxYYCEU8LVtXbGsXsnih462jmw,7371
1000
+ teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=R_oJNYdC28fRSdIhNMLRc2yGalBZRxQFrGluqmJ-Yyw,11684
1001
+ teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=osZ-Q1fzRdR-hDZDzUEp-4UavAbvA4FkOacMAx_PrZ8,7903
1002
+ teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=U7r9HaGMYzOIhrMeC8tkXZLOLIZ4dD9IhzTk2avLfpk,8428
938
1003
  teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=L0Cms4EvbgdMiUctSKl8iPTYL1UDt8AwImCTuPI3hEU,5600
939
1004
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=HsrXUJttjDR6vsbzIjxcD_3QaOokL9Jo-Vlna4KIvSk,5259
940
1005
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json,sha256=idQxesvWN2q6HttfBEkejupWIumUutpTPqWsnIkmQAQ,4604
941
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=UYXbEzmrjvQnj4ub-uLMyUWZKgmBOM3phtT8Cob6t34,10532
1006
+ teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=R5zFJhQ63DRym2qVgvWoh6oyYRGBlyLknQRK1Ohr1uI,10530
942
1007
  teradataml/data/jsons/uaf/17.20/TD_SINFO.json,sha256=SI9jiSrApW-JGEUNv2hDpchxmGVxY_I8X6VO88Mc4ZY,3745
943
1008
  teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json,sha256=I9N0UExlLyOnNI8H_AKpkkaNJRm6JElqPUPtpPJ4EvE,9887
944
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=nAq4e8w7NwXPWdgkCt5zSGLoCghjO2ZIQLtq1zbouME,4876
945
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=znmiQhvXgtJDrDX6kWoUBVNEs2l3-7iM4AdhVX5zU6g,6837
946
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=jRqBfYA-WZdQy5lSO6YDynCmXFTL7IpUHKnzQ_Evp0w,4755
1009
+ teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=rdohAD71rUtlQQvGHoLNUQPE8_7S4_c1K-c7ovz6GgA,4922
1010
+ teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=pNZUHXVb9BjV_-_tVRiuG0mMxG0PIxT956YRqo_Fu18,6836
1011
+ teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=XsbOEduKsTkumHXh-DJvP0jbJ56Zydq_JFkhfNBTJcI,4753
947
1012
  teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=gaiixvAjMIms_hVJG9_WmBjK10f1wz8tCR6Y161SHZI,4800
1013
+ teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=iDLbonW4lEhFiy2HJGWTxI6_8szAwyognHRGuZLszIg,23831
948
1014
  teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
949
1015
  teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
950
1016
  teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
@@ -967,90 +1033,107 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
967
1033
  teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
968
1034
  teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
969
1035
  teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
970
- teradataml/data/scripts/deploy_script.py,sha256=zDTBhIXifod2LK_f6JVDjOCgnpAteUaIjFH3sanHYIg,2469
1036
+ teradataml/data/scripts/deploy_script.py,sha256=ap99Pp0DWA32E7s7cedL84VIQEvvb4bAE6CnRr-hz0Q,2477
971
1037
  teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
972
1038
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
973
1039
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
1040
+ teradataml/data/scripts/lightgbm/dataset.template,sha256=PDgd5_4FWpHUKbttjjSfdXFYA2n_crgJs0BuH3ns5_0,5915
1041
+ teradataml/data/scripts/lightgbm/lightgbm_class_functions.template,sha256=KW75Y7lp-bmLr1SZzs-qT0RUyJ-Vuv2ZmwNJ0oOUXGA,9875
1042
+ teradataml/data/scripts/lightgbm/lightgbm_function.template,sha256=MRQWuk7UiqyMWaLKUtUOdhzOcH56qEx_D3vCWoPTNg8,10286
1043
+ teradataml/data/scripts/lightgbm/lightgbm_sklearn.template,sha256=BNbeEN4UnHJwzY1mPaDLEebt4Prm25p3ovg5URyASvI,6121
974
1044
  teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
975
- teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=xwso_Oso5SKtxR3-xMfA5e7Ax7n8H42yjwkFNIkIsjM,6426
976
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=HCZLOEUkObc13CpqL4jhu1S36GQnTro-a56Atptg0gs,4976
977
- teradataml/data/scripts/sklearn/sklearn_function.template,sha256=iwBfT_ohX2k-BUEkJqPS4xVP6aDqu41GJJOQhLA5EBo,4419
978
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
979
- teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=JYORv2_A9W_amRrgfcNv7HifOFRNukSaOc9BxIwePbI,5948
980
- teradataml/data/scripts/sklearn/sklearn_score.py,sha256=KWqd1hvcJ2o41jE-oBLnfxNPhHjnM-ltHgM7GaLoAcI,4538
981
- teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=uHPclMehdoJzfIgK8QA1rCh1gOJqk9VYajFIDkkaVI4,7844
982
- teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
1045
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=eP2vQl6OFyFOxzFNGAS9nxqbMQWOjue6BDIv3gmbGYo,8400
1046
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=zOICrgKeWeJsdiE6s2r87l4eMug2PH2_Bsi0pnlSfcg,6035
1047
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=M0GsFvj4Y0vtC1-Zol5US7ZT9yAbvdzcpXE9dtcV1LQ,4815
1048
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=SKdueW62_GhXR0Jn74XOnxV5xz1kjBgl2I8VRH0e6Kg,7005
1049
+ teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1050
+ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1051
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1052
+ teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
983
1053
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
984
- teradataml/dataframe/copy_to.py,sha256=vUmfruKAHLrURqDyBo-0DgCi2PZDHpRwGflnn9Fwros,76421
985
- teradataml/dataframe/data_transfer.py,sha256=uhyLodyZ37--QqdLUKW8Q1k0e1S3EOMKsb9QHfv4rXw,123602
986
- teradataml/dataframe/dataframe.py,sha256=kcKzwxOw7uXdXrQNy4tKX_-btEmY0pqRvIDfxk2qSTQ,934636
1054
+ teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1055
+ teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1056
+ teradataml/dataframe/dataframe.py,sha256=gImgGaF3pspGE0bJsVn8Cl_1IC_NrgN2ouXSoEU0hYw,977096
987
1057
  teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
988
- teradataml/dataframe/fastload.py,sha256=IhlCrmQ3MI_Sg6UHYKm-mxe7q6pj0bz90L7s8KVVC8I,41988
1058
+ teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1059
+ teradataml/dataframe/functions.py,sha256=PQjoHu56kZ9nWu3x-5pJiRdeV2NliGDdeJCWF5rMGjw,38745
989
1060
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
990
- teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
991
- teradataml/dataframe/sql.py,sha256=KrXTgEJvZjXt715OFTaFkC__W1kZ8Sc1PvHaTXuU9eU,602917
1061
+ teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1062
+ teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1063
+ teradataml/dataframe/sql.py,sha256=yvYpMp0axrp4dBz9pB_eK9RFmaM_etVAyMl63-qvQ4o,645455
992
1064
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
993
1065
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
994
1066
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
995
1067
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
996
- teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
1068
+ teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
997
1069
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
998
- teradataml/dbutils/dbutils.py,sha256=cYPoSf1r_DyNCLcyLlUZz67G-avlfeKbRNzhwhHyeaI,47531
999
- teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1070
+ teradataml/dbutils/dbutils.py,sha256=cU5T7Zqf3nBRX_TS0egLD5Dq1goAwvKBW_YiCnx5L1U,79361
1071
+ teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1000
1072
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1001
1073
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1002
1074
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
1003
- teradataml/geospatial/geodataframe.py,sha256=cKnqjVBj1kkiAPqMw5w-PxrxLBhYXwq1ZV1SAZE4P-I,51399
1004
- teradataml/geospatial/geodataframecolumn.py,sha256=Yoe8GueOGoz6p1K1qMjwYzcg_K1hh9se4CMEq2JLrNU,16327
1075
+ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9TKuo3ajY,51397
1076
+ teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1005
1077
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1006
1078
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1007
- teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
1079
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1008
1080
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1009
1081
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1010
- teradataml/lib/aed_0_1.dll,sha256=8k_R1DftckFyr8mCP5WUsvmUaQGWUqRLaMNEuLrK3xk,3928816
1082
+ teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1011
1083
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1012
1084
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1013
- teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
1014
- teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
1015
- teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
1016
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=Pkn5JkkEQtCOJiFoLZsXcWmlb7dEhwY6nVFYh28nLoY,83351
1017
- teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1018
- teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1019
- teradataml/options/__init__.py,sha256=dERjj_LvmsZen7qUrrv7Lqnmm7qYJo0dN0QJyCSFhtc,5736
1020
- teradataml/options/configure.py,sha256=hv1CqvIjScryDwPIuM0SHKBC9ZLe-N_fqlQZwqXfc0s,19779
1021
- teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
1085
+ teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1086
+ teradataml/opensource/_class.py,sha256=UPf6-DXx_EvQXDFwe902Yw6JjL1-B8ElHAymOxin4R8,13100
1087
+ teradataml/opensource/_lightgbm.py,sha256=Su9f4eD2zlFzcWf_1nA1sHPZZxm82LOPuxlm2IpdXz4,48976
1088
+ teradataml/opensource/_wrapper_utils.py,sha256=CKlt5hpgJaf06rx8gvu8frgBWDcWAR_a7ViMQEV1C-Y,12122
1089
+ teradataml/opensource/constants.py,sha256=10omodLZBTQ8pF70ckHVudJ8ZiaaI5lHsanvajTWbD8,2809
1090
+ teradataml/opensource/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1091
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=y7v2tgwGlLnA67j1uMxLW3MRGvM0V55SasB9mmZX75U,106500
1092
+ teradataml/options/__init__.py,sha256=mr8WGSfc0Hb67OLWKENPlPeHSRv1eqHJ4FPQ7bLwgas,5087
1093
+ teradataml/options/configure.py,sha256=W3M1V_UlbY847xQ_D0RxUNohd8z2r6Cl49CgIYpRv1A,22015
1094
+ teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1022
1095
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1023
- teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
1096
+ teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
1024
1097
  teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1025
1098
  teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1026
1099
  teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1027
1100
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1028
1101
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1029
- teradataml/scriptmgmt/UserEnv.py,sha256=WwRdFduF5FrmHEYh8YRQrluJ3_7xXQ6yAsGZqIWw900,176869
1102
+ teradataml/scriptmgmt/UserEnv.py,sha256=AdQLWjdux-jz_dNRJUQYLHOw6xOCoRtSUuG44n-rlHY,177029
1030
1103
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1031
- teradataml/scriptmgmt/lls_utils.py,sha256=I7EgE2ljMXhnwPP2o5EKtikFf8_szbgftKt-KzavVw8,74553
1104
+ teradataml/scriptmgmt/lls_utils.py,sha256=oUftiz6FdsMhmt1SSxijC42hAW29hmpAmo_4-taQV3I,77431
1032
1105
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1033
1106
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1034
1107
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1108
+ teradataml/store/__init__.py,sha256=SkMK4KWtorw2N4egwUVmzg00alRxuX0ylfvM8ZliTpA,458
1109
+ teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1110
+ teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1111
+ teradataml/store/feature_store/feature_store.py,sha256=yQVqYfVqHI1wkDY2jgynDaiAeMkQ_rt_-F32ghHHQes,87548
1112
+ teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1113
+ teradataml/store/vector_store/__init__.py,sha256=8-RR61XKhF1mjqMMDQjImxTDzFNqvsHpmb-q5pygMqo,67240
1035
1114
  teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1036
- teradataml/table_operators/Script.py,sha256=SLQhtfFeasQgBBD6H-SgOg8Nw8LhO9rLfGVeoIkhySM,77197
1037
- teradataml/table_operators/TableOperator.py,sha256=U2wHTCz4TIGCKnhPcYoAROM9fcqW14U4wRV9rVEPBK0,72180
1115
+ teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1116
+ teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1038
1117
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1039
1118
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1040
- teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1041
- teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1042
- teradataml/table_operators/table_operator_util.py,sha256=b9ndKX6Zz0SQuWiRzvYVKILIFpXX1HwgFtMwAIlhOcE,28404
1119
+ teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1120
+ teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1121
+ teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1043
1122
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1044
1123
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1124
+ teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
1125
+ teradataml/table_operators/templates/dataframe_udf.template,sha256=kAr5FcafoUrGQs4aRjEj5E9sS69pa8msZ5UnaWMvx7s,2555
1045
1126
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1127
+ teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1128
+ teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1046
1129
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1047
- teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26279
1130
+ teradataml/utils/dtypes.py,sha256=RZEXBHyR7fDlC0V2fXKqbc5Av7NeP_aWKhGRg8DlTr8,26454
1048
1131
  teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1049
1132
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1050
1133
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1051
- teradataml/utils/validators.py,sha256=hmv9q9r6ctZI-rNs8QB3_zZ3owLA9tZM1iCKFthp9ac,92474
1052
- teradataml-20.0.0.1.dist-info/METADATA,sha256=Wz3cuVNzN9S3g8796pmxCwJfLjh0vTdwqGHhEoWdpUY,105532
1053
- teradataml-20.0.0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1054
- teradataml-20.0.0.1.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1055
- teradataml-20.0.0.1.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1056
- teradataml-20.0.0.1.dist-info/RECORD,,
1134
+ teradataml/utils/validators.py,sha256=RFBrdWSbuuOX9cIMw327c-P8qPXp8qVNKCWXtFIx6PU,93462
1135
+ teradataml-20.0.0.3.dist-info/METADATA,sha256=qfTI6EpLaovYWlpA66cAg7BOUELBe2L62wqS8UiwLJQ,120899
1136
+ teradataml-20.0.0.3.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1137
+ teradataml-20.0.0.3.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1138
+ teradataml-20.0.0.3.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1139
+ teradataml-20.0.0.3.dist-info/RECORD,,