teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (240) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +306 -0
  4. teradataml/__init__.py +10 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +299 -16
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +13 -3
  11. teradataml/analytics/json_parser/utils.py +13 -6
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +11 -2
  15. teradataml/analytics/table_operator/__init__.py +4 -3
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +66 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1502 -323
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +247 -307
  22. teradataml/automl/data_transformation.py +32 -12
  23. teradataml/automl/feature_engineering.py +325 -86
  24. teradataml/automl/model_evaluation.py +44 -35
  25. teradataml/automl/model_training.py +122 -153
  26. teradataml/catalog/byom.py +8 -8
  27. teradataml/clients/pkce_client.py +1 -1
  28. teradataml/common/__init__.py +2 -1
  29. teradataml/common/constants.py +72 -0
  30. teradataml/common/deprecations.py +13 -7
  31. teradataml/common/garbagecollector.py +152 -120
  32. teradataml/common/messagecodes.py +11 -2
  33. teradataml/common/messages.py +4 -1
  34. teradataml/common/sqlbundle.py +26 -4
  35. teradataml/common/utils.py +225 -14
  36. teradataml/common/wrapper_utils.py +1 -1
  37. teradataml/context/context.py +82 -2
  38. teradataml/data/SQL_Fundamentals.pdf +0 -0
  39. teradataml/data/complaints_test_tokenized.csv +353 -0
  40. teradataml/data/complaints_tokens_model.csv +348 -0
  41. teradataml/data/covid_confirm_sd.csv +83 -0
  42. teradataml/data/dataframe_example.json +27 -1
  43. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  44. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  45. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  46. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  47. teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
  48. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  49. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  50. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  51. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  52. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  53. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  54. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  55. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  56. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  57. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  58. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  59. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  60. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  61. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  62. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  63. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  64. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  65. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  66. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  67. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  68. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  69. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  70. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  71. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  72. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  74. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  75. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  76. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  77. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  78. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  79. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  80. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  81. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  82. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  83. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  84. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  85. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  86. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  87. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  88. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  89. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  90. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  91. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  92. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  93. teradataml/data/dwt2d_dataTable.csv +65 -0
  94. teradataml/data/dwt_dataTable.csv +8 -0
  95. teradataml/data/dwt_filterTable.csv +3 -0
  96. teradataml/data/finance_data4.csv +13 -0
  97. teradataml/data/grocery_transaction.csv +19 -0
  98. teradataml/data/idwt2d_dataTable.csv +5 -0
  99. teradataml/data/idwt_dataTable.csv +8 -0
  100. teradataml/data/idwt_filterTable.csv +3 -0
  101. teradataml/data/interval_data.csv +5 -0
  102. teradataml/data/jsons/paired_functions.json +14 -0
  103. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  104. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  105. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  106. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  107. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  108. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  109. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  110. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  111. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  112. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  113. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  114. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  115. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  116. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  117. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  118. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  119. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  120. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  121. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  122. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  123. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  124. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  125. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  126. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  127. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  128. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  129. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  130. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  131. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  132. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  133. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  134. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  135. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  136. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  137. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  138. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  139. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  140. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  141. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  142. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  143. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  144. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  145. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  146. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  147. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  148. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  149. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  150. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  151. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  152. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  153. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  154. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  155. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  156. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  157. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  158. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  159. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  160. teradataml/data/load_example_data.py +8 -2
  161. teradataml/data/medical_readings.csv +101 -0
  162. teradataml/data/naivebayestextclassifier_example.json +1 -1
  163. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  164. teradataml/data/patient_profile.csv +101 -0
  165. teradataml/data/peppers.png +0 -0
  166. teradataml/data/real_values.csv +14 -0
  167. teradataml/data/sax_example.json +8 -0
  168. teradataml/data/scripts/deploy_script.py +1 -1
  169. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  170. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  171. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  172. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  173. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
  174. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  175. teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
  176. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  177. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  178. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  179. teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
  180. teradataml/data/star_pivot.csv +8 -0
  181. teradataml/data/target_udt_data.csv +8 -0
  182. teradataml/data/templates/open_source_ml.json +3 -1
  183. teradataml/data/teradataml_example.json +20 -1
  184. teradataml/data/timestamp_data.csv +4 -0
  185. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  186. teradataml/data/uaf_example.json +55 -1
  187. teradataml/data/unpivot_example.json +15 -0
  188. teradataml/data/url_data.csv +9 -0
  189. teradataml/data/vectordistance_example.json +4 -0
  190. teradataml/data/windowdfft.csv +16 -0
  191. teradataml/dataframe/copy_to.py +1 -1
  192. teradataml/dataframe/data_transfer.py +5 -3
  193. teradataml/dataframe/dataframe.py +1002 -201
  194. teradataml/dataframe/fastload.py +3 -3
  195. teradataml/dataframe/functions.py +867 -0
  196. teradataml/dataframe/row.py +160 -0
  197. teradataml/dataframe/setop.py +2 -2
  198. teradataml/dataframe/sql.py +840 -33
  199. teradataml/dataframe/window.py +1 -1
  200. teradataml/dbutils/dbutils.py +878 -34
  201. teradataml/dbutils/filemgr.py +48 -1
  202. teradataml/geospatial/geodataframe.py +1 -1
  203. teradataml/geospatial/geodataframecolumn.py +1 -1
  204. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  205. teradataml/lib/aed_0_1.dll +0 -0
  206. teradataml/opensource/__init__.py +1 -1
  207. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  208. teradataml/opensource/_lightgbm.py +950 -0
  209. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  210. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  211. teradataml/opensource/sklearn/__init__.py +0 -1
  212. teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
  213. teradataml/options/__init__.py +9 -23
  214. teradataml/options/configure.py +42 -4
  215. teradataml/options/display.py +2 -2
  216. teradataml/plot/axis.py +4 -4
  217. teradataml/scriptmgmt/UserEnv.py +13 -9
  218. teradataml/scriptmgmt/lls_utils.py +77 -23
  219. teradataml/store/__init__.py +13 -0
  220. teradataml/store/feature_store/__init__.py +0 -0
  221. teradataml/store/feature_store/constants.py +291 -0
  222. teradataml/store/feature_store/feature_store.py +2223 -0
  223. teradataml/store/feature_store/models.py +1505 -0
  224. teradataml/store/vector_store/__init__.py +1586 -0
  225. teradataml/table_operators/Script.py +2 -2
  226. teradataml/table_operators/TableOperator.py +106 -20
  227. teradataml/table_operators/query_generator.py +3 -0
  228. teradataml/table_operators/table_operator_query_generator.py +3 -1
  229. teradataml/table_operators/table_operator_util.py +102 -56
  230. teradataml/table_operators/templates/dataframe_register.template +69 -0
  231. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  232. teradataml/telemetry_utils/__init__.py +0 -0
  233. teradataml/telemetry_utils/queryband.py +52 -0
  234. teradataml/utils/dtypes.py +4 -2
  235. teradataml/utils/validators.py +34 -2
  236. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
  237. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
  238. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  239. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  240. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
@@ -0,0 +1,280 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_Pivoting",
6
+ "function_version": "1.0",
7
+ "function_alias_name": "TD_Pivoting",
8
+ "function_type": "fastpath",
9
+ "function_category": "Feature Engineering Transform",
10
+ "function_r_name": "aa.td.pivoting",
11
+ "short_description": "This function is used to pivot the data i.e. change the data from sparse format to dense format.",
12
+ "long_description": "This function is used to pivot the data i.e. change the data from sparse format to dense format.",
13
+ "input_tables": [
14
+ {
15
+ "requiredInputKind": [
16
+ "PartitionByKey"
17
+ ],
18
+ "isOrdered": false,
19
+ "partitionByOne": false,
20
+ "name": "InputTable",
21
+ "alternateNames": [],
22
+ "isRequired": true,
23
+ "rDescription": "Specifies the table containing the input data to be pivoted.",
24
+ "description": "Specifies the table containing the input data to be pivoted.",
25
+ "datatype": "TABLE_ALIAS",
26
+ "allowsLists": false,
27
+ "rName": "data",
28
+ "useInR": true,
29
+ "rOrderNum": 1
30
+ }
31
+ ],
32
+ "argument_clauses": [
33
+ {
34
+ "targetTable": [
35
+ "InputTable"
36
+ ],
37
+ "checkDuplicate": true,
38
+ "allowedTypes": [],
39
+ "allowedTypeGroups": [
40
+ "ALL"
41
+ ],
42
+ "matchLengthOfArgument": "",
43
+ "allowPadding": false,
44
+ "name": "PartitionColumns",
45
+ "alternateNames": [],
46
+ "isRequired": true,
47
+ "rDescription": "Specify the name of the input table columns on which to partition the input.",
48
+ "description": "Specify the name of the input table columns on which to partition the input.",
49
+ "datatype": "COLUMNS",
50
+ "allowsLists": true,
51
+ "rName": "partition.columns",
52
+ "useInR": true,
53
+ "rOrderNum": 2
54
+ },
55
+ {
56
+ "targetTable": [
57
+ "InputTable"
58
+ ],
59
+ "checkDuplicate": true,
60
+ "allowedTypes": [],
61
+ "allowedTypeGroups": [
62
+ "ALL"
63
+ ],
64
+ "matchLengthOfArgument": "",
65
+ "allowPadding": false,
66
+ "name": "TargetColumns",
67
+ "alternateNames": [],
68
+ "isRequired": true,
69
+ "rDescription": "Specify the columns from the input table which contains the data for pivoting.",
70
+ "description": "Specify the columns from the input table which contains the data for pivoting.",
71
+ "datatype": "COLUMNS",
72
+ "allowsLists": true,
73
+ "rName": "target.columns",
74
+ "useInR": true,
75
+ "rOrderNum": 3
76
+ },
77
+ {
78
+ "targetTable": [
79
+ "InputTable"
80
+ ],
81
+ "checkDuplicate": true,
82
+ "allowedTypes": [],
83
+ "allowedTypeGroups": [
84
+ "ALL"
85
+ ],
86
+ "matchLengthOfArgument": "",
87
+ "allowPadding": false,
88
+ "name": "Accumulate",
89
+ "alternateNames": [],
90
+ "isRequired": false,
91
+ "rDescription": "Specifies the input table columns to copy to the output table. By default, the function copies no input table columns to the output table.",
92
+ "description": "Specifies the input table columns to copy to the output table. By default, the function copies no input table columns to the output table.",
93
+ "datatype": "COLUMNS",
94
+ "allowsLists": true,
95
+ "rName": "accumulate",
96
+ "useInR": true,
97
+ "rOrderNum": 4
98
+ },
99
+ {
100
+ "lowerBound": 1,
101
+ "upperBound": 2147483647,
102
+ "lowerBoundType": "INCLUSIVE",
103
+ "upperBoundType": "INCLUSIVE",
104
+ "allowNaN": false,
105
+ "name": "RowsPerPartition",
106
+ "alternateNames": [],
107
+ "isRequired": false,
108
+ "rDescription": "Specify the integer value which will specify the maximum number of rows in the partition.",
109
+ "description": "Specify the integer value which will specify the maximum number of rows in the partition.",
110
+ "datatype": "INTEGER",
111
+ "allowsLists": false,
112
+ "rName": "rows.per.partition",
113
+ "useInR": true,
114
+ "rOrderNum": 5
115
+ },
116
+ {
117
+ "targetTable": [
118
+ "InputTable"
119
+ ],
120
+ "checkDuplicate": true,
121
+ "allowedTypes": [],
122
+ "allowedTypeGroups": [
123
+ "STRING"
124
+ ],
125
+ "matchLengthOfArgument": "",
126
+ "allowPadding": false,
127
+ "name": "PivotColumn",
128
+ "alternateNames": [],
129
+ "isRequired": false,
130
+ "rDescription": "Specify the name of the input table column that contains the pivot keys.",
131
+ "description": "Specify the name of the input table column that contains the pivot keys.",
132
+ "datatype": "COLUMNS",
133
+ "allowsLists": false,
134
+ "rName": "pivot.column",
135
+ "useInR": true,
136
+ "rOrderNum": 6
137
+ },
138
+ {
139
+ "permittedValues": [],
140
+ "isOutputColumn": false,
141
+ "checkDuplicate": true,
142
+ "matchLengthOfArgument": "",
143
+ "allowPadding": false,
144
+ "name": "PivotKeys",
145
+ "alternateNames": [],
146
+ "isRequired": false,
147
+ "rDescription": "If you specify the PivotColumn argument, then this argument specifies the names of the pivot keys.",
148
+ "description": "If you specify the PivotColumn argument, then this argument specifies the names of the pivot keys.",
149
+ "datatype": "STRING",
150
+ "allowsLists": true,
151
+ "rName": "pivot.keys",
152
+ "useInR": true,
153
+ "rOrderNum": 7
154
+ },
155
+ {
156
+ "permittedValues": [],
157
+ "isOutputColumn": false,
158
+ "checkDuplicate": true,
159
+ "matchLengthOfArgument": "",
160
+ "allowPadding": false,
161
+ "name": "PivotKeysAlias",
162
+ "alternateNames": [],
163
+ "isRequired": false,
164
+ "rDescription": "If you specify the PivotKeys argument, then this argument specifies the alias names of the pivot keys.",
165
+ "description": "If you specify the PivotKeys argument, then this argument specifies the alias names of the pivot keys.",
166
+ "datatype": "STRING",
167
+ "allowsLists": true,
168
+ "rName": "pivot.keys.alias",
169
+ "useInR": true,
170
+ "rOrderNum": 8
171
+ },
172
+ {
173
+ "permittedValues": [],
174
+ "isOutputColumn": false,
175
+ "checkDuplicate": false,
176
+ "matchLengthOfArgument": "",
177
+ "allowPadding": false,
178
+ "name": "DefaultPivotValues",
179
+ "alternateNames": [],
180
+ "isRequired": false,
181
+ "rDescription": "Specify exactly one default value for each pivot_key . The nth default_pivot_value applies to the nth pivot_key.",
182
+ "description": "Specify exactly one default value for each pivot_key . The nth default_pivot_value applies to the nth pivot_key.",
183
+ "datatype": "STRING",
184
+ "allowsLists": true,
185
+ "rName": "default.pivot.values",
186
+ "useInR": true,
187
+ "rOrderNum": 9
188
+ },
189
+ {
190
+ "permittedValues": [],
191
+ "isOutputColumn": false,
192
+ "checkDuplicate": false,
193
+ "matchLengthOfArgument": "",
194
+ "allowPadding": false,
195
+ "name": "Aggregation",
196
+ "alternateNames": [],
197
+ "isRequired": false,
198
+ "rDescription": "Specify the aggregation for the target columns. Aggregation can be provided as one of the single value {CONCAT | UNIQUE_CONCAT | SUM | MIN | MAX | AVG} which will be applicable to all target columns or you can specify multiple values for multiple target columns in following format: ColumnName:{CONCAT|UNIQUE_CONCAT|SUM|MIN|MAX|AVG} [,...].",
199
+ "description": "Specify the aggregation for the target columns. Aggregation can be provided as one of the single value {CONCAT | UNIQUE_CONCAT | SUM | MIN | MAX | AVG} which will be applicable to all target columns or you can specify multiple values for multiple target columns in following format: ColumnName:{CONCAT|UNIQUE_CONCAT|SUM|MIN|MAX|AVG} [,...].",
200
+ "datatype": "STRING",
201
+ "allowsLists": true,
202
+ "rName": "aggregation",
203
+ "useInR": true,
204
+ "rOrderNum": 10
205
+ },
206
+ {
207
+ "permittedValues": [],
208
+ "isOutputColumn": false,
209
+ "checkDuplicate": false,
210
+ "matchLengthOfArgument": "",
211
+ "allowPadding": false,
212
+ "name": "Delimiters",
213
+ "alternateNames": [],
214
+ "isRequired": false,
215
+ "rDescription": "Specify the delimiter to be used for concatenating the values of a target column. A delimiter is a single character string. You can specify a single delimiter values which will be applicable to all target columns or you can specify multiple delimiter values for multiple target columns in following format: ColumnName:single_char [,...].",
216
+ "description": "Specify the delimiter to be used for concatenating the values of a target column. A delimiter is a single character string. You can specify a single delimiter values which will be applicable to all target columns or you can specify multiple delimiter values for multiple target columns in following format: ColumnName:single_char [,...].",
217
+ "datatype": "STRING",
218
+ "allowsLists": true,
219
+ "rName": "delimiters",
220
+ "useInR": true,
221
+ "rOrderNum": 11
222
+ },
223
+ {
224
+ "permittedValues": [],
225
+ "isOutputColumn": false,
226
+ "checkDuplicate": false,
227
+ "matchLengthOfArgument": "",
228
+ "allowPadding": false,
229
+ "name": "CombinedColumnSizes",
230
+ "alternateNames": [],
231
+ "isRequired": false,
232
+ "rDescription": "Specify maximum size of the concatenated string. You can specify a single values which will be applicable to all target columns or you can specify multiple size value for multiple target columns in following format: ColumnName:size_value [,...].",
233
+ "description": "Specify maximum size of the concatenated string. You can specify a single values which will be applicable to all target columns or you can specify multiple size value for multiple target columns in following format: ColumnName:size_value [,...].",
234
+ "datatype": ["STRING", "INTEGER"],
235
+ "allowsLists": true,
236
+ "rName": "combined.column.sizes",
237
+ "useInR": true,
238
+ "rOrderNum": 12
239
+ },
240
+ {
241
+ "targetTable": [
242
+ "InputTable"
243
+ ],
244
+ "checkDuplicate": true,
245
+ "allowedTypes": [],
246
+ "allowedTypeGroups": [
247
+ "ALL"
248
+ ],
249
+ "matchLengthOfArgument": "",
250
+ "allowPadding": false,
251
+ "name": "TruncateColumns",
252
+ "alternateNames": [],
253
+ "isRequired": false,
254
+ "rDescription": "Specify columns from the target columns for which you want to truncate the concatenated string, if it is longer than the specified size. ",
255
+ "description": "Specify columns from the target columns for which you want to truncate the concatenated string, if it is longer than the specified size. ",
256
+ "datatype": "COLUMNS",
257
+ "allowsLists": true,
258
+ "rName": "truncate.columns",
259
+ "useInR": true,
260
+ "rOrderNum": 13
261
+ },
262
+ {
263
+ "permittedValues": [],
264
+ "isOutputColumn": true,
265
+ "matchLengthOfArgument": "",
266
+ "allowPadding": false,
267
+
268
+ "name": "OutputColumnNames",
269
+ "alternateNames": [],
270
+ "isRequired": false,
271
+ "rDescription": "Specify the column name to be used for the output column. The nth column name value applies to the nth output column.",
272
+ "description": "Specify the column name to be used for the output column. The nth column name value applies to the nth output column.",
273
+ "datatype": "STRING",
274
+ "allowsLists": true,
275
+ "rName": "output.column.names",
276
+ "useInR": true,
277
+ "rOrderNum": 14
278
+ }
279
+ ]
280
+ }
@@ -0,0 +1,222 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_Shap",
6
+ "function_version": "1.0",
7
+ "commence_db_version": "",
8
+ "change_db_version": "",
9
+ "function_type": "fastpath",
10
+ "function_category": "Model Interpretation",
11
+ "function_alias_name": "TD_Shap",
12
+ "function_r_name": "aa.TD_Shap",
13
+ "ref_function_r_name": "aa.td_glm, aa.td_decisionforest, aa.td_xgboost",
14
+ "short_description": "Fast path function to get explanation for individual predictions (feature contributions) in a machine learning model",
15
+ "long_description": "Fast path function to get explanation for individual predictions (feature contributions) in a machine learning model based on the cooperative game theory optimal Shapley values.",
16
+ "input_tables": [
17
+ {
18
+ "name": "InputTable",
19
+ "isRequired": true,
20
+ "datatype": "TABLE_ALIAS",
21
+ "partitionByOne": false,
22
+ "isOrdered": false,
23
+ "omitPossible": false,
24
+ "alternateNames": [],
25
+ "rDescription": "Specifies the name of the table that contains input dataset.",
26
+ "description": "Specifies the name of the table that contains input dataset.",
27
+ "allowsLists": false,
28
+ "rName": "data",
29
+ "useInR": true,
30
+ "rOrderNum": 1
31
+ },
32
+ {
33
+ "requiredInputKind": [
34
+ "Dimension"
35
+ ],
36
+ "name": "ModelTable",
37
+ "isRequired": true,
38
+ "datatype": "TABLE_ALIAS",
39
+ "isOrdered": false,
40
+ "partitionByOne": false,
41
+ "rDescription": "Specifies the table containing the model data.",
42
+ "description": "Specifies the table containing the model data.",
43
+ "allowsLists": false,
44
+ "rName": "object",
45
+ "useInR": true,
46
+ "rFormulaUsage": false,
47
+ "rOrderNum": 2
48
+ }
49
+ ],
50
+ "output_tables": [
51
+ {
52
+ "name": "GlobalExplanation",
53
+ "isRequired": false,
54
+ "datatype": "TABLE_NAME",
55
+ "isOutputTable": true,
56
+ "omitPossible": false,
57
+ "alternateNames": [],
58
+ "rDescription": "Specifies the mean absolute shapley values for each input feature.",
59
+ "description": "Specifies the mean absolute shapley values for each input feature.",
60
+ "allowsLists": false,
61
+ "rName": "output.table",
62
+ "useInR": true,
63
+ "rOrderNum": 3
64
+ }
65
+ ],
66
+ "argument_clauses": [
67
+ {
68
+ "targetTable": [
69
+ "InputTable"
70
+ ],
71
+ "checkDuplicate": true,
72
+ "allowedTypes": [],
73
+ "allowedTypeGroups": [
74
+ "NUMERIC"
75
+ ],
76
+ "name": "IDColumn",
77
+ "isRequired": true,
78
+ "datatype": "COLUMNS",
79
+ "requiredLength": 1,
80
+ "matchLengthOfArgument": "",
81
+ "allowPadding": false,
82
+ "alternateNames": [],
83
+ "rDescription": "Specifies the name of the input table column that contains the IDColumn.",
84
+ "description": "Specify the name of the InputTable column that contains the unique value to identify the each sample.",
85
+ "allowsLists": false,
86
+ "rName": "id.column",
87
+ "useInR": true,
88
+ "rOrderNum": 3
89
+ },
90
+ {
91
+ "permittedValues": [
92
+ "TD_GLM",
93
+ "TD_DECISIONFOREST",
94
+ "TD_XGBOOST"
95
+ ],
96
+ "name": "TrainingFunction",
97
+ "isRequired": true,
98
+ "datatype": "STRING",
99
+ "defaultValue": "TD_GLM",
100
+ "isOutputColumn": false,
101
+ "alternateNames": [],
102
+ "rDescription": "Specifies the model type name.",
103
+ "description": "Specifies the model type name on which we want to get explaination for individual predictions (feature contributions).",
104
+ "allowsLists": false,
105
+ "rName": "training.function",
106
+ "useInR": true,
107
+ "rOrderNum": 4
108
+ },
109
+ {
110
+ "permittedValues": [
111
+ "REGRESSION",
112
+ "CLASSIFICATION"
113
+ ],
114
+ "name": "ModelType",
115
+ "isRequired": true,
116
+ "datatype": "STRING",
117
+ "defaultValue": "Regression",
118
+ "isOutputColumn": false,
119
+ "alternateNames": [],
120
+ "rDescription": "specifies the operation to be performed on input table.",
121
+ "description": "specifies the operation to be performed on input table based on target column",
122
+ "allowsLists": false,
123
+ "rName": "model.type",
124
+ "useInR": true,
125
+ "rOrderNum": 5
126
+ },
127
+ {
128
+ "targetTable": [
129
+ "InputTable"
130
+ ],
131
+ "checkDuplicate": true,
132
+ "allowedTypes": [],
133
+ "allowedTypeGroups": [
134
+ "NUMERIC"
135
+ ],
136
+ "name": "InputColumns",
137
+ "isRequired": true,
138
+ "datatype": "COLUMNS",
139
+ "matchLengthOfArgument": "",
140
+ "allowPadding": false,
141
+ "alternateNames": [],
142
+ "rDescription": "Specify the names of the input table columns that need to be used for training the model (predictors, features or independent variables).",
143
+ "description": "Specify the names of the input table columns that need to be used for training the model (predictors, features or independent variables).",
144
+ "allowsLists": true,
145
+ "rName": "input.columns",
146
+ "useInR": true,
147
+ "rOrderNum": 6
148
+ },
149
+ {
150
+ "name": "Detailed",
151
+ "isRequired": false,
152
+ "datatype": "BOOLEAN",
153
+ "isOutputColumn": false,
154
+ "defaultValue": false,
155
+ "alternateNames": [],
156
+ "rDescription": "Specifies whether to output detailed shap information about the forest trees.",
157
+ "description": "Specifies whether to output detailed shap information about the forest trees i.e. the decision tree and the specific tree information.",
158
+ "allowsLists": false,
159
+ "rName": "detailed",
160
+ "useInR": true,
161
+ "rOrderNum": 7
162
+ },
163
+ {
164
+ "targetTable": [
165
+ "InputTable"
166
+ ],
167
+ "checkDuplicate": true,
168
+ "allowedTypes": [],
169
+ "allowedTypeGroups": [
170
+ "ALL"
171
+ ],
172
+ "name": "Accumulate",
173
+ "isRequired": false,
174
+ "datatype": "COLUMNS",
175
+ "matchLengthOfArgument": "",
176
+ "allowPadding": false,
177
+ "alternateNames": [],
178
+ "rDescription": "Specifies the names of the input columns to copy to the output table.",
179
+ "description": "Specifies the names of the input columns to copy to the output table.",
180
+ "allowsLists": true,
181
+ "rName": "accumulate",
182
+ "useInR": true,
183
+ "rOrderNum": 8
184
+ },
185
+ {
186
+ "name": "NumParallelTrees",
187
+ "isRequired": false,
188
+ "datatype": "INTEGER",
189
+ "defaultValue": 1000,
190
+ "lowerBound": 1,
191
+ "upperBound": 10000,
192
+ "lowerBoundType": "INCLUSIVE",
193
+ "upperBoundType": "INCLUSIVE",
194
+ "allowNaN": false,
195
+ "alternateNames": [],
196
+ "rDescription": "Specify the number of parallel boosted trees.Each boosted tree operates on a sample of data that fits in an AMP's memory. By default, NumBoostedTrees is chosen equal to the number of AMPs with data.",
197
+ "description": "Specify the number of parallel boosted trees.Each boosted tree operates on a sample of data that fits in an AMP's memory. By default, NumBoostedTrees is chosen equal to the number of AMPs with data.",
198
+ "allowsLists": false,
199
+ "rName": "num.parallel.trees",
200
+ "useInR": true,
201
+ "rOrderNum": 9
202
+ },
203
+ {
204
+ "name": "NumBoostRounds",
205
+ "isRequired": false,
206
+ "datatype": "INTEGER",
207
+ "defaultValue": 10,
208
+ "lowerBound": 1,
209
+ "upperBound": 100000,
210
+ "lowerBoundType": "INCLUSIVE",
211
+ "upperBoundType": "INCLUSIVE",
212
+ "allowNaN": false,
213
+ "alternateNames": [],
214
+ "rDescription": "Specifies the number of iterations to boost the weak classifiers. The iterations must be an INTEGER in the range [1, 100000].",
215
+ "description": "Specifies the number of iterations to boost the weak classifiers. The iterations must be an INTEGER in the range [1, 100000].",
216
+ "allowsLists": false,
217
+ "rName": "num.boost.rounds",
218
+ "useInR": true,
219
+ "rOrderNum": 10
220
+ }
221
+ ]
222
+ }
@@ -0,0 +1,162 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_TFIDF",
6
+ "function_version": "1.0",
7
+ "function_type": "fastpath",
8
+ "function_category": "Feature Engineering Transform",
9
+ "function_alias_name": "TD_TFIDF",
10
+ "function_r_name": "td.tfidf",
11
+ "short_description": "This function is used to take any document set and compute the Term Frequency (TF), Inverse Document Frequency (IDF), and Term Frequency * Inverse Document Frequency (TF-IDF) scores for each term.",
12
+ "long_description": "This function is used to take any document set and compute the Term Frequency (TF), Inverse Document Frequency (IDF), and Term Frequency * Inverse Document Frequency (TF-IDF) scores for each term.",
13
+ "input_tables": [
14
+ {
15
+ "requiredInputKind": [
16
+ "PartitionByAny"
17
+ ],
18
+ "isOrdered": false,
19
+ "partitionByOne": false,
20
+ "name": "InputTable",
21
+ "alternateNames": [],
22
+ "isRequired": true,
23
+ "rDescription": "The table that contains the document id and the term.",
24
+ "description": "The table that contains the document id and the term.",
25
+ "datatype": "TABLE_ALIAS",
26
+ "allowsLists": false,
27
+ "rName": "data",
28
+ "useInR": true,
29
+ "rOrderNum": 1
30
+ }
31
+ ],
32
+ "argument_clauses": [
33
+ {
34
+ "targetTable": [
35
+ "InputTable"
36
+ ],
37
+ "checkDuplicate": true,
38
+ "allowedTypes": [],
39
+ "allowedTypeGroups": [
40
+ "INTEGER"
41
+ ],
42
+ "requiredLength": 1,
43
+ "matchLengthOfArgument": "",
44
+ "allowPadding": true,
45
+ "name": "DocIdColumn",
46
+ "alternateNames": [],
47
+ "isRequired": true,
48
+ "rDescription": "Specifies the name of the input table column that contains the document identifier.",
49
+ "description": "Specifies the name of the input table column that contains the document identifier.",
50
+ "datatype": "COLUMN_NAMES",
51
+ "allowsLists": false,
52
+ "rName": "doc.id.column",
53
+ "useInR": true,
54
+ "rOrderNum": 2
55
+ },
56
+ {
57
+ "targetTable": [
58
+ "InputTable"
59
+ ],
60
+ "checkDuplicate": true,
61
+ "allowedTypes": [],
62
+ "allowedTypeGroups": [
63
+ "STRING"
64
+ ],
65
+ "requiredLength": 1,
66
+ "matchLengthOfArgument": "",
67
+ "allowPadding": true,
68
+ "name": "TokenColumn",
69
+ "alternateNames": [],
70
+ "isRequired": true,
71
+ "rDescription": "Specifies the name of the input table column that contains the tokens.",
72
+ "description": "Specifies the name of the input table column that contains the tokens.",
73
+ "datatype": "COLUMN_NAMES",
74
+ "allowsLists": false,
75
+ "rName": "token.column",
76
+ "useInR": true,
77
+ "rOrderNum": 3
78
+ },
79
+ {
80
+ "permittedValues": [
81
+ "BOOL",
82
+ "COUNT",
83
+ "NORMAL",
84
+ "LOG",
85
+ "AUGMENT"
86
+ ],
87
+ "defaultValue": "NORMAL",
88
+ "isOutputColumn": false,
89
+ "name": "TFNormalization",
90
+ "alternateNames": [],
91
+ "isRequired": false,
92
+ "rDescription": "Specifies the normalization method for calculating the term frequency (TF). Default: 'NORMAL'.",
93
+ "description": "Specifies the normalization method for calculating the term frequency (TF). Default: 'NORMAL'.",
94
+ "datatype": "STRING",
95
+ "allowsLists": false,
96
+ "rName": "tf.normalization",
97
+ "useInR": true,
98
+ "rOrderNum": 4
99
+ },
100
+ {
101
+ "permittedValues": [
102
+ "UNARY",
103
+ "LOG",
104
+ "LOGNORM",
105
+ "SMOOTH"
106
+ ],
107
+ "defaultValue": "LOG",
108
+ "isOutputColumn": false,
109
+ "name": "IDFNormalization",
110
+ "alternateNames": [],
111
+ "isRequired": false,
112
+ "rDescription": "Specifies the normalization method for calculating the inverse document frequency (IDF). Default: 'LOG'.",
113
+ "description": "Specifies the normalization method for calculating the inverse document frequency (IDF). Default: 'LOG'.",
114
+ "datatype": "STRING",
115
+ "allowsLists": false,
116
+ "rName": "idf.normalization",
117
+ "useInR": true,
118
+ "rOrderNum": 5
119
+ },
120
+ {
121
+ "permittedValues": [
122
+ "L2",
123
+ "L1",
124
+ "NONE"
125
+ ],
126
+ "defaultValue": "NONE",
127
+ "isOutputColumn": false,
128
+ "name": "Regularization",
129
+ "alternateNames": [],
130
+ "isRequired": false,
131
+ "rDescription": "Specifies the regularization method for calculating the TF-IDF score. Default: 'NONE'.",
132
+ "description": "Specifies the regularization method for calculating the TF-IDF score. Default: 'NONE'.",
133
+ "datatype": "STRING",
134
+ "allowsLists": false,
135
+ "rName": "regularization",
136
+ "useInR": true,
137
+ "rOrderNum": 6
138
+ },
139
+ {
140
+ "targetTable": [
141
+ "InputTable"
142
+ ],
143
+ "checkDuplicate": true,
144
+ "allowedTypes": [],
145
+ "allowedTypeGroups": [
146
+ "ALL"
147
+ ],
148
+ "matchLengthOfArgument": "",
149
+ "allowPadding": true,
150
+ "name": "Accumulate",
151
+ "alternateNames": [],
152
+ "isRequired": false,
153
+ "rDescription": "Specifies the names of the input table columns to copy to the output table.",
154
+ "description": "Specifies the names of the input table columns to copy to the output table.",
155
+ "datatype": "COLUMNS",
156
+ "allowsLists": true,
157
+ "rName": "accumulate",
158
+ "useInR": true,
159
+ "rOrderNum": 7
160
+ }
161
+ ]
162
+ }
@@ -80,7 +80,7 @@
80
80
  "description": "Specifies whether to convert input text to lowercase.",
81
81
  "datatype": "BOOLEAN",
82
82
  "allowsLists": false,
83
- "rName": "covert.to.lowercase",
83
+ "rName": "convert.to.lowercase",
84
84
  "useInR": true,
85
85
  "rOrderNum": 4
86
86
  },