teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (240) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +306 -0
  4. teradataml/__init__.py +10 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +299 -16
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +13 -3
  11. teradataml/analytics/json_parser/utils.py +13 -6
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +11 -2
  15. teradataml/analytics/table_operator/__init__.py +4 -3
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +66 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1502 -323
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +247 -307
  22. teradataml/automl/data_transformation.py +32 -12
  23. teradataml/automl/feature_engineering.py +325 -86
  24. teradataml/automl/model_evaluation.py +44 -35
  25. teradataml/automl/model_training.py +122 -153
  26. teradataml/catalog/byom.py +8 -8
  27. teradataml/clients/pkce_client.py +1 -1
  28. teradataml/common/__init__.py +2 -1
  29. teradataml/common/constants.py +72 -0
  30. teradataml/common/deprecations.py +13 -7
  31. teradataml/common/garbagecollector.py +152 -120
  32. teradataml/common/messagecodes.py +11 -2
  33. teradataml/common/messages.py +4 -1
  34. teradataml/common/sqlbundle.py +26 -4
  35. teradataml/common/utils.py +225 -14
  36. teradataml/common/wrapper_utils.py +1 -1
  37. teradataml/context/context.py +82 -2
  38. teradataml/data/SQL_Fundamentals.pdf +0 -0
  39. teradataml/data/complaints_test_tokenized.csv +353 -0
  40. teradataml/data/complaints_tokens_model.csv +348 -0
  41. teradataml/data/covid_confirm_sd.csv +83 -0
  42. teradataml/data/dataframe_example.json +27 -1
  43. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  44. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  45. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  46. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  47. teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
  48. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  49. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  50. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  51. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  52. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  53. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  54. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  55. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  56. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  57. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  58. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  59. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  60. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  61. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  62. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  63. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  64. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  65. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  66. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  67. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  68. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  69. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  70. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  71. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  72. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  74. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  75. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  76. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  77. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  78. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  79. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  80. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  81. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  82. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  83. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  84. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  85. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  86. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  87. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  88. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  89. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  90. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  91. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  92. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  93. teradataml/data/dwt2d_dataTable.csv +65 -0
  94. teradataml/data/dwt_dataTable.csv +8 -0
  95. teradataml/data/dwt_filterTable.csv +3 -0
  96. teradataml/data/finance_data4.csv +13 -0
  97. teradataml/data/grocery_transaction.csv +19 -0
  98. teradataml/data/idwt2d_dataTable.csv +5 -0
  99. teradataml/data/idwt_dataTable.csv +8 -0
  100. teradataml/data/idwt_filterTable.csv +3 -0
  101. teradataml/data/interval_data.csv +5 -0
  102. teradataml/data/jsons/paired_functions.json +14 -0
  103. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  104. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  105. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  106. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  107. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  108. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  109. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  110. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  111. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  112. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  113. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  114. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  115. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  116. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  117. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  118. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  119. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  120. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  121. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  122. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  123. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  124. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  125. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  126. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  127. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  128. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  129. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  130. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  131. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  132. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  133. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  134. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  135. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  136. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  137. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  138. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  139. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  140. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  141. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  142. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  143. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  144. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  145. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  146. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  147. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  148. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  149. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  150. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  151. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  152. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  153. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  154. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  155. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  156. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  157. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  158. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  159. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  160. teradataml/data/load_example_data.py +8 -2
  161. teradataml/data/medical_readings.csv +101 -0
  162. teradataml/data/naivebayestextclassifier_example.json +1 -1
  163. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  164. teradataml/data/patient_profile.csv +101 -0
  165. teradataml/data/peppers.png +0 -0
  166. teradataml/data/real_values.csv +14 -0
  167. teradataml/data/sax_example.json +8 -0
  168. teradataml/data/scripts/deploy_script.py +1 -1
  169. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  170. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  171. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  172. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  173. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
  174. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  175. teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
  176. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  177. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  178. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  179. teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
  180. teradataml/data/star_pivot.csv +8 -0
  181. teradataml/data/target_udt_data.csv +8 -0
  182. teradataml/data/templates/open_source_ml.json +3 -1
  183. teradataml/data/teradataml_example.json +20 -1
  184. teradataml/data/timestamp_data.csv +4 -0
  185. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  186. teradataml/data/uaf_example.json +55 -1
  187. teradataml/data/unpivot_example.json +15 -0
  188. teradataml/data/url_data.csv +9 -0
  189. teradataml/data/vectordistance_example.json +4 -0
  190. teradataml/data/windowdfft.csv +16 -0
  191. teradataml/dataframe/copy_to.py +1 -1
  192. teradataml/dataframe/data_transfer.py +5 -3
  193. teradataml/dataframe/dataframe.py +1002 -201
  194. teradataml/dataframe/fastload.py +3 -3
  195. teradataml/dataframe/functions.py +867 -0
  196. teradataml/dataframe/row.py +160 -0
  197. teradataml/dataframe/setop.py +2 -2
  198. teradataml/dataframe/sql.py +840 -33
  199. teradataml/dataframe/window.py +1 -1
  200. teradataml/dbutils/dbutils.py +878 -34
  201. teradataml/dbutils/filemgr.py +48 -1
  202. teradataml/geospatial/geodataframe.py +1 -1
  203. teradataml/geospatial/geodataframecolumn.py +1 -1
  204. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  205. teradataml/lib/aed_0_1.dll +0 -0
  206. teradataml/opensource/__init__.py +1 -1
  207. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  208. teradataml/opensource/_lightgbm.py +950 -0
  209. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  210. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  211. teradataml/opensource/sklearn/__init__.py +0 -1
  212. teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
  213. teradataml/options/__init__.py +9 -23
  214. teradataml/options/configure.py +42 -4
  215. teradataml/options/display.py +2 -2
  216. teradataml/plot/axis.py +4 -4
  217. teradataml/scriptmgmt/UserEnv.py +13 -9
  218. teradataml/scriptmgmt/lls_utils.py +77 -23
  219. teradataml/store/__init__.py +13 -0
  220. teradataml/store/feature_store/__init__.py +0 -0
  221. teradataml/store/feature_store/constants.py +291 -0
  222. teradataml/store/feature_store/feature_store.py +2223 -0
  223. teradataml/store/feature_store/models.py +1505 -0
  224. teradataml/store/vector_store/__init__.py +1586 -0
  225. teradataml/table_operators/Script.py +2 -2
  226. teradataml/table_operators/TableOperator.py +106 -20
  227. teradataml/table_operators/query_generator.py +3 -0
  228. teradataml/table_operators/table_operator_query_generator.py +3 -1
  229. teradataml/table_operators/table_operator_util.py +102 -56
  230. teradataml/table_operators/templates/dataframe_register.template +69 -0
  231. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  232. teradataml/telemetry_utils/__init__.py +0 -0
  233. teradataml/telemetry_utils/queryband.py +52 -0
  234. teradataml/utils/dtypes.py +4 -2
  235. teradataml/utils/validators.py +34 -2
  236. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
  237. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
  238. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  239. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  240. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
@@ -41,7 +41,7 @@ def Convolve(data1=None, data1_filter_expr=None, data2=None,
41
41
  data2:
42
42
  Required Argument.
43
43
  Specifies the actual filter kernel.
44
- Two time series have the following TDSeries characteristics.
44
+ The time series have the following TDSeries characteristics.
45
45
  1. "payload_content" must have one of these values:
46
46
  * REAL
47
47
  * COMPLEX
@@ -64,18 +64,21 @@ def Convolve(data1=None, data1_filter_expr=None, data2=None,
64
64
 
65
65
  algorithm:
66
66
  Optional Argument.
67
- Specifies the options to use for convolving. Options
68
- are 'CONV_SUMMATION' and 'CONV_DFFT'. If the
69
- 'CONV_SUMMATION' approach is used when one of the two
70
- series has greater than 64 entries, then an error
71
- is returned. When this parameter is not present,
72
- the function selects the option based on the number
73
- of entries in the source input series.
67
+ Specifies the options to use for convolving.
68
+ By default, the function selects the best option based
69
+ on the number of entries present in the two inputs,
70
+ and their types ( REAL, COMPLEX, and so on.)
71
+ CONV_SUMMATION only supports:
72
+ * REAL, REAL
73
+ * REAL, MULTIVAR_REAL
74
+ * MULTIVAR_REAL, REAL
75
+ * MULTIVAR_REAL, MULTIVAR_REAL
74
76
  Note:
75
77
  * This parameter is usually used for testing.
76
78
  If this parameter is not included, the internal
77
- planning logic selects the best option based
78
- on the number of entries in the source input series.
79
+ planning logic selects the best option based on
80
+ the number of entries present in the two inputs,
81
+ and their types ( REAL, COMPLEX, and so on.)
79
82
  Permitted Values: CONV_SUMMATION, CONV_DFFT
80
83
  Types: str
81
84
 
@@ -154,7 +154,6 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
154
154
  data3 = DataFrame.from_table("Convolve2RealsLeft")
155
155
  data4 = DataFrame.from_table("Convolve2RealsLeft")
156
156
 
157
-
158
157
  # Example 1: Apply the Convolve2() function when payload fields of two matrices
159
158
  # are the different to convolve two matrices into a new source
160
159
  # image matrix.
@@ -168,6 +167,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
168
167
  column_index='column_i',
169
168
  payload_field=["B"],
170
169
  payload_content="REAL")
170
+
171
171
  data2_matrix_df = TDMatrix(data=data2,
172
172
  id='id',
173
173
  row_index_style="sequence",
@@ -176,6 +176,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
176
176
  column_index='column_i',
177
177
  payload_field=["A"],
178
178
  payload_content="REAL")
179
+
179
180
  # Convolve the "data1_matrix_df" and "data2_matrix_df" matrices using the Convolve2() function.
180
181
  uaf_out1 = Convolve2(data1=data1_matrix_df,
181
182
  data2=data2_matrix_df,
@@ -196,6 +197,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
196
197
  column_index='col_seq',
197
198
  payload_field=["A"],
198
199
  payload_content="REAL")
200
+
199
201
  data4_matrix_df = TDMatrix(data=data4,
200
202
  id='id',
201
203
  row_index_style="sequence",
@@ -204,6 +206,7 @@ def Convolve2(data1=None, data1_filter_expr=None, data2=None,
204
206
  column_index='col_seq',
205
207
  payload_field=["A"],
206
208
  payload_content="REAL")
209
+
207
210
  # Convolve the "data3_matrix_df" and "data4_matrix_df" matrices using the Convolve2() function.
208
211
  uaf_out2 = Convolve2(data1=data3_matrix_df,
209
212
  data2=data4_matrix_df,
@@ -0,0 +1,145 @@
1
+ def CopyArt(data=None, database_name = None,
2
+ table_name = None, map_name = None,
3
+ **generic_arguments):
4
+ """
5
+ DESCRIPTION:
6
+ CopyArt() function creates a copy of an existing analytics result table (ART).
7
+
8
+ PARAMETERS:
9
+ data:
10
+ Required Argument.
11
+ Specifies the ART data to be copied.
12
+ Types: DataFrame
13
+
14
+ database_name:
15
+ Required Argument.
16
+ Specifies the name of the destination database for copied ART.
17
+ Types: str
18
+
19
+ table_name:
20
+ Required Argument.
21
+ Specifies the name of the destination table for copied ART.
22
+ Types: str
23
+
24
+ map_name:
25
+ Optional Argument.
26
+ Specifies the name of the map for the destination ART.
27
+ By default, it refers to the map of the 'data'.
28
+ Types: str
29
+
30
+ **generic_arguments:
31
+ Specifies the generic keyword arguments of UAF functions.
32
+ Below are the generic keyword arguments:
33
+ persist:
34
+ Optional Argument.
35
+ Specifies whether to persist the results of the
36
+ function in a table or not. When set to True,
37
+ results are persisted in a table; otherwise,
38
+ results are garbage collected at the end of the
39
+ session.
40
+ Note that, when UAF function is executed, an
41
+ analytic result table (ART) is created.
42
+ Default Value: False
43
+ Types: bool
44
+
45
+ volatile:
46
+ Optional Argument.
47
+ Specifies whether to put the results of the
48
+ function in a volatile ART or not. When set to
49
+ True, results are stored in a volatile ART,
50
+ otherwise not.
51
+ Default Value: False
52
+ Types: bool
53
+
54
+ output_table_name:
55
+ Optional Argument.
56
+ Specifies the name of the table to store results.
57
+ If not specified, a unique table name is internally
58
+ generated.
59
+ Types: str
60
+
61
+ output_db_name:
62
+ Optional Argument.
63
+ Specifies the name of the database to create output
64
+ table into. If not specified, table is created into
65
+ database specified by the user at the time of context
66
+ creation or configuration parameter. Argument is ignored,
67
+ if "output_table_name" is not specified.
68
+ Types: str
69
+
70
+ RETURNS:
71
+ Instance of CopyArt.
72
+ Output teradataml DataFrames can be accessed using attribute
73
+ references, such as obj.<attribute_name>.
74
+ Output teradataml DataFrame attribute name is:
75
+ 1. result
76
+
77
+ RAISES:
78
+ TeradataMlException, TypeError, ValueError
79
+
80
+ EXAMPLES:
81
+ # Notes:
82
+ # 1. Get the connection to Vantage, before importing the
83
+ # function in user space.
84
+ # 2. User can import the function, if it is available on
85
+ # Vantage user is connected to.
86
+ # 3. To check the list of UAF analytic functions available
87
+ # on Vantage user connected to, use
88
+ # "display_analytic_functions()".
89
+
90
+ # Check the list of available UAF analytic functions.
91
+ display_analytic_functions(type="UAF")
92
+
93
+ # Import function CopyArt.
94
+ from teradataml import CopyArt, AutoArima
95
+
96
+ # Load the example data.
97
+ load_example_data("uaf", ["blood2ageandweight"])
98
+
99
+ # Create teradataml DataFrame object.
100
+ data = DataFrame.from_table("blood2ageandweight")
101
+
102
+ # Create teradataml TDSeries object.
103
+ data_series_df = TDSeries(data=data,
104
+ id="PatientID",
105
+ row_index="SeqNo",
106
+ row_index_style="SEQUENCE",
107
+ payload_field="BloodFat",
108
+ payload_content="REAL")
109
+
110
+ # Execute AutoArima function to create ART.
111
+ uaf_out = AutoArima(data=data_series_df,
112
+ start_pq_nonseasonal=[1, 1],
113
+ seasonal=False,
114
+ constant=True,
115
+ algorithm="MLE",
116
+ fit_percentage=80,
117
+ stepwise=True,
118
+ nmodels=7,
119
+ fit_metrics=True,
120
+ residuals=True)
121
+
122
+ # Example 1: Execute CopyArt function to copy ART to a destination table name
123
+ # with persist option.
124
+ res = CopyArt(data=uaf_out.result,
125
+ database_name="alice",
126
+ table_name="copied_table",
127
+ persist=True)
128
+ print(res.result)
129
+
130
+ # Example 2: Execute CopyArt function to copy ART to a destination table name.
131
+ res = CopyArt(data=uaf_out.result,
132
+ database_name="alice",
133
+ table_name="copied_table2")
134
+
135
+ # Print the result DataFrame.
136
+ print(res.result)
137
+
138
+ # Example 3: Copy ART to a destination table name using uaf object.
139
+ res = uaf_out.copy(database_name="alice",
140
+ table_name="copied_table3")
141
+
142
+ # Print the result DataFrame.
143
+ print(res.result)
144
+
145
+ """
@@ -21,7 +21,7 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
21
21
  2. Use ArimaValidate() to validate spectral candidates.
22
22
  4. Execute CumulPeriodogram() using the residuals.
23
23
  5. See the null hypothesis result from CumulPeriodogram().
24
- 6. Use Plot() to plot the results.
24
+ 6. Use DataFrame.plot() to plot the results.
25
25
 
26
26
  PARAMETERS:
27
27
  data:
@@ -143,7 +143,6 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
143
143
  fit_metrics=True,
144
144
  residuals=True)
145
145
 
146
-
147
146
  # Example 1: Perform statistical test using CumulPeriodogram()
148
147
  # with input as TDSeries object created over the 'fitresiduals'
149
148
  # attribute of arima_validate generated by running ArimaValidate() and
@@ -158,7 +157,8 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
158
157
  payload_field="RESIDUAL",
159
158
  payload_content="REAL")
160
159
 
161
- uaf_out = CumulPeriodogram(data=data_series_df, significance_level=0.05)
160
+ uaf_out = CumulPeriodogram(data=data_series_df,
161
+ significance_level=0.05)
162
162
 
163
163
  # Print the result DataFrames.
164
164
  print(uaf_out.result)
@@ -174,7 +174,8 @@ def CumulPeriodogram(data=None, data_filter_expr=None,
174
174
  # generated by ArimaValidate() function with layer as 'ARTFITRESIDUALS'.
175
175
  art_df = TDAnalyticResult(data=arima_validate.result, layer="ARTFITRESIDUALS")
176
176
 
177
- uaf_out = CumulPeriodogram(data=art_df, significance_level=0.05)
177
+ uaf_out = CumulPeriodogram(data=art_df,
178
+ significance_level=0.05)
178
179
 
179
180
  # Print the result DataFrames.
180
181
  print(uaf_out.result)
@@ -174,10 +174,10 @@ def DFFT2Conv(data=None, data_filter_expr=None, conv=None,
174
174
  # input matrix with real numbers only for the matrix id 33.
175
175
  filter_expr = td_matrix.id==33
176
176
  dfft2_out = DFFT2(data=td_matrix,
177
- data_filter_expr=filter_expr,
178
- freq_style="K_INTEGRAL",
179
- human_readable=False,
180
- output_fmt_content="COMPLEX")
177
+ data_filter_expr=filter_expr,
178
+ freq_style="K_INTEGRAL",
179
+ human_readable=False,
180
+ output_fmt_content="COMPLEX")
181
181
 
182
182
  # Example 1: Convert the complex(REAL,IMAGINARY) output of DFFT2() to
183
183
  # polar(AMPLITUDE,PHASE) in RADIAN format using TDMatrix
@@ -0,0 +1,235 @@
1
+ def DWT(data1=None, data1_filter_expr=None, data2=None,
2
+ data2_filter_expr=None, wavelet=None, mode="symmetric",
3
+ level=1, part=None, input_fmt_input_mode=None,
4
+ output_fmt_index_style="NUMERICAL_SEQUENCE",
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ DWT() is a function that performs discrete wavelet
9
+ transform (DWT).
10
+
11
+ PARAMETERS:
12
+ data1:
13
+ Required Argument.
14
+ Specifies the series to be used as an input.
15
+ Multiple payloads are supported, and each payload column is
16
+ transformed independently. Only REAL or MULTIVAR_REAL
17
+ payload content types are supported.
18
+ Types: TDSeries
19
+
20
+ data1_filter_expr:
21
+ Optional Argument.
22
+ Specifies the filter expression for "data1".
23
+ Types: ColumnExpression
24
+
25
+ data2:
26
+ Optional Argument.
27
+ Specifies the series to be used as an input. The
28
+ series specifies the filter. It should have two payload
29
+ columns corresponding to low and high pass
30
+ filters. Only MULTIVAR_REAL payload content type is
31
+ supported.
32
+ Types: TDSeries
33
+
34
+ data2_filter_expr:
35
+ Optional Argument.
36
+ Specifies the filter expression for "data2".
37
+ Types: ColumnExpression
38
+
39
+ wavelet:
40
+ Optional Argument.
41
+ Specifies the name of the wavelet.
42
+ Option families and names are:
43
+ * Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
44
+ * Coiflets: 'coif1', 'coif2', ... , 'coif17'
45
+ * Symlets: 'sym2', 'sym3', ... ,' sym20'
46
+ * Discrete Meyer: 'dmey'
47
+ * Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5',
48
+ 'bior2.2', 'bior2.4', 'bior2.6',
49
+ 'bior2.8', 'bior3.1', 'bior3.3',
50
+ 'bior3.5', 'bior3.7', 'bior3.9',
51
+ 'bior4.4', 'bior5.5', 'bior6.8'
52
+ * Reverse Biorthogonal: 'rbio1.1', 'rbio1.3',
53
+ 'rbio1.5' 'rbio2.2',
54
+ 'rbio2.4', 'rbio2.6',
55
+ 'rbio2.8', 'rbio3.1',
56
+ 'rbio3.3', 'rbio3.5',
57
+ 'rbio3.7','rbio3.9',
58
+ 'rbio4.4', 'rbio5.5',
59
+ 'rbio6.8'
60
+ Note:
61
+ * If 'wavelet' is specified, do not include a second
62
+ input series for the function. Otherwise, include
63
+ a second input series to provide the filter.
64
+ * Data type is case-sensitive.
65
+ Types: str
66
+
67
+ mode:
68
+ Optional Argument.
69
+ Specifies the signal extension mode. Data type is
70
+ case-insensitive.
71
+ Permitted Values:
72
+ * symmetric, sym, symh
73
+ * reflect, symw
74
+ * smooth, spd, sp1
75
+ * constant, sp0
76
+ * zero, zpd
77
+ * periodic, ppd
78
+ * periodization, per
79
+ * antisymmetric, asym, asymh
80
+ * antireflect, asymw
81
+ Default Value: symmetric
82
+ Types: str
83
+
84
+ level:
85
+ Optional Argument.
86
+ Specifies the level of decomposition.
87
+ Valid values are [1,15].
88
+ Default Value: 1
89
+ Types: int
90
+
91
+ part:
92
+ Optional Argument.
93
+ Specifies the indicator that the input is partial decomposition
94
+ result.
95
+ Note:
96
+ Data type is case-insensitive.
97
+ Permitted Values:
98
+ * a - the approximation
99
+ * d - the detail of decomposition of result.
100
+ Types: str
101
+
102
+ input_fmt_input_mode:
103
+ Optional Argument.
104
+ Specifies the input mode supported by the function.
105
+ When there are two input series, then the input_fmt_input_mode
106
+ specification is mandatory.
107
+ Permitted Values:
108
+ The input_fmt_input_mode parameter has the following options:
109
+ * ONE2ONE: Both the primary and secondary series
110
+ specifications contain a series name which
111
+ identifies the two series in the function.
112
+ * MANY2ONE: The MANY specification is the primary series
113
+ declaration. The secondary series specification
114
+ contains a series name that identifies the single
115
+ secondary series.
116
+ * MATCH: Both series are defined by their respective series
117
+ specification instance name declarations.
118
+ Types: str
119
+
120
+ output_fmt_index_style:
121
+ Optional Argument.
122
+ Specifies the index style of the output format.
123
+ Permitted Values: NUMERICAL_SEQUENCE
124
+ Default Value: NUMERICAL_SEQUENCE
125
+ Types: str
126
+
127
+ **generic_arguments:
128
+ Specifies the generic keyword arguments of UAF functions.
129
+ Below are the generic keyword arguments:
130
+ persist:
131
+ Optional Argument.
132
+ Specifies whether to persist the results of the
133
+ function in a table or not. When set to True,
134
+ results are persisted in a table; otherwise,
135
+ results are garbage collected at the end of the
136
+ session.
137
+ Note that, when UAF function is executed, an
138
+ analytic result table (ART) is created.
139
+ Default Value: False
140
+ Types: bool
141
+
142
+ volatile:
143
+ Optional Argument.
144
+ Specifies whether to put the results of the
145
+ function in a volatile ART or not. When set to
146
+ True, results are stored in a volatile ART,
147
+ otherwise not.
148
+ Default Value: False
149
+ Types: bool
150
+
151
+ output_table_name:
152
+ Optional Argument.
153
+ Specifies the name of the table to store results.
154
+ If not specified, a unique table name is internally
155
+ generated.
156
+ Types: str
157
+
158
+ output_db_name:
159
+ Optional Argument.
160
+ Specifies the name of the database to create output
161
+ table into. If not specified, table is created into
162
+ database specified by the user at the time of context
163
+ creation or configuration parameter. Argument is ignored,
164
+ if "output_table_name" is not specified.
165
+ Types: str
166
+
167
+
168
+ RETURNS:
169
+ Instance of DWT.
170
+ Output teradataml DataFrames can be accessed using attribute
171
+ references, such as DWT_obj.<attribute_name>.
172
+ Output teradataml DataFrame attribute name is:
173
+ 1. result
174
+
175
+
176
+ RAISES:
177
+ TeradataMlException, TypeError, ValueError
178
+
179
+
180
+ EXAMPLES:
181
+ # Notes:
182
+ # 1. Get the connection to Vantage, before importing the
183
+ # function in user space.
184
+ # 2. User can import the function, if it is available on
185
+ # Vantage user is connected to.
186
+ # 3. To check the list of UAF analytic functions available
187
+ # on Vantage user connected to, use
188
+ # "display_analytic_functions()".
189
+
190
+ # Check the list of available UAF analytic functions.
191
+ display_analytic_functions(type="UAF")
192
+
193
+ # Import function DWT.
194
+ from teradataml import DWT
195
+
196
+ # Load the example data.
197
+ load_example_data("uaf", ["dwt_dataTable", "dwt_filterTable"])
198
+
199
+ # Create teradataml DataFrame objects.
200
+ data1 = DataFrame.from_table("dwt_dataTable")
201
+ data2 = DataFrame.from_table("dwt_filterTable")
202
+
203
+ # Create teradataml TDSeries objects.
204
+ data1_series_df = TDSeries(data=data1,
205
+ id="id",
206
+ row_index="rowi",
207
+ row_index_style="SEQUENCE",
208
+ payload_field="v",
209
+ payload_content="REAL")
210
+
211
+ data2_series_df = TDSeries(data=data2,
212
+ id="id",
213
+ row_index="seq",
214
+ row_index_style="SEQUENCE",
215
+ payload_field=["lo", "hi"],
216
+ payload_content="MULTIVAR_REAL")
217
+
218
+ # Example 1: Perform discrete wavelet transform using two series as input.
219
+ uaf_out = DWT(data1=data1_series_df,
220
+ data2=data2_series_df,
221
+ data2_filter_expr=data2_series_df.id==1,
222
+ input_fmt_input_mode='MANY2ONE')
223
+
224
+ # Print the result DataFrame.
225
+ print(uaf_out.result)
226
+
227
+ # Example 2: Perform discrete wavelet transform using single series as input and the wavelet parameter.
228
+ uaf_out = DWT(data1=data1_series_df,
229
+ wavelet='haar')
230
+
231
+ # Print the result DataFrame.
232
+ print(uaf_out.result)
233
+
234
+ """
235
+