teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +306 -0
- teradataml/__init__.py +10 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +299 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +13 -3
- teradataml/analytics/json_parser/utils.py +13 -6
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +11 -2
- teradataml/analytics/table_operator/__init__.py +4 -3
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +66 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +247 -307
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +325 -86
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +122 -153
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/__init__.py +2 -1
- teradataml/common/constants.py +72 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +152 -120
- teradataml/common/messagecodes.py +11 -2
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +26 -4
- teradataml/common/utils.py +225 -14
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +82 -2
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +27 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +1002 -201
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +867 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +840 -33
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +878 -34
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
- teradataml/opensource/_lightgbm.py +950 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
- teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
- teradataml/options/__init__.py +9 -23
- teradataml/options/configure.py +42 -4
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +13 -9
- teradataml/scriptmgmt/lls_utils.py +77 -23
- teradataml/store/__init__.py +13 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2223 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/store/vector_store/__init__.py +1586 -0
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +102 -56
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/dtypes.py +4 -2
- teradataml/utils/validators.py +34 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
def ArimaXEstimate(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, nonseasonal_model_order=None,
|
|
3
|
+
seasonal_model_order=None, seasonal_period=None,
|
|
4
|
+
xreg=None, init=None, fixed=None, constant=False,
|
|
5
|
+
algorithm=None, max_iterations=100, coeff_stats=False,
|
|
6
|
+
fit_percentage=100, fit_metrics=False, residuals=False,
|
|
7
|
+
input_fmt_input_mode=None,
|
|
8
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
9
|
+
**generic_arguments):
|
|
10
|
+
"""
|
|
11
|
+
DESCRIPTION:
|
|
12
|
+
ArimaXEstimate() function extends the capability of ArimaEstimate() by
|
|
13
|
+
allowing to include external regressors or covariates to an ARIMA model.
|
|
14
|
+
The external regressors are specified in TDSeries payload specification
|
|
15
|
+
after targeting the univariate series.
|
|
16
|
+
The following procedure is an example of how to use:
|
|
17
|
+
1. Run the ArimaXEstimate() function to estimate the coefficients
|
|
18
|
+
of ARIMAX model.
|
|
19
|
+
2. Run the ArimaXForecast() function with the estimated coefficient
|
|
20
|
+
as first input, and the regular input time series table (TDSeries) that
|
|
21
|
+
contains the future value of exogenous variables as second input.
|
|
22
|
+
|
|
23
|
+
PARAMETERS:
|
|
24
|
+
data1:
|
|
25
|
+
Required Argument.
|
|
26
|
+
Specifies the input series.
|
|
27
|
+
Types: TDSeries
|
|
28
|
+
|
|
29
|
+
data1_filter_expr:
|
|
30
|
+
Optional Argument.
|
|
31
|
+
Specifies the filter expression for "data1".
|
|
32
|
+
Types: ColumnExpression
|
|
33
|
+
|
|
34
|
+
data2:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies a logical univariate
|
|
37
|
+
series and an art table from previous
|
|
38
|
+
ArimaXEstimate() call. This allows the user to fit
|
|
39
|
+
the interested series in TDSeries by existing model
|
|
40
|
+
in TDAnalyticResult. In this case, the function's primary
|
|
41
|
+
result set will be based on the existing model's
|
|
42
|
+
coefficients.
|
|
43
|
+
Types: TDSeries, TDAnalyticResult
|
|
44
|
+
|
|
45
|
+
data2_filter_expr:
|
|
46
|
+
Optional Argument.
|
|
47
|
+
Specifies the filter expression for "data2".
|
|
48
|
+
Types: ColumnExpression
|
|
49
|
+
|
|
50
|
+
nonseasonal_model_order:
|
|
51
|
+
Required Argument.
|
|
52
|
+
Specifies the non-seasonal values for the model.
|
|
53
|
+
A list containing three integer values, which are each greater than or equal to 0:
|
|
54
|
+
• p-value: The order of the non-seasonal autoregression
|
|
55
|
+
(AR) component.
|
|
56
|
+
• d-value: The order of the non-seasonal differences
|
|
57
|
+
between consecutive components.
|
|
58
|
+
• q-value: The order of the non-seasonal moving
|
|
59
|
+
average (MA) component.
|
|
60
|
+
Types: int, list of int
|
|
61
|
+
|
|
62
|
+
seasonal_model_order:
|
|
63
|
+
Required Argument.
|
|
64
|
+
Specifies the seasonal values for the model.
|
|
65
|
+
A list containing three integer values, which are each greater than or equal to 0:
|
|
66
|
+
• P-value: The order of the seasonal auto-regression
|
|
67
|
+
(SAR) component.
|
|
68
|
+
• D-value: The order of the seasonal differences
|
|
69
|
+
between consecutive components.
|
|
70
|
+
• Q-value: The order of the seasonal moving average
|
|
71
|
+
(SMA) component.
|
|
72
|
+
Types: int, list of int
|
|
73
|
+
|
|
74
|
+
seasonal_period:
|
|
75
|
+
Optional Argument.
|
|
76
|
+
Specifies the number of periods per season.
|
|
77
|
+
Types: int
|
|
78
|
+
|
|
79
|
+
xreg:
|
|
80
|
+
Required Argument.
|
|
81
|
+
Specifies the number of covariates in external regressors.
|
|
82
|
+
Note:
|
|
83
|
+
* If value is 0, then it suggests to use ArimaEstimate().
|
|
84
|
+
The input number should match with the number
|
|
85
|
+
of (payload-1). Otherwise, an error occurs with
|
|
86
|
+
the message “Unexpected XREG input.”
|
|
87
|
+
* Maximum number for this argument is 10.
|
|
88
|
+
Types: int
|
|
89
|
+
|
|
90
|
+
init:
|
|
91
|
+
Optional Argument.
|
|
92
|
+
Specifies the position-sensitive list that specifies the initial
|
|
93
|
+
values to be associated with the non-seasonal AR
|
|
94
|
+
regression coefficients, followed by the non-seasonal
|
|
95
|
+
MA coefficients, the seasonal SAR regression
|
|
96
|
+
coefficients and the SMA coefficients. The formula is
|
|
97
|
+
as follows: 'p+q+P+Q+CONSTANT-length-init-list'
|
|
98
|
+
Types: float, list of float
|
|
99
|
+
|
|
100
|
+
fixed:
|
|
101
|
+
Optional Argument.
|
|
102
|
+
Specifies the position-sensitive list that contains the
|
|
103
|
+
fixed values to be associated with the non-seasonal
|
|
104
|
+
AR regression coefficients, followed by the nonseasonal
|
|
105
|
+
MA coefficients, the SAR coefficients and
|
|
106
|
+
the SMA coefficients.
|
|
107
|
+
If an intercept is needed, one more value is added at
|
|
108
|
+
the end to specify the intercept coefficient initial value.
|
|
109
|
+
The formula is as follows: 'p+q+P+Q+CONSTANT-length-fixed-list'
|
|
110
|
+
Types: float, list of float
|
|
111
|
+
|
|
112
|
+
constant:
|
|
113
|
+
Optional Argument.
|
|
114
|
+
Specifies the indicator for the ArimaXEstimate() function to
|
|
115
|
+
calculate an intercept. When set to True, it indicates intercept
|
|
116
|
+
should be calculated otherwise it indicates no
|
|
117
|
+
intercept should be calculated.
|
|
118
|
+
Default Value: False
|
|
119
|
+
Types: bool
|
|
120
|
+
|
|
121
|
+
algorithm:
|
|
122
|
+
Required Argument.
|
|
123
|
+
Specifies the method to estimate the coefficients.
|
|
124
|
+
Permitted Values: OLE, MLE, MLE_CSS, CSS
|
|
125
|
+
Types: str
|
|
126
|
+
|
|
127
|
+
max_iterations:
|
|
128
|
+
Optional Argument.
|
|
129
|
+
Specifies the limit on the maximum number of
|
|
130
|
+
iterations that can be employed to estimate the
|
|
131
|
+
ARIMA parameters. Only relevant for "algorithm" value 'MLE'
|
|
132
|
+
processing.
|
|
133
|
+
Default Value: 100
|
|
134
|
+
Types: int
|
|
135
|
+
|
|
136
|
+
coeff_stats:
|
|
137
|
+
Optional Argument.
|
|
138
|
+
Specifies the flag indicating whether to return coefficient
|
|
139
|
+
statistical columns STD_ERROR, TSTAT_VALUE and
|
|
140
|
+
TSTAT_PROB. When set to True, function returns the columns,
|
|
141
|
+
otherwise does not return the columns.
|
|
142
|
+
Default Value: False
|
|
143
|
+
Types: bool
|
|
144
|
+
|
|
145
|
+
fit_percentage:
|
|
146
|
+
Optional Argument.
|
|
147
|
+
Specifies the percentage of passed-in sample points
|
|
148
|
+
that are used for the model fitting and parameter estimation.
|
|
149
|
+
Default Value: 100
|
|
150
|
+
Types: int
|
|
151
|
+
|
|
152
|
+
fit_metrics:
|
|
153
|
+
Optional Argument.
|
|
154
|
+
Specifies the indicator to generate the secondary result
|
|
155
|
+
set that contains the model metadata statistics.
|
|
156
|
+
When set to True, the function generates the secondary result set
|
|
157
|
+
otherwise does not generate the secondary result set.
|
|
158
|
+
The generated result set is retrieved by issuing the
|
|
159
|
+
ExtractResults function on the analytical result
|
|
160
|
+
table containing the results.
|
|
161
|
+
Default Value: False
|
|
162
|
+
Types: bool
|
|
163
|
+
|
|
164
|
+
residuals:
|
|
165
|
+
Optional Argument.
|
|
166
|
+
Specifies the indicator to generate the tertiary result set
|
|
167
|
+
that contains the model residuals. When set to True, function
|
|
168
|
+
generates the tertiary result set otherwise, does
|
|
169
|
+
not generate the tertiary result set.
|
|
170
|
+
Default Value: False
|
|
171
|
+
Types: bool
|
|
172
|
+
|
|
173
|
+
input_fmt_input_mode:
|
|
174
|
+
Required Argument.
|
|
175
|
+
Specifies the input mode supported by the function.
|
|
176
|
+
Permitted Values: MANY2ONE, ONE2ONE, MATCH
|
|
177
|
+
Types: str
|
|
178
|
+
|
|
179
|
+
output_fmt_index_style:
|
|
180
|
+
Optional Argument.
|
|
181
|
+
Specifies the "index_style" of the output format.
|
|
182
|
+
Permitted Values: NUMERICAL_SEQUENCE, FLOW_THROUGH
|
|
183
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
184
|
+
Types: str
|
|
185
|
+
|
|
186
|
+
**generic_arguments:
|
|
187
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
188
|
+
Below are the generic keyword arguments:
|
|
189
|
+
persist:
|
|
190
|
+
Optional Argument.
|
|
191
|
+
Specifies whether to persist the results of the
|
|
192
|
+
function in a table or not. When set to True,
|
|
193
|
+
results are persisted in a table; otherwise,
|
|
194
|
+
results are garbage collected at the end of the
|
|
195
|
+
session.
|
|
196
|
+
Note that, when UAF function is executed, an
|
|
197
|
+
analytic result table (ART) is created.
|
|
198
|
+
Default Value: False
|
|
199
|
+
Types: bool
|
|
200
|
+
|
|
201
|
+
volatile:
|
|
202
|
+
Optional Argument.
|
|
203
|
+
Specifies whether to put the results of the
|
|
204
|
+
function in a volatile ART or not. When set to
|
|
205
|
+
True, results are stored in a volatile ART,
|
|
206
|
+
otherwise not.
|
|
207
|
+
Default Value: False
|
|
208
|
+
Types: bool
|
|
209
|
+
|
|
210
|
+
output_table_name:
|
|
211
|
+
Optional Argument.
|
|
212
|
+
Specifies the name of the table to store results.
|
|
213
|
+
If not specified, a unique table name is internally
|
|
214
|
+
generated.
|
|
215
|
+
Types: str
|
|
216
|
+
|
|
217
|
+
output_db_name:
|
|
218
|
+
Optional Argument.
|
|
219
|
+
Specifies the name of the database to create output
|
|
220
|
+
table into. If not specified, table is created into
|
|
221
|
+
database specified by the user at the time of context
|
|
222
|
+
creation or configuration parameter. Argument is ignored,
|
|
223
|
+
if "output_table_name" is not specified.
|
|
224
|
+
Types: str
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
RETURNS:
|
|
228
|
+
Instance of ArimaXEstimate.
|
|
229
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
230
|
+
references, such as ArimaXEstimate_obj.<attribute_name>.
|
|
231
|
+
Output teradataml DataFrame attribute names are:
|
|
232
|
+
1. result
|
|
233
|
+
2. fitmetadata
|
|
234
|
+
3. fitresiduals
|
|
235
|
+
4. model
|
|
236
|
+
5. valdata
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
RAISES:
|
|
240
|
+
TeradataMlException, TypeError, ValueError
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
EXAMPLES:
|
|
244
|
+
# Notes:
|
|
245
|
+
# 1. Get the connection to Vantage, before importing the
|
|
246
|
+
# function in user space.
|
|
247
|
+
# 2. User can import the function, if it is available on
|
|
248
|
+
# Vantage user is connected to.
|
|
249
|
+
# 3. To check the list of UAF analytic functions available
|
|
250
|
+
# on Vantage user connected to, use
|
|
251
|
+
# "display_analytic_functions()".
|
|
252
|
+
|
|
253
|
+
# Check the list of available UAF analytic functions.
|
|
254
|
+
display_analytic_functions(type="UAF")
|
|
255
|
+
|
|
256
|
+
# Import function ArimaXEstimate.
|
|
257
|
+
from teradataml import ArimaXEstimate
|
|
258
|
+
|
|
259
|
+
# Load the example data.
|
|
260
|
+
load_example_data("uaf", "blood2ageandweight")
|
|
261
|
+
|
|
262
|
+
# Create teradataml DataFrame objects.
|
|
263
|
+
data1 = DataFrame.from_table("blood2ageandweight")
|
|
264
|
+
|
|
265
|
+
# Create teradataml TDSeries objects.
|
|
266
|
+
data1_series_df = TDSeries(data=data1,
|
|
267
|
+
id="PatientID",
|
|
268
|
+
row_index="SeqNo",
|
|
269
|
+
row_index_style="SEQUENCE",
|
|
270
|
+
payload_field=["BloodFat", "Age"],
|
|
271
|
+
payload_content="MULTIVAR_REAL")
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
# Example 1: Execute ArimaXEstimate with single input.
|
|
275
|
+
uaf_out = ArimaXEstimate(data1=data1_series_df,
|
|
276
|
+
nonseasonal_model_order=[2,0,1],
|
|
277
|
+
xreg=True,
|
|
278
|
+
fit_metrics=True,
|
|
279
|
+
residuals=True,
|
|
280
|
+
constant=True
|
|
281
|
+
algorithm=MLE,
|
|
282
|
+
fit_percentage=80
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
# Print the result DataFrames.
|
|
286
|
+
print(uaf_out.result)
|
|
287
|
+
print(uaf_out.fitmetadata)
|
|
288
|
+
print(uaf_out.fitresiduals)
|
|
289
|
+
print(uaf_out.model)
|
|
290
|
+
print(uaf_out.valdata)
|
|
291
|
+
|
|
292
|
+
"""
|
|
293
|
+
|
|
@@ -0,0 +1,354 @@
|
|
|
1
|
+
def AutoArima(data=None, data_filter_expr=None, max_pq_nonseasonal=[5,5],
|
|
2
|
+
max_pq_seasonal=[2,2], start_pq_nonseasonal=[0,0],
|
|
3
|
+
start_pq_seasonal=[0,0], d=-1, ds=-1, max_d=2, max_ds=1,
|
|
4
|
+
period=1, stationary=False, seasonal=True, constant=True,
|
|
5
|
+
algorithm="MLE", fit_percentage=100,
|
|
6
|
+
infor_criteria="AIC", stepwise=False, nmodels=94,
|
|
7
|
+
max_iterations=100, coeff_stats=False,
|
|
8
|
+
fit_metrics=False, residuals=False, arma_roots=False,
|
|
9
|
+
test_nonseasonal="ADF", test_seasonal="OCSB",
|
|
10
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
11
|
+
**generic_arguments):
|
|
12
|
+
"""
|
|
13
|
+
DESCRIPTION:
|
|
14
|
+
AutoArima() function searches the possible models within the order
|
|
15
|
+
constrains in the function parameters, and returns the best ARIMA
|
|
16
|
+
model based on the criterion provided by the "infor_criteria"
|
|
17
|
+
parameter. AutoArima() function creates a six-layered ART table.
|
|
18
|
+
|
|
19
|
+
PARAMETERS:
|
|
20
|
+
data:
|
|
21
|
+
Required Argument.
|
|
22
|
+
Specifies the time series whose value can be REAL.
|
|
23
|
+
Types: TDSeries
|
|
24
|
+
|
|
25
|
+
data_filter_expr:
|
|
26
|
+
Optional Argument.
|
|
27
|
+
Specifies the filter expression for "data".
|
|
28
|
+
Types: ColumnExpression
|
|
29
|
+
|
|
30
|
+
max_pq_nonseasonal:
|
|
31
|
+
Optional Argument.
|
|
32
|
+
Specifies the (p,q) order of the maximum autoregression (AR) and
|
|
33
|
+
moving average (MA) parameters.
|
|
34
|
+
Default Value: [5,5]
|
|
35
|
+
Types: list
|
|
36
|
+
|
|
37
|
+
max_pq_seasonal:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the (P,Q) order of the max seasonal AR and MA
|
|
40
|
+
parameters.
|
|
41
|
+
Default Value: [2,2]
|
|
42
|
+
Types: list
|
|
43
|
+
|
|
44
|
+
start_pq_nonseasonal:
|
|
45
|
+
Optional Argument.
|
|
46
|
+
Specifies the start value of (p,q). Only used when "stepwise"=1.
|
|
47
|
+
Default Value: [0,0]
|
|
48
|
+
Types: list
|
|
49
|
+
|
|
50
|
+
start_pq_seasonal:
|
|
51
|
+
Optional Argument.
|
|
52
|
+
Specifies the start value of seasonal (P,Q). Only used when
|
|
53
|
+
"stepwise"=1.
|
|
54
|
+
Default Value: [0,0]
|
|
55
|
+
Types: list
|
|
56
|
+
|
|
57
|
+
d:
|
|
58
|
+
Optional Argument.
|
|
59
|
+
Specifies the order of first-differencing.
|
|
60
|
+
Default Value: -1 (auto search d).
|
|
61
|
+
Types: int
|
|
62
|
+
|
|
63
|
+
ds:
|
|
64
|
+
Optional Argument.
|
|
65
|
+
Specifies the order of seasonal-differencing.
|
|
66
|
+
Default Value: -1 (auto search Ds).
|
|
67
|
+
Types: int
|
|
68
|
+
|
|
69
|
+
max_d:
|
|
70
|
+
Optional Argument.
|
|
71
|
+
Specifies the maximum number of non-seasonal differences.
|
|
72
|
+
Default Value: 2
|
|
73
|
+
Types: int
|
|
74
|
+
|
|
75
|
+
max_ds:
|
|
76
|
+
Optional Argument.
|
|
77
|
+
Specifies the maximum number of seasonal differences.
|
|
78
|
+
Default Value: 1
|
|
79
|
+
Types: int
|
|
80
|
+
|
|
81
|
+
period:
|
|
82
|
+
Optional Argument.
|
|
83
|
+
Specifies the number of periods per season. For non-seasonal
|
|
84
|
+
data, period is 1.
|
|
85
|
+
Default Value: 1
|
|
86
|
+
Types: int
|
|
87
|
+
|
|
88
|
+
stationary:
|
|
89
|
+
Optional Argument.
|
|
90
|
+
Specifies whether to restrict search to stationary models.
|
|
91
|
+
If True, the function restricts search to stationary models.
|
|
92
|
+
Default Value: False
|
|
93
|
+
Types: bool
|
|
94
|
+
|
|
95
|
+
seasonal:
|
|
96
|
+
Optional Argument.
|
|
97
|
+
Specifies whether to restrict search to non-seasonal models.
|
|
98
|
+
If False, then the function restricts search to non-seasonal
|
|
99
|
+
models.
|
|
100
|
+
Default Value: True
|
|
101
|
+
Types: bool
|
|
102
|
+
|
|
103
|
+
constant:
|
|
104
|
+
Optional Argument.
|
|
105
|
+
Specifies whether an indicator that AutoArima() function includes
|
|
106
|
+
an intercept. If True, means CONSTANT/intercept
|
|
107
|
+
should be included. If False, means
|
|
108
|
+
CONSTANT/intercept should not be included.
|
|
109
|
+
Default Value: True
|
|
110
|
+
Types: bool
|
|
111
|
+
|
|
112
|
+
algorithm:
|
|
113
|
+
Optional Argument.
|
|
114
|
+
Specifies the approach used by TD_AUTOARIMA to estimate the
|
|
115
|
+
coefficients.
|
|
116
|
+
Permitted Values:
|
|
117
|
+
* MLE: Use maximum likelihood approach.
|
|
118
|
+
* CSS_MLE: Use the conditional sum-of-squares to determine a
|
|
119
|
+
start value and then do maximum likelihood.
|
|
120
|
+
* CSS: Use the conditional sum-of squares approach.
|
|
121
|
+
Default Value: MLE
|
|
122
|
+
Types: str
|
|
123
|
+
|
|
124
|
+
fit_percentage:
|
|
125
|
+
Optional Argument.
|
|
126
|
+
Specifies the percentage of passed-in sample points used for the
|
|
127
|
+
model fitting (parameter estimation).
|
|
128
|
+
Default Value: 100
|
|
129
|
+
Types: int
|
|
130
|
+
|
|
131
|
+
infor_criteria:
|
|
132
|
+
Optional Argument.
|
|
133
|
+
Specifies the information criterion to be used in model selection.
|
|
134
|
+
Permitted Values: AIC, AICC, BIC
|
|
135
|
+
Default Value: AIC
|
|
136
|
+
Types: str
|
|
137
|
+
|
|
138
|
+
stepwise:
|
|
139
|
+
Optional Argument.
|
|
140
|
+
Specifies whether the function does stepwise selection or not.
|
|
141
|
+
If True, then the function does stepwise selection otherwise the
|
|
142
|
+
function selects all models.
|
|
143
|
+
Default Value: False
|
|
144
|
+
Types: bool
|
|
145
|
+
|
|
146
|
+
nmodels:
|
|
147
|
+
Optional Argument.
|
|
148
|
+
Specifies the maximum number of models considered in the stepwise
|
|
149
|
+
search.
|
|
150
|
+
Default Value: 94
|
|
151
|
+
Types: int
|
|
152
|
+
|
|
153
|
+
max_iterations:
|
|
154
|
+
Optional Argument.
|
|
155
|
+
Specifies the maximum number of iterations that can be employed
|
|
156
|
+
to non-linear optimization procedure.
|
|
157
|
+
Default Value: 100
|
|
158
|
+
Types: int
|
|
159
|
+
|
|
160
|
+
coeff_stats:
|
|
161
|
+
Optional Argument.
|
|
162
|
+
Specifies the indicator to return coefficient statistical columns
|
|
163
|
+
TSTAT_VALUE and TSTAT_PROB. If True, means return
|
|
164
|
+
the columns otherwise do not return the
|
|
165
|
+
columns.
|
|
166
|
+
Default Value: False
|
|
167
|
+
Types: bool
|
|
168
|
+
|
|
169
|
+
fit_metrics:
|
|
170
|
+
Optional Argument.
|
|
171
|
+
Specifies the indicator to generate the secondary result set that
|
|
172
|
+
contains the model metadata statistics. If True,
|
|
173
|
+
means generate the secondary result set otherwise
|
|
174
|
+
do not generate the secondary result set.
|
|
175
|
+
Default Value: False
|
|
176
|
+
Types: bool
|
|
177
|
+
|
|
178
|
+
residuals:
|
|
179
|
+
Optional Argument.
|
|
180
|
+
Specifies the indicator to generate the tertiary result set that
|
|
181
|
+
contains the model residuals. If True, means
|
|
182
|
+
generate the tertiary result set, otherwise
|
|
183
|
+
do not generate the tertiary result set.
|
|
184
|
+
Default Value: False
|
|
185
|
+
Types: bool
|
|
186
|
+
|
|
187
|
+
arma_roots:
|
|
188
|
+
Optional Argument.
|
|
189
|
+
Specifies the indicator to generate the senary result set that
|
|
190
|
+
contains the inverse AR and MA roots of result best
|
|
191
|
+
model that AutoArima() selected (the model in the
|
|
192
|
+
primary output layer). There should be no inverse
|
|
193
|
+
roots showing outside of the unit circle. If True,
|
|
194
|
+
means generate result set otherwise do not
|
|
195
|
+
generate a result set.
|
|
196
|
+
Default Value: False
|
|
197
|
+
Types: bool
|
|
198
|
+
|
|
199
|
+
test_nonseasonal:
|
|
200
|
+
Optional Argument.
|
|
201
|
+
Specifies the nonseasonal unit root test used to choose
|
|
202
|
+
differencing number "d".
|
|
203
|
+
AutoArima() function only uses ADF test for
|
|
204
|
+
nonseasonal unit root test.
|
|
205
|
+
Permitted Values: ADF
|
|
206
|
+
Default Value: ADF
|
|
207
|
+
Types: str
|
|
208
|
+
|
|
209
|
+
test_seasonal:
|
|
210
|
+
Optional Argument.
|
|
211
|
+
Specifies the seasonal unit root test used to choose differencing
|
|
212
|
+
number "d". AutoArima() function only uses OCSB test for
|
|
213
|
+
seasonal unit root test.
|
|
214
|
+
Permitted Values: OCSB
|
|
215
|
+
Default Value: OCSB
|
|
216
|
+
Types: str
|
|
217
|
+
|
|
218
|
+
output_fmt_index_style:
|
|
219
|
+
Optional Argument.
|
|
220
|
+
Specifies the index style of the output format.
|
|
221
|
+
Permitted Values: NUMERICAL_SEQUENCE, FLOW_THROUGH
|
|
222
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
223
|
+
Types: str
|
|
224
|
+
|
|
225
|
+
**generic_arguments:
|
|
226
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
227
|
+
Below are the generic keyword arguments:
|
|
228
|
+
persist:
|
|
229
|
+
Optional Argument.
|
|
230
|
+
Specifies whether to persist the results of the
|
|
231
|
+
function in a table or not. When set to True,
|
|
232
|
+
results are persisted in a table; otherwise,
|
|
233
|
+
results are garbage collected at the end of the
|
|
234
|
+
session.
|
|
235
|
+
Note that, when UAF function is executed, an
|
|
236
|
+
analytic result table (ART) is created.
|
|
237
|
+
Default Value: False
|
|
238
|
+
Types: bool
|
|
239
|
+
|
|
240
|
+
volatile:
|
|
241
|
+
Optional Argument.
|
|
242
|
+
Specifies whether to put the results of the
|
|
243
|
+
function in a volatile ART or not. When set to
|
|
244
|
+
True, results are stored in a volatile ART,
|
|
245
|
+
otherwise not.
|
|
246
|
+
Default Value: False
|
|
247
|
+
Types: bool
|
|
248
|
+
|
|
249
|
+
output_table_name:
|
|
250
|
+
Optional Argument.
|
|
251
|
+
Specifies the name of the table to store results.
|
|
252
|
+
If not specified, a unique table name is internally
|
|
253
|
+
generated.
|
|
254
|
+
Types: str
|
|
255
|
+
|
|
256
|
+
output_db_name:
|
|
257
|
+
Optional Argument.
|
|
258
|
+
Specifies the name of the database to create output
|
|
259
|
+
table into. If not specified, table is created into
|
|
260
|
+
database specified by the user at the time of context
|
|
261
|
+
creation or configuration parameter. Argument is ignored,
|
|
262
|
+
if "output_table_name" is not specified.
|
|
263
|
+
Types: str
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
RETURNS:
|
|
267
|
+
Instance of AutoArima.
|
|
268
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
269
|
+
references, such as AutoArima_obj.<attribute_name>.
|
|
270
|
+
Output teradataml DataFrame attribute names are:
|
|
271
|
+
1. result
|
|
272
|
+
2. fitmetadata
|
|
273
|
+
3. fitresiduals
|
|
274
|
+
4. model
|
|
275
|
+
5. icandorder
|
|
276
|
+
6. armaroots
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
RAISES:
|
|
280
|
+
TeradataMlException, TypeError, ValueError
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
EXAMPLES:
|
|
284
|
+
# Notes:
|
|
285
|
+
# 1. Get the connection to Vantage, before importing the
|
|
286
|
+
# function in user space.
|
|
287
|
+
# 2. User can import the function, if it is available on
|
|
288
|
+
# Vantage user is connected to.
|
|
289
|
+
# 3. To check the list of UAF analytic functions available
|
|
290
|
+
# on Vantage user connected to, use
|
|
291
|
+
# "display_analytic_functions()".
|
|
292
|
+
|
|
293
|
+
# Check the list of available UAF analytic functions.
|
|
294
|
+
display_analytic_functions(type="UAF")
|
|
295
|
+
|
|
296
|
+
# Import function AutoArima.
|
|
297
|
+
from teradataml import AutoArima
|
|
298
|
+
|
|
299
|
+
# Load the example data.
|
|
300
|
+
load_example_data("uaf", ["blood2ageandweight", "covid_confirm_sd"])
|
|
301
|
+
|
|
302
|
+
# Create teradataml DataFrame object.
|
|
303
|
+
data = DataFrame.from_table("blood2ageandweight")
|
|
304
|
+
|
|
305
|
+
# Create teradataml TDSeries object.
|
|
306
|
+
data_series_df = TDSeries(data=data,
|
|
307
|
+
id="PatientID",
|
|
308
|
+
row_index="SeqNo",
|
|
309
|
+
row_index_style="SEQUENCE",
|
|
310
|
+
payload_field="BloodFat",
|
|
311
|
+
payload_content="REAL")
|
|
312
|
+
|
|
313
|
+
# Example 1: Execute AutoArima with start_pq_nonseasonal as [1,1], algorithm = "MLE" and
|
|
314
|
+
# fit_percentage=80 to find the best ARIMA model.
|
|
315
|
+
uaf_out = AutoArima(data=data_series_df,
|
|
316
|
+
start_pq_nonseasonal=[1, 1],
|
|
317
|
+
seasonal=False,
|
|
318
|
+
constant=True,
|
|
319
|
+
algorithm="MLE",
|
|
320
|
+
fit_percentage=80,
|
|
321
|
+
stepwise=True,
|
|
322
|
+
nmodels=7,
|
|
323
|
+
fit_metrics=True,
|
|
324
|
+
residuals=True)
|
|
325
|
+
|
|
326
|
+
# Print the result DataFrames.
|
|
327
|
+
print(uaf_out.result)
|
|
328
|
+
|
|
329
|
+
# Example 2: Execute AutoArima with max_pq_nonseasonal as [3,3], arma_roots = True,
|
|
330
|
+
# to find thhe best ARIMA model.
|
|
331
|
+
covid_confirm_sd = DataFrame("covid_confirm_sd")
|
|
332
|
+
data_series_df = TDSeries(data=covid_confirm_sd,
|
|
333
|
+
id="city",
|
|
334
|
+
row_index="row_axis",
|
|
335
|
+
row_index_style="SEQUENCE",
|
|
336
|
+
payload_field="cnumber",
|
|
337
|
+
payload_content="REAL")
|
|
338
|
+
|
|
339
|
+
uaf_out = AutoArima(data=data_series_df,
|
|
340
|
+
max_pq_nonseasonal=[3, 3],
|
|
341
|
+
stationary=False,
|
|
342
|
+
stepwise=False,
|
|
343
|
+
arma_roots=True,
|
|
344
|
+
residuals=True)
|
|
345
|
+
|
|
346
|
+
# Print the result DataFrames.
|
|
347
|
+
print(uaf_out.result)
|
|
348
|
+
print(uaf_out.fitresiduals)
|
|
349
|
+
print(uaf_out.model)
|
|
350
|
+
print(uaf_out.icandorder)
|
|
351
|
+
print(uaf_out.armaroots)
|
|
352
|
+
|
|
353
|
+
"""
|
|
354
|
+
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
|
|
2
|
-
explanatory_count=None, significance_level=
|
|
2
|
+
explanatory_count=None, significance_level=0.05,
|
|
3
3
|
**generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
@@ -46,6 +46,7 @@ def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
|
|
|
46
46
|
significance_level:
|
|
47
47
|
Optional Argument.
|
|
48
48
|
Specifies the desired significance level for the test.
|
|
49
|
+
Default Value: 0.05
|
|
49
50
|
Types: float
|
|
50
51
|
|
|
51
52
|
**generic_arguments:
|
|
@@ -163,7 +164,7 @@ def BreuschGodfrey(data=None, data_filter_expr=None, residual_max_lags=None,
|
|
|
163
164
|
id="cityid",
|
|
164
165
|
row_index="ROW_I",
|
|
165
166
|
row_index_style= "SEQUENCE",
|
|
166
|
-
payload_field=["ACTUAL_VALUE","CALC_VALUE"],
|
|
167
|
+
payload_field=["RESIDUAL","ACTUAL_VALUE","CALC_VALUE"],
|
|
167
168
|
payload_content="MULTIVAR_REAL")
|
|
168
169
|
|
|
169
170
|
uaf_out = BreuschGodfrey(data=data_series_bg,
|
|
@@ -149,7 +149,7 @@ def BreuschPaganGodfrey(data=None, data_filter_expr=None, variables_count=None,
|
|
|
149
149
|
id="cityid",
|
|
150
150
|
row_index="ROW_I",
|
|
151
151
|
row_index_style= "SEQUENCE",
|
|
152
|
-
payload_field=["ACTUAL_VALUE","CALC_VALUE"],
|
|
152
|
+
payload_field=["RESIDUAL","ACTUAL_VALUE","CALC_VALUE"],
|
|
153
153
|
payload_content="MULTIVAR_REAL")
|
|
154
154
|
uaf_out = BreuschPaganGodfrey(data=data_series_bg,
|
|
155
155
|
variables_count=2,
|