teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +306 -0
- teradataml/__init__.py +10 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +299 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +13 -3
- teradataml/analytics/json_parser/utils.py +13 -6
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +11 -2
- teradataml/analytics/table_operator/__init__.py +4 -3
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +66 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +247 -307
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +325 -86
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +122 -153
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/__init__.py +2 -1
- teradataml/common/constants.py +72 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +152 -120
- teradataml/common/messagecodes.py +11 -2
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +26 -4
- teradataml/common/utils.py +225 -14
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +82 -2
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +27 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +1002 -201
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +867 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +840 -33
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +878 -34
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
- teradataml/opensource/_lightgbm.py +950 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
- teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
- teradataml/options/__init__.py +9 -23
- teradataml/options/configure.py +42 -4
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +13 -9
- teradataml/scriptmgmt/lls_utils.py +77 -23
- teradataml/store/__init__.py +13 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2223 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/store/vector_store/__init__.py +1586 -0
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +102 -56
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/dtypes.py +4 -2
- teradataml/utils/validators.py +34 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
def DWT2D(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, wavelet=None, mode="symmetric",
|
|
3
|
+
level=1, input_fmt_input_mode=None,
|
|
4
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
5
|
+
**generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
DWT2D() function performs discrete wavelet transform (DWT) for
|
|
9
|
+
two-dimensional data. The algorithm is applied first
|
|
10
|
+
vertically by column axis, then horizontally by row axis.
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
PARAMETERS:
|
|
14
|
+
data1:
|
|
15
|
+
Required Argument.
|
|
16
|
+
Specifies the input matrix. Multiple payloads are supported,
|
|
17
|
+
and each payload column is transformed independently.
|
|
18
|
+
Only REAL or MULTIVAR_REAL payload content types are supported.
|
|
19
|
+
Types: TDMatrix
|
|
20
|
+
|
|
21
|
+
data1_filter_expr:
|
|
22
|
+
Optional Argument.
|
|
23
|
+
Specifies the filter expression for "data1".
|
|
24
|
+
Types: ColumnExpression
|
|
25
|
+
|
|
26
|
+
data2:
|
|
27
|
+
Optional Argument.
|
|
28
|
+
Specifies the input series. The series specifies the filter.
|
|
29
|
+
It should have two payload columns corresponding to low and high
|
|
30
|
+
pass filters. Only MULTIVAR_REAL payload content type is supported.
|
|
31
|
+
Types: TDSeries
|
|
32
|
+
|
|
33
|
+
data2_filter_expr:
|
|
34
|
+
Optional Argument.
|
|
35
|
+
Specifies the filter expression for "data2".
|
|
36
|
+
Types: ColumnExpression
|
|
37
|
+
|
|
38
|
+
wavelet:
|
|
39
|
+
Optional Argument.
|
|
40
|
+
Specifies the name of the wavelet.
|
|
41
|
+
Permitted families and names are:
|
|
42
|
+
* Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
|
|
43
|
+
* Coiflets: 'coif1', 'coif2', ... , 'coif17'
|
|
44
|
+
* Symlets: 'sym2', 'sym3', ... ,' sym20'
|
|
45
|
+
* Discrete Meyer: 'dmey'
|
|
46
|
+
* Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2',
|
|
47
|
+
'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1',
|
|
48
|
+
'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
|
|
49
|
+
'bior4.4', 'bior5.5', 'bior6.8'
|
|
50
|
+
* Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5'
|
|
51
|
+
'rbio2.2', 'rbio2.4', 'rbio2.6',
|
|
52
|
+
'rbio2.8', 'rbio3.1', 'rbio3.3',
|
|
53
|
+
'rbio3.5', 'rbio3.7','rbio3.9',
|
|
54
|
+
'rbio4.4', 'rbio5.5', 'rbio6.8'
|
|
55
|
+
Note:
|
|
56
|
+
* If 'wavelet' is specified, do not include a second
|
|
57
|
+
input series for the function. Otherwise, include
|
|
58
|
+
a second input series to provide the filter.
|
|
59
|
+
* Data type is case-sensitive.
|
|
60
|
+
Types: str
|
|
61
|
+
|
|
62
|
+
mode:
|
|
63
|
+
Optional Argument.
|
|
64
|
+
Specifies the signal extension mode. Data type is case-insensitive.
|
|
65
|
+
Permitted Values:
|
|
66
|
+
* symmetric, sym, symh
|
|
67
|
+
* reflect, symw
|
|
68
|
+
* smooth, spd, sp1
|
|
69
|
+
* constant, sp0
|
|
70
|
+
* zero, zpd
|
|
71
|
+
* periodic, ppd
|
|
72
|
+
* periodization, per
|
|
73
|
+
* antisymmetric, asym, asymh
|
|
74
|
+
* antireflect, asymw
|
|
75
|
+
Default Value: symmetric
|
|
76
|
+
Types: str
|
|
77
|
+
|
|
78
|
+
level:
|
|
79
|
+
Optional Argument.
|
|
80
|
+
Specifies the level of decomposition. Valid values are [1,15].
|
|
81
|
+
Default Value: 1
|
|
82
|
+
Types: int
|
|
83
|
+
|
|
84
|
+
input_fmt_input_mode:
|
|
85
|
+
Optional Argument.
|
|
86
|
+
Specifies the input mode supported by the function.
|
|
87
|
+
When there are two input series, then the "input_fmt_input_mode"
|
|
88
|
+
specification is mandatory.
|
|
89
|
+
Permitted Values:
|
|
90
|
+
* ONE2ONE: Both the primary and secondary series specifications
|
|
91
|
+
contain a series name which identifies the two series
|
|
92
|
+
in the function.
|
|
93
|
+
* MANY2ONE: The MANY specification is the primary series
|
|
94
|
+
declaration. The secondary series specification
|
|
95
|
+
contains a series name that identifies the single
|
|
96
|
+
secondary series.
|
|
97
|
+
* MATCH: Both series are defined by their respective series
|
|
98
|
+
specification instance name declarations.
|
|
99
|
+
Types: str
|
|
100
|
+
|
|
101
|
+
output_fmt_index_style:
|
|
102
|
+
Optional Argument.
|
|
103
|
+
Specifies the index style of the output format.
|
|
104
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
105
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
106
|
+
Types: str
|
|
107
|
+
|
|
108
|
+
**generic_arguments:
|
|
109
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
110
|
+
Below are the generic keyword arguments:
|
|
111
|
+
persist:
|
|
112
|
+
Optional Argument.
|
|
113
|
+
Specifies whether to persist the results of the
|
|
114
|
+
function in a table or not. When set to True,
|
|
115
|
+
results are persisted in a table; otherwise,
|
|
116
|
+
results are garbage collected at the end of the
|
|
117
|
+
session.
|
|
118
|
+
Note that, when UAF function is executed, an
|
|
119
|
+
analytic result table (ART) is created.
|
|
120
|
+
Default Value: False
|
|
121
|
+
Types: bool
|
|
122
|
+
|
|
123
|
+
volatile:
|
|
124
|
+
Optional Argument.
|
|
125
|
+
Specifies whether to put the results of the
|
|
126
|
+
function in a volatile ART or not. When set to
|
|
127
|
+
True, results are stored in a volatile ART,
|
|
128
|
+
otherwise not.
|
|
129
|
+
Default Value: False
|
|
130
|
+
Types: bool
|
|
131
|
+
|
|
132
|
+
output_table_name:
|
|
133
|
+
Optional Argument.
|
|
134
|
+
Specifies the name of the table to store results.
|
|
135
|
+
If not specified, a unique table name is internally
|
|
136
|
+
generated.
|
|
137
|
+
Types: str
|
|
138
|
+
|
|
139
|
+
output_db_name:
|
|
140
|
+
Optional Argument.
|
|
141
|
+
Specifies the name of the database to create output
|
|
142
|
+
table into. If not specified, table is created into
|
|
143
|
+
database specified by the user at the time of context
|
|
144
|
+
creation or configuration parameter. Argument is ignored,
|
|
145
|
+
if "output_table_name" is not specified.
|
|
146
|
+
Types: str
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
RETURNS:
|
|
150
|
+
Instance of DWT2D.
|
|
151
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
152
|
+
references, such as DWT2D_obj.<attribute_name>.
|
|
153
|
+
Output teradataml DataFrame attribute name is:
|
|
154
|
+
1. result
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
RAISES:
|
|
158
|
+
TeradataMlException, TypeError, ValueError
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
EXAMPLES:
|
|
162
|
+
# Notes:
|
|
163
|
+
# 1. Get the connection to Vantage, before importing the
|
|
164
|
+
# function in user space.
|
|
165
|
+
# 2. User can import the function, if it is available on
|
|
166
|
+
# Vantage user is connected to.
|
|
167
|
+
# 3. To check the list of UAF analytic functions available
|
|
168
|
+
# on Vantage user connected to, use
|
|
169
|
+
# "display_analytic_functions()".
|
|
170
|
+
|
|
171
|
+
# Check the list of available UAF analytic functions.
|
|
172
|
+
display_analytic_functions(type="UAF")
|
|
173
|
+
|
|
174
|
+
# Load the example data.
|
|
175
|
+
load_example_data("uaf", ["dwt2d_dataTable", "dwt_filterTable"])
|
|
176
|
+
|
|
177
|
+
# Create teradataml DataFrame objects.
|
|
178
|
+
data1 = DataFrame.from_table("dwt2d_dataTable")
|
|
179
|
+
data2 = DataFrame.from_table("dwt_filterTable")
|
|
180
|
+
|
|
181
|
+
# Create teradataml TDSeries object.
|
|
182
|
+
data2_series_df = TDSeries(data=data2,
|
|
183
|
+
id="id",
|
|
184
|
+
row_index="seq",
|
|
185
|
+
row_index_style="SEQUENCE",
|
|
186
|
+
payload_field=["lo", "hi"],
|
|
187
|
+
payload_content="MULTIVAR_REAL")
|
|
188
|
+
|
|
189
|
+
# Create teradataml TDMatrix object.
|
|
190
|
+
data1_matrix_df = TDMatrix(data=data1,
|
|
191
|
+
id="id",
|
|
192
|
+
row_index="y",
|
|
193
|
+
row_index_style="SEQUENCE",
|
|
194
|
+
column_index="x",
|
|
195
|
+
column_index_style="SEQUENCE",
|
|
196
|
+
payload_field="v",
|
|
197
|
+
payload_content="REAL")
|
|
198
|
+
|
|
199
|
+
# Example 1: Perform discrete wavelet transform (DWT) for two-dimensional data using both inputs.
|
|
200
|
+
uaf_out = DWT2D(data1=data1_matrix_df,
|
|
201
|
+
data2=data2_series_df,
|
|
202
|
+
data2_filter_expr=data2.id==1,
|
|
203
|
+
input_fmt_input_mode="MANY2ONE")
|
|
204
|
+
|
|
205
|
+
# Example 1: Perform discrete wavelet transform (DWT) for two-dimensional data
|
|
206
|
+
# using only one matrix as input and wavelet as 'haar'.
|
|
207
|
+
uaf_out = DWT2D(data1=data1_matrix_df,
|
|
208
|
+
wavelet='haar')
|
|
209
|
+
|
|
210
|
+
# Print the result DataFrame.
|
|
211
|
+
print(uaf_out.result)
|
|
212
|
+
|
|
213
|
+
"""
|
|
214
|
+
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def DickeyFuller(data=None, data_filter_expr=None, algorithm=None,
|
|
2
|
-
max_lags=
|
|
2
|
+
max_lags=0,
|
|
3
3
|
**generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
@@ -10,18 +10,23 @@ def DickeyFuller(data=None, data_filter_expr=None, algorithm=None,
|
|
|
10
10
|
other factors.
|
|
11
11
|
|
|
12
12
|
The following procedure is an example of how to use DickeyFuller() function:
|
|
13
|
-
* Run
|
|
14
|
-
*
|
|
15
|
-
|
|
16
|
-
*
|
|
17
|
-
SeasonalNormalize()
|
|
13
|
+
* Run DickeyFuller() on the time series being modeled.
|
|
14
|
+
* Retrieve the results of the DickeyFuller() test to determine if the
|
|
15
|
+
time series contains any unit roots.
|
|
16
|
+
* If unit roots are present, use a technique such as differencing such as Diff()
|
|
17
|
+
or seasonal normalization, such as SeasonalNormalize(), to create a new series,
|
|
18
|
+
then rerun the DickeyFuller() test to verify that the differenced or
|
|
19
|
+
seasonally-normalized series unit root are removed.
|
|
20
|
+
* If the result shows unit roots, use Diff() and SeasonalNormalize()
|
|
21
|
+
to remove unit roots.
|
|
18
22
|
|
|
19
23
|
|
|
20
24
|
PARAMETERS:
|
|
21
25
|
data:
|
|
22
26
|
Required Argument.
|
|
23
|
-
|
|
24
|
-
|
|
27
|
+
Specifies a single logical-runtime series as an input or TDAnalyticResult which
|
|
28
|
+
contains ARTFITRESIDUALS layer.
|
|
29
|
+
Types: TDSeries, TDAnalyticResult
|
|
25
30
|
|
|
26
31
|
data_filter_expr:
|
|
27
32
|
Optional Argument.
|
|
@@ -34,26 +39,18 @@ def DickeyFuller(data=None, data_filter_expr=None, algorithm=None,
|
|
|
34
39
|
Permitted Values:
|
|
35
40
|
* NONE: Random walk
|
|
36
41
|
* DRIFT: Random walk with drift
|
|
37
|
-
* TREND: Random walk with linear trend
|
|
38
42
|
* DRIFTNTREND: Random walk with drift and trend
|
|
39
|
-
*
|
|
40
|
-
|
|
43
|
+
* SQUARED: Random walk with drift, trend, and
|
|
44
|
+
quadratic trend.
|
|
41
45
|
Types: str
|
|
42
46
|
|
|
43
47
|
max_lags:
|
|
44
48
|
Optional Argument.
|
|
45
49
|
Specifies the maximum number of lags to use with the regression
|
|
46
|
-
equation.
|
|
50
|
+
equation. Range is [0, 100]
|
|
51
|
+
DefaultValue: 0
|
|
47
52
|
Types: int
|
|
48
53
|
|
|
49
|
-
drift_trend_formula:
|
|
50
|
-
Optional Argument.
|
|
51
|
-
Specifies the formula used to represent the drift and trend portions
|
|
52
|
-
of the regression.
|
|
53
|
-
Note:
|
|
54
|
-
* Valid only when "algorithm" is set to 'formula'.
|
|
55
|
-
Types: str
|
|
56
|
-
|
|
57
54
|
**generic_arguments:
|
|
58
55
|
Specifies the generic keyword arguments of UAF functions.
|
|
59
56
|
Below are the generic keyword arguments:
|
|
@@ -136,7 +133,7 @@ def DickeyFuller(data=None, data_filter_expr=None, algorithm=None,
|
|
|
136
133
|
# for the presence of the unit roots using random walk with
|
|
137
134
|
# linear trend for regression.
|
|
138
135
|
uaf_out = DickeyFuller(data=data_series_df,
|
|
139
|
-
algorithm='
|
|
136
|
+
algorithm='DRIFT')
|
|
140
137
|
|
|
141
138
|
# Print the result DataFrame.
|
|
142
139
|
print(uaf_out.result)
|
|
@@ -28,7 +28,7 @@ def DurbinWatson(data=None, data_filter_expr=None, explanatory_count=None,
|
|
|
28
28
|
explanatory_count:
|
|
29
29
|
Required Argument.
|
|
30
30
|
Specifies the number of explanatory variables in the original regression.
|
|
31
|
-
The number of explanatory variables along with the "
|
|
31
|
+
The number of explanatory variables along with the "include_constant"
|
|
32
32
|
information is needed to perform the lookup in the Durbin-Watson data.
|
|
33
33
|
Types: int
|
|
34
34
|
|
|
@@ -10,7 +10,7 @@ def ExtractResults(data=None, data_filter_expr=None, **generic_arguments):
|
|
|
10
10
|
|
|
11
11
|
The functions that have multiple layers are shown in the table.
|
|
12
12
|
Layers of each function can be extracted from the function output,
|
|
13
|
-
i.e
|
|
13
|
+
i.e., "result" attribute, using the layer name specified below:
|
|
14
14
|
|
|
15
15
|
------------------------------------------------------------------
|
|
16
16
|
| Function | Layers |
|
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
def FilterFactory1d(filter_id=None, filter_type=None,
|
|
2
|
+
window_type=None, filter_length=None,
|
|
3
|
+
transition_bandwidth=None, low_cutoff=None,
|
|
4
|
+
high_cutoff=None, sampling_frequency=None,
|
|
5
|
+
filter_description=None, **generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
FilterFactory1d() function creates finite impulse response (FIR)
|
|
9
|
+
filter coefficients. The filters are based on certain parameters
|
|
10
|
+
and stored into a common table for reuse.
|
|
11
|
+
Note:
|
|
12
|
+
User needs EXECUTE PROCEDURE privelge on SYSLIB
|
|
13
|
+
|
|
14
|
+
PARAMETERS:
|
|
15
|
+
filter_id:
|
|
16
|
+
Required Argument.
|
|
17
|
+
Specifies the filter identifier, based on filter coefficients
|
|
18
|
+
stored in the table.
|
|
19
|
+
Types: int
|
|
20
|
+
|
|
21
|
+
filter_type:
|
|
22
|
+
Required Argument.
|
|
23
|
+
Specifies the type of filter to generate.
|
|
24
|
+
Permitted Values:
|
|
25
|
+
* LOWPASS - To remove frequencies above low_cutoff.
|
|
26
|
+
* HIGHPASS - To remove frequencies below high_cutoff.
|
|
27
|
+
* BANDPASS - To remove frequencies below low_cutoff and
|
|
28
|
+
above high_cutoff.
|
|
29
|
+
* BANDSTOP - To remove frequencies between low_cutoff
|
|
30
|
+
and high_cutoff.
|
|
31
|
+
Types: str
|
|
32
|
+
|
|
33
|
+
window_type:
|
|
34
|
+
Optional Argument.
|
|
35
|
+
Specifies the window function to the filter that maintains a
|
|
36
|
+
smooth drop-off to zero, and avoids extra artifacts in the
|
|
37
|
+
frequency domain. The default is to leave the filter
|
|
38
|
+
coefficients as they are, and not apply any windowing function.
|
|
39
|
+
Permitted Values: BLACKMAN, HAMMING, HANNING, BARTLETT
|
|
40
|
+
Types: str
|
|
41
|
+
|
|
42
|
+
filter_length:
|
|
43
|
+
Optional Argument.
|
|
44
|
+
Specifies the length of the filter to generate.
|
|
45
|
+
Overrides "transition_bandwidth" argument if both are supplied,
|
|
46
|
+
and renders the other an optional argument.
|
|
47
|
+
Default is approximately 4/("transition_bandwidth"/
|
|
48
|
+
"sampling_frequency").
|
|
49
|
+
Types: int
|
|
50
|
+
|
|
51
|
+
transition_bandwidth:
|
|
52
|
+
Optional Argument.
|
|
53
|
+
Specifies the maximum allowed size for the range of
|
|
54
|
+
frequencies for filter transitions between a passband and stopband.
|
|
55
|
+
This also determines the number of coefficients to be generated.
|
|
56
|
+
Value must be greater than 0.
|
|
57
|
+
A smaller value produces faster drop off at the cost of more coefficients.
|
|
58
|
+
Not used when "filter_length" is supplied.
|
|
59
|
+
Default is bandwidth from "filter_length".
|
|
60
|
+
Types: float
|
|
61
|
+
|
|
62
|
+
low_cutoff:
|
|
63
|
+
Optional Argument.
|
|
64
|
+
Specifies the lower frequency that change between a passband
|
|
65
|
+
and stopband occurs. It must be greater
|
|
66
|
+
than 0. It is not used by default with 'HIGHPASS' filter.
|
|
67
|
+
Types: float
|
|
68
|
+
|
|
69
|
+
high_cutoff:
|
|
70
|
+
Optional Argument.
|
|
71
|
+
Specifies the higher frequency that change
|
|
72
|
+
between a passband and stopband occurs. It must be greater
|
|
73
|
+
than 0 and not used by default with 'LOWPASS' filter.
|
|
74
|
+
Types: float
|
|
75
|
+
|
|
76
|
+
sampling_frequency:
|
|
77
|
+
Required Argument.
|
|
78
|
+
Specifies the frequency that the data to be filtered was
|
|
79
|
+
sampled. It must be greater than 0.
|
|
80
|
+
Types: float
|
|
81
|
+
|
|
82
|
+
filter_description:
|
|
83
|
+
Optional Argument.
|
|
84
|
+
Specifies the description for the filter coefficients
|
|
85
|
+
that contain the same filter ID. Description is only
|
|
86
|
+
written to one row for each filter generated, and
|
|
87
|
+
ROW_I is 0. Default is a string describing parameters.
|
|
88
|
+
Types: str
|
|
89
|
+
|
|
90
|
+
**generic_arguments:
|
|
91
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
92
|
+
Below are the generic keyword arguments:
|
|
93
|
+
persist:
|
|
94
|
+
Optional Argument.
|
|
95
|
+
Specifies whether to persist the results of the
|
|
96
|
+
function in a table or not. When set to True,
|
|
97
|
+
results are persisted in a table; otherwise,
|
|
98
|
+
results are garbage collected at the end of the
|
|
99
|
+
session.
|
|
100
|
+
Note that, when UAF function is executed, an
|
|
101
|
+
analytic result table (ART) is created.
|
|
102
|
+
Default Value: False
|
|
103
|
+
Types: bool
|
|
104
|
+
|
|
105
|
+
volatile:
|
|
106
|
+
Optional Argument.
|
|
107
|
+
Specifies whether to put the results of the
|
|
108
|
+
function in a volatile ART or not. When set to
|
|
109
|
+
True, results are stored in a volatile ART,
|
|
110
|
+
otherwise not.
|
|
111
|
+
Default Value: False
|
|
112
|
+
Types: bool
|
|
113
|
+
|
|
114
|
+
output_table_name:
|
|
115
|
+
Optional Argument.
|
|
116
|
+
Specifies the name of the table to store results.
|
|
117
|
+
If not specified, a unique table name is internally
|
|
118
|
+
generated.
|
|
119
|
+
Types: str
|
|
120
|
+
|
|
121
|
+
output_db_name:
|
|
122
|
+
Optional Argument.
|
|
123
|
+
Specifies the name of the database to create output
|
|
124
|
+
table into. If not specified, table is created into
|
|
125
|
+
database specified by the user at the time of context
|
|
126
|
+
creation or configuration parameter. Argument is ignored,
|
|
127
|
+
if "output_table_name" is not specified.
|
|
128
|
+
Types: str
|
|
129
|
+
|
|
130
|
+
RAISES:
|
|
131
|
+
TeradataMlException, TypeError, ValueError
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
EXAMPLES:
|
|
135
|
+
# Notes:
|
|
136
|
+
# 1. Get the connection to Vantage, before importing the
|
|
137
|
+
# function in user space.
|
|
138
|
+
# 2. User can import the function, if it is available on
|
|
139
|
+
# Vantage user is connected to.
|
|
140
|
+
# 3. To check the list of UAF analytic functions available
|
|
141
|
+
# on Vantage user connected to, use
|
|
142
|
+
# "display_analytic_functions()".
|
|
143
|
+
|
|
144
|
+
# Check the list of available UAF analytic functions.
|
|
145
|
+
display_analytic_functions(type="UAF")
|
|
146
|
+
|
|
147
|
+
# Import function FilterFactory1d.
|
|
148
|
+
from teradataml import FilterFactory1d
|
|
149
|
+
|
|
150
|
+
# Example 1: Create finite impulse response (FIR) filter coefficients.
|
|
151
|
+
res = FilterFactory1d(filter_id = 33,
|
|
152
|
+
filter_type = 'lowpass',
|
|
153
|
+
window_type = 'blackman',
|
|
154
|
+
transition_bandwidth = 20.0,
|
|
155
|
+
low_cutoff = 40.0,
|
|
156
|
+
sampling_frequency = 200)
|
|
157
|
+
print(res.result)
|
|
158
|
+
|
|
159
|
+
"""
|
|
160
|
+
|
|
@@ -19,7 +19,7 @@ def GenseriesSinusoids(data=None, data_filter_expr=None, periodicities=None,
|
|
|
19
19
|
exclude from the data set.
|
|
20
20
|
* Use the BinarySeriesOp() function to subtract the generated series
|
|
21
21
|
from the original series using "mathop" argument value as 'SUB'.
|
|
22
|
-
*
|
|
22
|
+
* Use the PowerSpec() function to verify that target periodicities
|
|
23
23
|
have been removed from the original series.
|
|
24
24
|
|
|
25
25
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
2
|
-
|
|
3
|
-
|
|
2
|
+
const_term=True, algorithm=None,
|
|
3
|
+
start_idx=None, omit=None,
|
|
4
4
|
significance_level=None, test="GREATER",
|
|
5
5
|
**generic_arguments):
|
|
6
6
|
"""
|
|
@@ -24,35 +24,15 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
24
24
|
Specifies the filter expression for "data".
|
|
25
25
|
Types: ColumnExpression
|
|
26
26
|
|
|
27
|
-
|
|
28
|
-
Required Argument.
|
|
29
|
-
Specifies the number of responses and explanatory variables
|
|
30
|
-
present in the original regression.
|
|
31
|
-
Types: int
|
|
32
|
-
|
|
33
|
-
weights:
|
|
27
|
+
const_term:
|
|
34
28
|
Optional Argument.
|
|
35
|
-
Specifies
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
Default Value: False
|
|
29
|
+
Specifies the indicator of whether the regression performed should
|
|
30
|
+
use a Y-intercept coefficient.
|
|
31
|
+
When set to True, means the regression is performed on “Y=C+aX1+bX2+…”.
|
|
32
|
+
When set to False, means the regression is performed on “Y=aX1+bX2+…”.
|
|
33
|
+
Default Value: True
|
|
41
34
|
Types: bool
|
|
42
35
|
|
|
43
|
-
formula:
|
|
44
|
-
Required Argument.
|
|
45
|
-
Specifies the formula used in the regression operation.
|
|
46
|
-
The name of the response variable must always be Y,
|
|
47
|
-
and the name of the explanatory variable must always be X1.
|
|
48
|
-
For example, "Y = B0 + B1 * X1".
|
|
49
|
-
Notes:
|
|
50
|
-
* The "formula" argument must be specified along with the
|
|
51
|
-
"algorithm" argument.
|
|
52
|
-
* Use the following link to refer the formula rules:
|
|
53
|
-
"https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Teradata-VantageTM-Unbounded-Array-Framework-Time-Series-Reference-17.20/Mathematic-Operators-and-Functions/Formula-Rules"
|
|
54
|
-
Types: str
|
|
55
|
-
|
|
56
36
|
algorithm:
|
|
57
37
|
Required Argument.
|
|
58
38
|
Specifies the algorithm used for the regression.
|
|
@@ -205,12 +185,10 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
205
185
|
payload_field=["y1", "x1"],
|
|
206
186
|
payload_content="MULTIVAR_REAL")
|
|
207
187
|
|
|
208
|
-
# Execute GoldfeldQuandt
|
|
188
|
+
# Execute GoldfeldQuandt.
|
|
209
189
|
uaf_out = GoldfeldQuandt(data=data_series_df,
|
|
210
|
-
formula="Y = B0 + B1*X1",
|
|
211
190
|
omit=2.0,
|
|
212
191
|
significance_level=0.05,
|
|
213
|
-
orig_regr_paramcnt=2,
|
|
214
192
|
algorithm="QR")
|
|
215
193
|
|
|
216
194
|
# Print the result DataFrame.
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=None,
|
|
2
|
-
alpha=None, beta=None, gamma=None, seasonal_periods=
|
|
2
|
+
alpha=None, beta=None, gamma=None, seasonal_periods=None,
|
|
3
3
|
init_level=None, init_trend=None, init_season=None,
|
|
4
4
|
model=None, fit_percentage=100,
|
|
5
5
|
prediction_intervals="BOTH", fit_metrics=False,
|
|
@@ -67,7 +67,6 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
67
67
|
parameter is 3. Value must be greater than or equal to 1.
|
|
68
68
|
Note:
|
|
69
69
|
Required when "gamma" or "init_season" is specified.
|
|
70
|
-
Default Value: 1
|
|
71
70
|
Types: int
|
|
72
71
|
|
|
73
72
|
init_level:
|
|
@@ -248,10 +247,13 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
248
247
|
|
|
249
248
|
# Print the result DataFrames.
|
|
250
249
|
print(uaf_out.result)
|
|
250
|
+
|
|
251
251
|
# Print the model statistics result.
|
|
252
252
|
print(uaf_out.fitmetadata)
|
|
253
|
+
|
|
253
254
|
# Print the selection metrics result.
|
|
254
255
|
print(uaf_out.selmetrics)
|
|
256
|
+
|
|
255
257
|
# Print the residuals statistics result.
|
|
256
258
|
print(uaf_out.fitresiduals)
|
|
257
259
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
|
|
2
|
-
output_fmt_content=None,
|
|
2
|
+
output_fmt_content=None,
|
|
3
3
|
**generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
@@ -71,13 +71,6 @@ def IDFFT2(data=None, data_filter_expr=None, human_readable=True,
|
|
|
71
71
|
MULTIVAR_AMPL_PHASE
|
|
72
72
|
Types: str
|
|
73
73
|
|
|
74
|
-
output_fmt_row_major:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies whether the matrix output should be in a row-major-centric
|
|
77
|
-
or column-major-centric manner.
|
|
78
|
-
Default Value: True
|
|
79
|
-
Types: bool
|
|
80
|
-
|
|
81
74
|
**generic_arguments:
|
|
82
75
|
Specifies the generic keyword arguments of UAF functions.
|
|
83
76
|
Below are the generic keyword arguments:
|