teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +306 -0
- teradataml/__init__.py +10 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +299 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +13 -3
- teradataml/analytics/json_parser/utils.py +13 -6
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +11 -2
- teradataml/analytics/table_operator/__init__.py +4 -3
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +66 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +247 -307
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +325 -86
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +122 -153
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/__init__.py +2 -1
- teradataml/common/constants.py +72 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +152 -120
- teradataml/common/messagecodes.py +11 -2
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +26 -4
- teradataml/common/utils.py +225 -14
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +82 -2
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +27 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +1002 -201
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +867 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +840 -33
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +878 -34
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
- teradataml/opensource/_lightgbm.py +950 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
- teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
- teradataml/options/__init__.py +9 -23
- teradataml/options/configure.py +42 -4
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +13 -9
- teradataml/scriptmgmt/lls_utils.py +77 -23
- teradataml/store/__init__.py +13 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2223 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/store/vector_store/__init__.py +1586 -0
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +102 -56
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/dtypes.py +4 -2
- teradataml/utils/validators.py +34 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,236 @@
|
|
|
1
|
+
def IDWT(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, wavelet=None, mode="symmetric",
|
|
3
|
+
part=None, input_fmt_input_mode=None,
|
|
4
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
5
|
+
**generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
IDWT() is a function that performs inverse discrete wavelet transform (IDWT).
|
|
9
|
+
|
|
10
|
+
PARAMETERS:
|
|
11
|
+
data1:
|
|
12
|
+
Required Argument.
|
|
13
|
+
Specifies the input series. Multiple
|
|
14
|
+
payloads are supported, and each payload column is
|
|
15
|
+
transformed independently. Only REAL or MULTIVAR_REAL
|
|
16
|
+
payload content types are supported.
|
|
17
|
+
Types: TDSeries
|
|
18
|
+
|
|
19
|
+
data1_filter_expr:
|
|
20
|
+
Optional Argument.
|
|
21
|
+
Specifies the filter expression for "data1".
|
|
22
|
+
Types: ColumnExpression
|
|
23
|
+
|
|
24
|
+
data2:
|
|
25
|
+
Optional Argument.
|
|
26
|
+
Specifies the input series. The series specifies the filter.
|
|
27
|
+
It should have two payload columns corresponding to low
|
|
28
|
+
and high pass filters.
|
|
29
|
+
Only MULTIVAR_REAL payload content type is supported.
|
|
30
|
+
Types: TDSeries
|
|
31
|
+
|
|
32
|
+
data2_filter_expr:
|
|
33
|
+
Optional Argument.
|
|
34
|
+
Specifies the filter expression for "data2".
|
|
35
|
+
Types: ColumnExpression
|
|
36
|
+
|
|
37
|
+
wavelet:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the name of the wavelet.
|
|
40
|
+
Permitted Values:
|
|
41
|
+
* Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
|
|
42
|
+
* Coiflets: 'coif1', 'coif2', ... , 'coif17'
|
|
43
|
+
* Symlets: 'sym2', 'sym3', ... ,' sym20'
|
|
44
|
+
* Discrete Meyer: 'dmey'
|
|
45
|
+
* Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5',
|
|
46
|
+
'bior2.2', 'bior2.4', 'bior2.6',
|
|
47
|
+
'bior2.8', 'bior3.1', 'bior3.3',
|
|
48
|
+
'bior3.5', 'bior3.7', 'bior3.9',
|
|
49
|
+
'bior4.4', 'bior5.5', 'bior6.8'
|
|
50
|
+
* Reverse Biorthogonal: 'rbio1.1', 'rbio1.3',
|
|
51
|
+
'rbio1.5' 'rbio2.2',
|
|
52
|
+
'rbio2.4', 'rbio2.6',
|
|
53
|
+
'rbio2.8', 'rbio3.1',
|
|
54
|
+
'rbio3.3', 'rbio3.5',
|
|
55
|
+
'rbio3.7','rbio3.9',
|
|
56
|
+
'rbio4.4', 'rbio5.5',
|
|
57
|
+
'rbio6.8'
|
|
58
|
+
Note:
|
|
59
|
+
* If 'wavelet' is specified, do not include a second
|
|
60
|
+
input series for the function. Otherwise, include
|
|
61
|
+
a second input series to provide the filter.
|
|
62
|
+
* Data type is case-sensitive.
|
|
63
|
+
Types: str
|
|
64
|
+
|
|
65
|
+
mode:
|
|
66
|
+
Optional Argument.
|
|
67
|
+
Specifies the signal extension mode.
|
|
68
|
+
Data type is case-insensitive.
|
|
69
|
+
Permitted Values:
|
|
70
|
+
* symmetric, sym, symh
|
|
71
|
+
* reflect, symw
|
|
72
|
+
* smooth, spd, sp1
|
|
73
|
+
* constant, sp0
|
|
74
|
+
* zero, zpd
|
|
75
|
+
* periodic, ppd
|
|
76
|
+
* periodization, per
|
|
77
|
+
* antisymmetric, asym, asymh
|
|
78
|
+
* antireflect, asymw
|
|
79
|
+
Default Value: symmetric
|
|
80
|
+
Types: str
|
|
81
|
+
|
|
82
|
+
part:
|
|
83
|
+
Optional Argument.
|
|
84
|
+
Specifies the indicator that the input is partial decomposition
|
|
85
|
+
result.
|
|
86
|
+
Note:
|
|
87
|
+
Data type is case-insensitive.
|
|
88
|
+
Permitted Values:
|
|
89
|
+
* a - the approximation
|
|
90
|
+
* d - the detail of decomposition of result.
|
|
91
|
+
Types: str
|
|
92
|
+
|
|
93
|
+
input_fmt_input_mode:
|
|
94
|
+
Optional Argument.
|
|
95
|
+
Specifies the input mode supported by the function.
|
|
96
|
+
When there are two input series, then the input_fmt_input_mode
|
|
97
|
+
specification is mandatory.
|
|
98
|
+
Permitted Values:
|
|
99
|
+
* ONE2ONE: Both the primary and secondary series
|
|
100
|
+
specifications contain a series name which
|
|
101
|
+
identifies the two series in the function.
|
|
102
|
+
* MANY2ONE: The MANY specification is the primary series
|
|
103
|
+
declaration. The secondary series specification
|
|
104
|
+
contains a series name that identifies the single
|
|
105
|
+
secondary series.
|
|
106
|
+
* MATCH: Both series are defined by their respective series
|
|
107
|
+
specification instance name declarations.
|
|
108
|
+
Types: str
|
|
109
|
+
|
|
110
|
+
output_fmt_index_style:
|
|
111
|
+
Optional Argument.
|
|
112
|
+
Specifies the index style of the output format.
|
|
113
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
114
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
115
|
+
Types: str
|
|
116
|
+
|
|
117
|
+
**generic_arguments:
|
|
118
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
119
|
+
Below are the generic keyword arguments:
|
|
120
|
+
persist:
|
|
121
|
+
Optional Argument.
|
|
122
|
+
Specifies whether to persist the results of the
|
|
123
|
+
function in a table or not. When set to True,
|
|
124
|
+
results are persisted in a table; otherwise,
|
|
125
|
+
results are garbage collected at the end of the
|
|
126
|
+
session.
|
|
127
|
+
Note that, when UAF function is executed, an
|
|
128
|
+
analytic result table (ART) is created.
|
|
129
|
+
Default Value: False
|
|
130
|
+
Types: bool
|
|
131
|
+
|
|
132
|
+
volatile:
|
|
133
|
+
Optional Argument.
|
|
134
|
+
Specifies whether to put the results of the
|
|
135
|
+
function in a volatile ART or not. When set to
|
|
136
|
+
True, results are stored in a volatile ART,
|
|
137
|
+
otherwise not.
|
|
138
|
+
Default Value: False
|
|
139
|
+
Types: bool
|
|
140
|
+
|
|
141
|
+
output_table_name:
|
|
142
|
+
Optional Argument.
|
|
143
|
+
Specifies the name of the table to store results.
|
|
144
|
+
If not specified, a unique table name is internally
|
|
145
|
+
generated.
|
|
146
|
+
Types: str
|
|
147
|
+
|
|
148
|
+
output_db_name:
|
|
149
|
+
Optional Argument.
|
|
150
|
+
Specifies the name of the database to create output
|
|
151
|
+
table into. If not specified, table is created into
|
|
152
|
+
database specified by the user at the time of context
|
|
153
|
+
creation or configuration parameter. Argument is ignored,
|
|
154
|
+
if "output_table_name" is not specified.
|
|
155
|
+
Types: str
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
RETURNS:
|
|
159
|
+
Instance of IDWT.
|
|
160
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
161
|
+
references, such as IDWT_obj.<attribute_name>.
|
|
162
|
+
Output teradataml DataFrame attribute name is:
|
|
163
|
+
1. result
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
RAISES:
|
|
167
|
+
TeradataMlException, TypeError, ValueError
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
EXAMPLES:
|
|
171
|
+
# Notes:
|
|
172
|
+
# 1. Get the connection to Vantage, before importing the
|
|
173
|
+
# function in user space.
|
|
174
|
+
# 2. User can import the function, if it is available on
|
|
175
|
+
# Vantage user is connected to.
|
|
176
|
+
# 3. To check the list of UAF analytic functions available
|
|
177
|
+
# on Vantage user connected to, use
|
|
178
|
+
# "display_analytic_functions()".
|
|
179
|
+
|
|
180
|
+
# Check the list of available UAF analytic functions.
|
|
181
|
+
display_analytic_functions(type="UAF")
|
|
182
|
+
|
|
183
|
+
# Import function IDWT.
|
|
184
|
+
from teradataml import IDWT
|
|
185
|
+
|
|
186
|
+
# Load the example data.
|
|
187
|
+
load_example_data("uaf", ["idwt_dataTable", "idwt_filterTable"])
|
|
188
|
+
|
|
189
|
+
# Create teradataml DataFrame objects.
|
|
190
|
+
data1 = DataFrame.from_table("idwt_dataTable")
|
|
191
|
+
data2 = DataFrame.from_table("idwt_filterTable")
|
|
192
|
+
|
|
193
|
+
# Create teradataml TDSeries objects.
|
|
194
|
+
data1_series_df = TDSeries(data=data1,
|
|
195
|
+
id="id",
|
|
196
|
+
row_index="rowi",
|
|
197
|
+
row_index_style="SEQUENCE",
|
|
198
|
+
payload_field=["approx"],
|
|
199
|
+
payload_content="REAL")
|
|
200
|
+
|
|
201
|
+
data2_series_df = TDSeries(data=data2,
|
|
202
|
+
id="id",
|
|
203
|
+
row_index="seq",
|
|
204
|
+
row_index_style="SEQUENCE",
|
|
205
|
+
payload_field=["lo", "hi"],
|
|
206
|
+
payload_content="MULTIVAR_REAL")
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
# Example 1: Perform inverse discrete wavelet transform using 2 series as input.
|
|
210
|
+
uaf_out = IDWT(data1=data1_series_df,
|
|
211
|
+
data2=data2_series_df,
|
|
212
|
+
data2_filter_expr=data2.id==1,
|
|
213
|
+
input_fmt_input_mode="MANY2ONE",
|
|
214
|
+
part='a')
|
|
215
|
+
|
|
216
|
+
# Print the result DataFrame.
|
|
217
|
+
print(uaf_out.result)
|
|
218
|
+
|
|
219
|
+
# Example 2: Perform inverse discrete wavelet transform using 1 series as input and wavelet parameter.
|
|
220
|
+
|
|
221
|
+
# Create teradataml TDSeries objects.
|
|
222
|
+
data_series_df = TDSeries(data=data1,
|
|
223
|
+
id="id",
|
|
224
|
+
row_index="rowi",
|
|
225
|
+
row_index_style="SEQUENCE",
|
|
226
|
+
payload_field=["approx", "detail"],
|
|
227
|
+
payload_content="MULTIVAR_REAL")
|
|
228
|
+
|
|
229
|
+
uaf_out = IDWT(data1=data_series_df,
|
|
230
|
+
wavelet='haar')
|
|
231
|
+
|
|
232
|
+
# Print the result DataFrame.
|
|
233
|
+
print(uaf_out.result)
|
|
234
|
+
|
|
235
|
+
"""
|
|
236
|
+
|
|
@@ -0,0 +1,226 @@
|
|
|
1
|
+
def IDWT2D(data1=None, data1_filter_expr=None, data2=None,
|
|
2
|
+
data2_filter_expr=None, wavelet=None, mode="symmetric",
|
|
3
|
+
input_fmt_input_mode=None,
|
|
4
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
5
|
+
**generic_arguments):
|
|
6
|
+
"""
|
|
7
|
+
DESCRIPTION:
|
|
8
|
+
IDWT2D() function performs inverse discrete wavelet transform
|
|
9
|
+
(IDWT) for two-dimensional data. The algorithm is applied
|
|
10
|
+
first horizontally by row axis, then vertically by column
|
|
11
|
+
axis.
|
|
12
|
+
|
|
13
|
+
PARAMETERS:
|
|
14
|
+
data1:
|
|
15
|
+
Required Argument.
|
|
16
|
+
Specifies the input matrix. Multiple
|
|
17
|
+
payloads are supported, and each payload column is
|
|
18
|
+
transformed independently. Only MULTIVAR_REAL payload
|
|
19
|
+
content type is supported.
|
|
20
|
+
Types: TDMatrix
|
|
21
|
+
|
|
22
|
+
data1_filter_expr:
|
|
23
|
+
Optional Argument.
|
|
24
|
+
Specifies the filter expression for "data1".
|
|
25
|
+
Types: ColumnExpression
|
|
26
|
+
|
|
27
|
+
data2:
|
|
28
|
+
Optional Argument.
|
|
29
|
+
Specifies the input series. The series specifies the filter.
|
|
30
|
+
It should have two payload columns corresponding to low and high
|
|
31
|
+
pass filters. Only MULTIVAR_REAL payload content type is supported.
|
|
32
|
+
Types: TDSeries
|
|
33
|
+
|
|
34
|
+
data2_filter_expr:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies the filter expression for "data2".
|
|
37
|
+
Types: ColumnExpression
|
|
38
|
+
|
|
39
|
+
wavelet:
|
|
40
|
+
Optional Argument.
|
|
41
|
+
Specifies the name of the wavelet.
|
|
42
|
+
Option families and names are:
|
|
43
|
+
* Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'
|
|
44
|
+
* Coiflets: 'coif1', 'coif2', ... , 'coif17'
|
|
45
|
+
* Symlets: 'sym2', 'sym3', ... ,' sym20'
|
|
46
|
+
* Discrete Meyer: 'dmey'
|
|
47
|
+
* Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2',
|
|
48
|
+
'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1',
|
|
49
|
+
'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
|
|
50
|
+
'bior4.4', 'bior5.5', 'bior6.8'
|
|
51
|
+
* Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5'
|
|
52
|
+
'rbio2.2', 'rbio2.4', 'rbio2.6',
|
|
53
|
+
'rbio2.8', 'rbio3.1', 'rbio3.3',
|
|
54
|
+
'rbio3.5', 'rbio3.7','rbio3.9',
|
|
55
|
+
'rbio4.4', 'rbio5.5', 'rbio6.8'
|
|
56
|
+
Note:
|
|
57
|
+
* If 'wavelet' is specified, do not include a second
|
|
58
|
+
input series for the function. Otherwise, include
|
|
59
|
+
a second input series to provide the filter.
|
|
60
|
+
* Data type is case-sensitive.
|
|
61
|
+
Types: str
|
|
62
|
+
|
|
63
|
+
mode:
|
|
64
|
+
Optional Argument.
|
|
65
|
+
Specifies the signal extension mode.
|
|
66
|
+
Data type is case-insensitive.
|
|
67
|
+
Permitted Values:
|
|
68
|
+
* symmetric, sym, symh
|
|
69
|
+
* reflect, symw
|
|
70
|
+
* smooth, spd, sp1
|
|
71
|
+
* constant, sp0
|
|
72
|
+
* zero, zpd
|
|
73
|
+
* periodic, ppd
|
|
74
|
+
* periodization, per
|
|
75
|
+
* antisymmetric, asym, asymh
|
|
76
|
+
* antireflect, asymw
|
|
77
|
+
Default Value: symmetric
|
|
78
|
+
Types: str
|
|
79
|
+
|
|
80
|
+
input_fmt_input_mode:
|
|
81
|
+
Optional Argument.
|
|
82
|
+
Specifies the input mode supported by the function.
|
|
83
|
+
When there are two input series, then the "input_fmt_input_mode" .
|
|
84
|
+
specification is mandatory.
|
|
85
|
+
Permitted Values:
|
|
86
|
+
* ONE2ONE: Both the primary and secondary series specifications
|
|
87
|
+
contain a series name which identifies the two series
|
|
88
|
+
in the function.
|
|
89
|
+
* MANY2ONE: The MANY specification is the primary series
|
|
90
|
+
declaration. The secondary series specification
|
|
91
|
+
contains a series name that identifies the single
|
|
92
|
+
secondary series.
|
|
93
|
+
* MATCH: Both series are defined by their respective series
|
|
94
|
+
specification instance name declarations.
|
|
95
|
+
Types: str
|
|
96
|
+
|
|
97
|
+
output_fmt_index_style:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies the index style of the output format.
|
|
100
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
101
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
102
|
+
Types: str
|
|
103
|
+
|
|
104
|
+
**generic_arguments:
|
|
105
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
106
|
+
Below are the generic keyword arguments:
|
|
107
|
+
persist:
|
|
108
|
+
Optional Argument.
|
|
109
|
+
Specifies whether to persist the results of the
|
|
110
|
+
function in a table or not. When set to True,
|
|
111
|
+
results are persisted in a table; otherwise,
|
|
112
|
+
results are garbage collected at the end of the
|
|
113
|
+
session.
|
|
114
|
+
Note that, when UAF function is executed, an
|
|
115
|
+
analytic result table (ART) is created.
|
|
116
|
+
Default Value: False
|
|
117
|
+
Types: bool
|
|
118
|
+
|
|
119
|
+
volatile:
|
|
120
|
+
Optional Argument.
|
|
121
|
+
Specifies whether to put the results of the
|
|
122
|
+
function in a volatile ART or not. When set to
|
|
123
|
+
True, results are stored in a volatile ART,
|
|
124
|
+
otherwise not.
|
|
125
|
+
Default Value: False
|
|
126
|
+
Types: bool
|
|
127
|
+
|
|
128
|
+
output_table_name:
|
|
129
|
+
Optional Argument.
|
|
130
|
+
Specifies the name of the table to store results.
|
|
131
|
+
If not specified, a unique table name is internally
|
|
132
|
+
generated.
|
|
133
|
+
Types: str
|
|
134
|
+
|
|
135
|
+
output_db_name:
|
|
136
|
+
Optional Argument.
|
|
137
|
+
Specifies the name of the database to create output
|
|
138
|
+
table into. If not specified, table is created into
|
|
139
|
+
database specified by the user at the time of context
|
|
140
|
+
creation or configuration parameter. Argument is ignored,
|
|
141
|
+
if "output_table_name" is not specified.
|
|
142
|
+
Types: str
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
RETURNS:
|
|
146
|
+
Instance of IDWT2D.
|
|
147
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
148
|
+
references, such as IDWT2D_obj.<attribute_name>.
|
|
149
|
+
Output teradataml DataFrame attribute name is:
|
|
150
|
+
1. result
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
RAISES:
|
|
154
|
+
TeradataMlException, TypeError, ValueError
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
EXAMPLES:
|
|
158
|
+
# Notes:
|
|
159
|
+
# 1. Get the connection to Vantage, before importing the
|
|
160
|
+
# function in user space.
|
|
161
|
+
# 2. User can import the function, if it is available on
|
|
162
|
+
# Vantage user is connected to.
|
|
163
|
+
# 3. To check the list of UAF analytic functions available
|
|
164
|
+
# on Vantage user connected to, use
|
|
165
|
+
# "display_analytic_functions()".
|
|
166
|
+
|
|
167
|
+
# Check the list of available UAF analytic functions.
|
|
168
|
+
display_analytic_functions(type="UAF")
|
|
169
|
+
|
|
170
|
+
# Import function IDWT2D.
|
|
171
|
+
from teradataml import IDWT2D
|
|
172
|
+
|
|
173
|
+
# Load the example data.
|
|
174
|
+
load_example_data("uaf", ["idwt2d_dataTable", "idwt_filterTable"])
|
|
175
|
+
|
|
176
|
+
# Create teradataml DataFrame objects.
|
|
177
|
+
data1 = DataFrame.from_table("idwt2d_dataTable")
|
|
178
|
+
data2 = DataFrame.from_table("idwt_filterTable")
|
|
179
|
+
|
|
180
|
+
# Create teradataml TDMatrix object.
|
|
181
|
+
data1_matrix_df = TDMatrix(data=data1,
|
|
182
|
+
id="id",
|
|
183
|
+
row_index="y",
|
|
184
|
+
row_index_style="SEQUENCE",
|
|
185
|
+
column_index="x",
|
|
186
|
+
column_index_style="SEQUENCE",
|
|
187
|
+
payload_field="v",
|
|
188
|
+
payload_content="REAL")
|
|
189
|
+
|
|
190
|
+
# Execute DWT2D
|
|
191
|
+
uaf_out = DWT2D(data1=data1_matrix_df,
|
|
192
|
+
wavelet='haar')
|
|
193
|
+
|
|
194
|
+
# Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult
|
|
195
|
+
# from DWT2D() as input and wavelet as 'haar'
|
|
196
|
+
|
|
197
|
+
# Create teradataml TDAnalyticResult object.
|
|
198
|
+
art_df = TDAnalyticResult(data=uaf_out.result)
|
|
199
|
+
|
|
200
|
+
uaf_out = IDWT2D(data1=art_df,
|
|
201
|
+
wavelet='haar')
|
|
202
|
+
|
|
203
|
+
# Print the result DataFrame.
|
|
204
|
+
print(uaf_out.result)
|
|
205
|
+
|
|
206
|
+
# Example 1: Perform inverse discrete wavelet transform using TDAnalyticResult from DWT2D()
|
|
207
|
+
# and TDSeries as input.
|
|
208
|
+
|
|
209
|
+
# Create teradataml TDSeries object.
|
|
210
|
+
data2_series_df = TDSeries(data=data2,
|
|
211
|
+
id="id",
|
|
212
|
+
row_index="seq",
|
|
213
|
+
row_index_style="SEQUENCE",
|
|
214
|
+
payload_field=["lo", "hi"],
|
|
215
|
+
payload_content="MULTIVAR_REAL")
|
|
216
|
+
|
|
217
|
+
uaf_out = IDWT2D(data1=art_df,
|
|
218
|
+
data2=data2_series_df,
|
|
219
|
+
data2_filter_expr=data2.id==1,
|
|
220
|
+
input_fmt_input_mode='MANY2ONE')
|
|
221
|
+
|
|
222
|
+
# Print the result DataFrame.
|
|
223
|
+
print(uaf_out.result)
|
|
224
|
+
|
|
225
|
+
"""
|
|
226
|
+
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
def IQR(data=None, data_filter_expr=None, stat_metrics=False,
|
|
2
|
+
output_fmt_index_style="NUMERICAL_SEQUENCE",
|
|
3
|
+
**generic_arguments):
|
|
4
|
+
"""
|
|
5
|
+
DESCRIPTION:
|
|
6
|
+
Anomaly detection identifies data points, events and observations that
|
|
7
|
+
deviate from the normal behavior of the data set.
|
|
8
|
+
Anomalous data can indicate critical incidents, such as a change in
|
|
9
|
+
consumer behavior or observations that are suspicious.
|
|
10
|
+
Anomalies in data are also called standard deviations, outliers, noise,
|
|
11
|
+
novelties, and exceptions.
|
|
12
|
+
|
|
13
|
+
IQR() uses interquartile range for anomaly detection. Any data point
|
|
14
|
+
that falls outside of 1.5 times of an interquartile range below
|
|
15
|
+
the first quartile and above the third quartile is considered an outlier.
|
|
16
|
+
The IQR() function creates a two-layered ART table.
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
PARAMETERS:
|
|
20
|
+
data:
|
|
21
|
+
Required Argument.
|
|
22
|
+
Specifies the time series whose value can be REAL or MULTIVAR_REAL.
|
|
23
|
+
Types: TDSeries
|
|
24
|
+
|
|
25
|
+
data_filter_expr:
|
|
26
|
+
Optional Argument.
|
|
27
|
+
Specifies the filter expression for "data".
|
|
28
|
+
Types: ColumnExpression
|
|
29
|
+
|
|
30
|
+
stat_metrics:
|
|
31
|
+
Optional Argument.
|
|
32
|
+
Specifies the indicator for the secondary layer
|
|
33
|
+
to indicate the number of outliers.
|
|
34
|
+
Default Value: False
|
|
35
|
+
Types: bool
|
|
36
|
+
|
|
37
|
+
output_fmt_index_style:
|
|
38
|
+
Optional Argument.
|
|
39
|
+
Specifies the INDEX_STYLE of the output format.
|
|
40
|
+
Permitted Values: NUMERICAL_SEQUENCE
|
|
41
|
+
Default Value: NUMERICAL_SEQUENCE
|
|
42
|
+
Types: str
|
|
43
|
+
|
|
44
|
+
**generic_arguments:
|
|
45
|
+
Specifies the generic keyword arguments of UAF functions.
|
|
46
|
+
Below are the generic keyword arguments:
|
|
47
|
+
persist:
|
|
48
|
+
Optional Argument.
|
|
49
|
+
Specifies whether to persist the results of the
|
|
50
|
+
function in a table or not. When set to True,
|
|
51
|
+
results are persisted in a table; otherwise,
|
|
52
|
+
results are garbage collected at the end of the
|
|
53
|
+
session.
|
|
54
|
+
Note that, when UAF function is executed, an
|
|
55
|
+
analytic result table (ART) is created.
|
|
56
|
+
Default Value: False
|
|
57
|
+
Types: bool
|
|
58
|
+
|
|
59
|
+
volatile:
|
|
60
|
+
Optional Argument.
|
|
61
|
+
Specifies whether to put the results of the
|
|
62
|
+
function in a volatile ART or not. When set to
|
|
63
|
+
True, results are stored in a volatile ART,
|
|
64
|
+
otherwise not.
|
|
65
|
+
Default Value: False
|
|
66
|
+
Types: bool
|
|
67
|
+
|
|
68
|
+
output_table_name:
|
|
69
|
+
Optional Argument.
|
|
70
|
+
Specifies the name of the table to store results.
|
|
71
|
+
If not specified, a unique table name is internally
|
|
72
|
+
generated.
|
|
73
|
+
Types: str
|
|
74
|
+
|
|
75
|
+
output_db_name:
|
|
76
|
+
Optional Argument.
|
|
77
|
+
Specifies the name of the database to create output
|
|
78
|
+
table into. If not specified, table is created into
|
|
79
|
+
database specified by the user at the time of context
|
|
80
|
+
creation or configuration parameter. Argument is ignored,
|
|
81
|
+
if "output_table_name" is not specified.
|
|
82
|
+
Types: str
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
RETURNS:
|
|
86
|
+
Instance of IQR.
|
|
87
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
88
|
+
references, such as IQR_obj.<attribute_name>.
|
|
89
|
+
Output teradataml DataFrame attribute names are:
|
|
90
|
+
1. result
|
|
91
|
+
2. statsdata
|
|
92
|
+
3. fitmetadata
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
RAISES:
|
|
96
|
+
TeradataMlException, TypeError, ValueError
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
EXAMPLES:
|
|
100
|
+
# Notes:
|
|
101
|
+
# 1. Get the connection to Vantage, before importing the
|
|
102
|
+
# function in user space.
|
|
103
|
+
# 2. User can import the function, if it is available on
|
|
104
|
+
# Vantage user is connected to.
|
|
105
|
+
# 3. To check the list of UAF analytic functions available
|
|
106
|
+
# on Vantage user connected to, use
|
|
107
|
+
# "display_analytic_functions()".
|
|
108
|
+
|
|
109
|
+
# Check the list of available UAF analytic functions.
|
|
110
|
+
display_analytic_functions(type="UAF")
|
|
111
|
+
|
|
112
|
+
# Load the example data.
|
|
113
|
+
load_example_data("uaf", ["real_values"])
|
|
114
|
+
|
|
115
|
+
# Create teradataml DataFrame object.
|
|
116
|
+
data = DataFrame.from_table("real_values")
|
|
117
|
+
|
|
118
|
+
# Create teradataml TDSeries object.
|
|
119
|
+
data_series_df = TDSeries(data=data,
|
|
120
|
+
id="id",
|
|
121
|
+
row_index="TD_TIMECODE",
|
|
122
|
+
payload_field="val",
|
|
123
|
+
payload_content="REAL")
|
|
124
|
+
|
|
125
|
+
# Example 1: Detect which and how many values are considered outliers.
|
|
126
|
+
uaf_out = IQR(data=data_series_df,
|
|
127
|
+
stat_metrics=True)
|
|
128
|
+
|
|
129
|
+
# Print the result DataFrames.
|
|
130
|
+
print(uaf_out.result)
|
|
131
|
+
print(uaf_out.statsdata)
|
|
132
|
+
|
|
133
|
+
"""
|
|
134
|
+
|
|
@@ -10,7 +10,7 @@ def LineSpec(data=None, data_filter_expr=None, freq_style="K_INTEGRAL",
|
|
|
10
10
|
2. Use ArimaValidate() to validate spectral candidates.
|
|
11
11
|
3. Use LineSpec() with "freq_style" parameter set to K_PERIODICITY
|
|
12
12
|
to perform spectral analysis.
|
|
13
|
-
4. Use
|
|
13
|
+
4. Use DataFrame.plot() to plot the results.
|
|
14
14
|
5. Compute the test statistic.
|
|
15
15
|
6. Use SignifPeriodicities() on the periodicities of interest.
|
|
16
16
|
More than one periodicity can be entered using the "periodicities"
|
|
@@ -24,8 +24,8 @@ def LinearRegr(data=None, data_filter_expr=None, variables_count=2,
|
|
|
24
24
|
data:
|
|
25
25
|
Required Argument.
|
|
26
26
|
Specifies an input time series with the following payload characteristics:
|
|
27
|
-
*
|
|
28
|
-
*
|
|
27
|
+
* "payload_content" value is MULTIVAR_REAL.
|
|
28
|
+
* "payload_fields" has two required fields (response variable and
|
|
29
29
|
explanatory variable, in that order) and one optional
|
|
30
30
|
field (weights).
|
|
31
31
|
Types: TDSeries
|
|
@@ -52,8 +52,8 @@ def MAMean(data=None, data_filter_expr=None, forecast_periods=None,
|
|
|
52
52
|
fit_metrics:
|
|
53
53
|
Optional Argument.
|
|
54
54
|
Specifies a flag to generate the secondary result set that contains the model metadata
|
|
55
|
-
statistics.
|
|
56
|
-
not.The generated result set can be retrieved using the attribute fitmetadata of
|
|
55
|
+
statistics. When set to True, function generate the secondary result set, otherwise
|
|
56
|
+
not. The generated result set can be retrieved using the attribute fitmetadata of
|
|
57
57
|
the function output.
|
|
58
58
|
Default Value: False
|
|
59
59
|
Types: bool
|
|
@@ -61,7 +61,7 @@ def MAMean(data=None, data_filter_expr=None, forecast_periods=None,
|
|
|
61
61
|
residuals:
|
|
62
62
|
Optional Argument.
|
|
63
63
|
Specifies a flag to generate the tertiary result set that contains the model residuals.
|
|
64
|
-
|
|
64
|
+
When set to True, means generate the tertiary result set, otherwise not.
|
|
65
65
|
The generated result set can be retrieved using the attribute fitresiduals of
|
|
66
66
|
the function output.
|
|
67
67
|
Default Value: False
|