teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +306 -0
- teradataml/__init__.py +10 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +299 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +13 -3
- teradataml/analytics/json_parser/utils.py +13 -6
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +11 -2
- teradataml/analytics/table_operator/__init__.py +4 -3
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +66 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +247 -307
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +325 -86
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +122 -153
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/__init__.py +2 -1
- teradataml/common/constants.py +72 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +152 -120
- teradataml/common/messagecodes.py +11 -2
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +26 -4
- teradataml/common/utils.py +225 -14
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +82 -2
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +27 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +1002 -201
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +867 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +840 -33
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +878 -34
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
- teradataml/opensource/_lightgbm.py +950 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
- teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
- teradataml/options/__init__.py +9 -23
- teradataml/options/configure.py +42 -4
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +13 -9
- teradataml/scriptmgmt/lls_utils.py +77 -23
- teradataml/store/__init__.py +13 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2223 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/store/vector_store/__init__.py +1586 -0
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +102 -56
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/dtypes.py +4 -2
- teradataml/utils/validators.py +34 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json}
RENAMED
|
@@ -162,7 +162,6 @@
|
|
|
162
162
|
"Name": "SEASONAL_PERIODS",
|
|
163
163
|
"Type": "integer",
|
|
164
164
|
"Optional": true,
|
|
165
|
-
"DefaultValue": 1,
|
|
166
165
|
"LowerBound": 1,
|
|
167
166
|
"LowerBoundType": "INCLUSIVE",
|
|
168
167
|
"AllowNaN": false,
|
|
@@ -243,13 +242,13 @@
|
|
|
243
242
|
"Name": "PREDICTION_INTERVALS",
|
|
244
243
|
"Type": "string",
|
|
245
244
|
"Optional": true,
|
|
245
|
+
"DefaultValue": "BOTH",
|
|
246
246
|
"PermittedValues": [
|
|
247
247
|
"NONE",
|
|
248
248
|
"80",
|
|
249
249
|
"95",
|
|
250
250
|
"BOTH"
|
|
251
251
|
],
|
|
252
|
-
"DefaultValue": "BOTH",
|
|
253
252
|
"Description": [
|
|
254
253
|
"Set to either of: 'NONE' or '80' or '95' or 'BOTH'; default is 'BOTH'"
|
|
255
254
|
]
|
|
@@ -65,7 +65,7 @@
|
|
|
65
65
|
"AMPL_PHASE_RADIANS",
|
|
66
66
|
"AMPL_PHASE_DEGREES",
|
|
67
67
|
"AMPL_PHASE",
|
|
68
|
-
"MULTIVAR_COMPLEX",
|
|
68
|
+
"MULTIVAR_COMPLEX",
|
|
69
69
|
"MULTIVAR_AMPL_PHASE_RADIANS",
|
|
70
70
|
"MULTIVAR_AMPL_PHASE_DEGREES",
|
|
71
71
|
"MULTIVAR_AMPL_PHASE"
|
|
@@ -76,20 +76,6 @@
|
|
|
76
76
|
"The default value is dependent on the datatype of the input series; a single var input will generate COMPLEX output CONTENT by default; a multi var input will generate MULTIVAR_COMPLEX output CONTENT by default."
|
|
77
77
|
],
|
|
78
78
|
"LangName": "output_fmt_content"
|
|
79
|
-
},
|
|
80
|
-
{
|
|
81
|
-
"Name": "ROW_MAJOR",
|
|
82
|
-
"Type": "integer",
|
|
83
|
-
"Optional": true,
|
|
84
|
-
"DefaultValue": 1,
|
|
85
|
-
"PermittedValues": [
|
|
86
|
-
0,
|
|
87
|
-
1
|
|
88
|
-
],
|
|
89
|
-
"Description": [
|
|
90
|
-
"The data scientist may explicity declare whether they want the matrix output in a row-major-centric or column-major-centric manner, via the OUTPUT_FMT(ROW_MAJOR()) construct."
|
|
91
|
-
],
|
|
92
|
-
"LangName": "output_fmt_row_major"
|
|
93
79
|
}
|
|
94
80
|
]
|
|
95
81
|
}
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
{
|
|
2
|
+
"FuncName": "TD_IDWT",
|
|
3
|
+
"FuncDescriptionShort": "TD_IDWT is a function that performs inverse discrete wavelet transform (IDWT).",
|
|
4
|
+
"FuncDescriptionLong": [
|
|
5
|
+
"TD_IDWT is a function that performs inverse discrete wavelet transform (IDWT)."
|
|
6
|
+
],
|
|
7
|
+
"FunctionVersion": "...",
|
|
8
|
+
"FunctionCategory": "Digital Signal Processing",
|
|
9
|
+
"JSONVersion": "1",
|
|
10
|
+
"FuncRName": "td_IDWT",
|
|
11
|
+
"MaxInputFiles": 2,
|
|
12
|
+
"Input": [
|
|
13
|
+
{
|
|
14
|
+
"Type": "SERIES",
|
|
15
|
+
"Description": [
|
|
16
|
+
"Specify the SERIES_SPEC of the series.",
|
|
17
|
+
"Multiple payloads are supported, and each payload column is transformed independently.",
|
|
18
|
+
"Only REAL or MULTIVAR_REAL payload content types are supported."
|
|
19
|
+
],
|
|
20
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
21
|
+
"Optional": false
|
|
22
|
+
},
|
|
23
|
+
{
|
|
24
|
+
"Type": "SERIES",
|
|
25
|
+
"Description": [
|
|
26
|
+
"[Optional] Specify the SERIES_SPEC of the series. The series specifies the filter.",
|
|
27
|
+
"It should have two payload columns corresponding to low and high pass filters.",
|
|
28
|
+
"Only MULTIVAR_REAL payload content type is supported."
|
|
29
|
+
],
|
|
30
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
31
|
+
"Optional": true
|
|
32
|
+
}
|
|
33
|
+
],
|
|
34
|
+
"Output": [
|
|
35
|
+
{
|
|
36
|
+
"Type": "ART",
|
|
37
|
+
"PrimaryLayer": true,
|
|
38
|
+
"LayerName": "ARTPRIMARY",
|
|
39
|
+
"ResultTableColumnTypes": [
|
|
40
|
+
"big_integer",
|
|
41
|
+
"float",
|
|
42
|
+
"<varies>"
|
|
43
|
+
],
|
|
44
|
+
"Description": [
|
|
45
|
+
"The TD_IDWT function returns only a primary result set."
|
|
46
|
+
],
|
|
47
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
48
|
+
}
|
|
49
|
+
],
|
|
50
|
+
"IsPlottable": true,
|
|
51
|
+
"Params": [
|
|
52
|
+
{
|
|
53
|
+
"Name": "WAVELET",
|
|
54
|
+
"Type": "string",
|
|
55
|
+
"Optional": true,
|
|
56
|
+
"Description": [
|
|
57
|
+
"Name of the wavelet.",
|
|
58
|
+
"If this parameter is specified, then do not include a second input series for the function.",
|
|
59
|
+
"If this parameter is not specified, then include a second input series to provide the filter.",
|
|
60
|
+
"Data type is case-sensitive.",
|
|
61
|
+
"Option families and names are:",
|
|
62
|
+
"Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'",
|
|
63
|
+
"Coiflets: 'coif1', 'coif2', ... , 'coif17'",
|
|
64
|
+
"Symlets: 'sym2', 'sym3', ... ,' sym20'",
|
|
65
|
+
"Discrete Meyer: 'dmey'",
|
|
66
|
+
"Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'",
|
|
67
|
+
"Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5' 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7','rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'"
|
|
68
|
+
]
|
|
69
|
+
},
|
|
70
|
+
{
|
|
71
|
+
"Name": "MODE",
|
|
72
|
+
"Type": "string",
|
|
73
|
+
"Optional": true,
|
|
74
|
+
"PermittedValues": [
|
|
75
|
+
"zero",
|
|
76
|
+
"symmetric",
|
|
77
|
+
"constant",
|
|
78
|
+
"smooth",
|
|
79
|
+
"periodic",
|
|
80
|
+
"periodization",
|
|
81
|
+
"reflect",
|
|
82
|
+
"antisymmetric",
|
|
83
|
+
"antireflect",
|
|
84
|
+
"sym",
|
|
85
|
+
"symh",
|
|
86
|
+
"symw",
|
|
87
|
+
"spd",
|
|
88
|
+
"sp1",
|
|
89
|
+
"sp0",
|
|
90
|
+
"zpd",
|
|
91
|
+
"ppd",
|
|
92
|
+
"per",
|
|
93
|
+
"asym",
|
|
94
|
+
"asymh",
|
|
95
|
+
"asymw"
|
|
96
|
+
],
|
|
97
|
+
"DefaultValue": "symmetric",
|
|
98
|
+
"Description": [
|
|
99
|
+
"Signal extension mode.",
|
|
100
|
+
"Data type is case-insensitive.",
|
|
101
|
+
"Options are:",
|
|
102
|
+
"symmetric, sym, symh",
|
|
103
|
+
"reflect, symw",
|
|
104
|
+
"smooth, spd, sp1",
|
|
105
|
+
"constant, sp0",
|
|
106
|
+
"zero, zpd",
|
|
107
|
+
"periodic, ppd",
|
|
108
|
+
"periodization, per",
|
|
109
|
+
"antisymmetric, asym, asymh",
|
|
110
|
+
"antireflect, asymw"
|
|
111
|
+
]
|
|
112
|
+
},
|
|
113
|
+
{
|
|
114
|
+
"Name": "PART",
|
|
115
|
+
"Type": "string",
|
|
116
|
+
"Optional": true,
|
|
117
|
+
"PermittedValues": [
|
|
118
|
+
"a",
|
|
119
|
+
"d"
|
|
120
|
+
],
|
|
121
|
+
"Description": [
|
|
122
|
+
"Indicator that the input is partial decomposition result. Valid values are 'a' or 'd', corresponding to the approximation or the detail of the decomposition result.",
|
|
123
|
+
"Data type is case-insensitive."
|
|
124
|
+
]
|
|
125
|
+
}
|
|
126
|
+
],
|
|
127
|
+
"InputFmt": [
|
|
128
|
+
{
|
|
129
|
+
"Name": "INPUT_MODE",
|
|
130
|
+
"Type": "string",
|
|
131
|
+
"Optional": true,
|
|
132
|
+
"PermittedValues": [
|
|
133
|
+
"MANY2ONE",
|
|
134
|
+
"ONE2ONE",
|
|
135
|
+
"MATCH"
|
|
136
|
+
],
|
|
137
|
+
"Description": [
|
|
138
|
+
"When there are two input series, then the INPUT_FMT specification is mandatory.",
|
|
139
|
+
"[Optional] The INPUT_MODE parameter has the following options:",
|
|
140
|
+
"ONE2ONE: Both the primary and secondary series specifications contain a series name which identifies the two series in the function.",
|
|
141
|
+
"MANY2ONE: The MANY specification is the primary series declaration. The secondary series specification contains a series name that identifies the single secondary series.",
|
|
142
|
+
"MATCH: Both series are defined by their respective SERIES_SPEC(INSTANCE_NAME()) declarations."
|
|
143
|
+
],
|
|
144
|
+
"LangName": "input_fmt_input_mode"
|
|
145
|
+
}
|
|
146
|
+
],
|
|
147
|
+
"OutputFmt": [
|
|
148
|
+
{
|
|
149
|
+
"Name": "INDEX_STYLE",
|
|
150
|
+
"Type": "string",
|
|
151
|
+
"Optional": true,
|
|
152
|
+
"DefaultValue": "NUMERICAL_SEQUENCE",
|
|
153
|
+
"PermittedValues": [
|
|
154
|
+
"NUMERICAL_SEQUENCE"
|
|
155
|
+
],
|
|
156
|
+
"Description": [
|
|
157
|
+
"[Optional] The INDEX_STYLE of the output format is NUMERICAL_SEQUENCE."
|
|
158
|
+
],
|
|
159
|
+
"LangName": "output_fmt_index_style"
|
|
160
|
+
}
|
|
161
|
+
]
|
|
162
|
+
}
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
{
|
|
2
|
+
"FuncName": "TD_IDWT2D",
|
|
3
|
+
"FuncDescriptionShort": "TD_IDWT2D performs inverse discrete wavelet transform (IDWT) for two-dimensional data.",
|
|
4
|
+
"FuncDescriptionLong": [
|
|
5
|
+
"TD_IDWT2D performs inverse discrete wavelet transform (IDWT) for two-dimensional data. The algorithm is applied first horizontally by row axis, then vertically by column axis."
|
|
6
|
+
],
|
|
7
|
+
"FunctionVersion": "...",
|
|
8
|
+
"FunctionCategory": "Digital Signal Processing",
|
|
9
|
+
"JSONVersion": "1",
|
|
10
|
+
"FuncRName": "td_IDWT2D",
|
|
11
|
+
"MaxInputFiles": 2,
|
|
12
|
+
"Input": [
|
|
13
|
+
{
|
|
14
|
+
"Type": ["MATRIX", "ART"],
|
|
15
|
+
"Description": [
|
|
16
|
+
"Specify the MATRIX_SPEC of the matrix.",
|
|
17
|
+
"Multiple payloads are supported, and each payload column is transformed independently.",
|
|
18
|
+
"Only MULTIVAR_REAL payload content type is supported."
|
|
19
|
+
],
|
|
20
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
21
|
+
"Optional": false
|
|
22
|
+
},
|
|
23
|
+
{
|
|
24
|
+
"Type": "SERIES",
|
|
25
|
+
"Description": [
|
|
26
|
+
"[Optional] Specify the SERIES_SPEC of the series. The series specifies the filter.",
|
|
27
|
+
"It should have two payload columns corresponding to low and high pass filters.",
|
|
28
|
+
"Only MULTIVAR_REAL payload content type is supported."
|
|
29
|
+
],
|
|
30
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
31
|
+
"Optional": true
|
|
32
|
+
}
|
|
33
|
+
],
|
|
34
|
+
"Output": [
|
|
35
|
+
{
|
|
36
|
+
"Type": "ART",
|
|
37
|
+
"PrimaryLayer": true,
|
|
38
|
+
"LayerName": "ARTPRIMARY",
|
|
39
|
+
"ResultTableColumnTypes": [
|
|
40
|
+
"big_integer",
|
|
41
|
+
"float",
|
|
42
|
+
"<varies>"
|
|
43
|
+
],
|
|
44
|
+
"Description": [
|
|
45
|
+
"The TD_IDWT2D function returns only a primary result set."
|
|
46
|
+
],
|
|
47
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
48
|
+
}
|
|
49
|
+
],
|
|
50
|
+
"IsPlottable": true,
|
|
51
|
+
"Params": [
|
|
52
|
+
{
|
|
53
|
+
"Name": "WAVELET",
|
|
54
|
+
"Type": "string",
|
|
55
|
+
"Optional": true,
|
|
56
|
+
"Description": [
|
|
57
|
+
"Name of the wavelet.",
|
|
58
|
+
"If this parameter is specified, then do not include a second input series for the function.",
|
|
59
|
+
"If this parameter is not specified, then include a second input series to provide the filter.",
|
|
60
|
+
"Data type is case-sensitive.",
|
|
61
|
+
"Option families and names are:",
|
|
62
|
+
"Daubechies: 'db1' or 'haar', 'db2', 'db3', .... ,'db38'",
|
|
63
|
+
"Coiflets: 'coif1', 'coif2', ... , 'coif17'",
|
|
64
|
+
"Symlets: 'sym2', 'sym3', ... ,' sym20'",
|
|
65
|
+
"Discrete Meyer: 'dmey'",
|
|
66
|
+
"Biorthogonal: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'",
|
|
67
|
+
"Reverse Biorthogonal: 'rbio1.1', 'rbio1.3', 'rbio1.5' 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7','rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'"
|
|
68
|
+
]
|
|
69
|
+
},
|
|
70
|
+
{
|
|
71
|
+
"Name": "MODE",
|
|
72
|
+
"Type": "string",
|
|
73
|
+
"Optional": true,
|
|
74
|
+
"PermittedValues": [
|
|
75
|
+
"zero",
|
|
76
|
+
"symmetric",
|
|
77
|
+
"constant",
|
|
78
|
+
"smooth",
|
|
79
|
+
"periodic",
|
|
80
|
+
"periodization",
|
|
81
|
+
"reflect",
|
|
82
|
+
"antisymmetric",
|
|
83
|
+
"antireflect",
|
|
84
|
+
"sym",
|
|
85
|
+
"symh",
|
|
86
|
+
"symw",
|
|
87
|
+
"spd",
|
|
88
|
+
"sp1",
|
|
89
|
+
"sp0",
|
|
90
|
+
"zpd",
|
|
91
|
+
"ppd",
|
|
92
|
+
"per",
|
|
93
|
+
"asym",
|
|
94
|
+
"asymh",
|
|
95
|
+
"asymw"
|
|
96
|
+
],
|
|
97
|
+
"DefaultValue": "symmetric",
|
|
98
|
+
"Description": [
|
|
99
|
+
"Signal extension mode.",
|
|
100
|
+
"Data type is case-insensitive.",
|
|
101
|
+
"Options are:",
|
|
102
|
+
"symmetric, sym, symh",
|
|
103
|
+
"reflect, symw",
|
|
104
|
+
"smooth, spd, sp1",
|
|
105
|
+
"constant, sp0",
|
|
106
|
+
"zero, zpd",
|
|
107
|
+
"periodic, ppd",
|
|
108
|
+
"periodization, per",
|
|
109
|
+
"antisymmetric, asym, asymh",
|
|
110
|
+
"antireflect, asymw"
|
|
111
|
+
]
|
|
112
|
+
}
|
|
113
|
+
],
|
|
114
|
+
"InputFmt": [
|
|
115
|
+
{
|
|
116
|
+
"Name": "INPUT_MODE",
|
|
117
|
+
"Type": "string",
|
|
118
|
+
"Optional": true,
|
|
119
|
+
"PermittedValues": [
|
|
120
|
+
"MANY2ONE",
|
|
121
|
+
"ONE2ONE",
|
|
122
|
+
"MATCH"
|
|
123
|
+
],
|
|
124
|
+
"Description": [
|
|
125
|
+
"When there are two input series, then the INPUT_FMT specification is mandatory.",
|
|
126
|
+
"[Optional] The INPUT_MODE parameter has the following options:",
|
|
127
|
+
"ONE2ONE: Both the primary and secondary series specifications contain a series name which identifies the two series in the function.",
|
|
128
|
+
"MANY2ONE: The MANY specification is the primary series declaration. The secondary series specification contains a series name that identifies the single secondary series.",
|
|
129
|
+
"MATCH: Both series are defined by their respective SERIES_SPEC(INSTANCE_NAME()) declarations."
|
|
130
|
+
],
|
|
131
|
+
"LangName": "input_fmt_input_mode"
|
|
132
|
+
}
|
|
133
|
+
],
|
|
134
|
+
"OutputFmt": [
|
|
135
|
+
{
|
|
136
|
+
"Name": "INDEX_STYLE",
|
|
137
|
+
"Type": "string",
|
|
138
|
+
"Optional": true,
|
|
139
|
+
"DefaultValue": "NUMERICAL_SEQUENCE",
|
|
140
|
+
"PermittedValues": [
|
|
141
|
+
"NUMERICAL_SEQUENCE"
|
|
142
|
+
],
|
|
143
|
+
"Description": [
|
|
144
|
+
"[Optional] The INDEX_STYLE of the output format is NUMERICAL_SEQUENCE."
|
|
145
|
+
],
|
|
146
|
+
"LangName": "output_fmt_index_style"
|
|
147
|
+
}
|
|
148
|
+
]
|
|
149
|
+
}
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
{
|
|
2
|
+
"FuncName": "TD_IQR",
|
|
3
|
+
"FuncDescriptionShort": "TD_IQR uses interquartile range for anomaly detection.",
|
|
4
|
+
"FuncDescriptionLong": [
|
|
5
|
+
"Anomaly detection identifies data points, events and observations that deviate from the normal behavior of the data set.",
|
|
6
|
+
"Anomalous data can indicate critical incidents, such as a change in consumer behavior or observations that are suspicious.",
|
|
7
|
+
"Anomalies in data are also called standard deviations, outliers, noise, novelties, and exceptions.",
|
|
8
|
+
"TD_IQR uses interquartile range for anomaly detection.",
|
|
9
|
+
"Any data point that falls outside of 1.5 times of an interquartile range below the first quartile and above the third quartile is considered an outlier.",
|
|
10
|
+
"The TD_IQR function creates a two-layered ART table."
|
|
11
|
+
],
|
|
12
|
+
"FunctionVersion": "...",
|
|
13
|
+
"FunctionCategory": "Anomaly Detection",
|
|
14
|
+
"JSONVersion": "1",
|
|
15
|
+
"FuncRName": "td_IQR",
|
|
16
|
+
"MaxInputFiles": 1,
|
|
17
|
+
"Input": [
|
|
18
|
+
{
|
|
19
|
+
"Type": "SERIES",
|
|
20
|
+
"Description": [
|
|
21
|
+
"Time series whose value can be REAL or MULTIVAR_REAL."
|
|
22
|
+
],
|
|
23
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
24
|
+
"Optional": false
|
|
25
|
+
}
|
|
26
|
+
],
|
|
27
|
+
"Output": [
|
|
28
|
+
{
|
|
29
|
+
"Type": "ART",
|
|
30
|
+
"PrimaryLayer": true,
|
|
31
|
+
"LayerName": "ARTPRIMARY",
|
|
32
|
+
"ResultTableColumnTypes": [
|
|
33
|
+
"VARCHAR",
|
|
34
|
+
"<varies>",
|
|
35
|
+
"<varies>",
|
|
36
|
+
"integer"
|
|
37
|
+
],
|
|
38
|
+
"Description": [
|
|
39
|
+
"The primary result set contains the list of anomaly data points.",
|
|
40
|
+
"The primary result set is accessed using a SELECT statement."
|
|
41
|
+
],
|
|
42
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
43
|
+
},
|
|
44
|
+
{
|
|
45
|
+
"Type": "ART",
|
|
46
|
+
"PrimaryLayer": false,
|
|
47
|
+
"LayerName": "ARTSTATSDATA",
|
|
48
|
+
"ResultTableColumnTypes": [
|
|
49
|
+
"integer"
|
|
50
|
+
],
|
|
51
|
+
"Description": [
|
|
52
|
+
"The secondary result set contains the number of anomalies.",
|
|
53
|
+
"The secondary is accessed using the TD_EXTRACT_RESULTS utility function."
|
|
54
|
+
],
|
|
55
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
56
|
+
},
|
|
57
|
+
{
|
|
58
|
+
"Type": "ART",
|
|
59
|
+
"PrimaryLayer": false,
|
|
60
|
+
"LayerName": "ARTFITMETADATA",
|
|
61
|
+
"ResultTableColumnTypes": [
|
|
62
|
+
"integer",
|
|
63
|
+
"integer",
|
|
64
|
+
"float",
|
|
65
|
+
"float",
|
|
66
|
+
"float",
|
|
67
|
+
"float",
|
|
68
|
+
"float",
|
|
69
|
+
"float",
|
|
70
|
+
"float",
|
|
71
|
+
"float",
|
|
72
|
+
"float",
|
|
73
|
+
"float",
|
|
74
|
+
"float",
|
|
75
|
+
"integer",
|
|
76
|
+
"integer",
|
|
77
|
+
"float"
|
|
78
|
+
],
|
|
79
|
+
"Description": [
|
|
80
|
+
"The RETURNS TABLE for this optional analytical result set, containing “goodness of fit” metadata, is described in this subsection. This result set is generated in response to the FUNC_PARAMS (FIT_METRICS(1) having a passed in flag value of '1'. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This result set will be deposited into LAYER1 under the name ARTFITMETADATA.",
|
|
81
|
+
"There is one result row returned for each unique series acted upon. "
|
|
82
|
+
],
|
|
83
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
84
|
+
}
|
|
85
|
+
],
|
|
86
|
+
"IsPlottable": true,
|
|
87
|
+
"Params": [
|
|
88
|
+
{
|
|
89
|
+
"Name" : "STAT_METRICS",
|
|
90
|
+
"Type": "integer",
|
|
91
|
+
"Optional": true,
|
|
92
|
+
"PermittedValues": [
|
|
93
|
+
0,
|
|
94
|
+
1
|
|
95
|
+
],
|
|
96
|
+
"Description": [
|
|
97
|
+
"Indicator for secondary layer to give the number of outliers."
|
|
98
|
+
]
|
|
99
|
+
}
|
|
100
|
+
],
|
|
101
|
+
"InputFmt": false,
|
|
102
|
+
"OutputFmt": [
|
|
103
|
+
{
|
|
104
|
+
"Name": "INDEX_STYLE",
|
|
105
|
+
"Type": "string",
|
|
106
|
+
"Optional": true,
|
|
107
|
+
"DefaultValue": "NUMERICAL_SEQUENCE",
|
|
108
|
+
"PermittedValues": [
|
|
109
|
+
"NUMERICAL_SEQUENCE"
|
|
110
|
+
],
|
|
111
|
+
"Description": [
|
|
112
|
+
"Specifies the INDEX_STYLE of the output format."
|
|
113
|
+
],
|
|
114
|
+
"LangName": "output_fmt_index_style"
|
|
115
|
+
}
|
|
116
|
+
]
|
|
117
|
+
}
|
|
@@ -38,7 +38,7 @@
|
|
|
38
38
|
"Description": [
|
|
39
39
|
"The TD_LINEAR_REGR function can produce a multilayered ART table result. Invoking this UAF function generates up to three analytical result sets: a primary analytical result set containing the calculated coefficients, and one or two auxiliary result sets - one containing model statistics and the other containing residual context. ",
|
|
40
40
|
"The primary result set can be accessed either via a subsequent SELECT * FROM <art table> statement or by issuing a TD_EXTRACT_RESULTS(…,LAYER(ARTPRIMARY),…) ."
|
|
41
|
-
|
|
41
|
+
],
|
|
42
42
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
43
43
|
},
|
|
44
44
|
{
|
|
@@ -92,7 +92,7 @@
|
|
|
92
92
|
"Type": "float",
|
|
93
93
|
"Optional": true,
|
|
94
94
|
"LowerBound": 0,
|
|
95
|
-
"LowerBoundType": "
|
|
95
|
+
"LowerBoundType": "EXCLUSIVE",
|
|
96
96
|
"Description": [
|
|
97
97
|
"Optional Parameter. Only valid with a FREQ_STYLE(K_HERTZ). A Floating point constant representing the sample rate, in hertz. A value of 10000.0 means that the sample points were obtained by sampling at a rate of 10,000 hertz."
|
|
98
98
|
]
|
|
@@ -26,7 +26,6 @@
|
|
|
26
26
|
"PrimaryLayer": true,
|
|
27
27
|
"LayerName": "ARTPRIMARY",
|
|
28
28
|
"ResultTableColumnTypes": [
|
|
29
|
-
|
|
30
29
|
"<varies>",
|
|
31
30
|
"float",
|
|
32
31
|
"float",
|
|
@@ -51,7 +50,6 @@
|
|
|
51
50
|
"float"
|
|
52
51
|
],
|
|
53
52
|
"Description": [
|
|
54
|
-
|
|
55
53
|
"The RETURNS TABLE for this optional analytical result set is described in this subsection. This result set is generated in response to the FUNC_PARAMS( RESIDUALS(1)) having a passed in flag value of '1'. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. This result set will be deposited into LAYER1 under the name ARTFITRESIDUALS."
|
|
56
54
|
],
|
|
57
55
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
@@ -134,7 +132,7 @@
|
|
|
134
132
|
"LowerBoundType": "INCLUSIVE",
|
|
135
133
|
"AllowNaN": false,
|
|
136
134
|
"Description": [
|
|
137
|
-
"Only
|
|
135
|
+
"Only used with ALGORITHM(MA), and required, moving average forecast. must be between 1 to 32000."
|
|
138
136
|
]
|
|
139
137
|
},
|
|
140
138
|
{
|