teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +306 -0
- teradataml/__init__.py +10 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/__init__.py +3 -2
- teradataml/analytics/analytic_function_executor.py +299 -16
- teradataml/analytics/analytic_query_generator.py +92 -0
- teradataml/analytics/byom/__init__.py +3 -2
- teradataml/analytics/json_parser/metadata.py +13 -3
- teradataml/analytics/json_parser/utils.py +13 -6
- teradataml/analytics/meta_class.py +40 -1
- teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
- teradataml/analytics/sqle/__init__.py +11 -2
- teradataml/analytics/table_operator/__init__.py +4 -3
- teradataml/analytics/uaf/__init__.py +21 -2
- teradataml/analytics/utils.py +66 -1
- teradataml/analytics/valib.py +1 -1
- teradataml/automl/__init__.py +1502 -323
- teradataml/automl/custom_json_utils.py +139 -61
- teradataml/automl/data_preparation.py +247 -307
- teradataml/automl/data_transformation.py +32 -12
- teradataml/automl/feature_engineering.py +325 -86
- teradataml/automl/model_evaluation.py +44 -35
- teradataml/automl/model_training.py +122 -153
- teradataml/catalog/byom.py +8 -8
- teradataml/clients/pkce_client.py +1 -1
- teradataml/common/__init__.py +2 -1
- teradataml/common/constants.py +72 -0
- teradataml/common/deprecations.py +13 -7
- teradataml/common/garbagecollector.py +152 -120
- teradataml/common/messagecodes.py +11 -2
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +26 -4
- teradataml/common/utils.py +225 -14
- teradataml/common/wrapper_utils.py +1 -1
- teradataml/context/context.py +82 -2
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/dataframe_example.json +27 -1
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
- teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
- teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/jsons/paired_functions.json +14 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
- teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/load_example_data.py +8 -2
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/naivebayestextclassifier_example.json +1 -1
- teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/sax_example.json +8 -0
- teradataml/data/scripts/deploy_script.py +1 -1
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
- teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
- teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -1
- teradataml/data/teradataml_example.json +20 -1
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/uaf_example.json +55 -1
- teradataml/data/unpivot_example.json +15 -0
- teradataml/data/url_data.csv +9 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/dataframe/copy_to.py +1 -1
- teradataml/dataframe/data_transfer.py +5 -3
- teradataml/dataframe/dataframe.py +1002 -201
- teradataml/dataframe/fastload.py +3 -3
- teradataml/dataframe/functions.py +867 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +2 -2
- teradataml/dataframe/sql.py +840 -33
- teradataml/dataframe/window.py +1 -1
- teradataml/dbutils/dbutils.py +878 -34
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/geospatial/geodataframe.py +1 -1
- teradataml/geospatial/geodataframecolumn.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +13 -13
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
- teradataml/opensource/_lightgbm.py +950 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
- teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
- teradataml/options/__init__.py +9 -23
- teradataml/options/configure.py +42 -4
- teradataml/options/display.py +2 -2
- teradataml/plot/axis.py +4 -4
- teradataml/scriptmgmt/UserEnv.py +13 -9
- teradataml/scriptmgmt/lls_utils.py +77 -23
- teradataml/store/__init__.py +13 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2223 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/store/vector_store/__init__.py +1586 -0
- teradataml/table_operators/Script.py +2 -2
- teradataml/table_operators/TableOperator.py +106 -20
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +102 -56
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/table_operators/templates/dataframe_udf.template +63 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +52 -0
- teradataml/utils/dtypes.py +4 -2
- teradataml/utils/validators.py +34 -2
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,469 @@
|
|
|
1
|
+
{
|
|
2
|
+
"FuncName": "TD_AUTOARIMA",
|
|
3
|
+
"FuncDescriptionShort": "TD_AUTOARIMA fits the best ARIMA model to univariate time series.",
|
|
4
|
+
"FuncDescriptionLong": [
|
|
5
|
+
"The function searches the possible models within the order constrains in the function parameters.",
|
|
6
|
+
"returns the best ARIMA model based on the criterion provided by the INFOR_CRITERIA parameter.",
|
|
7
|
+
"The TD_AUTOARIMA function creates a six-layered ART table."
|
|
8
|
+
],
|
|
9
|
+
"FunctionVersion": "...",
|
|
10
|
+
"FunctionCategory": "Model Preparation and Parameter Estimation",
|
|
11
|
+
"JSONVersion": "1",
|
|
12
|
+
"FuncRName": "td_Auto_Arima",
|
|
13
|
+
"MaxInputFiles": 1,
|
|
14
|
+
"Input": [
|
|
15
|
+
{
|
|
16
|
+
"Type": "SERIES",
|
|
17
|
+
"Description": [
|
|
18
|
+
"Time series whose value can be REAL."
|
|
19
|
+
],
|
|
20
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field",
|
|
21
|
+
"Optional": false
|
|
22
|
+
}
|
|
23
|
+
],
|
|
24
|
+
"Output": [
|
|
25
|
+
{
|
|
26
|
+
"Type": "ART",
|
|
27
|
+
"PrimaryLayer": true,
|
|
28
|
+
"LayerName": "ARTPRIMARY",
|
|
29
|
+
"ResultTableColumnTypes": [
|
|
30
|
+
"<varies>",
|
|
31
|
+
"big_integer",
|
|
32
|
+
"VARCHAR",
|
|
33
|
+
"float",
|
|
34
|
+
"float",
|
|
35
|
+
"float",
|
|
36
|
+
"float"
|
|
37
|
+
],
|
|
38
|
+
"Description": [
|
|
39
|
+
"The primary result containing the selected best model’s coefficients.",
|
|
40
|
+
"The primary result set is accessed using a SELECT statement."
|
|
41
|
+
],
|
|
42
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
43
|
+
},
|
|
44
|
+
{
|
|
45
|
+
"Type": "ART",
|
|
46
|
+
"PrimaryLayer": false,
|
|
47
|
+
"LayerName": "ARTFITMETADATA",
|
|
48
|
+
"ResultTableColumnTypes": [
|
|
49
|
+
"<varies>",
|
|
50
|
+
"big_integer",
|
|
51
|
+
"integer",
|
|
52
|
+
"integer",
|
|
53
|
+
"float",
|
|
54
|
+
"float",
|
|
55
|
+
"float",
|
|
56
|
+
"float",
|
|
57
|
+
"float",
|
|
58
|
+
"float",
|
|
59
|
+
"float",
|
|
60
|
+
"float",
|
|
61
|
+
"float",
|
|
62
|
+
"float",
|
|
63
|
+
"float",
|
|
64
|
+
"float",
|
|
65
|
+
"float",
|
|
66
|
+
"float",
|
|
67
|
+
"float",
|
|
68
|
+
"float",
|
|
69
|
+
"VARCHAR"
|
|
70
|
+
],
|
|
71
|
+
"Description": [
|
|
72
|
+
"The secondary result set containing “goodness of fit” metadata, is described in this subsection. This result set is generated in response to the FUNC_PARAMS (FIT_METRICS(1) having a passed in flag value of '1'. The result set can be retrieved by invoking the TD_EXTRACT_RESULTS function against the analytical result table containing the metadata. ",
|
|
73
|
+
"There is one result row returned for each unique series acted upon. "
|
|
74
|
+
],
|
|
75
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
76
|
+
},
|
|
77
|
+
{
|
|
78
|
+
"Type": "ART",
|
|
79
|
+
"PrimaryLayer": false,
|
|
80
|
+
"LayerName": "ARTFITRESIDUALS",
|
|
81
|
+
"ResultTableColumnTypes": [
|
|
82
|
+
"<varies>",
|
|
83
|
+
"big_integer",
|
|
84
|
+
"float",
|
|
85
|
+
"float",
|
|
86
|
+
"float"
|
|
87
|
+
],
|
|
88
|
+
"Description": [
|
|
89
|
+
"The tertiary result set contains residuals from the fitting exercise.",
|
|
90
|
+
"The tertiary is accessed using the TD_EXTRACT_RESULTS utility function."
|
|
91
|
+
],
|
|
92
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
93
|
+
},
|
|
94
|
+
{
|
|
95
|
+
"Type": "ART",
|
|
96
|
+
"PrimaryLayer": false,
|
|
97
|
+
"LayerName": "ARTMODEL",
|
|
98
|
+
"ResultTableColumnTypes": [
|
|
99
|
+
"<varies>",
|
|
100
|
+
"big_integer",
|
|
101
|
+
"VARBYTE"
|
|
102
|
+
],
|
|
103
|
+
"Description": [
|
|
104
|
+
"The quaternary result set contains the best model context, which is used during the forecasting process.",
|
|
105
|
+
"The quaternary is accessed using the TD_EXTRACT_RESULTS utility function."
|
|
106
|
+
],
|
|
107
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
108
|
+
},
|
|
109
|
+
{
|
|
110
|
+
"Type": "ART",
|
|
111
|
+
"PrimaryLayer": false,
|
|
112
|
+
"LayerName": "ARTICANDORDER",
|
|
113
|
+
"ResultTableColumnTypes": [
|
|
114
|
+
"<varies>",
|
|
115
|
+
"big_integer",
|
|
116
|
+
"integer",
|
|
117
|
+
"integer",
|
|
118
|
+
"float",
|
|
119
|
+
"float",
|
|
120
|
+
"float",
|
|
121
|
+
"float",
|
|
122
|
+
"float",
|
|
123
|
+
"VARCHAR"
|
|
124
|
+
],
|
|
125
|
+
"Description": [
|
|
126
|
+
"The quinary result set contains the information criteria such as AIC and SBIC, and the order of the best model.",
|
|
127
|
+
"The quinary is accessed using the TD_EXTRACT_RESULTS utility function."
|
|
128
|
+
],
|
|
129
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
130
|
+
},
|
|
131
|
+
{
|
|
132
|
+
"Type": "ART",
|
|
133
|
+
"PrimaryLayer": false,
|
|
134
|
+
"LayerName": "ARTARMAROOTS",
|
|
135
|
+
"ResultTableColumnTypes": [
|
|
136
|
+
"<varies>",
|
|
137
|
+
"big_integer",
|
|
138
|
+
"VARCHAR",
|
|
139
|
+
"float",
|
|
140
|
+
"float",
|
|
141
|
+
"VARCHAR"
|
|
142
|
+
],
|
|
143
|
+
"Description": [
|
|
144
|
+
"The senary result set contains the roots information.",
|
|
145
|
+
"The senary is accessed using the TD_EXTRACT_RESULTS utility function."
|
|
146
|
+
],
|
|
147
|
+
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
148
|
+
}
|
|
149
|
+
],
|
|
150
|
+
"IsPlottable": true,
|
|
151
|
+
"Params": [
|
|
152
|
+
{
|
|
153
|
+
"Name": "MAX_PQ_NONSEASONAL",
|
|
154
|
+
"Type": "list",
|
|
155
|
+
"ListType": "integer",
|
|
156
|
+
"ListSize": 2,
|
|
157
|
+
"Optional": true,
|
|
158
|
+
"LowerBound": 0,
|
|
159
|
+
"LowerBoundType": "INCLUSIVE",
|
|
160
|
+
"DefaultValue": [5, 5],
|
|
161
|
+
"Description": [
|
|
162
|
+
"The (p,q) order of the maximum autoregression (AR) and moving average (MA) parameters."
|
|
163
|
+
]
|
|
164
|
+
},
|
|
165
|
+
{
|
|
166
|
+
"Name": "MAX_PQ_SEASONAL",
|
|
167
|
+
"Type": "list",
|
|
168
|
+
"ListType": "integer",
|
|
169
|
+
"ListSize": 2,
|
|
170
|
+
"Optional": true,
|
|
171
|
+
"LowerBound": 0,
|
|
172
|
+
"LowerBoundType": "INCLUSIVE",
|
|
173
|
+
"DefaultValue": [2, 2],
|
|
174
|
+
"Description": [
|
|
175
|
+
"The (P,Q) order of the max seasonal AR and MA parameters."
|
|
176
|
+
]
|
|
177
|
+
},
|
|
178
|
+
{
|
|
179
|
+
"Name": "START_PQ_NONSEASONAL",
|
|
180
|
+
"Type": "list",
|
|
181
|
+
"ListType": "integer",
|
|
182
|
+
"ListSize": 2,
|
|
183
|
+
"Optional": true,
|
|
184
|
+
"LowerBound": 0,
|
|
185
|
+
"LowerBoundType": "INCLUSIVE",
|
|
186
|
+
"DefaultValue": [0, 0],
|
|
187
|
+
"Description": [
|
|
188
|
+
"The start value of (p,q). Only used when STEPWISE(1)."
|
|
189
|
+
]
|
|
190
|
+
},
|
|
191
|
+
{
|
|
192
|
+
"Name": "START_PQ_SEASONAL",
|
|
193
|
+
"Type": "list",
|
|
194
|
+
"ListType": "integer",
|
|
195
|
+
"ListSize": 2,
|
|
196
|
+
"Optional": true,
|
|
197
|
+
"LowerBound": 0,
|
|
198
|
+
"LowerBoundType": "INCLUSIVE",
|
|
199
|
+
"DefaultValue": [0, 0],
|
|
200
|
+
"Description": [
|
|
201
|
+
"The start value of seasonal (P,Q). Only used when STEPWISE(1)."
|
|
202
|
+
]
|
|
203
|
+
},
|
|
204
|
+
{
|
|
205
|
+
"Name" : "d",
|
|
206
|
+
"Type" : "integer",
|
|
207
|
+
"Optional" : true,
|
|
208
|
+
"DefaultValue": -1,
|
|
209
|
+
"Description": [
|
|
210
|
+
"The order of first-differencing. Default is -1 (auto search d)."
|
|
211
|
+
]
|
|
212
|
+
},
|
|
213
|
+
{
|
|
214
|
+
"Name" : "Ds",
|
|
215
|
+
"Type" : "integer",
|
|
216
|
+
"Optional" : true,
|
|
217
|
+
"DefaultValue": -1,
|
|
218
|
+
"Description": [
|
|
219
|
+
"The order of seasonal-differencing. Default: -1 (auto search Ds))."
|
|
220
|
+
]
|
|
221
|
+
},
|
|
222
|
+
{
|
|
223
|
+
"Name" : "MAX_d",
|
|
224
|
+
"Type" : "integer",
|
|
225
|
+
"Optional" : true,
|
|
226
|
+
"LowerBound": 0,
|
|
227
|
+
"LowerBoundType": "INCLUSIVE",
|
|
228
|
+
"DefaultValue": 2,
|
|
229
|
+
"Description": [
|
|
230
|
+
"Maximum number of non-seasonal differences."
|
|
231
|
+
]
|
|
232
|
+
},
|
|
233
|
+
{
|
|
234
|
+
"Name" : "MAX_Ds",
|
|
235
|
+
"Type" : "integer",
|
|
236
|
+
"Optional" : true,
|
|
237
|
+
"LowerBound": 0,
|
|
238
|
+
"LowerBoundType": "INCLUSIVE",
|
|
239
|
+
"DefaultValue": 1,
|
|
240
|
+
"Description": [
|
|
241
|
+
"Maximum number of seasonal differences."
|
|
242
|
+
]
|
|
243
|
+
},
|
|
244
|
+
{
|
|
245
|
+
"Name" : "PERIOD",
|
|
246
|
+
"Type" : "integer",
|
|
247
|
+
"Optional" : true,
|
|
248
|
+
"LowerBound": 1,
|
|
249
|
+
"UpperBound": 12,
|
|
250
|
+
"LowerBoundType": "INCLUSIVE",
|
|
251
|
+
"UpperBoundType": "INCLUSIVE",
|
|
252
|
+
"DefaultValue": 1,
|
|
253
|
+
"Description": [
|
|
254
|
+
"The number of periods per season. For non-seasonal data, period is 1."
|
|
255
|
+
]
|
|
256
|
+
},
|
|
257
|
+
{
|
|
258
|
+
"Name" : "STATIONARY",
|
|
259
|
+
"Type" : "integer",
|
|
260
|
+
"Optional" : true,
|
|
261
|
+
"PermittedValues": [
|
|
262
|
+
0,
|
|
263
|
+
1
|
|
264
|
+
],
|
|
265
|
+
"DefaultValue": 0,
|
|
266
|
+
"Description": [
|
|
267
|
+
"If true, the the function restricts search to stationary models. A value of 1 means true. A value of 0 means false."
|
|
268
|
+
]
|
|
269
|
+
},
|
|
270
|
+
{
|
|
271
|
+
"Name" : "SEASONAL",
|
|
272
|
+
"Type" : "integer",
|
|
273
|
+
"Optional" : true,
|
|
274
|
+
"PermittedValues": [
|
|
275
|
+
0,
|
|
276
|
+
1
|
|
277
|
+
],
|
|
278
|
+
"DefaultValue": 1,
|
|
279
|
+
"Description": [
|
|
280
|
+
"If false, then the function restricts search to non-seasonal models. A value of 1 means true. A value of 0 means false. Default is 1, meaning search all models including seasonal."
|
|
281
|
+
]
|
|
282
|
+
},
|
|
283
|
+
{
|
|
284
|
+
"Name" : "CONSTANT",
|
|
285
|
+
"Type" : "integer",
|
|
286
|
+
"Optional" : true,
|
|
287
|
+
"PermittedValues": [
|
|
288
|
+
0,
|
|
289
|
+
1
|
|
290
|
+
],
|
|
291
|
+
"DefaultValue": 1,
|
|
292
|
+
"Description": [
|
|
293
|
+
"Indicator that TD_AUTOARIMA function include an intercept. A value of 1 means CONSTANT/intercept should be included. A value of 0 means CONSTANT/intercept should not be included."
|
|
294
|
+
]
|
|
295
|
+
},
|
|
296
|
+
{
|
|
297
|
+
"Name" : "ALGORITHM",
|
|
298
|
+
"Type" : "string",
|
|
299
|
+
"Optional" : true,
|
|
300
|
+
"PermittedValues": [
|
|
301
|
+
"MLE",
|
|
302
|
+
"CSS_MLE",
|
|
303
|
+
"CSS"
|
|
304
|
+
],
|
|
305
|
+
"DefaultValue": "MLE",
|
|
306
|
+
"Description": [
|
|
307
|
+
"The approach used by TD_AUTOARIMA to estimate the coefficients."
|
|
308
|
+
]
|
|
309
|
+
},
|
|
310
|
+
{
|
|
311
|
+
"Name" : "FIT_PERCENTAGE",
|
|
312
|
+
"Type" : "integer",
|
|
313
|
+
"Optional" : true,
|
|
314
|
+
"PermittedValues": [
|
|
315
|
+
|
|
316
|
+
],
|
|
317
|
+
"DefaultValue": 100,
|
|
318
|
+
"Description": [
|
|
319
|
+
"Percentage of passed-in sample points used for the model fitting (parameter estimation). The default is 100, meaning 100%."
|
|
320
|
+
]
|
|
321
|
+
},
|
|
322
|
+
{
|
|
323
|
+
"Name" : "INFOR_CRITERIA",
|
|
324
|
+
"Type" : "string",
|
|
325
|
+
"Optional" : true,
|
|
326
|
+
"PermittedValues": [
|
|
327
|
+
"AIC",
|
|
328
|
+
"AICC",
|
|
329
|
+
"BIC"
|
|
330
|
+
],
|
|
331
|
+
"DefaultValue": "AIC",
|
|
332
|
+
"Description": [
|
|
333
|
+
"Information criterion to be used in model selection. Options are AIC, AICc, BIC."
|
|
334
|
+
]
|
|
335
|
+
},
|
|
336
|
+
{
|
|
337
|
+
"Name" : "STEPWISE",
|
|
338
|
+
"Type" : "integer",
|
|
339
|
+
"Optional" : true,
|
|
340
|
+
"PermittedValues": [
|
|
341
|
+
0,
|
|
342
|
+
1
|
|
343
|
+
],
|
|
344
|
+
"DefaultValue": 0,
|
|
345
|
+
"Description": [
|
|
346
|
+
"If true, then the function does stepwise selection. If false, the the function selects all models. A value of 1 means true. A value of 0 means false."
|
|
347
|
+
]
|
|
348
|
+
},
|
|
349
|
+
{
|
|
350
|
+
"Name" : "NMODELS",
|
|
351
|
+
"Type" : "integer",
|
|
352
|
+
"Optional" : true,
|
|
353
|
+
"LowerBound": 1,
|
|
354
|
+
"UpperBound": 94,
|
|
355
|
+
"LowerBoundType": "INCLUSIVE",
|
|
356
|
+
"UpperBoundType": "INCLUSIVE",
|
|
357
|
+
"DefaultValue": 94,
|
|
358
|
+
"Description": [
|
|
359
|
+
"Maximum number of models considered in the stepwise search."
|
|
360
|
+
]
|
|
361
|
+
},
|
|
362
|
+
{
|
|
363
|
+
"Name" : "MAX_ITERATIONS",
|
|
364
|
+
"Type" : "integer",
|
|
365
|
+
"Optional" : true,
|
|
366
|
+
"LowerBound": 1,
|
|
367
|
+
"LowerBoundType": "INCLUSIVE",
|
|
368
|
+
"DefaultValue": 100,
|
|
369
|
+
"Description": [
|
|
370
|
+
"The maximum number of iterations that can be employed to non-linear optimization procedure."
|
|
371
|
+
]
|
|
372
|
+
},
|
|
373
|
+
{
|
|
374
|
+
"Name" : "COEFF_STATS",
|
|
375
|
+
"Type" : "integer",
|
|
376
|
+
"Optional" : true,
|
|
377
|
+
"PermittedValues": [
|
|
378
|
+
0,
|
|
379
|
+
1
|
|
380
|
+
],
|
|
381
|
+
"DefaultValue": 0,
|
|
382
|
+
"Description": [
|
|
383
|
+
"Indicator to return coefficient statistical columns TSTAT_VALUE and TSTAT_PROB. A value of 1 means return the columns. A value of 0 means do not return the columns."
|
|
384
|
+
]
|
|
385
|
+
},
|
|
386
|
+
{
|
|
387
|
+
"Name" : "FIT_METRICS",
|
|
388
|
+
"Type" : "integer",
|
|
389
|
+
"Optional" : true,
|
|
390
|
+
"PermittedValues": [
|
|
391
|
+
0,
|
|
392
|
+
1
|
|
393
|
+
],
|
|
394
|
+
"DefaultValue": 0,
|
|
395
|
+
"Description": [
|
|
396
|
+
"Indicator to generate the secondary result set that contains the model metadata statistics. A value of 1 means generate the secondary result set. A value of 0 means do not generate the secondary result set."
|
|
397
|
+
]
|
|
398
|
+
},
|
|
399
|
+
{
|
|
400
|
+
"Name" : "RESIDUALS",
|
|
401
|
+
"Type" : "integer",
|
|
402
|
+
"Optional" : true,
|
|
403
|
+
"PermittedValues": [
|
|
404
|
+
0,
|
|
405
|
+
1
|
|
406
|
+
],
|
|
407
|
+
"DefaultValue": 0,
|
|
408
|
+
"Description": [
|
|
409
|
+
"Indicator to generate the tertiary result set that contains the model residuals. A value of 1 means generate the tertiary result set. A value of 0 means do not generate the tertiary result set."
|
|
410
|
+
]
|
|
411
|
+
},
|
|
412
|
+
{
|
|
413
|
+
"Name" : "ARMA_ROOTS",
|
|
414
|
+
"Type" : "integer",
|
|
415
|
+
"Optional" : true,
|
|
416
|
+
"PermittedValues": [
|
|
417
|
+
0,
|
|
418
|
+
1
|
|
419
|
+
],
|
|
420
|
+
"DefaultValue": 0,
|
|
421
|
+
"Description": [
|
|
422
|
+
"Indicator to generate the senary result set that contains the inverse AR and MA roots of result best model that TD_AUTOARIMA selected (the model in the primary output layer). There should be no inverse roots showing outside of the unit circle. A value of 1 means generate result set. A value of 0 means do not generate a result set."
|
|
423
|
+
]
|
|
424
|
+
},
|
|
425
|
+
{
|
|
426
|
+
"Name" : "TEST_NONSEASONAL",
|
|
427
|
+
"Type" : "string",
|
|
428
|
+
"Optional" : true,
|
|
429
|
+
"PermittedValues": [
|
|
430
|
+
"ADF"
|
|
431
|
+
],
|
|
432
|
+
"DefaultValue": "ADF",
|
|
433
|
+
"Description": [
|
|
434
|
+
"Nonseasonal unit root test used to choose differencing number d.",
|
|
435
|
+
"TD_AUTOARIMA function only uses ADF test for nonseasonal unit root test."
|
|
436
|
+
]
|
|
437
|
+
},
|
|
438
|
+
{
|
|
439
|
+
"Name" : "TEST_SEASONAL",
|
|
440
|
+
"Type" : "string",
|
|
441
|
+
"Optional" : true,
|
|
442
|
+
"PermittedValues": [
|
|
443
|
+
"OCSB"
|
|
444
|
+
],
|
|
445
|
+
"DefaultValue": "OCSB",
|
|
446
|
+
"Description": [
|
|
447
|
+
"Seasonal unit root test used to choose differencing number D.",
|
|
448
|
+
"TD_AUTOARIMA function only uses OCSB test for seasonal unit root test."
|
|
449
|
+
]
|
|
450
|
+
}
|
|
451
|
+
],
|
|
452
|
+
"InputFmt": false,
|
|
453
|
+
"OutputFmt": [
|
|
454
|
+
{
|
|
455
|
+
"Name": "INDEX_STYLE",
|
|
456
|
+
"Type": "string",
|
|
457
|
+
"Optional": true,
|
|
458
|
+
"DefaultValue": "NUMERICAL_SEQUENCE",
|
|
459
|
+
"PermittedValues": [
|
|
460
|
+
"NUMERICAL_SEQUENCE",
|
|
461
|
+
"FLOW_THROUGH"
|
|
462
|
+
],
|
|
463
|
+
"Description": [
|
|
464
|
+
"[Optional] User can choose between an index style of NUMERICAL_SEQUENCE or FLOW_THROUGH."
|
|
465
|
+
],
|
|
466
|
+
"LangName": "output_fmt_index_style"
|
|
467
|
+
}
|
|
468
|
+
]
|
|
469
|
+
}
|
|
@@ -43,13 +43,11 @@
|
|
|
43
43
|
"PrimaryLayer": true,
|
|
44
44
|
"LayerName": "ARTPRIMARY",
|
|
45
45
|
"ResultTableColumnTypes": [
|
|
46
|
-
|
|
47
46
|
"<varies>",
|
|
48
47
|
"<varies>",
|
|
49
48
|
"float"
|
|
50
49
|
],
|
|
51
50
|
"Description": [
|
|
52
|
-
|
|
53
51
|
"The TD_BINARYMATRIXOP function returns only a primary result set. There are no secondary or tertiary result sets produced by this function. The primary result set can be retrieved by issuing a SELECT against the analytical table containing the results.",
|
|
54
52
|
"<varies> data type and values dependent upon the OUTPUT_FMT(INDEX_STYLE()) declaration."
|
|
55
53
|
],
|
|
@@ -58,7 +56,6 @@
|
|
|
58
56
|
],
|
|
59
57
|
"IsPlottable": true,
|
|
60
58
|
"Params": [
|
|
61
|
-
|
|
62
59
|
{
|
|
63
60
|
"Name": "MATHOP",
|
|
64
61
|
"Type": "string",
|
|
@@ -43,12 +43,10 @@
|
|
|
43
43
|
"PrimaryLayer": true,
|
|
44
44
|
"LayerName": "ARTPRIMARY",
|
|
45
45
|
"ResultTableColumnTypes": [
|
|
46
|
-
|
|
47
46
|
"<varies>",
|
|
48
47
|
"float"
|
|
49
48
|
],
|
|
50
49
|
"Description": [
|
|
51
|
-
|
|
52
50
|
"The TD_BINARYSERIES_OP function returns only a primary result set. There are no secondary or tertiary result sets produced by this function. The primary result set can be retrieved by issuing a SELECT against the analytical table containing the results.",
|
|
53
51
|
"<varies> data type and values dependent upon the OUTPUT_FMT(INDEX_STYLE()) declaration."
|
|
54
52
|
],
|
|
@@ -73,13 +73,14 @@
|
|
|
73
73
|
"Name": "SIGNIFICANCE_LEVEL",
|
|
74
74
|
"Type": "double",
|
|
75
75
|
"Optional": true,
|
|
76
|
+
"DefaultValue": 0.05,
|
|
76
77
|
"LowerBound": 0,
|
|
77
78
|
"UpperBound": 1,
|
|
78
79
|
"LowerBoundType": "EXCLUSIVE",
|
|
79
80
|
"UpperBoundType": "EXCLUSIVE",
|
|
80
81
|
"AllowNaN": false,
|
|
81
82
|
"Description": [
|
|
82
|
-
"The desired significance level for the test. Set to 0.01 or 0.05. "
|
|
83
|
+
"The desired significance level for the test. Set to 0.01 or 0.05. Default is 0.05."
|
|
83
84
|
]
|
|
84
85
|
}
|
|
85
86
|
],
|
|
@@ -28,7 +28,6 @@
|
|
|
28
28
|
"PrimaryLayer": true,
|
|
29
29
|
"LayerName": "ARTPRIMARY",
|
|
30
30
|
"ResultTableColumnTypes": [
|
|
31
|
-
|
|
32
31
|
"integer",
|
|
33
32
|
"integer",
|
|
34
33
|
"float",
|
|
@@ -43,7 +42,6 @@
|
|
|
43
42
|
"varchar(16)"
|
|
44
43
|
],
|
|
45
44
|
"Description": [
|
|
46
|
-
|
|
47
45
|
"The TD_BREUSCH_PAGAN_GODFREY function returns only a primary result set consisting of one row per unique series acted upon. The row contains data describing the results of running the BPG test upon that series. There are no secondary or tertiary result sets produced by this function. The primary result set can be retrieved by issuing a SELECT against the analytical table containing the results."
|
|
48
46
|
],
|
|
49
47
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
@@ -52,7 +50,6 @@
|
|
|
52
50
|
"IsPlottable": false,
|
|
53
51
|
"Params": [
|
|
54
52
|
{
|
|
55
|
-
|
|
56
53
|
"Name": "VARIABLES_COUNT",
|
|
57
54
|
"Type": "integer",
|
|
58
55
|
"Optional": false,
|
|
@@ -69,9 +66,9 @@
|
|
|
69
66
|
"Optional": true,
|
|
70
67
|
"Description": [
|
|
71
68
|
"This is an optional parameter. If present, it signifies that the data scientist desires that the provided regression formula serve as the driving formula for the auxiliary regression. In performing the regression, the software will use the explanatory variables identified within the PAYLOAD() portion of the original series specification. ",
|
|
72
|
-
"If the
|
|
69
|
+
"If the FORMULA is not present, then this signifies that the BPG test should be performed using the default auxiliary regression formula, which, based on the number of explanatory variables, runs the auxiliary regression as:",
|
|
73
70
|
"p_t = a_0 + a_1 * X1 + a_2 * X2 + ... + a_N * XN ; where N is the VARIABLES_COUNT.",
|
|
74
|
-
"When present, the
|
|
71
|
+
"When present, the FORMULA is a Teradata formula string that defines the formula that is to be used in the auxiliary regression operation. As an example consider: FORMULA(ρt = α0 + α1 X12 ); in which ρt is the dependent variable whose data is self-generated by this test; and X1 (which is squared in the formula) is the single explanatory variable, whose data source is identified by the PAYLOAD() portion of the original series specification; and α0 and α1 are the coefficients to be solved. "
|
|
75
72
|
]
|
|
76
73
|
},
|
|
77
74
|
{
|
|
@@ -33,13 +33,11 @@
|
|
|
33
33
|
"PrimaryLayer": true,
|
|
34
34
|
"LayerName": "ARTPRIMARY",
|
|
35
35
|
"ResultTableColumnTypes": [
|
|
36
|
-
|
|
37
36
|
"integer",
|
|
38
37
|
"float",
|
|
39
38
|
"float"
|
|
40
39
|
],
|
|
41
40
|
"Description": [
|
|
42
|
-
|
|
43
41
|
"The TD_CONVOLVE function returns only a primary result set. There are no secondary or tertiary result sets produced by this function. The primary result set can be retrieved by issuing a SELECT against the analytical table containing the results."
|
|
44
42
|
],
|
|
45
43
|
"LangName": "data or object or newdata or ... --> Langauges team can work with UAF team to come up with this field"
|
|
@@ -47,7 +45,6 @@
|
|
|
47
45
|
],
|
|
48
46
|
"IsPlottable": true,
|
|
49
47
|
"Params": [
|
|
50
|
-
|
|
51
48
|
{
|
|
52
49
|
"Name": "ALGORITHM",
|
|
53
50
|
"Type": "string",
|
|
@@ -57,9 +54,9 @@
|
|
|
57
54
|
"CONV_DFFT"
|
|
58
55
|
],
|
|
59
56
|
"Description": [
|
|
60
|
-
"Optional
|
|
57
|
+
"Optional parameter. Options are CONV_SUMMATION or CONV_DFFT. By default, the function selects the best option based on the number of entries present in the two inputs, and their types ( REAL, COMPLEX, and so on.) CONV_SUMMATION only supports:• REAL,REAL • REAL, MULTIVAR_REAL • MULTIVAR_REAL,REAL • MULTIVAR_REAL,MULTIVAR_REAL. If the CONV_SUMMATION option is passed in when the first input is greater than 64 entries or the second input is greater than 63 entries, then CONV_DFFT is used instead. This parameter is mostly used for testing."
|
|
61
58
|
]
|
|
62
|
-
}
|
|
59
|
+
}
|
|
63
60
|
],
|
|
64
61
|
"InputFmt": [
|
|
65
62
|
{
|
|
@@ -78,4 +75,4 @@
|
|
|
78
75
|
}
|
|
79
76
|
],
|
|
80
77
|
"OutputFmt": false
|
|
81
|
-
}
|
|
78
|
+
}
|
|
@@ -31,13 +31,11 @@
|
|
|
31
31
|
"PrimaryLayer": true,
|
|
32
32
|
"LayerName": "ARTPRIMARY",
|
|
33
33
|
"ResultTableColumnTypes": [
|
|
34
|
-
|
|
35
34
|
"float",
|
|
36
35
|
"float",
|
|
37
36
|
"varchar(40)"
|
|
38
37
|
],
|
|
39
38
|
"Description": [
|
|
40
|
-
|
|
41
39
|
"This primary layer will contain the Bartlett test statistics and p-value, significant level and test results.",
|
|
42
40
|
"The primary result set can be retrieved by issuing a SELECT against the analytical result table (ART) containing the results whereas the secondary results set can be accessed via the TD_EXTRACT_RESULTS utility function. ",
|
|
43
41
|
"For the case in which the input is a univariate series, the payload should contain a reference to a single field containing the residuals: the single field references the calculated residual: original_value minus calculated_value",
|
|
@@ -50,7 +48,6 @@
|
|
|
50
48
|
"PrimaryLayer": false,
|
|
51
49
|
"LayerName": "ARTCPDATA",
|
|
52
50
|
"ResultTableColumnTypes": [
|
|
53
|
-
|
|
54
51
|
"integer",
|
|
55
52
|
"integer",
|
|
56
53
|
"float",
|
|
@@ -63,7 +60,6 @@
|
|
|
63
60
|
"float"
|
|
64
61
|
],
|
|
65
62
|
"Description": [
|
|
66
|
-
|
|
67
63
|
"The secondary layer ARTCPDATA will contain the cumulative periodogram at each periodicity, related intermediate calculation result and confidence band result at each periodicity in order to be used to plot the cumulative periodograms.",
|
|
68
64
|
"there will be one result row per unique periodicity returned for each series acted upon."
|
|
69
65
|
],
|
|
@@ -72,7 +68,6 @@
|
|
|
72
68
|
],
|
|
73
69
|
"IsPlottable": true,
|
|
74
70
|
"Params": [
|
|
75
|
-
|
|
76
71
|
{
|
|
77
72
|
"Name": "SIGNIFICANCE_LEVEL",
|
|
78
73
|
"Type": "double",
|