teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (240) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +306 -0
  4. teradataml/__init__.py +10 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +299 -16
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +13 -3
  11. teradataml/analytics/json_parser/utils.py +13 -6
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +11 -2
  15. teradataml/analytics/table_operator/__init__.py +4 -3
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +66 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1502 -323
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +247 -307
  22. teradataml/automl/data_transformation.py +32 -12
  23. teradataml/automl/feature_engineering.py +325 -86
  24. teradataml/automl/model_evaluation.py +44 -35
  25. teradataml/automl/model_training.py +122 -153
  26. teradataml/catalog/byom.py +8 -8
  27. teradataml/clients/pkce_client.py +1 -1
  28. teradataml/common/__init__.py +2 -1
  29. teradataml/common/constants.py +72 -0
  30. teradataml/common/deprecations.py +13 -7
  31. teradataml/common/garbagecollector.py +152 -120
  32. teradataml/common/messagecodes.py +11 -2
  33. teradataml/common/messages.py +4 -1
  34. teradataml/common/sqlbundle.py +26 -4
  35. teradataml/common/utils.py +225 -14
  36. teradataml/common/wrapper_utils.py +1 -1
  37. teradataml/context/context.py +82 -2
  38. teradataml/data/SQL_Fundamentals.pdf +0 -0
  39. teradataml/data/complaints_test_tokenized.csv +353 -0
  40. teradataml/data/complaints_tokens_model.csv +348 -0
  41. teradataml/data/covid_confirm_sd.csv +83 -0
  42. teradataml/data/dataframe_example.json +27 -1
  43. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  44. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  45. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  46. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  47. teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
  48. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  49. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  50. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  51. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  52. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  53. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  54. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  55. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  56. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  57. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  58. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  59. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  60. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  61. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  62. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  63. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  64. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  65. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  66. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  67. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  68. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  69. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  70. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  71. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  72. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  74. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  75. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  76. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  77. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  78. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  79. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  80. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  81. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  82. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  83. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  84. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  85. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  86. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  87. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  88. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  89. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  90. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  91. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  92. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  93. teradataml/data/dwt2d_dataTable.csv +65 -0
  94. teradataml/data/dwt_dataTable.csv +8 -0
  95. teradataml/data/dwt_filterTable.csv +3 -0
  96. teradataml/data/finance_data4.csv +13 -0
  97. teradataml/data/grocery_transaction.csv +19 -0
  98. teradataml/data/idwt2d_dataTable.csv +5 -0
  99. teradataml/data/idwt_dataTable.csv +8 -0
  100. teradataml/data/idwt_filterTable.csv +3 -0
  101. teradataml/data/interval_data.csv +5 -0
  102. teradataml/data/jsons/paired_functions.json +14 -0
  103. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  104. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  105. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  106. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  107. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  108. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  109. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  110. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  111. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  112. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  113. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  114. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  115. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  116. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  117. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  118. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  119. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  120. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  121. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  122. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  123. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  124. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  125. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  126. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  127. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  128. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  129. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  130. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  131. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  132. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  133. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  134. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  135. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  136. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  137. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  138. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  139. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  140. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  141. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  142. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  143. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  144. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  145. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  146. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  147. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  148. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  149. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  150. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  151. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  152. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  153. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  154. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  155. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  156. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  157. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  158. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  159. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  160. teradataml/data/load_example_data.py +8 -2
  161. teradataml/data/medical_readings.csv +101 -0
  162. teradataml/data/naivebayestextclassifier_example.json +1 -1
  163. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  164. teradataml/data/patient_profile.csv +101 -0
  165. teradataml/data/peppers.png +0 -0
  166. teradataml/data/real_values.csv +14 -0
  167. teradataml/data/sax_example.json +8 -0
  168. teradataml/data/scripts/deploy_script.py +1 -1
  169. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  170. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  171. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  172. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  173. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
  174. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  175. teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
  176. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  177. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  178. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  179. teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
  180. teradataml/data/star_pivot.csv +8 -0
  181. teradataml/data/target_udt_data.csv +8 -0
  182. teradataml/data/templates/open_source_ml.json +3 -1
  183. teradataml/data/teradataml_example.json +20 -1
  184. teradataml/data/timestamp_data.csv +4 -0
  185. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  186. teradataml/data/uaf_example.json +55 -1
  187. teradataml/data/unpivot_example.json +15 -0
  188. teradataml/data/url_data.csv +9 -0
  189. teradataml/data/vectordistance_example.json +4 -0
  190. teradataml/data/windowdfft.csv +16 -0
  191. teradataml/dataframe/copy_to.py +1 -1
  192. teradataml/dataframe/data_transfer.py +5 -3
  193. teradataml/dataframe/dataframe.py +1002 -201
  194. teradataml/dataframe/fastload.py +3 -3
  195. teradataml/dataframe/functions.py +867 -0
  196. teradataml/dataframe/row.py +160 -0
  197. teradataml/dataframe/setop.py +2 -2
  198. teradataml/dataframe/sql.py +840 -33
  199. teradataml/dataframe/window.py +1 -1
  200. teradataml/dbutils/dbutils.py +878 -34
  201. teradataml/dbutils/filemgr.py +48 -1
  202. teradataml/geospatial/geodataframe.py +1 -1
  203. teradataml/geospatial/geodataframecolumn.py +1 -1
  204. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  205. teradataml/lib/aed_0_1.dll +0 -0
  206. teradataml/opensource/__init__.py +1 -1
  207. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  208. teradataml/opensource/_lightgbm.py +950 -0
  209. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  210. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  211. teradataml/opensource/sklearn/__init__.py +0 -1
  212. teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
  213. teradataml/options/__init__.py +9 -23
  214. teradataml/options/configure.py +42 -4
  215. teradataml/options/display.py +2 -2
  216. teradataml/plot/axis.py +4 -4
  217. teradataml/scriptmgmt/UserEnv.py +13 -9
  218. teradataml/scriptmgmt/lls_utils.py +77 -23
  219. teradataml/store/__init__.py +13 -0
  220. teradataml/store/feature_store/__init__.py +0 -0
  221. teradataml/store/feature_store/constants.py +291 -0
  222. teradataml/store/feature_store/feature_store.py +2223 -0
  223. teradataml/store/feature_store/models.py +1505 -0
  224. teradataml/store/vector_store/__init__.py +1586 -0
  225. teradataml/table_operators/Script.py +2 -2
  226. teradataml/table_operators/TableOperator.py +106 -20
  227. teradataml/table_operators/query_generator.py +3 -0
  228. teradataml/table_operators/table_operator_query_generator.py +3 -1
  229. teradataml/table_operators/table_operator_util.py +102 -56
  230. teradataml/table_operators/templates/dataframe_register.template +69 -0
  231. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  232. teradataml/telemetry_utils/__init__.py +0 -0
  233. teradataml/telemetry_utils/queryband.py +52 -0
  234. teradataml/utils/dtypes.py +4 -2
  235. teradataml/utils/validators.py +34 -2
  236. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
  237. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
  238. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  239. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  240. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
Binary file
teradataml/LICENSE.pdf CHANGED
Binary file
teradataml/README.md CHANGED
@@ -16,6 +16,312 @@ Copyright 2024, Teradata. All Rights Reserved.
16
16
  * [License](#license)
17
17
 
18
18
  ## Release Notes:
19
+
20
+ #### teradataml 20.00.00.03
21
+
22
+ * teradataml no longer supports setting the `auth_token` using `set_config_params()`. Users should use `set_auth_token()` to set the token.
23
+
24
+ * ##### New Features/Functionality
25
+ * ###### teradataml: DataFrame
26
+ * New Function
27
+ * `alias()` - Creates a DataFrame with alias name.
28
+ * New Properties
29
+ * `db_object_name` - Get the underlying database object name, on which DataFrame is created.
30
+
31
+ * ###### teradataml: GeoDataFrame
32
+ * New Function
33
+ * `alias()` - Creates a GeoDataFrame with alias name.
34
+
35
+ * ###### teradataml: DataFrameColumn a.k.a. ColumnExpression
36
+ * _Arithmetic Functions_
37
+ * `DataFrameColumn.isnan()` - Function evaluates expression to determine if the floating-point
38
+ argument is a NaN (Not-a-Number) value.
39
+ * `DataFrameColumn.isinf()` - Function evaluates expression to determine if the floating-point
40
+ argument is an infinite number.
41
+ * `DataFrameColumn.isfinite()` - Function evaluates expression to determine if it is a finite
42
+ floating value.
43
+
44
+ * ###### FeatureStore - handles feature management within the Vantage environment
45
+ * FeatureStore Components
46
+ * Feature - Represents a feature which is used in ML Modeling.
47
+ * Entity - Represents the columns which serves as uniqueness for the data used in ML Modeling.
48
+ * DataSource - Represents the source of Data.
49
+ * FeatureGroup - Collection of Feature, Entity and DataSource.
50
+ * Methods
51
+ * `apply()` - Adds Feature, Entity, DataSource to a FeatureGroup.
52
+ * `from_DataFrame()` - Creates a FeatureGroup from teradataml DataFrame.
53
+ * `from_query()` - Creates a FeatureGroup using a SQL query.
54
+ * `remove()` - Removes Feature, Entity, or DataSource from a FeatureGroup.
55
+ * `reset_labels()` - Removes the labels assigned to the FeatureGroup, that are set using `set_labels()`.
56
+ * `set_labels()` - Sets the Features as labels for a FeatureGroup.
57
+ * Properties
58
+ * `features` - Get the features of a FeatureGroup.
59
+ * `labels` - Get the labels of FeatureGroup.
60
+ * FeatureStore
61
+ * Methods
62
+ * `apply()` - Adds Feature, Entity, DataSource, FeatureGroup to FeatureStore.
63
+ * `archive_data_source()` - Archives a specified DataSource from a FeatureStore.
64
+ * `archive_entity()` - Archives a specified Entity from a FeatureStore.
65
+ * `archive_feature()` - Archives a specified Feature from a FeatureStore.
66
+ * `archive_feature_group()` - Archives a specified FeatureGroup from a FeatureStore. Method archives underlying Feature, Entity, DataSource also.
67
+ * `delete_data_source()` - Deletes an archived DataSource.
68
+ * `delete_entity()` - Deletes an archived Entity.
69
+ * `delete_feature()` - Deletes an archived Feature.
70
+ * `delete_feature_group()` - Deletes an archived FeatureGroup.
71
+ * `get_data_source()` - Get the DataSources associated with FeatureStore.
72
+ * `get_dataset()` - Get the teradataml DataFrame based on Features, Entities and DataSource from FeatureGroup.
73
+ * `get_entity()` - Get the Entity associated with FeatureStore.
74
+ * `get_feature()` - Get the Feature associated with FeatureStore.
75
+ * `get_feature_group()` - Get the FeatureGroup associated with FeatureStore.
76
+ * `list_data_sources()` - List DataSources.
77
+ * `list_entities()` - List Entities.
78
+ * `list_feature_groups()` - List FeatureGroups.
79
+ * `list_features()` - List Features.
80
+ * `list_repos()` - List available repos which are configured for FeatureStore.
81
+ * `repair()` - Repairs the underlying FeatureStore schema on database.
82
+ * `set_features_active()` - Marks the Features as active.
83
+ * `set_features_inactive()` - Marks the Features as inactive.
84
+ * `setup()` - Setup the FeatureStore for a repo.
85
+ * Property
86
+ * `repo` - Property for FeatureStore repo.
87
+ * `grant` - Property to Grant access on FeatureStore to user.
88
+ * `revoke` - Property to Revoke access on FeatureStore from user.
89
+
90
+ * ###### teradataml: Table Operator Functions
91
+ * `Image2Matrix()` - Converts an image into a matrix.
92
+
93
+ * ###### teradataml: SQLE Engine Analytic Functions
94
+ * New Analytics Database Analytic Functions:
95
+ * `CFilter()`
96
+ * `NaiveBayes()`
97
+ * `TDNaiveBayesPredict()`
98
+ * `Shap()`
99
+ * `SMOTE()`
100
+
101
+ * ###### teradataml: Unbounded Array Framework (UAF) Functions
102
+ * New Unbounded Array Framework(UAF) Functions:
103
+ * `CopyArt()`
104
+
105
+ * ###### General functions
106
+ * Vantage File Management Functions
107
+ * `list_files()` - List the installed files in Database.
108
+
109
+ * ###### OpensourceML: LightGBM
110
+ * teradataml adds support for lightGBM package through `OpensourceML` (`OpenML`) feature.
111
+ The following functionality is added in the current release:
112
+ * `td_lightgbm` - Interface object to run lightgbm functions and classes through Teradata Vantage.
113
+ Example usage below:
114
+ ```
115
+ from teradataml import td_lightgbm, DataFrame
116
+
117
+ df_train = DataFrame("multi_model_classification")
118
+
119
+ feature_columns = ["col1", "col2", "col3", "col4"]
120
+ label_columns = ["label"]
121
+ part_columns = ["partition_column_1", "partition_column_2"]
122
+
123
+ df_x = df_train.select(feature_columns)
124
+ df_y = df_train.select(label_columns)
125
+
126
+ # Dataset creation.
127
+ # Single model case.
128
+ obj_s = td_lightgbm.Dataset(df_x, df_y, silent=True, free_raw_data=False)
129
+
130
+ # Multi model case.
131
+ obj_m = td_lightgbm.Dataset(df_x, df_y, free_raw_data=False, partition_columns=part_columns)
132
+ obj_m_v = td_lightgbm.Dataset(df_x, df_y, free_raw_data=False, partition_columns=part_columns)
133
+
134
+ ## Model training.
135
+ # Single model case.
136
+ opt = td_lightgbm.train(params={}, train_set = obj_s, num_boost_round=30)
137
+
138
+ opt.predict(data=df_x, num_iteration=20, pred_contrib=True)
139
+
140
+ # Multi model case.
141
+ opt = td_lightgbm.train(params={}, train_set = obj_m, num_boost_round=30,
142
+ callbacks=[td_lightgbm.record_evaluation(rec)],
143
+ valid_sets=[obj_m_v, obj_m_v])
144
+
145
+ # Passing `label` argument to get it returned in output DataFrame.
146
+ opt.predict(data=df_x, label=df_y, num_iteration=20)
147
+
148
+ ```
149
+ * Added support for accessing scikit-learn APIs using exposed inteface object `td_lightgbm`.
150
+
151
+ Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in Vantage.
152
+
153
+ * ###### teradataml: Functions
154
+ * `register()` - Registers a user defined function (UDF).
155
+ * `call_udf()` - Calls a registered user defined function (UDF) and returns ColumnExpression.
156
+ * `list_udfs()` - List all the UDFs registered using 'register()' function.
157
+ * `deregister()` - Deregisters a user defined function (UDF).
158
+
159
+ * ###### teradataml: Options
160
+ * Configuration Options
161
+ * `table_operator` - Specifies the name of table operator.
162
+
163
+ * ##### Updates
164
+ * ###### General functions
165
+ * `set_auth_token()` - Added `base_url` parameter which accepts the CCP url.
166
+ 'ues_url' will be deprecated in future and users
167
+ will need to specify 'base_url' instead.
168
+
169
+ * ###### teradataml: DataFrame function
170
+ * `join()`
171
+ * Now supports compound ColumExpression having more than one binary operator in `on` argument.
172
+ * Now supports ColumExpression containing FunctionExpression(s) in `on` argument.
173
+ * self-join now expects aliased DataFrame in `other` argument.
174
+
175
+ * ###### teradataml: GeoDataFrame function
176
+ * `join()`
177
+ * Now supports compound ColumExpression having more than one binary operator in `on` argument.
178
+ * Now supports ColumExpression containing FunctionExpression(s) in `on` argument.
179
+ * self-join now expects aliased DataFrame in `other` argument.
180
+
181
+ * ###### teradataml: Unbounded Array Framework (UAF) Functions
182
+ * `SAX()` - Default value added for `window_size` and `output_frequency`.
183
+ * `DickeyFuller()`
184
+ * Supports TDAnalyticResult as input.
185
+ * Default value added for `max_lags`.
186
+ * Removed parameter `drift_trend_formula`.
187
+ * Updated permitted values for `algorithm`.
188
+
189
+ * ##### teradataml: AutoML
190
+ * `AutoML`, `AutoRegressor` and `AutoClassifier`
191
+ * Now supports DECIMAL datatype as input.
192
+
193
+ * ##### teradataml: SQLE Engine Analytic Functions
194
+ * `TextParser()`
195
+ * Argument name `covert_to_lowercase` changed to `convert_to_lowercase`.
196
+
197
+ * ##### Bug Fixes
198
+ * `db_list_tables()` now returns correct results when '%' is used.
199
+
200
+ #### teradataml 20.00.00.02
201
+
202
+ * teradataml will no longer be supported with SQLAlchemy < 2.0.
203
+ * teradataml no longer shows the warnings from Vantage by default.
204
+ * Users should set `display.suppress_vantage_runtime_warnings` to `False` to display warnings.
205
+
206
+ * ##### New Features/Functionality
207
+ * ##### teradataml: SQLE Engine Analytic Functions
208
+ * New Analytics Database Analytic Functions:
209
+ * `TFIDF()`
210
+ * `Pivoting()`
211
+ * `UnPivoting()`
212
+ * New Unbounded Array Framework(UAF) Functions:
213
+ * `AutoArima()`
214
+ * `DWT()`
215
+ * `DWT2D()`
216
+ * `FilterFactory1d()`
217
+ * `IDWT()`
218
+ * `IDWT2D()`
219
+ * `IQR()`
220
+ * `Matrix2Image()`
221
+ * `SAX()`
222
+ * `WindowDFFT()`
223
+ * ###### teradataml: Functions
224
+ * `udf()` - Creates a user defined function (UDF) and returns ColumnExpression.
225
+ * `set_session_param()` is added to set the database session parameters.
226
+ * `unset_session_param()` is added to unset database session parameters.
227
+
228
+ * ###### teradataml: DataFrame
229
+ * `materialize()` - Persists DataFrame into database for current session.
230
+ * `create_temp_view()` - Creates a temporary view for session on the DataFrame.
231
+
232
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
233
+ * _Date Time Functions_
234
+ * `DataFrameColumn.to_timestamp()` - Converts string or integer value to a TIMESTAMP data type or TIMESTAMP WITH TIME ZONE data type.
235
+ * `DataFrameColumn.extract()` - Extracts date component to a numeric value.
236
+ * `DataFrameColumn.to_interval()` - Converts a numeric value or string value into an INTERVAL_DAY_TO_SECOND or INTERVAL_YEAR_TO_MONTH value.
237
+ * _String Functions_
238
+ * `DataFrameColumn.parse_url()` - Extracts a part from a URL.
239
+ * _Arithmetic Functions_
240
+ * `DataFrameColumn.log` - Returns the logarithm value of the column with respect to 'base'.
241
+
242
+ * ##### teradataml: AutoML
243
+ * New methods added for `AutoML()`, `AutoRegressor()` and `AutoClassifier()`:
244
+ * `evaluate()` - Performs evaluation on the data using the best model or the model of users choice
245
+ from the leaderboard.
246
+ * `load()`: Loads the saved model from database.
247
+ * `deploy()`: Saves the trained model inside database.
248
+ * `remove_saved_model()`: Removes the saved model in database.
249
+ * `model_hyperparameters()`: Returns the hyperparameter of fitted or loaded models.
250
+
251
+ * ##### Updates
252
+ * ##### teradataml: AutoML
253
+ * `AutoML()`, `AutoRegressor()`
254
+ * New performance metrics added for task type regression i.e., "MAPE", "MPE", "ME", "EV", "MPD" and "MGD".
255
+ * `AutoML()`, `AutoRegressor()` and `AutoClassifier`
256
+ * New arguments added: `volatile`, `persist`.
257
+ * `predict()` - Data input is now mandatory for generating predictions. Default model
258
+ evaluation is now removed.
259
+ * `DataFrameColumn.cast()`: Accepts 2 new arguments `format` and `timezone`.
260
+ * `DataFrame.assign()`: Accepts ColumnExpressions returned by `udf()`.
261
+
262
+ * ##### teradataml: Options
263
+ * `set_config_params()`
264
+ * Following arguments will be deprecated in the future:
265
+ * `ues_url`
266
+ * `auth_token`
267
+
268
+ * #### teradata DataFrame
269
+ * `to_pandas()` - Function returns the pandas dataframe with Decimal columns types as float instead of object.
270
+ If user want datatype to be object, set argument `coerce_float` to False.
271
+
272
+ * ###### Database Utility
273
+ * `list_td_reserved_keywords()` - Accepts a list of strings as argument.
274
+
275
+ * ##### Updates to existing UAF Functions:
276
+ * `ACF()` - `round_results` parameter removed as it was used for internal testing.
277
+ * `BreuschGodfrey()` - Added default_value 0.05 for parameter `significance_level`.
278
+ * `GoldfeldQuandt()` -
279
+ * Removed parameters `weights` and `formula`.
280
+ Replaced parameter `orig_regr_paramcnt` with `const_term`.
281
+ Changed description for parameter `algorithm`. Please refer document for more details.
282
+ * Note: This will break backward compatibility.
283
+ * `HoltWintersForecaster()` - Default value of parameter `seasonal_periods` removed.
284
+ * `IDFFT2()` - Removed parameter `output_fmt_row_major` as it is used for internal testing.
285
+ * `Resample()` - Added parameter `output_fmt_index_style`.
286
+
287
+ * ##### Bug Fixes
288
+ * KNN `predict()` function can now predict on test data which does not contain target column.
289
+ * Metrics functions are supported on the Lake system.
290
+ * The following OpensourceML functions from different sklearn modules in single model case are fixed.
291
+ * `sklearn.ensemble`:
292
+ * ExtraTreesClassifier - `apply()`
293
+ * ExtraTreesRegressor - `apply()`
294
+ * RandomForestClassifier - `apply()`
295
+ * RandomForestRegressor - `apply()`
296
+ * `sklearn.impute`:
297
+ * SimpleImputer - `transform()`, `fit_transform()`, `inverse_transform()`
298
+ * MissingIndicator - `transform()`, `fit_transform()`
299
+ * `sklearn.kernel_approximations`:
300
+ * Nystroem - `transform()`, `fit_transform()`
301
+ * PolynomialCountSketch - `transform()`, `fit_transform()`
302
+ * RBFSampler - `transform()`, `fit_transform()`
303
+ * `sklearn.neighbors`:
304
+ * KNeighborsTransformer - `transform()`, `fit_transform()`
305
+ * RadiusNeighborsTransformer - `transform()`, `fit_transform()`
306
+ * `sklearn.preprocessing`:
307
+ * KernelCenterer - `transform()`
308
+ * OneHotEncoder - `transform()`, `inverse_transform()`
309
+ * The following OpensourceML functions from different sklearn modules in multi model case are fixed.
310
+ * `sklearn.feature_selection`:
311
+ * SelectFpr - `transform()`, `fit_transform()`, `inverse_transform()`
312
+ * SelectFdr - `transform()`, `fit_transform()`, `inverse_transform()`
313
+ * SelectFromModel - `transform()`, `fit_transform()`, `inverse_transform()`
314
+ * SelectFwe - `transform()`, `fit_transform()`, `inverse_transform()`
315
+ * RFECV - `transform()`, `fit_transform()`, `inverse_transform()`
316
+ * `sklearn.clustering`:
317
+ * Birch - `transform()`, `fit_transform()`
318
+ * OpensourceML returns teradataml objects for model attributes and functions instead of sklearn
319
+ objects so that the user can perform further operations like `score()`, `predict()` etc on top
320
+ of the returned objects.
321
+ * AutoML `predict()` function now generates correct ROC-AUC value for positive class.
322
+ * `deploy()` method of `Script` and `Apply` classes retries model deployment if there is any
323
+ intermittent network issues.
324
+
19
325
  #### teradataml 20.00.00.01
20
326
  * teradataml no longer supports Python versions less than 3.8.
21
327
 
teradataml/__init__.py CHANGED
@@ -64,7 +64,14 @@ from teradataml.opensource import *
64
64
  # Import AutoML
65
65
  from teradataml.automl import AutoML, AutoRegressor, AutoClassifier
66
66
 
67
-
68
- # Configure app name and app version for querybands
69
- from teradatasqlalchemy.telemetry.queryband import session_queryband
67
+ # Import global variable representing session_queryband.
68
+ from teradataml.telemetry_utils.queryband import session_queryband
69
+ # Configure app name and app version for teradataml querybands.
70
70
  session_queryband.configure_queryband_parameters(app_name="TDML", app_version=__version__)
71
+
72
+ # Import functions.
73
+ from teradataml.dataframe.functions import *
74
+
75
+ # Import FeatureStore and VectorStore
76
+ from teradataml.store import *
77
+
teradataml/_version.py CHANGED
@@ -8,4 +8,4 @@
8
8
  #
9
9
  # ##################################################################
10
10
 
11
- version = "20.00.00.01"
11
+ version = "20.00.00.03"
@@ -22,7 +22,7 @@ from .Transformations import Binning, Derive, OneHotEncoder, FillNa, LabelEncode
22
22
  Retain, Sigmoid, ZScore
23
23
  from teradataml.analytics.json_parser.utils import _get_json_data_from_tdml_repo, _process_paired_functions
24
24
  from teradataml.analytics.analytic_function_executor import _SQLEFunctionExecutor, _TableOperatorExecutor,\
25
- _UAFFunctionExecutor, _BYOMFunctionExecutor
25
+ _UAFFunctionExecutor, _BYOMFunctionExecutor, _StoredProcedureExecutor
26
26
  from teradataml.common.constants import TeradataAnalyticFunctionTypes
27
27
 
28
28
 
@@ -76,6 +76,7 @@ def _get_executor_class_name(function_type):
76
76
  TeradataAnalyticFunctionTypes.SQLE.value: _SQLEFunctionExecutor,
77
77
  TeradataAnalyticFunctionTypes.TABLEOPERATOR.value: _TableOperatorExecutor,
78
78
  TeradataAnalyticFunctionTypes.UAF.value: _UAFFunctionExecutor,
79
- TeradataAnalyticFunctionTypes.BYOM.value: _BYOMFunctionExecutor
79
+ TeradataAnalyticFunctionTypes.BYOM.value: _BYOMFunctionExecutor,
80
+ TeradataAnalyticFunctionTypes.STORED_PROCEDURE.value: _StoredProcedureExecutor
80
81
  }
81
82
  return func_type_to_executor.get(function_type.upper(), _SQLEFunctionExecutor).__name__