teradataml 20.0.0.1__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (240) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +306 -0
  4. teradataml/__init__.py +10 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/__init__.py +3 -2
  7. teradataml/analytics/analytic_function_executor.py +299 -16
  8. teradataml/analytics/analytic_query_generator.py +92 -0
  9. teradataml/analytics/byom/__init__.py +3 -2
  10. teradataml/analytics/json_parser/metadata.py +13 -3
  11. teradataml/analytics/json_parser/utils.py +13 -6
  12. teradataml/analytics/meta_class.py +40 -1
  13. teradataml/analytics/sqle/DecisionTreePredict.py +1 -1
  14. teradataml/analytics/sqle/__init__.py +11 -2
  15. teradataml/analytics/table_operator/__init__.py +4 -3
  16. teradataml/analytics/uaf/__init__.py +21 -2
  17. teradataml/analytics/utils.py +66 -1
  18. teradataml/analytics/valib.py +1 -1
  19. teradataml/automl/__init__.py +1502 -323
  20. teradataml/automl/custom_json_utils.py +139 -61
  21. teradataml/automl/data_preparation.py +247 -307
  22. teradataml/automl/data_transformation.py +32 -12
  23. teradataml/automl/feature_engineering.py +325 -86
  24. teradataml/automl/model_evaluation.py +44 -35
  25. teradataml/automl/model_training.py +122 -153
  26. teradataml/catalog/byom.py +8 -8
  27. teradataml/clients/pkce_client.py +1 -1
  28. teradataml/common/__init__.py +2 -1
  29. teradataml/common/constants.py +72 -0
  30. teradataml/common/deprecations.py +13 -7
  31. teradataml/common/garbagecollector.py +152 -120
  32. teradataml/common/messagecodes.py +11 -2
  33. teradataml/common/messages.py +4 -1
  34. teradataml/common/sqlbundle.py +26 -4
  35. teradataml/common/utils.py +225 -14
  36. teradataml/common/wrapper_utils.py +1 -1
  37. teradataml/context/context.py +82 -2
  38. teradataml/data/SQL_Fundamentals.pdf +0 -0
  39. teradataml/data/complaints_test_tokenized.csv +353 -0
  40. teradataml/data/complaints_tokens_model.csv +348 -0
  41. teradataml/data/covid_confirm_sd.csv +83 -0
  42. teradataml/data/dataframe_example.json +27 -1
  43. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  44. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  45. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +2 -0
  46. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  47. teradataml/data/docs/sqle/docs_17_20/Shap.py +203 -0
  48. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  49. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  50. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  51. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  52. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  53. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -10
  54. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +1 -1
  55. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +35 -5
  56. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +3 -1
  57. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  58. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  59. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +3 -2
  60. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +1 -1
  61. teradataml/data/docs/uaf/docs_17_20/Convolve.py +13 -10
  62. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +4 -1
  63. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  64. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +5 -4
  65. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +4 -4
  66. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  67. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +214 -0
  68. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  69. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +1 -1
  70. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +1 -1
  71. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  72. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +1 -1
  73. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +9 -31
  74. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +4 -2
  75. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +1 -8
  76. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  77. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  78. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  79. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  80. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +2 -2
  81. teradataml/data/docs/uaf/docs_17_20/MAMean.py +3 -3
  82. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  83. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +15 -6
  84. teradataml/data/docs/uaf/docs_17_20/PACF.py +0 -1
  85. teradataml/data/docs/uaf/docs_17_20/Portman.py +2 -2
  86. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  87. teradataml/data/docs/uaf/docs_17_20/Resample.py +9 -1
  88. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  89. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +17 -10
  90. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  91. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +3 -1
  92. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  93. teradataml/data/dwt2d_dataTable.csv +65 -0
  94. teradataml/data/dwt_dataTable.csv +8 -0
  95. teradataml/data/dwt_filterTable.csv +3 -0
  96. teradataml/data/finance_data4.csv +13 -0
  97. teradataml/data/grocery_transaction.csv +19 -0
  98. teradataml/data/idwt2d_dataTable.csv +5 -0
  99. teradataml/data/idwt_dataTable.csv +8 -0
  100. teradataml/data/idwt_filterTable.csv +3 -0
  101. teradataml/data/interval_data.csv +5 -0
  102. teradataml/data/jsons/paired_functions.json +14 -0
  103. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  104. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  105. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  106. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +9 -9
  107. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  108. teradataml/data/jsons/sqle/17.20/TD_Shap.json +222 -0
  109. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  110. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  111. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  112. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  113. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  114. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  115. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  116. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  117. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  118. teradataml/data/jsons/uaf/17.20/TD_ACF.json +1 -18
  119. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +3 -16
  120. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +0 -3
  121. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +5 -3
  122. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  123. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  124. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +0 -3
  125. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +0 -2
  126. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +2 -1
  127. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +2 -5
  128. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +3 -6
  129. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +1 -3
  130. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +0 -5
  131. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +1 -4
  132. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +2 -7
  133. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +1 -2
  134. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +0 -2
  135. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  136. teradataml/data/jsons/uaf/17.20/TD_DTW.json +3 -6
  137. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  138. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  139. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +1 -1
  140. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +16 -30
  141. teradataml/data/jsons/uaf/17.20/{TD_HOLT_WINTERS_FORECAST.json → TD_HOLT_WINTERS_FORECASTER.json} +1 -2
  142. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +1 -15
  143. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  144. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  145. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  146. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +1 -1
  147. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +1 -1
  148. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +1 -3
  149. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  150. teradataml/data/jsons/uaf/17.20/TD_PACF.json +2 -2
  151. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +5 -5
  152. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +48 -28
  153. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  154. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +12 -6
  155. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +0 -1
  156. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +8 -8
  157. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +1 -1
  158. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +1 -1
  159. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  160. teradataml/data/load_example_data.py +8 -2
  161. teradataml/data/medical_readings.csv +101 -0
  162. teradataml/data/naivebayestextclassifier_example.json +1 -1
  163. teradataml/data/naivebayestextclassifierpredict_example.json +11 -0
  164. teradataml/data/patient_profile.csv +101 -0
  165. teradataml/data/peppers.png +0 -0
  166. teradataml/data/real_values.csv +14 -0
  167. teradataml/data/sax_example.json +8 -0
  168. teradataml/data/scripts/deploy_script.py +1 -1
  169. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  170. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  171. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  172. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  173. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -160
  174. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  175. teradataml/data/scripts/sklearn/sklearn_function.template +34 -16
  176. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  177. teradataml/data/scripts/sklearn/sklearn_neighbors.py +1 -1
  178. teradataml/data/scripts/sklearn/sklearn_score.py +12 -3
  179. teradataml/data/scripts/sklearn/sklearn_transform.py +162 -24
  180. teradataml/data/star_pivot.csv +8 -0
  181. teradataml/data/target_udt_data.csv +8 -0
  182. teradataml/data/templates/open_source_ml.json +3 -1
  183. teradataml/data/teradataml_example.json +20 -1
  184. teradataml/data/timestamp_data.csv +4 -0
  185. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  186. teradataml/data/uaf_example.json +55 -1
  187. teradataml/data/unpivot_example.json +15 -0
  188. teradataml/data/url_data.csv +9 -0
  189. teradataml/data/vectordistance_example.json +4 -0
  190. teradataml/data/windowdfft.csv +16 -0
  191. teradataml/dataframe/copy_to.py +1 -1
  192. teradataml/dataframe/data_transfer.py +5 -3
  193. teradataml/dataframe/dataframe.py +1002 -201
  194. teradataml/dataframe/fastload.py +3 -3
  195. teradataml/dataframe/functions.py +867 -0
  196. teradataml/dataframe/row.py +160 -0
  197. teradataml/dataframe/setop.py +2 -2
  198. teradataml/dataframe/sql.py +840 -33
  199. teradataml/dataframe/window.py +1 -1
  200. teradataml/dbutils/dbutils.py +878 -34
  201. teradataml/dbutils/filemgr.py +48 -1
  202. teradataml/geospatial/geodataframe.py +1 -1
  203. teradataml/geospatial/geodataframecolumn.py +1 -1
  204. teradataml/hyperparameter_tuner/optimizer.py +13 -13
  205. teradataml/lib/aed_0_1.dll +0 -0
  206. teradataml/opensource/__init__.py +1 -1
  207. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  208. teradataml/opensource/_lightgbm.py +950 -0
  209. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  210. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  211. teradataml/opensource/sklearn/__init__.py +0 -1
  212. teradataml/opensource/sklearn/_sklearn_wrapper.py +1019 -574
  213. teradataml/options/__init__.py +9 -23
  214. teradataml/options/configure.py +42 -4
  215. teradataml/options/display.py +2 -2
  216. teradataml/plot/axis.py +4 -4
  217. teradataml/scriptmgmt/UserEnv.py +13 -9
  218. teradataml/scriptmgmt/lls_utils.py +77 -23
  219. teradataml/store/__init__.py +13 -0
  220. teradataml/store/feature_store/__init__.py +0 -0
  221. teradataml/store/feature_store/constants.py +291 -0
  222. teradataml/store/feature_store/feature_store.py +2223 -0
  223. teradataml/store/feature_store/models.py +1505 -0
  224. teradataml/store/vector_store/__init__.py +1586 -0
  225. teradataml/table_operators/Script.py +2 -2
  226. teradataml/table_operators/TableOperator.py +106 -20
  227. teradataml/table_operators/query_generator.py +3 -0
  228. teradataml/table_operators/table_operator_query_generator.py +3 -1
  229. teradataml/table_operators/table_operator_util.py +102 -56
  230. teradataml/table_operators/templates/dataframe_register.template +69 -0
  231. teradataml/table_operators/templates/dataframe_udf.template +63 -0
  232. teradataml/telemetry_utils/__init__.py +0 -0
  233. teradataml/telemetry_utils/queryband.py +52 -0
  234. teradataml/utils/dtypes.py +4 -2
  235. teradataml/utils/validators.py +34 -2
  236. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +311 -3
  237. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +240 -157
  238. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  239. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  240. {teradataml-20.0.0.1.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
@@ -0,0 +1,83 @@
1
+ city,row_axis,cnumber
2
+ SanDiego,1,2
3
+ SanDiego,2,2
4
+ SanDiego,3,2
5
+ SanDiego,4,2
6
+ SanDiego,5,3
7
+ SanDiego,6,3
8
+ SanDiego,7,3
9
+ SanDiego,8,3
10
+ SanDiego,9,3
11
+ SanDiego,10,3
12
+ SanDiego,11,3
13
+ SanDiego,12,5
14
+ SanDiego,13,8
15
+ SanDiego,14,10
16
+ SanDiego,15,16
17
+ SanDiego,16,55
18
+ SanDiego,17,55
19
+ SanDiego,18,60
20
+ SanDiego,19,80
21
+ SanDiego,20,127
22
+ SanDiego,21,127
23
+ SanDiego,22,155
24
+ SanDiego,23,201
25
+ SanDiego,24,226
26
+ SanDiego,25,238
27
+ SanDiego,26,293
28
+ SanDiego,27,341
29
+ SanDiego,28,413
30
+ SanDiego,29,484
31
+ SanDiego,30,515
32
+ SanDiego,31,603
33
+ SanDiego,32,733
34
+ SanDiego,33,849
35
+ SanDiego,34,966
36
+ SanDiego,35,1112
37
+ SanDiego,36,1209
38
+ SanDiego,37,1326
39
+ SanDiego,38,1404
40
+ SanDiego,39,1454
41
+ SanDiego,40,1530
42
+ SanDiego,41,1628
43
+ SanDiego,42,1693
44
+ SanDiego,43,1761
45
+ SanDiego,44,1804
46
+ SanDiego,45,1847
47
+ SanDiego,46,1930
48
+ SanDiego,47,2012
49
+ SanDiego,48,2087
50
+ SanDiego,49,2158
51
+ SanDiego,50,2213
52
+ SanDiego,51,2268
53
+ SanDiego,52,2325
54
+ SanDiego,53,2491
55
+ SanDiego,54,2643
56
+ SanDiego,55,2826
57
+ SanDiego,56,2943
58
+ SanDiego,57,2943
59
+ SanDiego,58,3043
60
+ SanDiego,59,3141
61
+ SanDiego,60,3432
62
+ SanDiego,61,3432
63
+ SanDiego,62,3564
64
+ SanDiego,63,3711
65
+ SanDiego,64,3927
66
+ SanDiego,65,3927
67
+ SanDiego,66,4020
68
+ SanDiego,67,4319
69
+ SanDiego,68,4319
70
+ SanDiego,69,4429
71
+ SanDiego,70,4662
72
+ SanDiego,71,4776
73
+ SanDiego,72,5065
74
+ SanDiego,73,5161
75
+ SanDiego,74,5161
76
+ SanDiego,75,5391
77
+ SanDiego,76,5391
78
+ SanDiego,77,5662
79
+ SanDiego,78,5836
80
+ SanDiego,79,5836
81
+ SanDiego,80,6026
82
+ SanDiego,81,6140
83
+ SanDiego,82,6140
@@ -143,5 +143,31 @@
143
143
  "smoker" : "varchar(4)",
144
144
  "region" : "varchar(12)",
145
145
  "charges" : "real"
146
- }
146
+ },
147
+ "grocery_transaction":{
148
+ "tranid" : "integer",
149
+ "period" : "varchar(20)",
150
+ "storeid" : "integer",
151
+ "region" : "varchar(20)",
152
+ "item" : "varchar(20)",
153
+ "sku" : "integer",
154
+ "category" : "varchar(20)"
155
+ },
156
+ "medical_readings": {
157
+ "patient_id": "BIGINT",
158
+ "record_timestamp": "timestamp",
159
+ "glucose": "BIGINT",
160
+ "blood_pressure": "BIGINT",
161
+ "insulin": "BIGINT",
162
+ "diabetes_pedigree_function": "FLOAT",
163
+ "outcome": "BIGINT"
164
+ },
165
+ "patient_profile": {
166
+ "patient_id": "BIGINT",
167
+ "record_timestamp": "timestamp",
168
+ "pregnancies": "BIGINT",
169
+ "age": "BIGINT",
170
+ "bmi": "FLOAT",
171
+ "skin_thickness": "FLOAT"
172
+ }
147
173
  }
@@ -0,0 +1,132 @@
1
+ def CFilter(data = None, target_column = None, transaction_id_columns = None,
2
+ partition_columns = None, max_distinct_items = 100,
3
+ **generic_arguments):
4
+
5
+ """
6
+ DESCRIPTION:
7
+ Function calculates several statistical measures of how likely
8
+ each pair of items is to be purchased together.
9
+
10
+ PARAMETERS:
11
+ data:
12
+ Required Argument.
13
+ Specifies the input teradataml DataFrame.
14
+ Types: teradataml DataFrame
15
+
16
+ target_column:
17
+ Required Argument.
18
+ Specifies name of the column from the "data" containing data for filtration.
19
+ Types: str
20
+
21
+ transaction_id_columns:
22
+ Required Argument.
23
+ Specifies the name of the columns in "data" containing transaction id that defines the groups of items listed
24
+ in the input columns that are purchased together.
25
+ Types: str OR list of Strings (str)
26
+
27
+ partition_columns:
28
+ Optional Argument.
29
+ Specifies the name of the column in "data" to partition the data on.
30
+ Types: str OR list of Strings (str)
31
+
32
+ max_distinct_items:
33
+ Optional Argument.
34
+ Specifies the maximum size of the item set.
35
+ Default Value: 100
36
+ Types: int
37
+
38
+ **generic_arguments:
39
+ Specifies the generic keyword arguments SQLE functions accept. Below
40
+ are the generic keyword arguments:
41
+ persist:
42
+ Optional Argument.
43
+ Specifies whether to persist the results of the
44
+ function in a table or not. When set to True,
45
+ results are persisted in a table; otherwise,
46
+ results are garbage collected at the end of the
47
+ session.
48
+ Default Value: False
49
+ Types: bool
50
+
51
+ volatile:
52
+ Optional Argument.
53
+ Specifies whether to put the results of the
54
+ function in a volatile table or not. When set to
55
+ True, results are stored in a volatile table,
56
+ otherwise not.
57
+ Default Value: False
58
+ Types: bool
59
+
60
+ Function allows the user to partition, hash, order or local
61
+ order the input data. These generic arguments are available
62
+ for each argument that accepts teradataml DataFrame as
63
+ input and can be accessed as:
64
+ * "<input_data_arg_name>_partition_column" accepts str or
65
+ list of str (Strings)
66
+ * "<input_data_arg_name>_hash_column" accepts str or list
67
+ of str (Strings)
68
+ * "<input_data_arg_name>_order_column" accepts str or list
69
+ of str (Strings)
70
+ * "local_order_<input_data_arg_name>" accepts boolean
71
+ Note:
72
+ These generic arguments are supported by teradataml if
73
+ the underlying SQL Engine function supports, else an
74
+ exception is raised.
75
+
76
+ RETURNS:
77
+ Instance of CFilter.
78
+ Output teradataml DataFrames can be accessed using attribute
79
+ references, such as CFilterObj.<attribute_name>.
80
+ Output teradataml DataFrame attribute name is:
81
+ result
82
+
83
+
84
+ RAISES:
85
+ TeradataMlException, TypeError, ValueError
86
+
87
+
88
+ EXAMPLES:
89
+ # Notes:
90
+ # 1. Get the connection to Vantage, before importing the
91
+ # function in user space.
92
+ # 2. User can import the function, if it is available on
93
+ # Vantage user is connected to.
94
+ # 3. To check the list of analytic functions available on
95
+ # Vantage user connected to, use
96
+ # "display_analytic_functions()".
97
+
98
+ # Load the example data.
99
+ load_example_data("dataframe", ["grocery_transaction"])
100
+
101
+ # Create teradataml DataFrame objects.
102
+ df = DataFrame.from_table("grocery_transaction")
103
+
104
+ # Check the list of available analytic functions.
105
+ display_analytic_functions()
106
+
107
+ # Import function CFilter.
108
+ from teradataml import CFilter
109
+
110
+ # Example 1: CFilter function to calculate the statistical measures
111
+ # of how likely each pair of items is to be purchased together, without
112
+ # specifying the partition_columns.
113
+ CFilter_out = CFilter(data=df,
114
+ target_column='item',
115
+ transaction_id_columns = 'tranid',
116
+ max_distinct_items=100)
117
+
118
+ # Print the result DataFrame.
119
+ print(CFilter_out.result)
120
+
121
+ # Example 2: CFilter function to calculate the statistical measures
122
+ # of how likely each pair of items is to be purchased together,
123
+ # specifying the partition_columns.
124
+ CFilter_out2 = CFilter(data=df,
125
+ target_column='item',
126
+ transaction_id_columns = 'tranid',
127
+ partiton_columns='storeid',
128
+ max_distinct_items=100)
129
+
130
+ # Print the result DataFrame.
131
+ print(CFilter_out2.result)
132
+ """
@@ -0,0 +1,162 @@
1
+ def NaiveBayes(data = None, response_column = None, numeric_inputs = None,
2
+ categorical_inputs = None, attribute_name_column = None,
3
+ attribute_value_column = None, attribute_type = None,
4
+ numeric_attributes = None, categorical_attributes = None,
5
+ **generic_arguments):
6
+ """
7
+ DESCRIPTION:
8
+ Function generates classification model using NaiveBayes
9
+ algorithm.
10
+ The Naive Bayes classification algorithm uses a training dataset with known discrete outcomes
11
+ and either discrete or continuous numeric input variables, along with categorical variables, to generate a model.
12
+ This model can then be used to predict the outcomes of future observations based on their input variable values.
13
+
14
+ PARAMETERS:
15
+ data:
16
+ Required Argument.
17
+ Specifies the input teradataml DataFrame .
18
+ Types: teradataml DataFrame
19
+
20
+ response_column:
21
+ Required Argument.
22
+ Specifies the name of the column in "data" containing response values.
23
+ Types: str
24
+
25
+ numeric_inputs:
26
+ Optional Argument.
27
+ Specifies the names of the columns in "data" containing numeric attributes values.
28
+ Types: str OR list of Strings (str)
29
+
30
+ categorical_inputs:
31
+ Optional Argument.
32
+ Specifies the names of the columns in "data" containing categorical attributes values.
33
+ Types: str OR list of Strings (str)
34
+
35
+ attribute_name_column:
36
+ Optional Argument.
37
+ Specifies the names of the columns in "data" containing attributes names.
38
+ Types: str
39
+
40
+ attribute_value_column:
41
+ Optional Argument.
42
+ Specifies the names of the columns in "data" containing attributes values.
43
+ Types: str
44
+
45
+ attribute_type:
46
+ Optional Argument, Required if "data" is in sparse format and
47
+ both "numeric_attributes" and "categorical_attributes" are not provided.
48
+ Specifies the attribute type.
49
+ Permitted Values:
50
+ * ALLNUMERIC - if all the attributes are of numeric type.
51
+ * ALLCATEGORICAL - if all the attributes are of categorical type.
52
+ Types: str
53
+
54
+ numeric_attributes:
55
+ Optional Argument.
56
+ Specifies the numeric attributes names.
57
+ Types: str OR list of strs
58
+
59
+ categorical_attributes:
60
+ Optional Argument.
61
+ Specifies the categorical attributes names.
62
+ Types: str OR list of strs
63
+
64
+ **generic_arguments:
65
+ Specifies the generic keyword arguments SQLE functions accept. Below
66
+ are the generic keyword arguments:
67
+ persist:
68
+ Optional Argument.
69
+ Specifies whether to persist the results of the
70
+ function in a table or not. When set to True,
71
+ results are persisted in a table; otherwise,
72
+ results are garbage collected at the end of the
73
+ session.
74
+ Default Value: False
75
+ Types: bool
76
+
77
+ volatile:
78
+ Optional Argument.
79
+ Specifies whether to put the results of the
80
+ function in a volatile table or not. When set to
81
+ True, results are stored in a volatile table,
82
+ otherwise not.
83
+ Default Value: False
84
+ Types: bool
85
+
86
+ Function allows the user to partition, hash, order or local
87
+ order the input data. These generic arguments are available
88
+ for each argument that accepts teradataml DataFrame as
89
+ input and can be accessed as:
90
+ * "<input_data_arg_name>_partition_column" accepts str or
91
+ list of str (Strings)
92
+ * "<input_data_arg_name>_hash_column" accepts str or list
93
+ of str (Strings)
94
+ * "<input_data_arg_name>_order_column" accepts str or list
95
+ of str (Strings)
96
+ * "local_order_<input_data_arg_name>" accepts boolean
97
+ Note:
98
+ These generic arguments are supported by teradataml if
99
+ the underlying SQL Engine function supports, else an
100
+ exception is raised.
101
+
102
+ RETURNS:
103
+ Instance of NaiveBayes.
104
+ Output teradataml DataFrames can be accessed using attribute
105
+ references, such as NaiveBayesObj.<attribute_name>.
106
+ Output teradataml DataFrame attribute name is:
107
+ result
108
+
109
+
110
+ RAISES:
111
+ TeradataMlException, TypeError, ValueError
112
+
113
+
114
+ EXAMPLES:
115
+ # Notes:
116
+ # 1. Get the connection to Vantage, before importing the
117
+ # function in user space.
118
+ # 2. User can import the function, if it is available on
119
+ # Vantage user is connected to.
120
+ # 3. To check the list of analytic functions available on
121
+ # Vantage user connected to, use
122
+ # "display_analytic_functions()".
123
+
124
+ # Load the example data.
125
+ load_example_data("decisionforestpredict", ["housing_train", "housing_test"])
126
+
127
+ # Create teradataml DataFrame objects.
128
+ housing_train = DataFrame.from_table("housing_train")
129
+
130
+ # Check the list of available analytic functions.
131
+ display_analytic_functions()
132
+
133
+ # Import function NaiveBayes.
134
+ from teradataml import NaiveBayes, Unpivoting
135
+
136
+ # Example 1: NaiveBayes function to generate classification model using Dense input.
137
+ NaiveBayes_out = NaiveBayes(data=housing_train, response_column='homestyle',
138
+ numeric_inputs=['price','lotsize','bedrooms','bathrms','stories','garagepl'],
139
+ categorical_inputs=['driveway','recroom','fullbase','gashw','airco','prefarea'])
140
+
141
+ # Print the result DataFrame.
142
+ print( NaiveBayes_out.result)
143
+
144
+ # Example 2: NaiveBayes function to generate classification model using Sparse input.
145
+
146
+ # Unpivoting the data for sparse input to naive bayes.
147
+ upvt_data = Unpivoting(data = housing_train, id_column = 'sn',
148
+ target_columns = ['price','lotsize','bedrooms','bathrms','stories','garagepl','driveway',
149
+ 'recroom','fullbase','gashw','airco','prefarea'],
150
+ attribute_column = "AttributeName", value_column = "AttributeValue",
151
+ accumulate = 'homestyle')
152
+
153
+ NaiveBayes_out = NaiveBayes(data=upvt_data.result,
154
+ response_column='homestyle',
155
+ attribute_name_column='AttributeName',
156
+ attribute_value_column='AttributeValue',
157
+ numeric_attributes=['price','lotsize','bedrooms','bathrms','stories','garagepl'],
158
+ categorical_attributes=['driveway','recroom','fullbase','gashw','airco','prefarea'])
159
+
160
+ # Print the result DataFrame.
161
+ print( NaiveBayes_out.result)
162
+ """
@@ -16,6 +16,8 @@ def OutlierFilterFit(data=None, target_columns=None, group_columns=None, lower_p
16
16
  * For information about PTCs, see Teradata Vantage™ - Analytics
17
17
  Database International Character Set Support.
18
18
  * This function does not support KanjiSJIS or Graphic data types.
19
+ * This function does not support "data_partition_column" and "data_order_column"
20
+ if the corresponding Vantage version is greater than or equal to 17.20.03.20.
19
21
 
20
22
 
21
23
  PARAMETERS: