sequenzo 0.1.18__cp310-cp310-win_amd64.whl → 0.1.19__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (396) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp310-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp310-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +107 -5
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp310-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp310-win_amd64.pyd +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  13. sequenzo/dissimilarity_measures/utils/seqconc.cp310-win_amd64.pyd +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  15. sequenzo/dissimilarity_measures/utils/seqdss.cp310-win_amd64.pyd +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  17. sequenzo/dissimilarity_measures/utils/seqdur.cp310-win_amd64.pyd +0 -0
  18. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  19. sequenzo/dissimilarity_measures/utils/seqlength.cp310-win_amd64.pyd +0 -0
  20. sequenzo/multidomain/cat.py +0 -53
  21. sequenzo/multidomain/idcd.py +0 -1
  22. sequenzo/openmp_setup.py +233 -0
  23. sequenzo/visualization/plot_transition_matrix.py +21 -22
  24. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  25. sequenzo-0.1.19.dist-info/RECORD +272 -0
  26. sequenzo/dissimilarity_measures/setup.py +0 -35
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  169. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  171. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  172. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  173. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  174. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  175. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  176. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  177. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  178. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  179. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  180. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  181. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  182. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  183. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  184. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  185. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  186. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  187. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  188. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  189. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  190. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  191. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  192. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  197. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  198. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  199. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  200. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  201. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  202. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  203. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  206. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  207. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  208. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  209. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  210. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  211. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  212. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  213. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  214. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  215. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  216. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  217. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  218. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  219. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  220. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  221. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  222. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  223. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  393. sequenzo-0.1.18.dist-info/RECORD +0 -638
  394. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  395. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  396. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,923 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
- // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
-
12
- #ifndef EIGEN_SPARSE_LU_H
13
- #define EIGEN_SPARSE_LU_H
14
-
15
- namespace Eigen {
16
-
17
- template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
- template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
- template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
-
21
- template <bool Conjugate,class SparseLUType>
22
- class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23
- {
24
- protected:
25
- typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26
- using APIBase::m_isInitialized;
27
- public:
28
- typedef typename SparseLUType::Scalar Scalar;
29
- typedef typename SparseLUType::StorageIndex StorageIndex;
30
- typedef typename SparseLUType::MatrixType MatrixType;
31
- typedef typename SparseLUType::OrderingType OrderingType;
32
-
33
- enum {
34
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36
- };
37
-
38
- SparseLUTransposeView() : m_sparseLU(NULL) {}
39
- SparseLUTransposeView(const SparseLUTransposeView& view) {
40
- this->m_sparseLU = view.m_sparseLU;
41
- }
42
- void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
43
- void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44
- using APIBase::_solve_impl;
45
- template<typename Rhs, typename Dest>
46
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47
- {
48
- Dest& X(X_base.derived());
49
- eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
-
53
-
54
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55
- for(Index j = 0; j < B.cols(); ++j){
56
- X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57
- }
58
- //Forward substitution with transposed or adjoint of U
59
- m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
-
61
- //Backward substitution with transposed or adjoint of L
62
- m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
-
64
- // Permute back the solution
65
- for (Index j = 0; j < B.cols(); ++j)
66
- X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67
- return true;
68
- }
69
- inline Index rows() const { return m_sparseLU->rows(); }
70
- inline Index cols() const { return m_sparseLU->cols(); }
71
-
72
- private:
73
- SparseLUType *m_sparseLU;
74
- SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75
- };
76
-
77
-
78
- /** \ingroup SparseLU_Module
79
- * \class SparseLU
80
- *
81
- * \brief Sparse supernodal LU factorization for general matrices
82
- *
83
- * This class implements the supernodal LU factorization for general matrices.
84
- * It uses the main techniques from the sequential SuperLU package
85
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86
- * and complex arithmetic with single and double precision, depending on the
87
- * scalar type of your input matrix.
88
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
90
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91
- * enable a better optimization from the compiler. For best performance,
92
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93
- *
94
- * An important parameter of this class is the ordering method. It is used to reorder the columns
95
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96
- * numerical factorization. The cheapest method available is COLAMD.
97
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98
- * built-in and external ordering methods.
99
- *
100
- * Simple example with key steps
101
- * \code
102
- * VectorXd x(n), b(n);
103
- * SparseMatrix<double> A;
104
- * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105
- * // fill A and b;
106
- * // Compute the ordering permutation vector from the structural pattern of A
107
- * solver.analyzePattern(A);
108
- * // Compute the numerical factorization
109
- * solver.factorize(A);
110
- * //Use the factors to solve the linear system
111
- * x = solver.solve(b);
112
- * \endcode
113
- *
114
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
115
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116
- *
117
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119
- * If this is the case for your matrices, you can try the basic scaling method at
120
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121
- *
122
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124
- *
125
- * \implsparsesolverconcept
126
- *
127
- * \sa \ref TutorialSparseSolverConcept
128
- * \sa \ref OrderingMethods_Module
129
- */
130
- template <typename _MatrixType, typename _OrderingType>
131
- class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132
- {
133
- protected:
134
- typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135
- using APIBase::m_isInitialized;
136
- public:
137
- using APIBase::_solve_impl;
138
-
139
- typedef _MatrixType MatrixType;
140
- typedef _OrderingType OrderingType;
141
- typedef typename MatrixType::Scalar Scalar;
142
- typedef typename MatrixType::RealScalar RealScalar;
143
- typedef typename MatrixType::StorageIndex StorageIndex;
144
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145
- typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147
- typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148
- typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149
- typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
-
151
- enum {
152
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154
- };
155
-
156
- public:
157
-
158
- SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159
- {
160
- initperfvalues();
161
- }
162
- explicit SparseLU(const MatrixType& matrix)
163
- : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164
- {
165
- initperfvalues();
166
- compute(matrix);
167
- }
168
-
169
- ~SparseLU()
170
- {
171
- // Free all explicit dynamic pointers
172
- }
173
-
174
- void analyzePattern (const MatrixType& matrix);
175
- void factorize (const MatrixType& matrix);
176
- void simplicialfactorize(const MatrixType& matrix);
177
-
178
- /**
179
- * Compute the symbolic and numeric factorization of the input sparse matrix.
180
- * The input matrix should be in column-major storage.
181
- */
182
- void compute (const MatrixType& matrix)
183
- {
184
- // Analyze
185
- analyzePattern(matrix);
186
- //Factorize
187
- factorize(matrix);
188
- }
189
-
190
- /** \returns an expression of the transposed of the factored matrix.
191
- *
192
- * A typical usage is to solve for the transposed problem A^T x = b:
193
- * \code
194
- * solver.compute(A);
195
- * x = solver.transpose().solve(b);
196
- * \endcode
197
- *
198
- * \sa adjoint(), solve()
199
- */
200
- const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201
- {
202
- SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203
- transposeView.setSparseLU(this);
204
- transposeView.setIsInitialized(this->m_isInitialized);
205
- return transposeView;
206
- }
207
-
208
-
209
- /** \returns an expression of the adjoint of the factored matrix
210
- *
211
- * A typical usage is to solve for the adjoint problem A' x = b:
212
- * \code
213
- * solver.compute(A);
214
- * x = solver.adjoint().solve(b);
215
- * \endcode
216
- *
217
- * For real scalar types, this function is equivalent to transpose().
218
- *
219
- * \sa transpose(), solve()
220
- */
221
- const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222
- {
223
- SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224
- adjointView.setSparseLU(this);
225
- adjointView.setIsInitialized(this->m_isInitialized);
226
- return adjointView;
227
- }
228
-
229
- inline Index rows() const { return m_mat.rows(); }
230
- inline Index cols() const { return m_mat.cols(); }
231
- /** Indicate that the pattern of the input matrix is symmetric */
232
- void isSymmetric(bool sym)
233
- {
234
- m_symmetricmode = sym;
235
- }
236
-
237
- /** \returns an expression of the matrix L, internally stored as supernodes
238
- * The only operation available with this expression is the triangular solve
239
- * \code
240
- * y = b; matrixL().solveInPlace(y);
241
- * \endcode
242
- */
243
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244
- {
245
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246
- }
247
- /** \returns an expression of the matrix U,
248
- * The only operation available with this expression is the triangular solve
249
- * \code
250
- * y = b; matrixU().solveInPlace(y);
251
- * \endcode
252
- */
253
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254
- {
255
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256
- }
257
-
258
- /**
259
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260
- * \sa colsPermutation()
261
- */
262
- inline const PermutationType& rowsPermutation() const
263
- {
264
- return m_perm_r;
265
- }
266
- /**
267
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268
- * \sa rowsPermutation()
269
- */
270
- inline const PermutationType& colsPermutation() const
271
- {
272
- return m_perm_c;
273
- }
274
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
275
- void setPivotThreshold(const RealScalar& thresh)
276
- {
277
- m_diagpivotthresh = thresh;
278
- }
279
-
280
- #ifdef EIGEN_PARSED_BY_DOXYGEN
281
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282
- *
283
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284
- *
285
- * \sa compute()
286
- */
287
- template<typename Rhs>
288
- inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289
- #endif // EIGEN_PARSED_BY_DOXYGEN
290
-
291
- /** \brief Reports whether previous computation was successful.
292
- *
293
- * \returns \c Success if computation was successful,
294
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295
- * \c InvalidInput if the input matrix is invalid
296
- *
297
- * \sa iparm()
298
- */
299
- ComputationInfo info() const
300
- {
301
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302
- return m_info;
303
- }
304
-
305
- /**
306
- * \returns A string describing the type of error
307
- */
308
- std::string lastErrorMessage() const
309
- {
310
- return m_lastError;
311
- }
312
-
313
- template<typename Rhs, typename Dest>
314
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315
- {
316
- Dest& X(X_base.derived());
317
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
-
321
- // Permute the right hand side to form X = Pr*B
322
- // on return, X is overwritten by the computed solution
323
- X.resize(B.rows(),B.cols());
324
-
325
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326
- for(Index j = 0; j < B.cols(); ++j)
327
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
-
329
- //Forward substitution with L
330
- this->matrixL().solveInPlace(X);
331
- this->matrixU().solveInPlace(X);
332
-
333
- // Permute back the solution
334
- for (Index j = 0; j < B.cols(); ++j)
335
- X.col(j) = colsPermutation().inverse() * X.col(j);
336
-
337
- return true;
338
- }
339
-
340
- /**
341
- * \returns the absolute value of the determinant of the matrix of which
342
- * *this is the QR decomposition.
343
- *
344
- * \warning a determinant can be very big or small, so for matrices
345
- * of large enough dimension, there is a risk of overflow/underflow.
346
- * One way to work around that is to use logAbsDeterminant() instead.
347
- *
348
- * \sa logAbsDeterminant(), signDeterminant()
349
- */
350
- Scalar absDeterminant()
351
- {
352
- using std::abs;
353
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354
- // Initialize with the determinant of the row matrix
355
- Scalar det = Scalar(1.);
356
- // Note that the diagonal blocks of U are stored in supernodes,
357
- // which are available in the L part :)
358
- for (Index j = 0; j < this->cols(); ++j)
359
- {
360
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361
- {
362
- if(it.index() == j)
363
- {
364
- det *= abs(it.value());
365
- break;
366
- }
367
- }
368
- }
369
- return det;
370
- }
371
-
372
- /** \returns the natural log of the absolute value of the determinant of the matrix
373
- * of which **this is the QR decomposition
374
- *
375
- * \note This method is useful to work around the risk of overflow/underflow that's
376
- * inherent to the determinant computation.
377
- *
378
- * \sa absDeterminant(), signDeterminant()
379
- */
380
- Scalar logAbsDeterminant() const
381
- {
382
- using std::log;
383
- using std::abs;
384
-
385
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386
- Scalar det = Scalar(0.);
387
- for (Index j = 0; j < this->cols(); ++j)
388
- {
389
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390
- {
391
- if(it.row() < j) continue;
392
- if(it.row() == j)
393
- {
394
- det += log(abs(it.value()));
395
- break;
396
- }
397
- }
398
- }
399
- return det;
400
- }
401
-
402
- /** \returns A number representing the sign of the determinant
403
- *
404
- * \sa absDeterminant(), logAbsDeterminant()
405
- */
406
- Scalar signDeterminant()
407
- {
408
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409
- // Initialize with the determinant of the row matrix
410
- Index det = 1;
411
- // Note that the diagonal blocks of U are stored in supernodes,
412
- // which are available in the L part :)
413
- for (Index j = 0; j < this->cols(); ++j)
414
- {
415
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416
- {
417
- if(it.index() == j)
418
- {
419
- if(it.value()<0)
420
- det = -det;
421
- else if(it.value()==0)
422
- return 0;
423
- break;
424
- }
425
- }
426
- }
427
- return det * m_detPermR * m_detPermC;
428
- }
429
-
430
- /** \returns The determinant of the matrix.
431
- *
432
- * \sa absDeterminant(), logAbsDeterminant()
433
- */
434
- Scalar determinant()
435
- {
436
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437
- // Initialize with the determinant of the row matrix
438
- Scalar det = Scalar(1.);
439
- // Note that the diagonal blocks of U are stored in supernodes,
440
- // which are available in the L part :)
441
- for (Index j = 0; j < this->cols(); ++j)
442
- {
443
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444
- {
445
- if(it.index() == j)
446
- {
447
- det *= it.value();
448
- break;
449
- }
450
- }
451
- }
452
- return (m_detPermR * m_detPermC) > 0 ? det : -det;
453
- }
454
-
455
- Index nnzL() const { return m_nnzL; };
456
- Index nnzU() const { return m_nnzU; };
457
-
458
- protected:
459
- // Functions
460
- void initperfvalues()
461
- {
462
- m_perfv.panel_size = 16;
463
- m_perfv.relax = 1;
464
- m_perfv.maxsuper = 128;
465
- m_perfv.rowblk = 16;
466
- m_perfv.colblk = 8;
467
- m_perfv.fillfactor = 20;
468
- }
469
-
470
- // Variables
471
- mutable ComputationInfo m_info;
472
- bool m_factorizationIsOk;
473
- bool m_analysisIsOk;
474
- std::string m_lastError;
475
- NCMatrix m_mat; // The input (permuted ) matrix
476
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477
- MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478
- PermutationType m_perm_c; // Column permutation
479
- PermutationType m_perm_r ; // Row permutation
480
- IndexVector m_etree; // Column elimination tree
481
-
482
- typename Base::GlobalLU_t m_glu;
483
-
484
- // SparseLU options
485
- bool m_symmetricmode;
486
- // values for performance
487
- internal::perfvalues m_perfv;
488
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490
- Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491
- private:
492
- // Disable copy constructor
493
- SparseLU (const SparseLU& );
494
- }; // End class SparseLU
495
-
496
-
497
-
498
- // Functions needed by the anaysis phase
499
- /**
500
- * Compute the column permutation to minimize the fill-in
501
- *
502
- * - Apply this permutation to the input matrix -
503
- *
504
- * - Compute the column elimination tree on the permuted matrix
505
- *
506
- * - Postorder the elimination tree and the column permutation
507
- *
508
- */
509
- template <typename MatrixType, typename OrderingType>
510
- void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511
- {
512
-
513
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
-
515
- // Firstly, copy the whole input matrix.
516
- m_mat = mat;
517
-
518
- // Compute fill-in ordering
519
- OrderingType ord;
520
- ord(m_mat,m_perm_c);
521
-
522
- // Apply the permutation to the column of the input matrix
523
- if (m_perm_c.size())
524
- {
525
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526
- // Then, permute only the column pointers
527
- ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
-
529
- // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530
- if(!mat.isCompressed())
531
- IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
-
533
- // Apply the permutation and compute the nnz per column.
534
- for (Index i = 0; i < mat.cols(); i++)
535
- {
536
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538
- }
539
- }
540
-
541
- // Compute the column elimination tree of the permuted matrix
542
- IndexVector firstRowElt;
543
- internal::coletree(m_mat, m_etree,firstRowElt);
544
-
545
- // In symmetric mode, do not do postorder here
546
- if (!m_symmetricmode) {
547
- IndexVector post, iwork;
548
- // Post order etree
549
- internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
-
551
-
552
- // Renumber etree in postorder
553
- Index m = m_mat.cols();
554
- iwork.resize(m+1);
555
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556
- m_etree = iwork;
557
-
558
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559
- PermutationType post_perm(m);
560
- for (Index i = 0; i < m; i++)
561
- post_perm.indices()(i) = post(i);
562
-
563
- // Combine the two permutations : postorder the permutation for future use
564
- if(m_perm_c.size()) {
565
- m_perm_c = post_perm * m_perm_c;
566
- }
567
-
568
- } // end postordering
569
-
570
- m_analysisIsOk = true;
571
- }
572
-
573
- // Functions needed by the numerical factorization phase
574
-
575
-
576
- /**
577
- * - Numerical factorization
578
- * - Interleaved with the symbolic factorization
579
- * On exit, info is
580
- *
581
- * = 0: successful factorization
582
- *
583
- * > 0: if info = i, and i is
584
- *
585
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
586
- * been completed, but the factor U is exactly singular,
587
- * and division by zero will occur if it is used to solve a
588
- * system of equations.
589
- *
590
- * > A->ncol: number of bytes allocated when memory allocation
591
- * failure occurred, plus A->ncol. If lwork = -1, it is
592
- * the estimated amount of space needed, plus A->ncol.
593
- */
594
- template <typename MatrixType, typename OrderingType>
595
- void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596
- {
597
- using internal::emptyIdxLU;
598
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
-
601
- m_isInitialized = true;
602
-
603
- // Apply the column permutation computed in analyzepattern()
604
- // m_mat = matrix * m_perm_c.inverse();
605
- m_mat = matrix;
606
- if (m_perm_c.size())
607
- {
608
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609
- //Then, permute only the column pointers
610
- const StorageIndex * outerIndexPtr;
611
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612
- else
613
- {
614
- StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616
- outerIndexPtr = outerIndexPtr_t;
617
- }
618
- for (Index i = 0; i < matrix.cols(); i++)
619
- {
620
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622
- }
623
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
624
- }
625
- else
626
- { //FIXME This should not be needed if the empty permutation is handled transparently
627
- m_perm_c.resize(matrix.cols());
628
- for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629
- }
630
-
631
- Index m = m_mat.rows();
632
- Index n = m_mat.cols();
633
- Index nnz = m_mat.nonZeros();
634
- Index maxpanel = m_perfv.panel_size * m;
635
- // Allocate working storage common to the factor routines
636
- Index lwork = 0;
637
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638
- if (info)
639
- {
640
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641
- m_factorizationIsOk = false;
642
- return ;
643
- }
644
-
645
- // Set up pointers for integer working arrays
646
- IndexVector segrep(m); segrep.setZero();
647
- IndexVector parent(m); parent.setZero();
648
- IndexVector xplore(m); xplore.setZero();
649
- IndexVector repfnz(maxpanel);
650
- IndexVector panel_lsub(maxpanel);
651
- IndexVector xprune(n); xprune.setZero();
652
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
-
654
- repfnz.setConstant(-1);
655
- panel_lsub.setConstant(-1);
656
-
657
- // Set up pointers for scalar working arrays
658
- ScalarVector dense;
659
- dense.setZero(maxpanel);
660
- ScalarVector tempv;
661
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
-
663
- // Compute the inverse of perm_c
664
- PermutationType iperm_c(m_perm_c.inverse());
665
-
666
- // Identify initial relaxed snodes
667
- IndexVector relax_end(n);
668
- if ( m_symmetricmode == true )
669
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670
- else
671
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
-
673
-
674
- m_perm_r.resize(m);
675
- m_perm_r.indices().setConstant(-1);
676
- marker.setConstant(-1);
677
- m_detPermR = 1; // Record the determinant of the row permutation
678
-
679
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
-
682
- // Work on one 'panel' at a time. A panel is one of the following :
683
- // (a) a relaxed supernode at the bottom of the etree, or
684
- // (b) panel_size contiguous columns, <panel_size> defined by the user
685
- Index jcol;
686
- Index pivrow; // Pivotal row number in the original row matrix
687
- Index nseg1; // Number of segments in U-column above panel row jcol
688
- Index nseg; // Number of segments in each U-column
689
- Index irep;
690
- Index i, k, jj;
691
- for (jcol = 0; jcol < n; )
692
- {
693
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
695
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696
- {
697
- if (relax_end(k) != emptyIdxLU)
698
- {
699
- panel_size = k - jcol;
700
- break;
701
- }
702
- }
703
- if (k == n)
704
- panel_size = n - jcol;
705
-
706
- // Symbolic outer factorization on a panel of columns
707
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
-
709
- // Numeric sup-panel updates in topological order
710
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
-
712
- // Sparse LU within the panel, and below the panel diagonal
713
- for ( jj = jcol; jj< jcol + panel_size; jj++)
714
- {
715
- k = (jj - jcol) * m; // Column index for w-wide arrays
716
-
717
- nseg = nseg1; // begin after all the panel segments
718
- //Depth-first-search for the current column
719
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722
- if ( info )
723
- {
724
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725
- m_info = NumericalIssue;
726
- m_factorizationIsOk = false;
727
- return;
728
- }
729
- // Numeric updates to this column
730
- VectorBlock<ScalarVector> dense_k(dense, k, m);
731
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733
- if ( info )
734
- {
735
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736
- m_info = NumericalIssue;
737
- m_factorizationIsOk = false;
738
- return;
739
- }
740
-
741
- // Copy the U-segments to ucol(*)
742
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743
- if ( info )
744
- {
745
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746
- m_info = NumericalIssue;
747
- m_factorizationIsOk = false;
748
- return;
749
- }
750
-
751
- // Form the L-segment
752
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753
- if ( info )
754
- {
755
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756
- std::ostringstream returnInfo;
757
- returnInfo << info;
758
- m_lastError += returnInfo.str();
759
- m_info = NumericalIssue;
760
- m_factorizationIsOk = false;
761
- return;
762
- }
763
-
764
- // Update the determinant of the row permutation matrix
765
- // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766
- if (pivrow != jj) m_detPermR = -m_detPermR;
767
-
768
- // Prune columns (0:jj-1) using column jj
769
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
-
771
- // Reset repfnz for this column
772
- for (i = 0; i < nseg; i++)
773
- {
774
- irep = segrep(i);
775
- repfnz_k(irep) = emptyIdxLU;
776
- }
777
- } // end SparseLU within the panel
778
- jcol += panel_size; // Move to the next panel
779
- } // end for -- end elimination
780
-
781
- m_detPermR = m_perm_r.determinant();
782
- m_detPermC = m_perm_c.determinant();
783
-
784
- // Count the number of nonzeros in factors
785
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786
- // Apply permutation to the L subscripts
787
- Base::fixupL(n, m_perm_r.indices(), m_glu);
788
-
789
- // Create supernode matrix L
790
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791
- // Create the column major upper sparse matrix U;
792
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
-
794
- m_info = Success;
795
- m_factorizationIsOk = true;
796
- }
797
-
798
- template<typename MappedSupernodalType>
799
- struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800
- {
801
- typedef typename MappedSupernodalType::Scalar Scalar;
802
- explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803
- { }
804
- Index rows() const { return m_mapL.rows(); }
805
- Index cols() const { return m_mapL.cols(); }
806
- template<typename Dest>
807
- void solveInPlace( MatrixBase<Dest> &X) const
808
- {
809
- m_mapL.solveInPlace(X);
810
- }
811
- template<bool Conjugate, typename Dest>
812
- void solveTransposedInPlace( MatrixBase<Dest> &X) const
813
- {
814
- m_mapL.template solveTransposedInPlace<Conjugate>(X);
815
- }
816
-
817
- const MappedSupernodalType& m_mapL;
818
- };
819
-
820
- template<typename MatrixLType, typename MatrixUType>
821
- struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822
- {
823
- typedef typename MatrixLType::Scalar Scalar;
824
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825
- : m_mapL(mapL),m_mapU(mapU)
826
- { }
827
- Index rows() const { return m_mapL.rows(); }
828
- Index cols() const { return m_mapL.cols(); }
829
-
830
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831
- {
832
- Index nrhs = X.cols();
833
- Index n = X.rows();
834
- // Backward solve with U
835
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
836
- {
837
- Index fsupc = m_mapL.supToCol()[k];
838
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840
- Index luptr = m_mapL.colIndexPtr()[fsupc];
841
-
842
- if (nsupc == 1)
843
- {
844
- for (Index j = 0; j < nrhs; j++)
845
- {
846
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847
- }
848
- }
849
- else
850
- {
851
- // FIXME: the following lines should use Block expressions and not Map!
852
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854
- U = A.template triangularView<Upper>().solve(U);
855
- }
856
-
857
- for (Index j = 0; j < nrhs; ++j)
858
- {
859
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860
- {
861
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
862
- for ( ; it; ++it)
863
- {
864
- Index irow = it.index();
865
- X(irow, j) -= X(jcol, j) * it.value();
866
- }
867
- }
868
- }
869
- } // End For U-solve
870
- }
871
-
872
- template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873
- {
874
- using numext::conj;
875
- Index nrhs = X.cols();
876
- Index n = X.rows();
877
- // Forward solve with U
878
- for (Index k = 0; k <= m_mapL.nsuper(); k++)
879
- {
880
- Index fsupc = m_mapL.supToCol()[k];
881
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883
- Index luptr = m_mapL.colIndexPtr()[fsupc];
884
-
885
- for (Index j = 0; j < nrhs; ++j)
886
- {
887
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888
- {
889
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
890
- for ( ; it; ++it)
891
- {
892
- Index irow = it.index();
893
- X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894
- }
895
- }
896
- }
897
- if (nsupc == 1)
898
- {
899
- for (Index j = 0; j < nrhs; j++)
900
- {
901
- X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902
- }
903
- }
904
- else
905
- {
906
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908
- if(Conjugate)
909
- U = A.adjoint().template triangularView<Lower>().solve(U);
910
- else
911
- U = A.transpose().template triangularView<Lower>().solve(U);
912
- }
913
- }// End For U-solve
914
- }
915
-
916
-
917
- const MatrixLType& m_mapL;
918
- const MatrixUType& m_mapU;
919
- };
920
-
921
- } // End namespace Eigen
922
-
923
- #endif